AM4 Analisi Matematica (4º Modulo)

A.A. 2003/2004

Prof. L. Chierchia

Teoria dell'integrazione e analisi di Fourier

1. Teoria dell'integrazione

Richiami di teoria dell'integrazione secondo Riemann (insiemi elementari; funzioni semplici; integrale di Riemann; additività e positività dell'integrale; le funzioni integrabili secondo Riemann formano un'algebra).

Insiemi di misura nulla (definizioni equivalenti tramite cubi/rettangoli aperti/chiusi; immagine di insiemi di misura nulla tramite applicazioni lipschitziane; insiemi di misura nulla compatti).

L'insieme ternario di Cantor. La funzione di Cantor. La curva di Peano.

Il teorema di Vitali-Lebesgue (caratterizzazione delle funzioni integrabili secondo Riemann e degli insiemi misurabili secondo Peano-Jordan).

Dimostrazione del teorema del cambio di variabili in \mathbb{R}^n .

Un insieme aperto in (0,1) non misurabile secondo Peano-Jordan.

Varietà ed elementi di varietà immersi in \mathbb{R}^n (definizioni, esempi).

Integrazione su varietà (partizione dell'unità, il teorema della divergenza in \mathbb{R}^n , coordinate polari in \mathbb{R}^n , calcolo del volume e della superficie laterale della sfera euclidea in \mathbb{R}^n).

Integrale di Riemann generalizzato (invasioni, definizione di integrale di Riemann generalizzato e di misura di Peano-Jordan generalizzata, proprietà, esempi e controesempi, la classe delle funzioni $\mathcal{R}_p(E)$, disuguaglianze di Hölder e Minkowski, approssimazione in norma $\|\cdot\|_p$ di funzioni in $\mathcal{R}_p(E)$ tramite funzioni C_0^{∞}).

2. Analisi di Fourier

Serie di Fourier (coefficienti di Fourier di funzioni $\mathcal{R}_1(0, 2\pi)$; relazione tra decadimento dei coefficienti e regolarità della funzione; disuguaglianza di Bessel per funzioni $\mathcal{R}_2(0, 2\pi)$; il lemma di Riemann-Lebesgue; convergenza puntuale e lemma di Dini; calcolo della somma dei reciproci dei quadrati; uguaglianza di Parseval per funzioni C^1 periodiche e per funzioni $\mathcal{R}_2(0, 2\pi)$; convergenza in $\mathcal{R}_2(0, 2\pi)$ delle serie di Fourier).

Equazione del calore su $(0, \pi)$ con condizioni al bordo di Dirichlet (metodo della separazioni di variabili, soluzione con le serie di Fourier).

Trasformata di Fourier su R (definizione e proprietà della trasformata di Fourier di funzioni $\mathcal{R}_1(R)$; approssimazione discrete di integrali su R, il teorema di inversione per funzioni C_0^2 e generalizzazioni; relazione tra decadimento di \hat{f} e regolarità di f; il lemma di Rieamnn-Lebesgue).

Testi consigliati

- [1] CHIERCHIA, L., Lezioni di Analisi Matematica 2. Aracne, (1997).
- [2] Rudin, W., Principi di analisi matematica. McGraw-Hill, (1991).

BIBLIOGRAFIA SUPPLEMENTARE

- [3] Giusti E., Analisi Matematica 2. Boringhieri, (1992).
- [4] Demidovich B.P., Esercizi e problemi di Analisi Matematica. Editori Riuniti, (1993).

Modalità d'esame

- valutazione in itinere ("esoneri")		■ SI	□NO
- esame finale	scritto orale	■ SI □ SI	□ NO ■ NO
- altre prove di valutazione del profitto (meglio descritte sotto)		■ SI	□NO

È prevista la possibilità di un colloquio integrativo.