AM5: I APPELLO-16 Gennaio 2002

1 (Proprietà della classe dei misurabili).

Sia μ misura su X, Σ la classe degli insiemi μ - misurabili. Provare che

$$E_j \in \Sigma, j \in \mathbf{N} \Rightarrow \bigcup_{j=1}^{\infty} E_j \in \Sigma$$

2 (La misura di Lebesgue in \mathbb{R}^N è Borel regolare).

- (i) Provare che i chiusi di \mathbb{R}^N sono Lebesgue misurabili.
- ii) Provare che la misura di Lebesgue in \mathbb{R}^N è Borel regolare.

3 (Teorema di Fubini).

Siano μ misura su X, ν misura su Y, Σ_{μ} , Σ_{ν} le classi dei sottoinsiemi di X (di Y) μ - misurabili (ν -misurabili). Dato $S \subset X \times Y$, sia

$$(\mu \times \nu)(S) := \inf\{\sum \mu(A_j)\nu(B_j): A_j \in \Sigma_\mu, B_j \in \Sigma_\nu, S \subset \cup_j A_j \times B_j\}$$

Provare che $\mu \times \nu$ é una misura su $X \times Y$.

Dato $S \subset X \times Y$, siano $S_x = \{ y \in Y : (x, y) \in S \}, S^y := \{ x \in X : (x, y) \in S \}.$

Supposto $(\mu \times \nu)(S) < +\infty$, indicare le linee essenziali della dimostrazione dei seguenti fatti:

- (i) $S \in \Sigma_{\mu \times \nu} \Rightarrow S_x \in \Sigma_{\nu}, \mu q.o.x, S^y \in \Sigma_{\mu}, \nu q.o.y$
- (ii) $x \to \nu(S_x)$ e $y \to \mu(S^y)$ sono misurabili
- (iii) $(\mu \times \nu)(S) = \int_X \nu(S_x) d\mu = \int_Y \mu(S^y) d\nu.$

4 (Derivata di Radon di misure singolari rispetto alla misura di Lebesgue in \mathbb{R}^N).

Sia ν misura di Borel regolare in ${\bf R}^N$, singolare rispetto alla misura di Lebesgue μ . Dimostrare che

$$\frac{\nu(B_r(x))}{\mu(B_r(x))} \to_{r\to 0} 0 \ q.o. \ x$$

Esercizio 1

Sia $f: \mathbf{R} \to \mathbf{R}$ localmente Lipschtziana.

Provare che f trasforma insiemi di misura nulla in insiemi di misura nulla.

Mostrare con un esempio che le funzioni continue non hanno, in generale, questa proprietà.

Esercizio 2

Sia $A \subset \mathbf{R}$, di misura di Lebesgue positiva.

Provare che A contiene sottoinsiemi che non sono Lebesgue-misurabili.

Esercizio 3

Sia $\mu(X) < +\infty$. Siano $1 \le s < t$.

Provare che $f \in L^t \Rightarrow f \in L^s$.

Provare che l'inclusione $L^t\subset L^s$ è stretta. Provare che l'inclusione $L^t\subset L^s$ è falsa se $\mu(X)=+\infty.$