Tutorato di AM1a

Estremo superiore ed estremo inferiore Fabrizio Fanelli

Calcolare estremo superiore ed inferiore dei seguenti insiemi:

- 1. $\{x \in \mathbb{Q} : 4 < x^2 \le 9\}$.
- $2. \{p^2 : p \in \mathbb{Z}\}.$
- 3. $\{p^3: p \in \mathbb{Z}\}$.
- $4. \left\{ x = \frac{1}{n+3} : n \in \mathbb{N} \right\}$
- 5. $\left\{ x = \frac{3n}{4n^2 + 1} : n \in \mathbb{Z} \right\}$
- 6. $\left\{ x = (-1)^n \frac{n^2 5n}{n+2} \cos(n\pi) \right\}$

Dimostrare che:

- A) Ogni insieme A, chiuso e limitato ha <u>Massimo</u> e <u>Minimo</u>.
- B) Se A è limitato superiormente e sup $A \notin A$, allora sup A è un punto di accumulazione di A (quindi sup $A \in \overline{A}$).

Provare che:

1. $\sup X \ge \sup Y \ge \inf Y \ge \inf X \text{ se } \mathbb{R} \supset X \supset Y \ne \emptyset.$

Soluzione. $\sup Y \geq y \geq \inf Y \forall y \in Y \Rightarrow \sup Y \geq \inf Y$. $\sup X \geq x \forall x \in X$, ma $Y \subset X \Rightarrow \sup X \geq \sup Y$, perché è un maggiorante. Similmente otteniamo che inf $Y \geq \inf X$

2. $\sup(X+Y) = \sup X + \sup Y \text{ dove } \mathbb{R} \supset X, Y \neq \emptyset \text{ e}$ $X+Y := \{x+y : x \in X, y \in Y\}.$ **Soluzione.** Ovviamente $\sup X + \sup Y$ è un maggiorante. Dobbiamo far vedere che è il più piccolo, ovvero che:

$$\forall \epsilon > 0 \ \exists x + y \in X + Y : \ x + y > \sup X + \sup Y.$$

Ma dalla definizione di sup X e sup Y segue che esistono x e y tali che $x>\sup X-\frac{\epsilon}{2}$ e $y>\sup Y-\frac{\epsilon}{2}$, allora, sommando membro a membro ho che: esiste x+y tale che $x+y>\sup X+\sup Y-\epsilon$.

3. $\sup(tX) = t \sup X$ se $tX := \{tx : x \in X\}, \forall t \in \mathbb{R}^+, \text{ e se } \mathbb{R} \supset X \neq \emptyset.$ Soluzione. Se M è un maggiorante di X allora tM è un maggiorante di tX. Dalla definizione di $\sup X$ segue che scelto $\frac{\epsilon}{t} \exists x \in X : x > \sup X - \frac{\epsilon}{t}$, se moltiplichiamo ambo i membri per t otteniamo che tx > t

 $t \sup X - \epsilon$. Allora $t \sup X$ è il sup di tX.

Verificare che: un insieme $X \subseteq \mathbb{R}$ è limitato $\Leftrightarrow \exists M \in \mathbb{R}$ tale che $|x| < M, \forall x \in X$.

Soluzione. Dimostriamo la freccia verso destra (\Rightarrow): X limitato, quindi $\exists L, l: l \leq x \leq L \forall x \in X$, sia $M := \max\{|l|, |L|\}$, abbiamo che $L \leq |L| \leq M$ e $l \geq -|l| \geq -M \Rightarrow -M \geq x \geq M \forall x \in X \Rightarrow |x| < M$. (\Leftarrow) :Se $|x| \leq M \forall x \in X \Rightarrow -M \geq x \geq M$ quindi abbiamo trovato un minorante ed un maggiorante.

Verificare che: $\sqrt{m} + \sqrt{n}$ è irrazionale $\forall n \in \mathbb{N}$ supponendo che \sqrt{m} sia irrazionale con $m \in \mathbb{N}$.

Soluzione. se $a = \sqrt{m} + \sqrt{n}$ fosse razionale, anche a^2 lo sarebbe. $a^2 = m + n + 2\sqrt{m}\sqrt{n} = 2\sqrt{m}(\sqrt{m} + \sqrt{n}) - m + n$, poiché \sqrt{m} è irrazionale, lo è anche $2\sqrt{m}(\sqrt{m} + \sqrt{n})$, allora abbiamo un assurdo!