AM6 Principi dell'analisi funzionale

A.A. 2006/2007

Prof. L. Chierchia

NB: La numerazione si riferisce al testo H. Brezis, Analyse founctionelle. Masson, (1983) (disponibile anche in italiano: H. Brezis, Analisi funzionale-Teoria e applicazioni, Liguori, Napoli, 1986).

Generalità sugli operatori lineari tra spazi normati; norma di operatori lineari. Esempi di spazi normati infinito dimensionali. Seminorme. Lemma di Zorn (enunciato). Teorema di Hahn-Banach (formulazione analitica). Alcuni corollari del teorema di Hahn-Banach. La funzione di gauge di un convesso aperto contenente l'origine. Esempi di funzionali lineari non continui su un qualunque spazio normato infinito-dimensionale. Separazione di insiemi tramite iperpiani chiusi. Teorema di Hahn-Banach: formulazione geometrica (debole e forte).

Funzioni semicontinue inferiormente. Insiemi e funzioni convesse. Funzioni coniugate e bi-coniugate. Teorema di Fenchel-Moreau.

Il lemma di Baire. Il teorema di Banach-Steinhaus. Il teorema dell'applicazione aperta. Alcune conseguenze del teorema dell'applicazione aperta: corollario II.6; osservazione 5. Teorema del grafico chiuso.

Relazioni d'ortogonalità in spazi di Banach. Proposizione II.12. Ortogonale in uno spazio di Banach e nel duale. Proposizioni II.13, II.14 e Corollario II.14.

Operatori non limitati; operatori non limitati chiusi. L'aggiunto di un operatore non limitato. L'aggiunto di un operatore non limitato è chiuso. $J(G(A^*)) = G(A)^{\perp}$. Corollario II.17. Teorema II.12 (solo enunciato).

Topologie generate da una data famiglia di insiemi; la topologia meno fine che rende continue una data famiglia di funzioni. Proposizioni III.1 e III.2. Topologia debole $\sigma(E, E')$; proprietà fondamentali (proposizioni III.3, III.4, III.5, III.6). Se E è uno spazio di Banach infinito dimensionale, la chiusura debole di $\{||x|| = 1\}$ è $\{||x|| \le 1\}$. Un sottoinsieme convesso di uno spazio di Banach è (fortemente) chiuso se e solo se è debolmente chiuso. Una funzione convessa e s.c.i. su E (forte) è s.c.i. per la topologia debole $\sigma(E, E')$. Un operatore lineare tra due spazi di Banach è (fortemente) continuo se e solo se è continuo da $(E, \sigma(E, E'))$ in $(F, \sigma(F, F'))$. La topologia * debole su E': proprietà generali. Teorema di Banach, Alaoglu.

Spazi riflessivi. Lemmi di Helly e Goldstine. Uno spazio di Banach è riflessivo se e solo se la sua palla unitaria è debolmente compatta. E (spazio di Banach) è riflessivo se e solo se E' è riflessivo. Corollario III.19. Corollario III.20. Teorema III.21.

Spazi separabili. Se E è uno spazio di Banach tale che E' è separabile allora E è separabile. Corollario III.24. Se E uno spazio di Banach, $B_{E'}$ è metrizzabile per $\sigma(E, E')$

se e solo se E è separabile. Corollari III.26 e III.27.

Spazi uniformemente convessi. Gli spazi di Banach uniformemente convessi sono riflessivi. Proposizione III.30.

Spazi di Hilbert: proprietà geometriche fondamentali (prodotto scalare; disuguaglianza di Cauchy; identità del parallelogramma; uniforme convessità; riflessività proiezione su convessi chiusi). Duale di uno spazio di Hilbert (teorema di Riesz-Fréchet)

Forme bilineari, continue e coercive: teorema di Stampacchia e teorema di Lax-Milgram. Somma diretta di sottospazi; diseguaglianza di Bessel ed identità di Parseval. Basi hilbertiane. Spazi di Hilbert separabili e costruzione di una base hilbertiana (Gram-Schmidt).

Operatori compatti. Lo spazio degli operatori compatti è chiuso. Operatori a rango finito. Il limite (forte) di operatori a rango finito è compatto; in spazi di Hilbert ogni operatore compatto è limite di operatori a rango finito. Componendo operatori compatti con operatori limitati si ottengono operatori compatti. Un operatore è compatto se e solo se il suo aggiunto è compatto.

Teoria di Fredholm. Lemmi di Riesz (Lemma VI.1 e VI.5); supplementari topologici. Teorema dell'alternativa di Fredholm.

Definizione di spettro. Esempi di operatori compatti con spettro dato da una successione (arbitraria) di numeri reali an tendenti a 0. Lo spettro di un operatore limitato T è un sottoinsieme compatto dell'intervallo [-||T||, ||T||]. Spettro di operatori compatti. Teorema spettrale per operatori compatti autoaggiunti.

Il problema classico di Dirichlet per un dominio regolare $D \subset R^3$ con dato al bordo $f \in C(\partial D)$: riduzione del problema di Dirichlet al problema: $(I - T)\psi = -f$ con $T: C(\partial D) \to C(\partial D)$ compatto.

Testi consigliati

- [1] H. Brezis, Analyse fonctionnelle, Théorie et applications. , Masson, (1983).
- [2] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol I: Functional Analysis. Academic Press, (1972).

Modalità d'esame

- valutazione in itinere ("esoneri")		□SI	NO
- esame finale	scritto orale	□ SI ■ SI	■ NO □ NO
- altre prove di valutazione del profitto (meglio descritte sotto)		■ SI	□NO

Esercizi assegnati da svolgere a casa.