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Introduction

Throughout this Thesis we use an asymptotic-numerical method to compute

solutions and zeros of second-order linear ordinary di�erential equation as

y′′ + q(x)y = 0, (1)

on a half-line, in the oscillatory case.

Recall that every second-order linear ordinary di�erential equation like

Y ′′ + a(x)Y ′ + b(x)Y = 0, (2)

can be taken into the form (1) by appropriate changes of indipendent and

dependent variables [3], as

t(x) = t0 + t′0

∫ x

x0

e
−

∫ σ
x0
a(τ)dτ

dσ, (3)

where x0, t0, t
′
0 6= 0, or

Y = e
− 1

2

∫ x
x0
a(τ)dτ

y, (4)

whenever coe�cient a(x) has a continuous derivative.

We therefore consider the �canonical� form in equation (1) as the starting

point under the appropiate regularity of the coe�cients a(x) and b(x) of (2).

Following Boruvka's terminology [3], we refer to the coe�cient q(x) in

(1) as to the carrier of the equation. Below, we apply our method to several

cases, i.e.:

q(x) = a+
b

x
+O(x−p) with a > 0, b ∈ R, p > 1; (5)

q(x) = cxm [1 + o(1)] as x→ +∞, with c,m ∈ R+; (6)

q(x) = eax +O(ebx) with x ∈ (ρ; +∞),

ρ, a > 0, 0 < b < a.
(7)

Actually, we can pass from a case to another by simple transformations

hence all problems could be treated in a uni�ed way. In fact, from
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d2y

dx2
+ [eax + g(x)] y = 0, (8)

setting t = ex, y(x) ≡ y(log t) := Y (t) and appling the transformation in (4)

we obtain

Z ′′ +

[
1

4t2
+ ta−2 +

g(log t)

t2

]
Z = 0. (9)

Note that the dominant term in the carrier is ta−2, hence for, e. g., a = 2 we

are in the case of the asymptotically constant carrier, for a > 2 we fall in the

case of the asymptotically polynomial carrier. When 0 < a < 2, equation

(1) may not have oscillatory solutions since the condition q(x) > 0 does not

su�cient to ensure the oscillatory behavior. Indeed, the following Theoreme

provides a su�cient condition for the oscillatority of solutions to equation

(1)

Theorem 1 [6, Theoreme 7.1, p. 362]. Let q(x) be real-valued and con-

tinuos for large x > 0. Then, if

−∞ ≤ lim sup
x→∞

x2q(x) <
1

4

[
or

1

4
< lim inf

x→∞
x2q(x) ≤ +∞

]
, (10)

equation (1) is nonoscillatory [ or, respectively, oscillatory ] as x→ +∞.

It is easy to see that, for every value of a > 0 in (9), the carrier there

satis�es the condition (10), which implies that the equation is oscillatory.

If we start from equation (1) with the carrier in (6), i.e.,

d2y

dt2
+ [tα + h(t)] y = 0, (11)

and set t = ex, y(t) ≡ Y (x), and apply transformation (4) with a(x) ≡ −1,

as before, we obtain

Z ′′ +

[
ex(α+2) + e2xh(ex)− 1

4

]
Z = 0. (12)



Synthesis 3

In this case, β := α + 2 ≥ 2 ⇔ α ≥ 0, hence the leading coe�cent of the

carrier is eβ, that is, we have an asymptotically exponential carrier

In this Thesis, we studied the problem of the asymptotic-numerical the

approximation of solutions to second-order linear ordinary di�erential equa-

tions in the rapidly oscillatory case. Zeros of the corresponding solutions

can also be evaluated by our approach without computing �rst the solutions

themselves.

The basic ingredients of the method are the theory of transformation of

second-order di�erential equations, developed by the group theorist O. Boru-

vka [2, 3], and the so-called Liouville-Green (or WKB, or WKBJ) asymptotic

theory, rigorously founded by F.W.J. Olver, [7].

We have applied the algorithm to three classes of rapidly oscillatory �car-

rier� q(x) (see (5), (6), (7)), to compute a basis of solutions to equation (1)

as well as zeros of solutions, providing convergence results for the �rst two.

In each case, a few examples have been given, showing (in suitable Tables

and pictures) e�ciency and accurancy of the algorithm.

Boundary-value (BV) problems and Cauchy problems for equation (1)

with rapidly oscillatory solutions have been solved by such algorithm. In

the Cauchy problem, we compared such solution with that obtained by a

very accurate, well established numerical method, the Runge-Kutta-Nystrom

method with 12/10 stages. Here some examples were also given, for which

Tables and pictures show the accurancy achieved by our algorithm. All ex-

amples have been worked out in the environment of MATHEMATICA, since

symbolic manipulations were essentials and the ensuing numerical treatment

rather simple. The Runge-Kutta-Nystrom code was runned in MATLAB.
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1 The underlying theories

O. Boruvka's transformation theory was developed from Kummer's theory

starting from an equation written in the �canonical� form

y′′ + q(x)y = 0, (13)

The coe�cient q is a continuous functions on the interval j := (a, b), where

possibly a = −∞ and b = +∞. Boruvka called the function q the carrier

of (13), respectively, and introduced the very important notion of phase (or

phase function) of a linear second-order di�erential equation. A phase func-

tion, α(x), is any C3-solution of the equation tanα(x) = u(x)
v(x)

, where (u, v)

denotes a basis for equation (13). Moreover, α has the property that α′ 6= 0

and, by di�erentiation, it turns out that

α′(x) = − W

u2(x) + v2(x)
, (14)

where W := uv′ − u′v is the (constant) Wronskian of u, v. It is possible

to avoid the explicit knowledge of u and v, and obtain a close-form third-

order nonlinear di�erential equation satis�ed by α alone. This task can be

accomplished by repeated di�erentiations and using the fact that u′′ = −qu,
v′′ = −qv. The resulting equation can be written as

α′2(x) = q(x)− 1

2
{α, x} , (15)

where

{α, x} :=
α′′′(x)

α′(x)
− 3

2

(
α′′2(x)

α′2(x)

)2

denotes the so-called Schwarzian derivative of α [3, 8]. The close-form equa-

tion in (15) is a special case of the Kummer equation. As a consequence, it

can be easily shown that every solution to (15) is a phase function related to

the basis (u(x), v(x)) given by
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u(x) := |α′(x)|−1/2 sinα(x), v(x) := |α′(x)|−1/2 cosα(x), (16)

see [2]

Therefore, knowing a single phase function, it is possible to retrieve a basis

(and thus all solutions) to equation (13). In addition, zeros of every solution,

for instance u(x), can be directly obtained through α(x), since u(x) = 0 is

equivalent to α(x) = kπ, k ∈ Z. Therefore, the relation

|α(xk)− α(xk−1)| = π (17)

holds, being xk−1 and xk any two consecutive zeros of any given solution of

(13). In fact, once that α(x) has been computed, and one of such two zeros

is known, it is possible to evaluate the other from(17). This amounts to solve

a nonlinear equation like α(x) = const. Note that, by (14), all phase func-

tions are strictly monotone. The concept of phase plays a central role in the

description of the solutions of second-order linear di�erential equations (and

of their properties). The approximation of a certain phase by the procedure

described below, enables to compute globally all zeros of any particular solu-

tion. We connected this idea to Olver's Liouville-Green (WKB) asymptotic

theory.

In [7], F.W.J. Olver describes a method for obtaining the zeros of a Bessel

function and of other solutions of second-order di�erential equations solving

a certain nonlinear di�erential equation. More precisely, he derived a third-

order nonlinear di�erential equation satis�ed by the generic zero, x = ρ(α),

of the solution y(x, α),

y(x, α) := u(x) cosα− v(x) sinα = 0,

considering it as a function of the real parameter α. Here, u(x) and v(x)

represent any two linearly independent solutions of (1). This third-order

equation can be written as

ρ′2 =
1

q(ρ)

(
1− 1

2
{ρ, α}

)
, (18)
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see [7, 8].

It is easily checked that equation (15) can be taken into (18) upon the

transformation ρ = ρ(α) and conversely. To evaluate the zeros of cylinder

functions, Olver used the iterative scheme

ρ′20 =
1

q(ρ0)
,

ρ′2n+1 =
1

q(ρn)

(
1− 1

2
{ρn, α}

)
, n = 0, 1, 2, . . . ,

(19)

suggested by (18). It turns out that {ρ, α} = O(α−3) as α→ +∞ [7].

We found more convenient to base our approach on equation (15) rather

than (18), hence we used instead the iterative scheme

α′20 = q(x),

α′2n+1 = q(x)− 1

2
{αn, x} , n = 0, 1, 2, . . .

(20)

The sequence {α′n} de�ned in (20), with q(x) belonging to the classes (5),

6) or 7), converges (in a suitable sense) to a solution, α′(x), of (15),which

possesses a certain asymptotic behavior and satis�es the relation (14), (u, v)

being a Liouville-Green (or WKBJ) basis, see [8]. We call this phase function

a Liouville-Green phase and write α(x) ≡ αLG(x). The convergence of αn to

αLG is usually very fast and thus the method seems to be very competitive,

especially to evaluate zeros of rapidly oscillatory solutions, when compared to

methods based on the preliminary numerical evaluation of the solution to the

original di�erential equation (1). The Liouville-Green basis is given by the

Olver's Theorem [8, Ch. 6, Thm 11.1], which is of fundamental importance

and ensure the existance of two linearly independent solutions, holomorphic

in a complex domain, of an equation written as

d2w

dz
= (f(z) + g(z))w,
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where f(z) and g(z) are holomorphic and f(z) does not vanish.

Introducing the auxiliary function φ, setting

φ := (α′)2, φn := (α′n)2, n = 0, 1, 2, . . . , (21)

equation (15) transforms into

φ(x) = q(x) + [φ, x] , (22)

where we

[φ, x] := −1

4

φ′′(x)

φ(x)
+

5

16

(
φ′(x)

φ(x)

)2

,

and the iterative scheme in (20) becomes

φ0(x) = q(x),

φn+1(x) = q(x) + [φn, x] , n = 0, 1, 2, . . . .
(23)

Note that the nonlinear third-order di�erential equation in (15), satis�ed

by α′(x) , has been reduced to the nonlinear second-order equation in (22),

satis�ed by φ(x). The phase function α can be then recovered from φ through

a quadrature. In addition, the scheme in (23) has the advantage with respect

to that in (20) of avoiding the evaluation of square roots, which would imply

some complications when working in the complex plane. Using φn instead

of αn is also convenient in a view of symbolic manipulations. In fact, the

algorithm in (23) yields φn as a rational function of q and its derivatives up

to the order 2n.

From (16) and (17), using to the auxiliary function φ, we obtain

u(x) = φ−1/4(x) sin

(∫ x

φ1/2(t)dt

)
,

v(x) = φ−1/4(x) cos

(∫ x

φ1/2(t)dt

)
,

(24)

and ∫ xk+1

xk

φ1/2(t)dt = π. (25)
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If α(x) denotes a Liouville-Green phase, then the relation (25) ensures

that the equation

α(xk)− α(x) =

∫ xk

x

φ1/2(t)dt = π, (26)

xk being any �xed zero, has the unique solution x = xk−1. The relation

(26) actually refers to the Liouville-Green basis (u, v). In practice we solve,

rather, ∫ xk

x

φ1/2
n (t)dt− π = 0, (27)

and start from a certain �large� zero, xh, and compute successively the ap-

proximate values of the smaller zeros xk, k = h− 1, h− 2, . . ., which will be

denoted by x̃k.

Therefore, in evaluating zeros of solutions to (1), we can identify two main

steps: we �rst obtain an approximation, φn, to φ, according to the algorithm

(23) (see Theorem 2 and 3), and then solve equation (27).

When, for istans, y(x) is a rational function, following this procedure, the

degree of numerator and denominator of the rational functions involved in

φn(x), in general increase exponentially with n, thus implying an exponential

computational complexity. The convergence of the algorithm is however very

fast (see (34),(39)-(40) in Sections 2, 3), thus providing very accurate results

in few iterations.

In the examples below, q(x) is given in terms of elementary functions,

hence we are able to combine symbolic manipulations with numerical evalu-

ations. We proceed as follows:

• compute φn symbolically with MATHEMATICA, following the

scheme in (23), for n = 0, 1, 2, 3, 4;

• evaluate numerically the integral J(x) :=
∫ xk
x
φ

1/2
n (t)dt using Simpson's

rule,

I2,m =
h

6

[
f(x0) + 2

m−1∑
r=1

f(x2r) + 4
m−1∑
s=0

f(x2s+1) + f(x2m)

]
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, where

h =
(b− a)

m
, m ≥ 1,

and

xk = a+ k
h

2
, k = 0, 1, . . . , 2m.

In our case, f(x) = φ
1/2
n (x). To improve the accuracy in the evaluation

of the integral, we observed experimentally that the value of m should

increase with n, when n = 0, 1, 2 we choosed m = 5, when n = 3, 4,

we choosed m = 7. The integration interval [a, b], in our case is [x, xk],

where xk represents the �large� zero from which we started;

• �nd the zero of the function fk,n(x) := J(x) − π using the MATHE-

MATICA's function FindRoot[f, {x, x0}], which searches for a numer-

ical root of f using Newton's method, starting from x = x0.

In the following examples, we �nd the �rst 20 zeros of a given solution

to equation (1), compare them with the exact values, and display the errors.

Moreover, we solved a boundary-value problem and a Cauchy problem using

the knowledge of the phase function of equation (1), constructing a basis of

solutions, and thus all solutions.

2 Asymptotically constant carrier

Assume that the carrier enjoys the following properties: �rst of all q(x) is a

restriction to the real hal�ine, say x > ρ, of a function q(z) holomorphic in

the annular sector

Sρ,γ ≡ {z : z ∈ C, |z| > ρ, | arg(z)| < γ} , (28)

for certain constants ρ, γ, with ρ ≥ 0 and 0 < γ ≤ π
2
. Moreover, we assume

that q(z) possesses the asymptotic structure

q(z) = a+Q(z), a > 0 (constant), (29)
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where

Q(z) = O(z−p), p > 1 (constant). (30)

Denoting by S(0, θ) the sector with vertex at the origin and semiangle θ,

consider the sequence of �decreasing� sectors

Sn = xn + S(0, θ), (31)

{xn} being the increasing sequence of their vertices. The convergence of

φn to φ is given by the following theorem:

Theorem 2 [11, Theorem II.1], [12]. Suppose that equation (1) is given,

with q(x) in the class (5) with b = 0 and that Sρ′,γ′ is a suitable subsector

of Sρ,γ. Then, there exists x0 ∈ Sρ′,γ′ ∩R, which depends, in general, on all

parameters entering the problem, such that the function φn(z), given by the

complexi�ed scheme (23), �converges� to the function φLG(z) de�ned by

φLG :=
W 2

(u2(x) + v2(x))2
≡ 1

(U(x)V (x))2
. (32)

where

u(x) =
U(x) + V (x)

2
,

v(x) =
U(x)− V (x)

2i
, x ∈ Sρ,γ ∩R,

(33)

(Liouville-Green basis).

The convergence is intended in the sense that, for any β > a−1/2,

|φn(z)− φLG(z)| = a−1/2(βa1/2)−2nO((|z| − nβ
√

2)−1−p), (34)

n = 0, 1, 2, . . . , for z ∈ Sn, where

xn = x0 +
nβ
√

2

sin θ
(35)

(see (31)).

Clearly, the error in (34) is exponentially small.

Theorem 2 also holds for the more general class (5) with b 6= 0.
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3 Asymptotically polynomial carrier

We now consider the carrier in (6). It is required that q(x) be the restriction

to the real half-line x > ρ of a function, q(z), analytic in the annular sector

Sρ,γ as in (28), and that

q(z) = czm [1 + o(1)] , z →∞ in Sρ,γ. (36)

Without any loss of generality, we stipulate that q(z) does not vanish in Sρ,γ

and thus q(x) > 0 for x > ρ.

The convergence of the algorithm (23) to φLG is given by the following

Theorem, established in [10] (see also [11]).

Theorem 3 [10, 11]. Let equation (1) be given with q(x) �asymptotically

polynomial�, as in (6), (36). Then, there exists x0 ∈ (ρ,+∞), depending on

all parameters of the problem, such that the sequence φn(x) in (23) converges

to the function φLG(x) de�ned by

φLG :=
W 2 [u, v]

[u2(x) + v2(x)]2
≡ 1

[u2(x) + v2(x)]2
, (37)

where

u(x) := Re [U+(x)] =
U+(x) + U−(x)

2
,

v(x) := Im [U+(x)] =
U+(x)− U−(x)

2i

(38)

is a real Liouville-Green basis on the real half-line x > ρ′, and U+(x) = U−(x).

The convergence is intended in the sense that

|φLG(x)− φn(x)| ≤ Chn(x)
(
x− n

√
2
)−2

, x > xn, (39)
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where

h0(x) := 1,

hn(x) := Cn

n−1∏
j=0

(
x− j

√
2
)−m

, n = 1, 2, 3, . . . ,
(40)

and

xn := x0 + n

√
2

sin γ∗
, x0 ≥ ρ∗, n = 0, 1, 2, . . . , (41)

γ∗ and ρ∗ being the semi-angle and the radius of a suitable annular subsector

of Sρ,γ, and C a suitable constant.

4 Asymptotically exponential carrier

In this section we apply the algorithm (23) when the carrier is �asymptotically

exponential� as in (7). In [13] it was established the following

Lemma 4 [13, Lemma 5.1]. Assume that

q(x) = eax + g(x), (42)

where a > 0, g(i)(x) = O(ebx), ∀i ≥ 0, 0 < b < a, and that φn, n ≥ 0, is

recursively de�ned by the scheme (23). Then,

φn = eax + g(x) + cn +Gn(x), (43)

where

c0 = 0, cn = a2

16
, n ≥ 1

G0 = 0, G
(i)
n = O(e−ωx), n ≥ 1, ∀i ≥ 0, ω := a− b.

(44)

5 Boundary-value problems

The method described in the previous sections, makes it possible to approx-

imate a (Liouville-Green) basis of solutions to equation (1), and thus any

solution, to a given initial- or boundary-value problem for (1). In fact, know-

ing any phase, α(x), a basis can be constructed by the relations in (16).
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In practice, we are able to construct an approximate basis (un(x), vn(x)),

through the iterative scheme in (20), namely

un(x) := |α′n(x)|−1/2 sinαn(x), vn(x) := |α′n(x)|−1/2 cosαn(x). (45)

Consider, e.g., the boundary-value problem

y′′ + q(x)y = 0 a < x < b, (46)

y(a) = A, y(b) = B, (47)

where the coe�cient q(x) belongs to one of the classes described above. Its

solution has necessarily the form

y(x) = c1u(x) + c2v(x), (48)

where (u(x), v(x)) is a basis of solutions to (1), and the constants c1, c2 can

be determined as functions of a, b, A,B, solving the linear system

{
c1u(a) + c2v(a) = A

c1u(b) + c2v(b) = B.
(49)

Since the phase function α(x) de�nes the basis in (16), the solution (48)

takes the form

y(x) = c1|α′(x)|−1/2 sinα(x) + c2|α′(x)|−1/2 cosα(x), (50)

and the system (49) has a unique solution if and only if

|α′(a)α′(b)|−1/2

∣∣∣∣∣sinα(a) cosα(a)

sinα(b) cosα(b)

∣∣∣∣∣ = |α′(a)α′(b)|−1/2 sin [α(a)− α(b)] 6= 0,

and hence sin [α(a)− α(b)] 6= 0, or

α(a)− α(b) 6= kπ, ∀k ∈ Z. (51)

If such condition is satis�ed, we obtain, by Cramer's rule
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c1 = A|α′(a)|1/2 cosα(b)−B|α′(b)|1/2 cosα(a)

sin[α(a)−α(b)]

c2 = B|α′(b)|1/2 sinα(a)−A|α′(a)|1/2 sinα(b)
sin[α(a)−α(b)]

.

(52)

Consider now the approximate solution

yn(x) := c1(n)un(x) + c2(n)vn(x),

where un(x) and vn(x) are given by (45). The �constants� c1(n), c2(n) can

also be determined approximately as functions of the known data, imposing

the boundary conditions, i.e., solving the linear system{
c1(n) sinαn(a) + c2(n) cosαn(a) = A|α′n(a)|1/2

c1(n) sinαn(b) + c2(n) cosαn(b) = B|α′n(b)|1/2,
(53)

for the unknowns c1(n) and c2(n). This system has a unique solution if

and only if sin [αn(a)− αn(b)] 6= 0 and the result coincide with that in (52),

replacing α′ with α′n.

To recover the phase function αLG from the auxiliary function φLG we

should choose a branch of the square root,
√
φLG(x) (be-

ing φLG(x) = (α′LG(x))2), and a value k associated with a point x ∈ (0,∞),

such that αLG(x) = k,

αLG(x) =

∫ x

x

φ
1/2
LG(t) dt+ k. (54)

Therefore, the approximate phase function αn(x) will be given by

αn(x) =

∫ x

x

φ1/2
n (t) dt+ k, (55)

setting αn(x) = k and recalling that φn(x) approximates φLG(x), according

to Theorems 2 or 3.

We now estimate the error made when the approximate solution, yn(x),

is used instead of y(x), on the interval [a, b]. Writing

c1(n) = c1 + ε1, c2(n) = c2 + ε2, (56)
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we obtain promptly

|yn(x)− y(x)| ≤ |c1||un(x)− u(x)|+ |c2||vn(x)− v(x)|
+ |ε1||un(x)|+ |ε2||vn(x)|.

(57)

Hence we can recognize two kinds of error, one due to the fact that we use the

approximate basis of solutions (un(x), vn(x)) instead of (u(x), v(x)), and the

other one due to the fact that we use the approximate coe�cients c1(n), c2(n)

instead of c1 and c2. Setting

E1 := |c1||un(x)− u(x)|+ |c2||vn(x)− v(x)|, (58)

and choosing the positive branch of the square roots of φn and φLG we have,

after a little algebra,

E1 ≤
(
|c1|+ |c2|√
α′n
√
α′

)(
|α′n − α′|√
α′n +

√
α′

+
√
α′|αn − α|

)
.

From the relation

α′n − α′ =
φn − φLG
α′n + α′

, (59)

being α′(x) 6= 0∀x ∈ (0,+∞), there exist n0 > 0 and ηn > 0 such that, for

n > n0,

ηn := sup
x∈[a,b]

Hn(x)

|α′n(x) + α′(x)|
<∞. (60)

Here Hn(x) depends on the class of the carriers. When the carrier is asymp-

totically constant, from Theorem 2 we have

Hn(x) := C a−1/2(βa1/2)−2n(|x| − nβ
√

2)−1−p.

When the carrier is asymptotically polynomial, from Theorem 3 we have

Hn(x) := C ′hn(x)
(
x− n

√
2
)−2

,

where C and C ′ are two positive constants. It follows that

|α′n − α′| ≤ ηn, (61)
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and furthermore

|αn(x)− α(x)| ≤ ηn(b− a) (62)

for all x ∈ [a, b]. From (61) follows, for a and n su�ciently large,

(α′)−1/2 ≤ (α′n − ηn)−1/2 and α′ ≤ α′n + ηn.

Therefore the estimate for E1 becomes, after some algebra,

E1 ≤
√

2 (|c1|+ |c2|) sup
x∈[a,b]

1

α′n(x)

[
5

4

√
α′n(x)(b− a) +

2−
√

2√
α′n(x)

]
ηn, (63)

for ηn su�ciently small, i.e. for n su�ciently large.

The error ε1 made using c1(n) instead of c1 turns out to be

|ε1| ≤
[
3
(
|A|(α′n(a)+ηn)1/2+|B|(α′n(b)+ηn)1/2

sin2[αn(a)−αn(b)]

)
(b− a)

+ |A|(α′n(a)+ηn)−1/2+|B|(α′n(b)+ηn)−1/2

2| sin[αn(a)−αn(b)]|

]
ηn,

(64)

and the same holds for ε2. Hence the global error can be estimated as

E ≤ (|c1(n)|+ |c2(n)|) supx∈[a,b]

[
5
√

2

4
√
α′n(x)

(b− a) + 2
√

2−2

(α′n(x))
3
2

]
ηn

+ (2
√

2 + 2) supx∈[a,b]

[
|A|(α′n(a)+ηn)−

1
2 +|B|(α′n(b)+ηn)−

1
2

2
√
α′n(x)| sin[αn(a)−αn(b)]|

+ 3

(
|A|(α′n(a)+ηn)

1
2 +|B|(α′n(b)+ηn)

1
2√

α′n(x) sin2[αn(a)−αn(b)]

)
(b− a)

+ 5

4
√
α′n(x)

(b− a) + 2−
√

2

(α′n(x))
3
2

]
ηn.

(65)
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6 Cauchy problems

Consider the Cauchy problem
y′′ + q(x)y = 0, x > a ≥ 0,

y(a) = A

y′(a) = B,

(66)

where q(x) belongs to one of the classes described above. Again, its general

solution can be written as

y(x) = c1u(x) + c2v(x), (67)

where (u(x), v(x)) is a basis of solutions, and the constants c1, c2 can be

evaluated solving the linear system{
c1u(a) + c2v(a) = A

c1u
′(a) + c2v

′(a) = B.
(68)

From the phase function α(x) we obtain the basis in (16), then the solution

will be as in (50). System (68) has a unique solution if and only if the

determinant is nonzero, and in fact

∣∣∣∣∣ (α′(a))−1/2 sinα(a) (α′(a))−1/2 cosα(a)

− α′′(a)

2(α′(a))3/2
sinα(a) +

√
α′(a) cosα(a) − α′′(a)

2(α′(a))3/2
cosα(a)−

√
α′(a) sinα(a)

∣∣∣∣∣ = −1.

We obtain (by Cramer's rule) the constants c1 and c2,
c1 =

A[α′′(a) cosα(a)+2α′(a)2 sinα(a)]+2Bα′(a) cosα(a)

2(α′(a))3/2

c2 =
A[−α′′(a) sinα(a)+2α′(a)2 cosα(a)]+2Bα′(a) sinα(a)

2(α′(a))3/2
.

(69)

Considering now the approximate solution

yn(x) := c1(n)un(x) + c2(n)vn(x),
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with (un(x), vn(x)) given by (45), the �constants� c1(n) and c2(n) can be

determined approximately solving the linear system{
c1(n)un(a) + c2(n)vn(a) = A

c1(n)u′n(a) + c2(n)v′n(a) = B.
(70)

This system has a unique solution which coincide with that in (69), replacing

α′ with α′n.

As in the previous section, we want to estimate the error made when the

approximate solution yn(x) is used instead of y(x). Also in this case we write

c1(n) = c1 + ε1, c2(n) = c2 + ε2, (71)

and after rather lengthy though elementary calculations we obtain the same

estimate in (57). Again, there are two kinds of errors, one due to the fact that

we are using the approximate solutions un(x), vn(x) instead of u(x), v(x),

E ′1 := |c1||un(x)− u(x)|+ |c2||vn(x)− v(x)|, (72)

the other due to the fact that we are using the approximate coe�cients c1(n)

and c2(n) instead of c1 and c2.

The estimate for the error E ′1 coincides with that in (63), but in this case

we impose that

ηn := sup
x∈[a,b̃]

Hn(x)

|α′n(x) + α′(x)|
<∞ (73)

and

|αn(x)− α(x)| ≤
∣∣∣∣∫ x

x

|α′n(t)− α′(t)|dt
∣∣∣∣ ≤ ηn(b̃− a), (74)

so that

E ′1 ≤ sup
x∈[a,b̃]

|c1|+ |c2|
α′n(x)

[√
α′n(x)(b̃− a) +

1

2
√
α′n(x)

]
ηn, (75)

where b̃ > a can be always chosen to satisfy inequality (74).

To estimate ε1 de�ne

Γn := a−
1+2n

2 Kn sup
x∈[a,b̃]

[(
|x| − n

√
2
)−1−p

+

(
|x| − (n+ 1)

√
2
)−1−p

√
2

]
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and

Γ̂n := 2K̂nC
n+1

[
n∏
j=0

(x− j
√

2)−m

] [
(x− n

√
2)−2 + (x− (n+ 1)

√
2)−2

]
,

where Kn := max {Ka, Kb}, K̂n := max
{
K̂a, K̂b

}
and C is a suitable con-

stant. Here Ka, Kb, K̂a, K̂b are four positive constants. When the carrier is

asymptotically constant, exist two values x0, x
′
0 > 0 such that∣∣∣ q′(x)

q(x)3/2

∣∣∣ ≤ Ka for a < x0 ≤ x < b̃,

|q(x)|−1/2 ≤ Kb for a < x′0 ≤ x < b̃,

(76)

while, when the carrier is asymptotically polynomial, exist other two values

x̂0, x̂
′
0 > 0 such that∣∣∣ q′(x)

q(x)3/2

∣∣∣ ≤ K̂a for a < x̂0 ≤ x < b̃,

|q(x)|−1/2 ≤ K̂b for a < x̂′0 ≤ x < b̃.

(77)

Hence, when q(x) is asymptotically constant, an estimate for ε1 is

|ε1| ≤ |A|
2(α′n(a)+ηn)3/2

Γn +
|A|[α′′n(a)+Γn+2(α′n(a)+ηn)2]+2|B|(α′n(a)+ηn)

2(α′n(a)+ηn)3/2
ηn(b̃− a)

+ 14|A|(α′n(a)+ηn)2+10|B|(α′n(a)+ηn)+3|A|(α′′n(a)+Γn)

4(α′n(a)+ηn)7/2
ηn,

(78)

and proceeding similarly we obtain for ε2

|ε2| ≤ |A|
2|α′n(a)|3/2 Γn +

|A|[|α′′n(a)|+2(α′n(a))2]+2|B||α′n(a)|
2|α′n(a)|3/2 ηn(b̃− a)

+ 2|A|(α′n(a))2+2|B||α′n(a)|+3|A||α′′n(a)|
4|α′n(a)|7/2 ηn.

(79)

Therefore, when q(x) is asymptotically constant, the global error can be

estimated as
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E ′ ≤ supx∈[a,b̃]

{
|c1|+|c2|
α′n(x)

[√
α′n(x)(b̃− a) + 1

2
√
α′n(x)

]
ηn

+ 2√
α′n(x)

[
|A|

2(α′n(a)+ηn)3/2
Γn +

|A|[α′′n(a)+Γn+2(α′n(a)+ηn)2]+2|B|(α′n(a)+ηn)

2(α′n(a)+ηn)3/2
ηn(b̃− a)

]

+ 1√
α′n(x)

[
16|A|(α′n(a)+ηn)2+12|B|(α′n(a)+ηn)+6|A|(α′′n(a)+Γn)

4(α′n(a)+ηn)7/2

]
ηn

}
.

(80)

When q(x) is asymptotically polynomial, the estimates of ε1, ε2 and E ′ turn

out to be the same, with Γ̂n replacing Γn.

6.1 Comparing with the Runge-Kutta-Nystrom 12/10

method

In order to assess the performance of our method, we compared it with an-

other one very e�ective, that is the so-called �Runge-Kutta-Nystrom 12/10�

algorithm.

This method consist of a numerical integrator for ordinary di�erential equa-

tions of the form

y′′(x) = f(x, y), (81)

subject to initial conditions y(x0) = y0, y
′(x0) = dy0, which exploits two

Runge-Kutta methods of order 10 and 12.

The MATLAB program RKN12(10) implements such methods providing a

high-order algorithm with automatically control of the step-size, used in prob-

lems where extremely stringent error tolerances are required.

In [4], it is assumed that the Runge-Kutta-Nystrom (RKN) process con-

sists of formulae of orders q and p (with q > p) and the algorithm is shown.

The conditions that the RKN parameters should satisfy for the process up to

order 6 were given in [5], and those for the process up to order 11 was found

by El-Mikkawy in 1986.

We considered two examples, both concerning a perturbed generalized
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Airy equation. Choosing �rst the phase function α(x), the carrier q(x) can

be estimated, and hence the exact solution is known. Thus, the accurancy of

our method and that of the RKN12(10) method can be compared computing

the discrepancy between the approximate solution and the exact one.

From such examples it appears that the RKN12(10) method is faster than

ours, but recall that our method exploits (in the present examples) also sym-

bolic manipulations which are rather slow. On the other hand, our method

works for arbitrarily rapid oscillations of solutions, and has an in�nite accu-

rancy in those sections where symbolic manipulations are used.

Moreover, in several cases the RKN12(10) method fails completely, for in-

stance, when the step-size falls below the minimum acceptable value
tfin−tin

1012
,

see [4]. An example of this occurrence is encountred solving the Cauchy

problem for the harmonic oscillator,
y′′ + ω2y = 0, x > 0,

y(0) = 0

y′(0) = ω.

(82)

Choosing increasing values of ω, the algorithm RKN12(10) at ω = 105 had to

be stopped, while our method provided a solution with an the error essentially

equal to zero, even for values of ω larger than this.

7 Examples

In this section we are concerned with the asymptotic-numerical approxima-

tion of zeros of a given solution to equation (1) when the carrier is asymp-

totically constant, polynomial and exponential. We also approximate the

solution of a boundary-value problem. All examples were worked out within

the MATHEMATICA environment.
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7.1 Computing zeros from the phase function

In this example, we start from an explicit form of a phase function, α(x).

Recall that any given phase function uniquely identi�es the carrier of (1)

throught the relation (15). Choosing for instance α(x) = x + 1
x
, x > 0, we

obtain

q(x) =
x8 − 4x6 + 3x4 − 4x2 + 1

x8 − 2x6 + x4
, (83)

hence equation (1) becomes

y′′ +

(
x8 − 4x6 + 3x4 − 4x2 + 1

x8 − 2x6 + x4

)
y = 0. (84)

We want to compute the �rst 20 zeros of a solution to (84), starting from

the 21th exact zero, and compare them with the �exact� zeros that can be

obtained through MATHEMATICA. Figures 1 and 4 show the approximating

function φn(x) of the auxiliary function φ(x) and the errors (in a logarithmic

scale) at each iteration. We can see that the functions φn, n = 0, 1, 2, 3, 4

approximate the function φ(x), from a certain point on, and that the errors

decrease dramatically increasing the values of k and n.

7.2 A perturbed generalized Airy equation

Consider now the case of a perturbed generalized Airy equation, correspond-

ing to the carrier q(x) = x2 − 3
4x2

in (1), i.e.,

y′′ +

(
x2 − 3

4x2

)
y = 0 x > 0. (85)

In this case the phase function α(x) is known, α(x) = x2

2
, and thus the

function

y(x) = x−1/2 sin

(
x2

2

)
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is a solution to (85) (see (16)), and its zeros are

xk =
√

2kπ, k = 1, 2, 3, . . .

To test our method, we evaluate the 21th zero from this formula, and then

compute the �rst 20 zeros using our algorithm for n = 0, 1, 2, 3. Figures 2-5

show results similar to those in the previous example. Note that knowing

α(x) we also know φ(x), in fact φ(x) = (α′(x))2 = x2. This function has also

been plotted in Figure 2.

7.3 A perturbed exponential carrier

Consider equation (1) with the carrier q(x) = e2x − 4, i.e., equation

y′′ + (e2x − 4)y = 0. (86)

This is a special case of

y′′ +
(
λ2e2x − ν2

)
y = 0, (87)

whose general solution is given by

y(z) = Cν (λez) (88)

where Cν is the general solution to Bessel di�erential equation [1].

For λ = 1, ν = 2, we have thus

y(x) = C2(ex). (89)

Consider in particular the solution

y(x) = J2(ex),

and compute the �rst 20 zeros of this function using (27), for k = 1, 2, . . . , 20,

and n = 0, 1, 2, 3, 4. We then compare the results with the �rst 20 �exact�

zeros of J2(ex) obtained by MATHEMETICA. In Figures 3, 6 the behavior

of φn(x), for n = 0, 1, 2, 3, 4, and the errors, in logarithmic scale, − 1
log(xk−x̃k)

,

are shown.
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7.4 A boundary-value problem for a perturbed gener-

alized Airy equation

Consider the two-point BV problem for the perturbed generalized Airy equa-

tion 
y′′ +

(
x2 − 3

4x2

)
y = 0, a < x < b

y(a) = A

y(b) = B,

(90)

whose solution has (necessarily) the form

y(x) = c1|α′(x)|−1/2 sinα(x) + c2|α′(x)|−1/2 cosα(x)

with α(x) = x2

2
. Let choose the value of the two constants, for instance, c1 =

1, c2 = −1, and compute the boundary values A, B so that the boundary

conditions in (90) are satis�ed. Then, we compute αn(x) by (55), using the

Simpson's rule to evaluate the integral, where we chose x ≡ a and k = α(a).

According to (45), an approximate solution is

yn(x) = c1(n)|α′n(x)|−1/2 sinαn(x) + c2(n)|α′n(x)|−1/2 cosαn(x),

where c1(n) and c2(n) have been determinated solving the linear system (53)

using the MATHEMATICA's function LinearSolve[M, b]. Here the system

matrix, M, is the square matrix

M :=

(
|α′n(a)|−1/2 sinαn(a) |α′n(a)|−1/2 cosαn(a)

|α′n(b)|−1/2 sinαn(b) |α′n(b)|−1/2 cosαn(b)

)
,

and b is the vector

b=

(
A

B

)
.

This problem has been solved on two intervals, 6 < x < 8 and 9.5 < x <

11.5, for n = 3, 4. The errors turned out to be of order of 10−12 and 10−15,

respectively.
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Figure 1: Functions φn(x), approximating φ(x) = 1 + 1
x4
− 2

x2
, for n =

0, 1, 2, 3, 4.

Figure 2: Approximations of φ(x) = x2 by φn(x) with n = 0, . . . , 3, when

q(x) = x2 − 3
4x2

.

Figure 3: Approximations of φ(x) by φn(x) with n = 0, . . . , 4, when q(x) =

e2x − 4.
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Figure 4: − 1
log(xk−x̃k)

for k = 1, 2, . . . , 20, obtained using φn(x) with n =

0, . . . , 3, when α(x) = x+ 1
x
.

Figure 5: − 1
log(x̃k−xk)

for k = 1, . . . , 20 using φn(x) with n = 0, . . . , 4, when

q(x) = x2 − 3
4x2

.

Figure 6: − 1
log(x̃k−xk)

for k = 1, . . . , 20 using φn(x) with n = 0, . . . , 4, when

q(x) = e2x − 4.
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8 Conclusion and future directions

There is no question that the second-order linear ordinary di�erential equa-

tions (see (1)), though so classical and simple, play a fundamental role in

the entire body of Mathematics, as well as in a large number of applications.

Investigations on them, in a way or another, have been continuing even over

the last years. These equations play a role, e.g., in celestial mechanics, quan-

tum mechanical scattering theory, theoretical physics and chemistry, and

electronics, as is witnessed by the recent scienti�c literature. For instance,

T.E. Simos and Z.A. Anastassi in [9] consider the numerical integration of

the Schrödinger equation, which describes the time variation of the quantum

state of a physical system, and the related IVPs with oscillatory solution. De-

veloping methods computationally e�ective and accurate at the same time,

in the rapidly oscillatory case, is still an open problem.

In this Thesis, we studied an asymptotic-numerical method capable of

computing rapidly oscillatory solutions as well as their zeros with high accu-

racy. This method rests on the investigations carried out by O. Boruvka and

F. W. J. Olver, and has been applied to a number of cases. In each example,

the results are shown to be very accurate, with absolute errors possibly of

order of 10−18. The algorithm was not very fast, but just because we used

symbolic manipulations (carried out with MATHEMATICA) as an essential

ingredient. This however ensured a high accuracy. Since the method con-

verges very fast, only few iterations are required, and hence the exponential

complexity due to the symbolic part can be limited severely.

Symbolic manipulations could be used because, in our examples, the car-

rier, i.e., the coe�cient q(x) in equation (1), was assumed to be explictly

known, in terms of elementary functions.

As a future direction, one can conceive to compute the phase function

α(x) (or the related auxiliary function φ(x)), by purely numerical methods

which changes, in some sense, the di�culty of computing higly oscillatory

solutions into the evaluation of a phase function, which is a monotonic func-

tion. An e�cient solution of such problem, which ultimately may shift the
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di�culty of handling rapidly oscillatory problems at worst to a sti� problem,

is expected to be fast and accurate at the same time.
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