Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a.2001/2002

ALGEBRA 2 - Gruppi e Anelli (Prof. S. Gabelli)

TUTORATO 6 - 15 Ottobre 2001

1. Verificare che, se A e B sono anelli (commutativi, unitari), allora $A \times B$ è un anello (commutativo unitario) con le operazioni indotte da quelle sulle componenti:

$$(a,b) + (a',b') = (a+a',b+b');$$
 $(a,b)(a',b') = (aa',bb').$

2. Verificare che, se S è un insieme e A e' un anello (commutativo unitario), allora l'insieme A^S di tutte le funzioni da S ad A è un anello con le operazioni "puntuali" definite da

$$(f+g)(s) = f(s) + g(s);$$
 $(fg)(s) = f(s)g(s).$

3. Verificare che l'insieme

$$F = \{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_3 \}$$

è un campo, rispetto alle usuali operazioni di somma e moltiplicazione di matrici.

4. Verificare che i seguenti insiemi numerici sono anelli:

$$\mathbb{Z}[i] = \{a + bi, a, b \in \mathbb{Z}\}; \, \mathbb{Q}[i] = \{a + bi, a, b \in \mathbb{Z}\}; \, \mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}; \, a, b, c \in \mathbb{Z}\}$$

Quali tra essi sono campi?

 ${f 5.}$ Mostrare che un elemento a di un anello A non può essere allo stesso tempo invertibile e zerodivisore.

- **6.** Un elemento a di un anello A si dice idempotente se $a^2=a$. Mostrare che, se A è integro, allora gli unici elementi idempotenti di A sono 0 e 1.
- 7. Determinare gli elementi invertibili e gli elementi idempotenti dell'anello $\mathfrak{M}_2(\mathbb{Z}_2)$ delle matrici quadrate ad elementi in \mathbb{Z}_2 .
- 8. Un elemento a di un anello A si dice nilpotente se $a^k=0$ per qualche $k\geq 1.$

Mostrare che, se $n = p_1^{k_1} \dots p_s^{k_s}$ è la fattorizzazione di n in numeri primi, allora $\bar{a} \in \mathbb{Z}_n$ è nilpotente se e soltanto se p_1 divide a per $i = 1, \dots, s$.

Da questo fatto, dedurre che, se p è primo, ogni elemento di \mathbb{Z}_{p^k} è invertibile oppure nilpotente.

9. Sia A un anello. Mostrare che il polinomio $u + aX \in A[X]$ è invertibile se e soltanto se u è invertibile ed a è nilpotente.

Determinare poi esplicitamente l'inverso del polinomio $\bar{5} + \bar{6}X \in \mathbb{Z}_{12}[X]$.

10. Mostrare che A è un sottoanello di \mathbb{Z}_n se e soltanto se $A = \bar{d}\mathbb{Z}_n$, dove d è un divisore di n.