Università degli Studi di Roma Tre - Dipartimento di Matematica Corso di GE3 del Corso di Laurea in Matematica, a.a. 2003/2004 Docente: Prof. A. Lopez - Esercitatore: Dott.ssa T. Vistarini -Tutore: Dott. M. Nesci

Tutorato straordinario del 7/4/2004

- 1. Sia X uno spazio metrico; \mathcal{T} la topologia indotta dalla metrica su X. Dimostrare il teorema di unicità del limite in X (cioè che il limite di una successione in X, se esiste, è unico).
- 2. Considerare la seguente famiglia di sottoinsiemi di \mathbb{R}^2

$$\mathcal{B} = \{ (-a, a) \times U / a \in \mathbb{R}, U \in \mathcal{T}_e \}$$

Dove \mathcal{T}_e è la topologia euclidea su \mathbb{R} .

- (a) Dimostrare che \mathcal{B} è una base e sia detta \mathcal{T} la topologia che induce.
- (b) Calcolare interno, esterno, frontiera e chiusura dei seguenti sottoinsiemi di \mathbb{R}^2

l'asse
$$x$$
 l'asse y $\{(0,0)\}$ $\{(\pi,\sqrt{2})\}$ $D_1(0,2)$ $D_1(2,0)$ $\{(x,y)/y \ge |x|+1\}$ $\{(x,y)/x \in \mathbb{Z}\}$ $\mathbb{R}^2 \setminus \{(x,y)/x^2+y^2=1\}.$

I dischi sono intesi nel senso ususle, ma non necessariamente sono degli aperti con *questa* topologia.

- (c) Dimostrare che questa topologia è meno fine della topologia euclidea su \mathbb{R}^2 .
- 3. Sia $f:X\longrightarrow Y$ un'applicazioni di
 insiemi e sia $\mathcal T$ una topologia su X. definiamo la famiglia di sotto
insiemi di Y

$$f_*(\mathcal{T}) := \left\{ A \subseteq Y \ / \ f^{-1}(A) \in \mathcal{T} \right\}.$$

- (a) Dimostrare che $f_*(\mathcal{T})$ è una topologia su Y e che, prendendo su Y questa topologia, f è continua
- (b) Dimostrare che se \mathcal{T}' è un'altra topologia su Y che rende f continua allora $f_*(\mathcal{T}) \succ \mathcal{T}'$
- (c) Dimostrare che se \mathcal{T} è la topologia discreta su X, $f_*(\mathcal{T})$ è la topologia discreta su Y.
- (d) Dimostrare che se f è un'applicazione costante, $f_*(\mathcal{T})$ è la topologia discreta su Y qualunque sia \mathcal{T} .
- 4. Sia Y l'insieme quoziente $\frac{\mathbb{R}}{2\pi\mathbb{Z}}$ e $p:\mathbb{R}\longrightarrow Y$ la proiezione; si consideri su Y la topologia $p_*(\mathcal{T}_e)$. Si considerino la successione in \mathbb{R} definita da $a_n:=n+\frac{1}{n}$ e la corrispondente successione in Y data da $b_n:=p(a_n)$.

- (a) Verificare che la successione $\{a_n\}$ non ha limite in \mathbb{R} mentre la successione $\{b_n\}$ ha un punto limite in Y.
- (b) Dimostrare che $\mathbb R$ e Y non sono spazi topologici omeomorfi. (Sugg.:vedi esercizio 4, tutorato n.4)
- (c) (facoltativo) Costruire una topologia analoga a quella euclidea per gli spazi proiettivi $\mathbb{P}^n_{\mathbb{R}}$.