Capitolo 0

Divisibilità negli interi

Versione Preliminare

1 Principio di Induzione

Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi $0, 1, 2, 3, \ldots$

Da un punto di vista insiemistico—costruttivo, a partire dall'esistenza dell'insieme vuoto \emptyset , si possono definire i numeri naturali ponendo:

$$0 := \emptyset$$
, $1 := \{0\}$, $2 := \{0, 1\}$, $3 := \{0, 1, 2\}$,

Si assume (nella teoria assiomatica degli insiemi) che la costruzione ricorsiva sopra descritta (ogni elemento è definito a partire dalla conoscenza di un elemento "che lo precede") dia luogo ad un insieme

$$\mathbb{N} := \{0, 1, 2, 3, \dots, n, n + 1, \dots \}$$

detto insieme dei numeri naturali . (Il postulato dell'esistenza di un insieme costituito da una infintà di oggetti individuali, quale è \mathbb{N} , viene chiamato **Assioma dell'Infinito**).

Per ogni elemento (numero naturale) $x \in \mathbb{N}$, si pone:

$$x + 1 := \{0, 1, 2, \dots, x\},\$$

un tale elemento viene chiamato il successivo del numero naturale x (e l'operazione $x \mapsto x+1$ è detta operazione di passaggio al successivo).

Una descrizione puramente formale dell'insieme dei numeri naturali \mathbb{N} è stata data da G. Peano (1858-1932):

L'insieme \mathbb{N} verifica le sequenti proprietà:

- (N 1) Esiste un elemento $0 \in \mathbb{N}$, tale che $0 \neq x+1$, per ogni $x \in \mathbb{N}$, (tale elemento viene chiamato zero o primo elemento di \mathbb{N}).
 - (N 2) Se $x, y \in \mathbb{N}$ e se $x \neq y$, allora $x + 1 \neq y + 1$.
 - (\mathbb{N} 3) Se U è un sottoinsieme di \mathbb{N} tale che

(a)
$$0 \in U$$
, (b) $k \in U \Rightarrow k+1 \in U$,

allora $U = \mathbb{N}$.

Le precedenti proprietà sono chiamate Postulati (od Assiomi) di Peano. La proprietà (\mathbb{N} 3) è chiamata Principio di Induzione.

I postulati di Peano caratterizzano l'insieme N dei numeri naturali, nel senso che è possibile dimostrare che esiste ed è unico (a meno di corrispondenze biunivoche che conservano il primo elemento e l'operazione di "passaggio al successivo") un insieme che verifica tali proprietà. Per tale ragione, il sistema di assioni di Peano si dice "un sistema monomorfo".

È importante evidenziare che, dagli assiomi di Peano, si deducono tutte le ben note proprietà dell'insieme dei numeri naturali. In particolare le operazioni di somma e prodotto, e le loro proprietà, possono essere dedotte dagli assiomi di Peano. Per $somma\ di\ n,m\in\mathbb{N}$ si intende il numero naturale:

$$n + m := (\dots((n+1)+1)+1\dots)$$
 (m volte), se $m \ge 1$; $n + 0 := n$,

e per prodotto di $n, m \in \mathbb{N}$ si intende il numero naturale:

$$nm := n + n + n + \dots + n \pmod{m}$$
, se $m \ge 1$; $n0 := 0$.

La relazione di ordine in \mathbb{N} è definita nella maniera seguente:

$$h \leqslant k : \Leftrightarrow k = h + n$$
, per un qualche $n \in \mathbb{N}$.

Ovviamente, $h < k : \Leftrightarrow h \leqslant k$ e $h \neq k$. Dunque, $h < k \Rightarrow h + 1 \leqslant k$ (e viceversa).

Per semplicità di notazione, nel seguito, denoteremo con $\mathbb{N}^+ := \mathbb{N} \setminus \{0\}$ l'insieme dei numeri naturali positivi. Porremo, poi, $\mathbb{N}^- := \{-n : n \in \mathbb{N}^+\}$ e $\mathbb{Z} := \mathbb{N}^+ \cup \{0\} \cup \mathbb{N}^-$.

L'insieme \mathbb{Z} dei *numeri interi*, o *numeri interi relativi*, viene introdotto in maniera più rigorosa come insieme-quoziente dell'insieme $\mathbb{N} \times \mathbb{N}$ rispetto alla relazione di equivalenza seguente:

$$(n,m) \sim (n',m') :\Leftrightarrow n+m'=m+n'$$

Un elemento dell'insieme-quoziente $\mathbb{Z}:=\mathbb{N}\times\mathbb{N}/\sim$, determinato dalla classe di equivalenza di (n,m), viene denotato con il simbolo n-m, i.e.

$$n-m := [(n,m)]_{\sim} := \{(n',m') \in \mathbb{N} \times \mathbb{N} : n+m' = m+n'\}.$$

Per semplicità di notazione, presi comunque $n,m\in\mathbb{N}$, nell'insieme \mathbb{Z} si pone -m:=0-m, n:=n-0 (identificando così \mathbb{N} con la sua immagine canonica in \mathbb{Z} , tramite l'applicazione iniettiva $n\mapsto n-0$); dunque, in particolare, 0=0-0=n-n, per ogni $n\in\mathbb{N}$. Quindi, $\mathbb{N}^+:=\{n\in\mathbb{N}:n\neq 0\}$ e $\mathbb{N}^-:=\{-m:m\in\mathbb{N},n\neq 0\}$.

È subito visto che in \mathbb{Z} possono essere (ben) definite in modo naturale, a partire da quelle di \mathbb{N} , le operazioni di somma, prodotto e una relazione di ordine:

$$\begin{array}{ll} (n-m) + (n'-m') & := (n+n') - (m+m') \,, \\ (n-m) \cdot (n'-m') & := (nn'+mm') - (nm'+mn') \,, \\ (n-m) \leq (n'-m') & :\Leftrightarrow n+m' \leq n'+m \,. \end{array}$$

In altri termini, l'insieme $\mathbb Z$ dei numeri interi (relativi) è "il più piccolo insieme" che contiene $\mathbb N$ nel quale è sempre possibile risolvere un'equazione lineare in una indeterminata X a coefficienti in $\mathbb N$ del tipo seguente:

$$m + X = n$$
, con $n, m \in \mathbb{N}$,

la cui unica soluzione (in \mathbb{Z}) è data da n-m.

Si noti anche che, dalla decomposizione $\mathbb{Z} = \mathbb{N}^+ \cup \{0\} \cup \mathbb{N}^-$, si ricava la cosìdetta **Legge di Tricotomia** in \mathbb{Z} , cioè: presi comunque $x, y \in \mathbb{Z}$ allora può accadere soltanto una delle seguenti eventualità:

$$x < y$$
 oppure $x = y$ oppure $y < x$.

Pertanto, se $x, y \in \mathbb{Z}$, allora:

$$x \not\leqslant y \Rightarrow y < x$$
.

È opportuno notare che la validità del Principio di Induzione si trasferisce da \mathbb{N} ad appropriati sottoinsiemi di \mathbb{Z} , che sono in corrispondenza biunivoca naturale con \mathbb{N} . Precisamente, preso comunque un intero $n_0 \in \mathbb{Z}$, poniamo:

$$\mathbb{N}(n_0) := \{ x \in \mathbb{Z} : n_0 \leqslant x \},\,$$

allora possiamo affermare che in $\mathbb{N}(n_0)$ ($\subset \mathbb{Z}$) vale la seguente formulazione del:

(I) Principio di Induzione. Sia $U \subseteq \mathbb{Z}$ tale che:

(a)
$$n_0 \in U$$
, (b) $k \in U \implies k+1 \in U$, allora $U = \mathbb{N}(n_0)$.

Sul Principio di Induzione si basa il cosìdetto Metodo di Prova per Induzione. Supponiamo che, dato un intero n_0 , per ogni intero $n \ge n_0$, si possa formulare una proposizione $\mathbf{P}(n)$ (ad esempio, sia $n_0 = 1$, e sia $\mathbf{P}(n) :=$ "se un insieme finito S ha n elementi, allora il suo insieme delle parti $\mathcal{B}(\mathcal{S})$ ha 2^n elementi"; oppure $\mathbf{P}(n) :=$ "vale la seguente identità $1+2+\ldots+(n-1)+n=\frac{n(n+1)}{2}$ "). Allora il Metodo di Prova per Induzione per la validità della proposizione $\mathbf{P}(n)$ consiste nel mostrare che:

- (a) $P(n_0)$ è vera (Base dell'Induzione);
- (b) per un qualsiasi intero $k \ge n_0$, si ha che: $\mathbf{P}(k) \stackrel{.}{e} vera \Rightarrow \mathbf{P}(k+1) \stackrel{.}{e} vera \quad (\boldsymbol{Passo\ Induttivo})$.

Ciò permette di concludere che la proposizione $\mathbf{P}(n)$ è vera per un qualunque $n \in \mathbb{N}$. Infatti, la validità di tale metodo di prova è subito dimostrata, utilizzando il Principio di Induzione (I), prendendo $U := \{k \in \mathbb{N} : \mathbf{P}(k) \text{ è vera}\}.$

Teorema 1.1. I seguenti enunciati sono tra loro equivalenti:

- (I) Il Principio di Induzione.
- (I_A) Il Principio di "Ampia" Induzione (o Formulazione "debole" del Principio di Induzione): Siano $n_0 \in \mathbb{Z}$ e $V \subseteq \mathbb{Z}$ tali che:

(a)
$$n_0 \in V$$
, (b_A) $\{x \in \mathbb{Z} \mid n_0 \leqslant x \leqslant k\} \subseteq V \implies k+1 \in V$, allora $V = \mathbb{N}(n_0)$.

(BO) Il Principio del Buon Ordinamento (o Principio del Minimo): Sia $n_0 \in \mathbb{Z}$ allora ogni sottoinsieme non vuoto T di $\mathbb{N}(n_0)$ ha un primo elemento o minimo, cioè un elemento $t \in T$ tale che $t \leq z$, per ogni altro elemento $z \in T$.

Dimostrazione. È ovvio che $(I) \Rightarrow (I_A)$, dal momento che l'ipotesi in $(\mathbf{b_A})$ è (apparentemente) più restrittiva dell'ipotesi in (\mathbf{b}) e, quindi, la condizione (\mathbf{b}) è (apparentemente) più forte della condizione $(\mathbf{b_A})$.

 $(I_A) \Rightarrow (BO)$. Supponiamo, per assurdo, che esista un sottoinsieme non vuoto T di $\mathbb{N}(n_0)$ che non possieda un primo elemento (dunque, in particolare, T possiede necessariamente più di un elemento). Sia

$$V := \{ x \in \mathbb{N}(n_0) : x \leqslant t , \text{ per ogni } t \in T \}.$$

Ovviamente, $n_0 \in V$, dunque $V \neq \emptyset$, ed inoltre $V \neq \mathbb{N}(n_0)$ (perché, se $t_1, t_2 \in T$ e se, ad esempio, $t_1 < t_2$ allora $t_2 \notin V$). Allora, per $(\mathbf{I_A})$, deve esistere un elemento k tale che $\{x \in \mathbb{Z} \mid n_0 \leqslant x \leqslant k\} \subseteq V$, ma $k+1 \notin V$. Osserviamo che un tale elemento k deve appartenere ad T (altrimenti, se fosse $k \notin T$, poiché $k \in V$, si avrebbe che k < t e, dunque, che $k+1 \leqslant t$, per ogni $t \in T$, cioè si avrebbe che $k+1 \in V$). Dunque tale elemento k, che appartiene tanto a V quanto a T, risulta essere un primo elemento di T e ciò contraddice l'assunto.

 $(\mathbf{BO}) \Rightarrow (\mathbf{I})$. Supponiamo, per assurdo, che esista un sottoinsieme proprio U di $\mathbb{N}(n_0)$ tale che $n_0 \in U$ ed inoltre soddisfacente alla condizione (\mathbf{b}) . Sia $T := \mathbb{N}(n_0) \setminus U$. L'insieme T è non vuoto (perché abbiamo supposto che $U \subsetneq \mathbb{N}(n_0)$), allora per (\mathbf{BO}) , deve esistere un primo elemento t in T. Ovviamente $n_0 < t$, perché $n_0 \in U$. Quindi l'insieme non vuoto degli elementi di $\mathbb{N}(n_0)$ che precedono t, deve essere contenuto in U, in particolare $t-1 \in U$. Quindi, per la proprietà (\mathbf{b}) , dobbiamo avere che $(t-1)+1=t \in U$ e ciò contraddice l'assunto. \square

1. Esercizi e Complementi

- 1.1. Mostrare che:
 - (a) Se $n \in \mathbb{N}$, allora:

$$n < 1 \Leftrightarrow n = 0$$
.

(b) Se $n, m \in \mathbb{Z}$, allora:

$$n < m \Leftrightarrow n+1 \leqslant m$$
.

Suggerimento: (a) Supponiamo, per assurdo, che esista un $x \in \mathbb{N}$, tale che $0 < \infty$ x < 1. Allora, moltiplicando per x > 0, abbiamo che $0 < x^2 < x < 1$. Quindi, iterando il procedimento, per ogni $n \ge 1$, avremmo:

$$0 < \ldots < x^n < x^{n-1} < \ldots x^2 < x < 1$$
.

Dunque, il sottoinsieme $S := \{x^n : n \ge 1\} (\subset \mathbb{N})$ non possiede un primo elemento. Ciò contraddice il Principio del Buon Ordinamento (BO).

(b, \Rightarrow) Se n < m, allora m - n > 0. Se, per assurdo, $n + 1 \nleq m$, allora m < n + 1(Legge di Tricotomia), quindi 0 < m - n < 1. Ciò contraddice il precedente punto (a).

- (\mathbf{b}, \Leftarrow) è banale.
- 1.2. Proprietà archimedea dell'insieme Z (Archimede, III Sec. A.C.).

Mostrare che: Presi comunque $a, b \in \mathbb{Z}$, con $b \neq 0$, allora esiste sempre un intero $n \in \mathbb{Z}$ in modo tale che:

$$a < nb$$
.

Suggerimento: se, per assurdo, per ogni $n \in \mathbb{Z}$, si avesse che $a \geqslant nb$, allora il sottoinsieme $S:=\{a-nb:n\in\mathbb{Z}\}\ di\ \mathbb{N}\ dovrebbe\ possedere\ un\ primo\ elemento$ $s_0 := a - n_0 b$ (Principio del Buon Ordinamento (**BO**)). Sia $s := a - (n_0 + 1)b \in S$. Allora, $s = s_0 - b$ (con b > 0 per ipotesi), quindi $s < s_0$. Ciò condraddice la proprietà di minimalità di s_0 .

1.3. Metodo di Prova per Induzione (II forma).

Mostrare la validità del seguente enunciato:

Supponiamo che, dato un intero $n_0 \in \mathbb{Z}$, per ogni intero $n \geqslant n_0$, si possa formulare una proposizione $\mathbf{P}(n)$. Se:

- $P(n_0)$ è vera (Base dell'Induzione); (a)
- (b) per un qualsiasi intero h, con $n_0 \leq h \leq k$, si ha che: $\mathbf{P}(h) \stackrel{.}{e} vera \Rightarrow \mathbf{P}(k+1) \stackrel{.}{e} vera \quad (\boldsymbol{Passo} \; \boldsymbol{Induttivo});$

allora la proposizione $\mathbf{P}(n)$ è vera per un qualunque $n \in \mathbb{Z}$, $n \geqslant n_0$.

[Suggerimento: basta applicare la formulazione (I_A) del Principio di Induzione all'insieme $V := \{ n \in \mathbb{Z} : n \geqslant n_0, \mathbf{P}(n) \text{ è vera } \}$.

- 1.4. Utilizzando il Metodo di Prova per Induzione, mostrare che per ogni $n \ge 1$ si ha:

 - (a) $1+2+3+\ldots+n=\frac{n(n+1)}{2}=\frac{1}{2}n^2+\frac{1}{2}n$. (b) $1^2+2^2+3^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n$. (c) $1^3+2^3+3^3+\ldots+n^3=(\frac{n(n+1)}{2})^2=\frac{1}{4}n^4+\frac{1}{2}n^3+\frac{1}{4}n^2$.

Suggerimento: è immediato che le formule precedenti sono verificate per n=1(Base dell'Induzione). Procediamo, ora, nel dimostrare il Passo Induttivo.

- (a) Se $1+2+3+\ldots+k=\frac{k(k+1)}{2}$, allora $1+2+3+\ldots+k+k+1=\frac{k(k+1)}{2}+k+1=(k+1)(\frac{k}{2}+1)=\frac{(k+1)(k+2)}{2}$. (b) Se $1^2+2^2+3^2+\ldots+k^2=\frac{1}{3}k^3+\frac{1}{2}k^2+\frac{1}{6}k$, allora $1^2+2^2+3^2+\ldots+k^2+(k+1)^2=\frac{1}{3}k^3+\frac{1}{2}k^2+\frac{1}{6}k+\frac{1}{6}k+\frac{1}{6$
- (c) Se $1^3 + 2^3 + 3^3 + \ldots + k^3 = (\frac{k(k+1)}{2})^2$, allora $1^3 + 2^3 + 3^3 + \ldots + k^3 + (k+1)^3 = (\frac{k(k+1)}{2})^2 + (k+1)^3 = (k+1)^2[(\frac{k}{2})^2 + (k+1)] = (\frac{(k+1)(k+2)}{2})^2$.
- 1.5. Utilizzando il Metodo di Prova per Induzione, mostrare che per ogni $n \ge 1$ si
 - (a) $2n \ge n + 1$.
 - (b) $2^n \ge 2n$.

[Suggerimento: è immediato che le disuguaglianze precedenti sono verificate per n=1 (Base dell'Induzione). Procediamo, ora, nel dimostrare il Passo Induttivo.

- (a) Se $2k \ge k+1$, allora $2(k+1) = 2k+2 \ge k+1+2 > (k+1)+1$. (b) Se $2^k \ge 2k$, allora $2^{k+1} = 2 \cdot 2^k \ge 2 \cdot 2k \ge 2(k+1)$.
- 1.6. Utilizzando il Metodo di Prova per Induzione, mostrare che per ogni $n \geqslant 0$ e per ogni elemento $x \neq 1$ (ad esempio, $x \in \mathbb{R}$) si ha:

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \ldots + \frac{x^n}{(1-x)}$$
.

Suggerimento: è immediato che la formula precedente è verificata per n=0 (Base dell'Induzione) e per n = 1:

$$(1-x)^{-1} = 1 + \frac{x}{(1-x)}.$$

Passo induttivo: Se

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \ldots + \frac{x^k}{(1-x)}$$

allora:

$$(1-x)^{-1} = 1 + \frac{x}{(1-x)} = 1 + x \cdot (1-x)^{-1} =$$

$$= 1 + x \cdot [1 + x + x^2 + x^3 + \dots + \frac{x^k}{(1-x)}] =$$

$$= 1 + x + x^2 + x^3 + \dots + \frac{x^{k+1}}{(1-x)}.$$

- 1.7. Utilizzando il Metodo di Prova per Induzione, mostrare che:
 - (a) Per ogni $n \ge 1$ e per ogni x, ad esempio $x \in \mathbb{R}$, si ha:

$$(x^{n}-1) = (x-1)(x^{n-1} + x^{n-2} + \ldots + x^{2} + x + 1).$$

(b) (Progressione Aritmetica) Per ogni $n \ge 0$ e presi comunque x, y, ad esempio $x, y \in \mathbb{R}$, si ha:

$$x + (x+y) + (x+2y) + (x+3y) + \ldots + (x+(n-1)y) + (x+ny) = \frac{(n+1)(2x+ny)}{2}$$

(c) (Progressione Geometrica) Per ogni $n \geqslant 0$ e presi comunque x e $y \neq 1$, ad esempio $x, y \in \mathbb{R}$, con $y \neq 1$, si ha:

$$x + xy + xy^{2} + xy^{3} + \ldots + xy^{n-1} + xy^{n} = \frac{x(y^{n+1} - 1)}{(y - 1)}$$
.

(d) Presi comunque due interi $m\geqslant 0$ ed $n\geqslant m$ e presi comunque x e $y\neq 1$, ad esempio $x,y\in\mathbb{R}$, con $y\neq 1$, si ha:

$$xy^m + xy^{m+1} + xy^{m+2} + \ldots + xy^{n-1} + xy^n = \frac{x(y^{n+1} - y^m)}{(y-1)}$$
.

1.8. Disuguaglianza di Jakob Bernoulli (1654-1705).

Utilizzando il Metodo di Prova per Induzione, mostrare che, per ogni $n \geqslant 0$ e per ogni x, ad esempio $x \in \mathbb{R}$, si ha:

$$(1+x)^n \geqslant 1 + nx.$$

1.9. Principio di G.P. Lejeune Dirichlet (1805-1859) detto anche Principio delle "gabbie dei piccioni" ovvero Principio delle "caselle postali".

Siano $n > m \ge 1$. Utilizzando il Metodo di Prova per Induzione, mostrare che: Se un insieme finito con n elementi [lettere] deve essere ripartito in m sottoinsieni [caselle postali], allora almeno un sottoinsieme [casella postale] deve contenere più di un elemento [lettera].

2 Algoritmo euclideo di divisione

In questo paragrafo intendiamo mostrare come molte delle proprietà dell'aritmetica elementare di Z traggano origine dalla validità in N del "Principio del Buon Ordinamento" (ovvero, equivalentemente, dal "Principio di Induzione", cfr. Teorema 1.1).

Teorema 2.1. (Algoritmo euclideo di divisione) Siano $a, b \in \mathbb{Z}, b \neq 0$. Allora, esistono e sono univocamente determinati due interi $q \in \mathbb{Z}$ (detto, quoziente) ed $r \in \mathbb{N}$ (detto resto) in modo tale che:

$$a = bq + r, \qquad 0 \leqslant r < |b|.$$

Dimostrazione. Mostriamo, dapprima, l'esistenza di q ed r.

Caso 1. Supponiamo che b > 0. Notiamo, innanzitutto, che l'insieme:

$$S := \{a - nb : a - nb \geqslant 0, n \in \mathbb{Z}\} (\subseteq \mathbb{N})$$

è non vuoto (ad esempio, se $n' = - \mid a \mid$, allora $a - n'b \in S$). Per il "Principio del Buon Ordinamento" (**BO**), possiamo trovare un primo elemento nell'insieme S, che denotiamo con r := a - qb. Mostriamo che r < b. Se, per assurdo, fosse $r \geqslant b$ allora si avrebbe:

$$r - b = a - qb - b = a - (q + 1)b \ge 0$$
,

e, dunque, anche r-b (< r) apparterrebbe ad S. Ciò contraddice la minimalità di $r \in S$.

Caso 2. Supponiamo che b < 0. Applichiamo il Caso 1 alla coppia di interi a, -b ed avremo l'esistenza di due interi $q, r \in \mathbb{Z}$ che verificano le seguenti condizioni:

$$a = -bq + r = b(-q) + r$$
, $0 \le r < -b = |-b| = |b|$.

Mostriamo, ora, l'unicità di q,r. Supponiamo di avere $q,q',r,r'\in\mathbb{Z}$ in modo tale che:

$$a = bq + r = bq' = r',$$
 $0 \le r, r' < |b|,$

allora (q-q')b=r'-r<|b|, dunque $|q-q'|\cdot|b|<|b|$, cioè |q-q'|<1, ovvero q=q'. Da ciò segue immediatamente che anche r=r'.

Definizione 2.2. Dati due elementi $a, b \in \mathbb{Z}$.

(a) Diremo che a divide b (oppure che b è divisibile per a), in breve scriveremo " $a \mid b$ ", se esiste un elemento $c \in \mathbb{Z}$ in modo tale che ac = b. Se ciò non accade, diremo che a non divide b, e scriveremo " $a \nmid b$ ".

Siano $a, b, c, x, y, z \in \mathbb{Z}$, notiamo che:

$$x \mid x$$
, $x \mid 0$, $1 \mid x$, per ogni $x \in \mathbb{Z}$;

(b) Se $a, b \in \mathbb{Z}$ e se a e b non sono contemporaneamente nulli, allora si chiama $Massimo\ Comun\ Divisore\ di\ a, b\ (in\ breve,\ MCD(a,b))$ un intero $d \in \mathbb{Z}$ che verifica le seguenti proprietà:

(MCD1) $d \mid a, d \mid b;$

(MCD2)
$$d' \in \mathbb{Z}$$
, $d' \mid a$, $d' \mid b \Rightarrow d' \mid d$.

Notiamo che se a=0 e $b\neq 0$, allora b (ovvero, -b) è un Massimo Comun Divisore di 0 e b.

Infine, osserviamo che MCD(0, 0) non è definito, in quanto ogni intero $x \in \mathbb{Z}$ è tale che $x \mid 0$ (e, quindi, non esiste un intero "massimo con tale proprietà").

(c) Se a, b non sono entrambi nulli, diremo che a e b sono relativamente primi (ovvero, coprimi) se MCD(a, b) = 1.

Teorema 2.3. Siano $a, b \in \mathbb{Z}$, non entrambi nulli.

- (1) Se d_1 e d_2 sono due Massimi Comun Divisori di a e b , allora $d_1 = \pm d_2$.
- (2) Esiste sempre un Massimo Comun Divisore di a e b in \mathbb{Z} .
- (3) Il Massimo Comun Divisore di a e b esiste ed è univocamente determinato in \mathbb{N} . In tal caso, esso è il più grande tra i divisori positivi comuni ad a e b (quindi la scrittura $\mathrm{MCD}(a,b) =: d \in \mathbb{N}$ ha un significato univoco) e coincide con il minimo intero positivo nell'insieme:

$$S_{ab} := \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}.$$

- (4) MCD(a, b) = MCD(|a|, |b|).
- (5) Esistono $x, y \in \mathbb{Z}$ in modo tale che:

$$MCD(a,b) = ax + by$$
 (Identità di Bézout).

Dimostrazione. (1) è una conseguenza immediata di (MCD2).

- (2) discende da (3) (e da (1)).
- (3) Sia $d := ax_0 + by_0$ il minimo intero (positivo) dell'insieme non vuoto $S_{a,b}$. Mostriamo che, preso comunque $z := ax + by \in \mathbb{Z}$, con $x, y \in \mathbb{Z}$ (dove z può anche non appartenere ad $S_{a,b}$), allora $d \mid z$. Possiamo, ovviamente, supporre che $z \neq 0$. Per il Teorema 2.1, possiamo trovare $q, r \in \mathbb{Z}$, in modo tale che:

$$z = dq + r, \qquad 0 \leqslant r < d,$$

ovvero,

$$ax + by - (ax_0 + by_0)q = r$$
 cioè $a(x - x_0q) + b(y - y_0q) = r$

dunque se r > 0 allora $r (< d) \in S_{a,b}$. Per la minimalità di d possiamo concludere che r = 0, ovvero che $d \mid z$. In particolare, $d \mid a$ (per x = 1 e y = 0) e $d \mid b$ (per x = 0 e y = 1), (proprietà (MCD1) per d).

Per terminare, mostriamo che d verifica anche la proprietà (MCD2). Se $d' \in \mathbb{Z}$ e se $d' \mid b$ e $d' \mid b$, allora è subito visto dalla definizione di divisibilità che $d' \mid a\alpha + b\beta$, presi comunque $\alpha, \beta \in \mathbb{Z}$. Dunque, in particolare, $d' \mid d$ (prendendo $\alpha := x_0 \in \beta := y_0$).

(4) segue immediatamente dalla definizione e da (3); (5) discende immediatamente da (3). \Box

Corollario 2.4. (Lemma di Euclide) Siano $a, b, c \in \mathbb{Z}$. Allora:

$$MCD(a, b) = 1$$
 e $a \mid bc$ \Rightarrow $a \mid c$.

Dimostrazione. Dal Teorema 2.3 (5) sappiamo che esistono $x, y \in \mathbb{Z}$ con 1 = ax + by. Pertanto, $c = c \cdot 1 = acx + bcy$. Inoltre, per ipotesi, esiste un intero $k \in \mathbb{Z}$ in modo tale che ak = bc. Sostituendo abbiamo c = acx + aky = a(cx + ky), da cui ricaviamo che $a \mid c$.

Definizione 2.5. Dati due elementi $a, b \in \mathbb{Z}$. Si chiama minimo comune multiplo di a, b (in breve, mcm(a, b)) un intero $h \in \mathbb{Z}$ tale che:

$$(mcm1)$$
 $a \mid h$, $b \mid h$;

(mcm2)
$$h' \in \mathbb{Z}$$
, $a \mid h' = b \mid h' \Rightarrow h \mid h'$.

Notiamo che, dalle proprietà della relazione di divisibilità, discende immediatamente che mcm(a,0) = mcm(0,b) = mcm(0,0) = 0.

Osservazione 2.6. Dati comunque $a,b \in \mathbb{Z}$, se h_1 e h_2 sono due minimi comuni multipli di a e b, allora $h_1 = \pm h_2$. Pertanto, un minimo comune multiplo h di a e b, se esiste, esso è univocamente determinato in \mathbb{N} (in tal caso, esso coincide con il minimo tra tutti gli interi positivi che seguono a e b e che somo multipli sia di a che di b, quindi la scrittura $\text{mcm}(a,b) =: h \in \mathbb{N}$ ha un significato univoco). E' ovvio, da quanto precede, che mcm(a,b) = mcm(|a|,|b|).

Il prossimo risultato mostra l'esistenza del mcm(a,b), per ogni coppia di elementi $a,b\in\mathbb{Z}$.

Teorema 2.7. Dati comunque $a, b \in \mathbb{Z}$, non entrambi nulli, esiste ed è univocamente determinato in \mathbb{N} il mcm(a, b) e risulta:

$$MCD(a, b) \cdot mcm(a, b) = ab$$
.

Dimostrazione. Per la Osservazione 2.6 e per il Teorema 2.3 (4), non è restrittivo supporre che a > 0, b > 0. Sia d := MCD(a, b). Allora, esistono $\alpha, \beta, x, y \in \mathbb{Z}$ in modo tale che:

$$a = d\alpha$$
, $b = d\beta$, $e \quad d = ax + by$.

Poniamo $m:=\frac{ab}{d}\in\mathbb{N}$. Allora abbiamo che $m=a\beta=b\alpha$ (dove $\alpha:=\frac{a}{d}$ e $\beta:=\frac{b}{d}$) e quindi che $a\mid m$ e $b\mid m$ (proprietà (mcm1)). Sia ora $h'\in\mathbb{Z}$ un multiplo comune di a e b, cioè $a\mid h'$ e $b\mid h'$, ovvero $h'=a\alpha'=b\beta'$, per una qualche coppia $\alpha',\beta'\in\mathbb{Z}$. Notiamo che:

$$\frac{h'}{m} = \frac{h'd}{ab} = \frac{h'(ax + by)}{ab} = \frac{h'}{b}x + \frac{h'}{a}y = \beta'x + \alpha'y \in \mathbb{Z} ,$$

pertanto $m \mid h'$ (proprietà $(\mathbf{mcm2})$). Da ciò ricaviamo che $\frac{ab}{d} = m = \text{mcm}(a,b)$ e, quindi, che ab = MCD(a,b)mcm(a,b).

Osservazione 2.8. Nell'anello \mathbb{Z} , per ogni $x \in \mathbb{Z}$, denotiamo con $x\mathbb{Z} := \{xk : k \in \mathbb{Z}\}$ l'ideale generato da x in \mathbb{Z} . Allora, si può facilmente verificare che:

- (a) $a\mathbb{Z} \supset b\mathbb{Z} \Leftrightarrow a \mid b$:
- **(b)** $MCD(a,b)\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$;
- (c) $mcm(a,b)\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$.

Definizione 2.9. Un intero $p \ge 2$ si dice *primo* se dati $a, b \in \mathbb{Z}$ allora:

$$p \mid ab \quad e \quad p \nmid a \quad \Rightarrow \quad p \mid b$$
.

Un intero $q \geqslant 2$ si dice *irriducibile* se dati $a, b \in \mathbb{Z}$ allora:

$$q = ab$$
 e $q \neq |a| \Rightarrow q = \pm b$.

Proposizione 2.10. . Per un intero $p \ge 2$, le seguenti affermazioni sono tra loro equivalenti:

- (i) p è primo;
- (ii) p è irriducibile;
- (iii) i divisori positivi di p sono soltanto 1 e p.

Dimostrazione. (i) \Rightarrow (ii). Supponiamo che p = ab e che $p \neq |a|$. Allora, ovviamente, $p \mid ab$. Inoltre, $p \nmid a$, perché se esistesse un intero $k \in \mathbb{Z}$ in modo tale che pk = a, allora avremmo che p = ab = pkb, da cui dedurremmo che 1 = kb, cioè |b| = 1 ovvero p = |a|, pervenendo così ad una contraddizione. Allora, avendo assunto la validità di (i), otteniamo che $p \mid b$. Pertanto, deve

esistere un intero $h \in \mathbb{Z}$ in modo tale che ph = b. Quindi p = ab = ahp, cioè 1 = ah, dunque |a| = 1 ovvero $p = \pm b$.

- (ii) \Rightarrow (iii). Se, per assurdo la proprietà (iii) non fosse verificata, allora potremmo trovare due interi positivi 1 < a, b < p in modo tale che p = ab. Ma questo fatto contraddice (ii).
- (iii) \Rightarrow (i). Se p verifica (iii) e $p \nmid a$, allora necessariamente MCD(p, a) = 1. Pertanto la conclusione che $p \mid b$ discende dal Lemma di Euclide (Corollario 2.4).

Teorema 2.11. (Teorema Fondamentale dell'Aritmetica, Euclide IV Sec. A.C.) Un qualunque intero $a \in \mathbb{Z} \setminus \{0, 1, -1\}$ ammette una decomposizione unica (a meno dell'ordine dei fattori) del tipo:

$$a = \pm p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

dove $r \geqslant 1$, p_i è un intero primo, $e_i \geqslant 1$, per ogni $1 \leqslant i \leqslant r$, ed inoltre $p_i \neq p_j$, se $1 \leqslant i \neq j \leqslant r$.

Dimostrazione. Non è ovviamente restrittivo limitare la dimostrazione del teorema al caso $a \ge 2$.

Dimostramo dapprima l'esistenza della decomposizione. Procediamo per induzione su a.

Base dell'induzione: a=2. L'enunciato è banalmente vero, essendo a=2 un numero primo.

Passo Induttivo: Supponiamo, per ipotesi induttiva, che l'enunciato sia vero per ogni intero b, con $2 \le b < a$. Se a è un numero primo, non c'è nulla da dimostrare. Se a non è primo, allora a = xy, con $2 \le x, y < a$. Per l'ipotesi induttiva (applicata ad x ed y), possiamo scrivere:

$$x = p_1^{f_1} p_2^{f_2} \cdot \dots \cdot p_n^{f_n}$$
 e $y = p_1^{g_1} p_2^{g_2} \cdot \dots \cdot p_m^{g_m}$

dunque:

$$a = p_1^{f_1} p_2^{f_2} \cdot \dots \cdot p_n^{f_n} p_1^{g_1} p_2^{g_2} \cdot \dots \cdot p_m^{g_m}.$$

Dopo aver raccolto gli eventuali fattori con la stessa base, otteniamo proprio una decomposizione del tipo enunciato.

Dimostriamo ora l'unicità della decomposizione. Supponiamo di avere due decomposizioni di a con le proprietà enunciate:

$$p_1^{e_1}p_2^{e_2}\cdot\ldots\cdot p_r^{e_r}=a=q_1^{f_1}q_2^{f_2}\cdot\ldots\cdot q_s^{f_s}.$$

Poiché p_1 è un numero primo e $p_1 \mid q_1^{f_1}q_2^{f_2}\dots q_s^{f_s}$, allora $p_1 \mid q_j$, per un qualche j $(1 \leqslant j \leqslant s)$. Essendo anche q_j un numero primo (ovvero irriducibile, Proposizione 2.10), allora necessariamente $p_1 = q_j$. Dividendo le due decomposizioni di a per p_1 (quella di destra) e per q_j (quella di sinistra) ed iterando il procedimento precedente, otteniamo necessariamente che r=s e —a meno di un cambiamento dell'ordine dei fattori— che $p_i=q_i$ e $e_i=f_i$, per ogni i $(1\leqslant i\leqslant r)$.

2. Esercizi e Complementi

2.1. Siano $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ $n \geq 2$ interi non tutti nulli. Un *Massimo Comun Divisore di* a_1, a_2, \ldots, a_n (in breve, $MCD(a_1, a_2, \ldots, a_n)$) è un intero $d \in \mathbb{Z}$ tale che:

(MCD1) $d \mid a_i$, per ogni $1 \leqslant i \leqslant n$; (MCD2) $d' \in \mathbb{Z}$, $d' \mid a_i$, per ogni $1 \leqslant i \leqslant n \Rightarrow d' \mid d$.

Mostrare che esiste un unico Massimo Comun Divisore $d \in \mathbb{N}$ di a_1, a_2, \ldots, a_n , il quale coincide con in minimo intero nell'insieme non vuoto:

$$S_{a_1,a_2,\ldots,a_n} := \{a_1y_1 + a_2y_2 + \ldots + a_ny_n : y_i \in \mathbb{Z}, \ 1 \leqslant i \leqslant n, a_1y_1 + a_2y_2 + \ldots + a_ny_n > 0\}.$$

In particolare, esistono $x_1, x_2, \ldots, x_n \in \mathbb{Z}$ in modo tale che il Massimo Comun Divisore (univocamente determinato in \mathbb{N}) si può esprimere nella forma seguente:

$$MCD(a_1, a_2, \dots, a_n) = a_1x_1 + a_2x_2 + \dots + a_nx_n$$
 (Identità di Bézout).

- **2.2.** Siano a, b, c degli interi non nulli di \mathbb{Z} . Mostrare che (in \mathbb{N}) valgono le seguenti proprietà:
 - (a) MCD(a, MCD(b, c)) = MCD(a, b, c) = MCD(MCD(a, b), c).
 - **(b)** MCD(a, 1) = 1.
 - (c) MCD(ab, ac) = aMCD(b, c).
 - (d) $d = MCD(a, b) \Rightarrow MCD(\frac{a}{d}, \frac{b}{d}) = 1.$
 - (e) $MCD(a, b) = 1 = MCD(a, c) \Rightarrow MCD(a, bc) = 1$.
 - (f) $a \mid c$, $b \mid c$, e $MCD(a, b) = 1 \Rightarrow ab \mid c$.
- **2.3.** Algoritmo Euclideo delle divisioni successive (metodo algoritmico per il calcolo del MCD di due elementi in \mathbb{Z}). Siano a e b due interi non nulli di \mathbb{Z} dei quali si vuole calcolare il MCD. Dal momento che $\mathrm{MCD}(a,b) = \mathrm{MCD}(|a|,|b|)$, allora possiamo supporre, senza perdere in generalità che $a \geq b > 0$. Applicando ricorsivamente l'Algoritmo di divisione abbiamo:

$$\begin{array}{lll} a = bq_1 + r_1 \;, & 0 < r_1 < b =: r_0 \\ b = r_1q_2 + r_2 \;, & 0 < r_2 < r_1 \\ r_1 = r_2q_3 + r_3 \;, & 0 < r_3 < r_2 \\ \vdots & \vdots & \vdots \\ r_k = r_{k+1}q_{k+2} + r_{k+2} \;, & 0 < r_{k+2} < r_{k+1} \\ \vdots & \vdots & \vdots \\ r_{n-2} = r_{n-1}q_n + r_n \;, & 0 < r_n < r_{n-1} \\ r_{n-1} = r_nq_{n+1} + 0 \;, & 0 = r_{n+1} < r_n \end{array}$$

dove $n \geqslant 0$.

Mostrare che:

(a) $MCD(a,b) = r_n$.

(b) $r_n = ax_n + by_n$ (Identità di Bézout) dove $x_n \in y_n$ in \mathbb{Z} sono calcolabili ricorsivamente tramite le seguenti formule:

$$x_0 := 0$$
 $y_0 := 1$ $y_1 := -q_1$ \vdots \vdots \vdots \vdots \vdots \vdots $y_k := y_{k-2} - q_k y_{k-1}$, per ogni $k \geqslant 2$.

- **2.4.** Siano $a \in b$ due interi non nulli di \mathbb{Z} e sia d := MCD(a, b).
 - (a) Mostrare che, nell'espressione d=ax+by, nota come Identità di Bezout, la coppia di interi $x,y\in\mathbb{Z}$ non è univocamente determinata (mostrare con un esempio esplicito, ad esempio a=4,b=6,d=2, che possono esistere due coppie distinte di interi, $(x,y)\neq(x',y')$, in modo tale che d=ax+by=ax'+by').
 - (b) Siano $x_0, y_0 \in \mathbb{Z}$ tali che $ax_0 + by_0 = 1$. Preso comunque $n \in \mathbb{Z}$, poniamo $x_n := x_0 + nb$ e $y_n := y_0 na$. Verificare che, per ogni $n \in \mathbb{Z}$, risulta $ax_n + by_n = 1$.
 - (c) Mostrare che, se $ax_0 + by_0 = 1 = ax + by$, con $x_0, y_0, x, y \in \mathbb{Z}$, allora esiste un intero $n \in \mathbb{Z}$ in modo tale che $x = x_0 + nb$ e $y = y_0 na$.
 - (d) Mostrare che, se $ax_0 + by_0 = d = ax + by$ con $x_0, y_0, x, y \in \mathbb{Z}$, allora esiste un intero $n \in \mathbb{Z}$ in modo tale che $x = x_0 + n \frac{\text{mcm}(a,b)}{a}$ e $y = y_0 n \frac{\text{mcm}(a,b)}{b}$.
- **2.5.** Mostrare la validità della seguente variante dell'algoritmo euclideo di divisione (Teorema 2.1):

Siano $a, b \in \mathbb{Z}, b \neq 0$. Allora, esistono e sono univocamente determinati due interi $q, r \in \mathbb{Z}$ in modo tale che:

$$a = bq + r$$
, $-\frac{1}{2} |b| \leqslant r < \frac{1}{2} |b|$.

2.6. Siano $a, b \in \mathbb{Z} \setminus \{0, 1, -1\}$ due interi dei quali sia nota la fattorizzazione in numeri primi:

$$a = \pm p_1^{e_1} p_2^{e_2} \dots p_r^{e_r} \quad \text{e} \quad b \pm p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}$$

con $e_i \geqslant 0$ e $f_i \geqslant 0$, per ogni i $(1 \leqslant i \leqslant r)$. (Ammettendo, come abbiamo fatto ora, che alcuni esponenti possano essere ugali a 0, possiamo assumere che i fattori primi $\{p_1, p_2, \ldots, p_r\}$ che appaiono nella decomposizione di a e di b siano gli stessi (!), senza per questo perdere di generalità.) Mostrare che:

- (a) $MCD(a, b) = p_1^{u_1} p_2^{u_2} \dots p_r^{u_r}$, dove $u_i := Min(e_i, f_i)$, per ogni $i \ (1 \le i \le r)$.
- **(b)** $mcm(a,b) = p_1^{v_1} p_2^{v_2} \dots p_r^{v_r}$, dove $u_i := Max(e_i, f_i)$, per ogni $i \ (1 \leqslant i \leqslant r)$.
- 2.7. (a) (Euclide, IV Sec. A.C.). Mostare che esistono infiniti interi primi.
- (b) Dimostare che, preso comunque un intero N > 0 (grande come si vuole), è possibile trovare N interi consecutivi nessuno dei quali è primo.

(c) Mostrare che, per ogni intero n > 0, esiste sempre un primo p in modo tale che n .

[Suggerimento: (a) Per assurdo sia $\{p_1, p_2, \ldots, p_N\}$ l'insieme (finito) di tutti i numeri primi. L'intero positivo $n:=p_1p_2\ldots p_N+1$, come ogni intero non primo deve possedere un fattore primo (si osservi che $n>p_i$, per ogni $1\leqslant i\leqslant N$). Dunque, deve esistere j, con $1\leqslant j\leqslant N$, in modo tale che $p_j\mid n=p_1p_2\cdot\ldots\cdot p_N+1$. Poiché, ovviamente, $p_j\mid p_1p_2\cdot\ldots\cdot p_N$, allora $p_j\mid 1=n-p_1p_2\cdot\ldots\cdot p_N$. Si perviene così ad un assurdo.

(b) Basta considerare i seguenti N interi consecutivi:

$$(N+1)!+2$$
, $(N+1)!+3$, $(N+1)!+4$, ... $(N+1)!+N+1$,

e notare che $k \mid (N+1)! + k$, per ogni $k (2 \leq k \leq N+1)$.

- (c) Se p è un numero primo e se $p \le n$ allora ovviamente $p \mid n!$ (dunque, $p \nmid n! + 1$). Pertanto, se q è un fattore primo di n! + 1, allora necessariamente $n < q \le n! + 1$.
- 2.8. Utilizzare le proprietà dei numeri primi ed il Teorema Fondamentale della Aritmetica per dimostrare:
 - (a) (Pitagora, VI Sec. A.C.) $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. (Con un argomento simile si dimostri che, più generalmente, $\sqrt{p} \in \mathbb{R} \setminus \mathbb{Q}$, per ogni numero primo p.)
 - (b) Presi $n, r \in \mathbb{N}$, con $\sqrt[r]{n}$ non intero, allora $\sqrt[r]{n} \in \mathbb{R} \setminus \mathbb{Q}$.
 - (c) $\operatorname{Log}_{10}(2) \in \mathbb{R} \setminus \mathbb{Q}$.

[Suggerimento: (a)Per assurdo, se $\sqrt{p} \in \mathbb{Q}$, allora $b^2p = a^2$ per una qualche coppia di interi $a,b \in \mathbb{Z}$, con $b \neq 0$ e $\mathrm{MCD}(a,b) = 1$. Da cui ricaviamo che $p \mid a^2$, dunque $p \mid a$. Pertanto pk = a, per un qualche $k \in \mathbb{Z}$. Quindi $b^2p = a^2 = p^2k^2$, cioè $b^2 = pk^2$, dunque $p \mid b$. Questo contraddice il fatto che $\mathrm{MCD}(a,b) = 1$. La dimostrazione di (b) è del tutto simile a quella di (a).

(c) Per assurdo, se $\text{Log}_{10}(2) \in \mathbb{Q}$, allora $b\text{Log}_{10}(2) = a$, per una qualche coppia di interi $a, b \in \mathbb{N}$, con $b \neq 0$ e MCD(a, b) = 1. Dunque, $2^b = 10^a = 2^a 5^a$. Per il Teorema Fondamentale dell'Aritmetica deve essere b = a ed a = 0, pervenendo così ad una contraddizione.]