
Asymptotic invariants of line bundles,
semiampleness and finite generation

Salvatore Cacciola

As the history of algebraic geometry shows, a mainstream problem has always
been the classification of algebraic varieties. A projective algebraic variety
is, in the first place, a subset of the projective space Pn defined as the locus
of zeros of an homogeneous prime ideal in C[x0, . . . , xn].
One of the most common ways to classify varieties is through studying alge-
braic objects associated to each variety.
Maybe the simplest example of this kind is given by the coordinate ring. If
X ⊆ Pn is the projective variety defined by the ideal I(X), the coordinate
ring of X is S(X) = C[x0, . . . , xn]/I(X). Considering the elements of degree
zero in the quotient field of the coordinate ring we also have the function
field of X, or field of rational functions on X, denoted by K(X).
In the ring S(X) are contained basic geometrical properties of X such as
its dimension and its degree. In particular, denoting by H a hyperplane
section on X and by H0(X,mH) the group of rational functions on X having,
on every subvariety of codimension one, poles of degree bounded by the
multiplicity of mH, we see that the coordinate ring is strictly related to

R(X,H) =
⊕
m≥0

H0(X,mH),

and in fact they have the same Hilbert polynomial.
Since H is a divisor (see below), looking for other geometrical properties of
X, this suggests us the idea of considering an arbitrary divisor on X.
If X is a smooth variety, we can view a divisor D on X as a finite Z-linear
combination of irreducible subvarieties of X of codimension 1:

D =
∑

niYi.

In particular D is effective if ni ≥ 0 for all i.
We define the graded ring associated to D as

R(X,D) =
⊕
m≥0

H0(X,mD),
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where the structure of graded ring is given by the multiplication map

H0(X, aD)⊗H0(X, bD) −→ H0(X, (a+ b)D)

s⊗ t 7−→ s · t.

One of the purposes of this thesis is to study the relation between the geo-
metrical characteristics of the couple (X,D) and the algebraic properties of
the ring R(X,D). For example, if X is an n-dimensional variety and KX is
the canonical divisor on X, that is the divisor locally defined by the nth ex-
terior power of the module of differential forms, we have that X is of general
type if and only if, asymptotically, dim R(X,KX)m = O(mn).
The most significant property that R(X,D) might have is the finite genera-
tion as a C-algebra and the divisor D itself is said to be finitely generated if
its graded ring R(X,D) is such.
In particular the finite generation of R(X,KX) has been considered for a long
time, especially because it holds a particular role in the theory of minimal
models. Given an algebraic variety X the idea is that a minimal model
of X is the “simplest” variety birational to X. The existence of minimal
models for surfaces was shown by the Italian school (Castelnuovo, Enriques,
etc.) in the 30’s. Passing to dimension n things get more complicated.
However an important very recent theorem of Birkar, Cascini, Hacon and
McKernan proves the existence of minimal models for smooth n-dimensional
varieties of general type and the finite generation of the graded ring R(X,KX)
(see [BCHM07]). Moreover the importance of considering arbitrary divisors
and not just the canonical one is given by the tight link between the finite
generation of R(X,KX) and the properties of rings of kind R(X,KX + ∆),
for suitable divisors ∆.
Another remarkable historical reason that led to consider the rings R(X,D)
is the connection between their finite generation and Hilbert’s fourteenth
problem. We can formulate Hilbert’s 14th problem in these terms: given
a field k, a polynomial algebra k[x1, . . . , xn] and a subfield of the rational
functions in n-variables over k, K ⊆ k(x1, . . . , xn), is the ringK∩k[x1, . . . , xn]
finitely generated as a k-algebra?
The answer is negative and, in a famous counter-example given in 1959,
Nagata considers the surface X obtained by blowing up P2 in r general points
p1, . . . , pr and finds a suitable divisorD onX such that R(X,D) is not finitely
generated and it is of kind K ∩ k[x1, . . . , xn].

We now come to the description of the work of this thesis.
We study how the notion of finite generation can be related to different
geometrical properties of the couple (X,D). Our approach will often be
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asymptotic, in the sense that we study a divisor looking at all its sufficiently
large multiples and the graded ring R(X,D) helps us in this sense, since, by
definition, it depends on all the multiples of D.
A first step consists in analyzing the geometrical behaviour of (X,D) and
observing how it reflects in the graded ring associated to D. With this goal
in mind we first study divisors.
While in the first chapter we essentially follow [Har77] (except for the defini-
tion of intersection numbers, for whom we refer to [Kle66]), from the second
one our point of view is that of [Laz04]. The reader will find in these books
lacking proofs of some results presented and more explanations.
We begin by recalling some basic notions such as linear series, base loci and
base ideals: The linear series associated to the divisor D is the set of all the
effective divisors linearly equivalent to D and it is denoted by |D|.
The base locus of |D|, denoted by Bs(|D|), is the closed subset of X obtained
as the intersection of the supports of all the divisors in |D|, while the base
ideal b(|D|) is the ideal defining the base locus.
Then we outline the classic theory of ample divisors before passing to the
more recent one of nefness and we generalize the concept of divisor introduc-
ing Q and R-divisors:
A divisor D on X is ample if it admits a multiple mD that is a hyperplane
section of X in a suitable projective embedding, while it is nef if it has
“non-negative intersection” with every irreducible curve on X. Q and R-
divisors are Q (resp. R)-linear combinations of irreducible subvarieties of
codimension 1.
In the third chapter we pass to the description of some important properties
and notions, such as bigness, mainly developed in the last 30 years, closely
linked to base loci and projective morphisms defined by divisors.
We begin by defining the stable base locus:

Definition 1. Let X be a variety and let D be a divisor on X.
The stable base locus of D is the closed subset

B(D) =
⋂
m≥1

Bs(|mD|).

Then we pass to the definition of semiampleness:

Definition 2. Let X be a variety. A divisor D on X is semiample if there
exists an integer m > 0 such that Bs(|mD|) = ∅.

Finally we introduce the notion of bigness:
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Definition 3. Let X be a variety. A divisor D on X is big if there exists an
ample divisor A, together with an effective divisor F , such that mD = A+F
for some m ∈ N.

Note that if D is semiample then it is finitely generated and it is easy to
check that every divisor on a curve is finitely generated. On the contrary,
when passing to surfaces, a famous example of Zariski provides a big and nef
divisor D whose graded ring is not finitely generated. Already in this example
one can observe how the fundamental reason not allowing finite generation
is that the multiplicity of a curve in the base locus of |mD| is bounded. This
drives us to the following definition:

Definition 4. Let X be a variety, let |D| be the linear series associated to
the Cartier divisor D and let x ∈ X. We define the multiplicity of |D| at x,
denoted by multx|D|, as the multiplicity at x of a general divisor in |D|.
Equivalently

multx|D| = min
D′∈|D|

{multxD′}.

Using this definition we prove the following original characterization of semi-
ampleness in terms of finite generation and boundedness of the multiplicity
at every point:

Theorem 5. Let X be a normal variety and let D be a Cartier divisor on
X.
Then D is semiample if and only if D satisfies the following three conditions:

1. D is finitely generated.

2. There exists an integer m > 0 such that |mD| 6= ∅.

3. There exists a constant C > 0 such that for all m > 0, with |mD| 6= ∅,
and for all x ∈ X, we have

multx|mD| ≤ C.

Then we note that the multiplicity of a linear series is nothing but a particular
discrete valuation on the function field K(X). Hence the idea developed in
the fifth chapter is to generalize the previous result in terms of valuations,
along the lines of recent works of Ein, Lazarsfeld, Mustată, Nakamaye and
Popa:

Definition 6. Let K be a field. A discrete valuation on K is an application
v : K∗ → Z such that
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• v(xy) = v(x) + v(y) ∀x, y ∈ K∗,

• v(x+ y) ≥ min {v(x), v(y)} ∀x, y ∈ K∗ such that x+ y 6= 0.

If k ⊆ K is a subfield, a discrete valuation on K/k is a discrete valuation v
on K such that v(x) = 0 for all x ∈ k.
The ring

Rv = {f ∈ K∗ : v(f) ≥ 0} ∪ {0}
is called the valuation ring of v.
Moreover, given a discrete valuation v on K(X)/C, the center of v, denoted
by Zv, is the subvariety of X defined by the unique maximal ideal of Rv, that
is the ideal made up by the rational functions of positive valuation.

In these matters a relevant role is played by the restricted base locus:

Definition 7. Let X be a normal variety and let D be an R-divisor on X.
The restricted base locus of D is

B−(D) =
⋃
A

B(D + A),

where the union is taken over all ample R-divisors A such that D + A is a
Q-divisor.

Then, following [ELMNP06], we adopt the language of valuations to gener-
alize the concept of multiplicity at a point of a linear series:

Definition 8. Let X be a variety with function field K = K(X), let v be a
discrete valuation on K/C with valuation ring Rv and center ξ ∈ X.
If D is a Cartier divisor on X, with |D| 6= ∅, we put

v(|D|) = v((b(|D|)ξ)Rv),

where b(|D|) is the base ideal of D and ((b(|D|)ξ)Rv is the ideal generated by
the stalk (b(|D|)ξ in the ring Rv.

In analogy with Theorem 5 we define a v-bounded divisor, that is a divisor
D such that the center of the valuation v is asymptotically contained in the
base locus of mD with bounded multiplicity. In other words:

Definition 9. Let X be a normal variety and let v be a discrete valuation on
K(X)/C. If D is a Cartier divisor on X with Iitaka dimension k(X,D) ≥ 0,
that is there exists an integer m > 0 such that |mD| 6= ∅, then we say that
D is v-bounded if there is a constant C > 0 such that

v(|pD|) ≤ C

for every p > 0 such that |pD| 6= ∅.

5



Moreover we generalize the concept of semiample divisor with the weaker one
of v-semiample, that is a divisor not containing the center of v in its stable
base locus:

Definition 10. Let X be a normal variety with function field K = K(X),
let v be a discrete valuation on K/C, having center Zv ⊆ X, and let D be a
Cartier divisor on X with k(X,D) ≥ 0.
Then D is v-semiample if there exists a positive integer l0 such that |l0D| 6= ∅
and v(|l0D|) = 0, or equivalently if Zv 6⊆ B(D).

These last two notions are not equivalent but they are linked by the following
result:

Theorem 11. Let X be a normal variety with function field K = K(X), let
v be a discrete valuation on K/C and let D be a Cartier divisor on X with
k(X,D) ≥ 0.

• If D is v-semiample, then D is v-bounded.

• If D is finitely generated and v-bounded, then D is v-semiample.

Actually for the second statement it is not necessary to take D v-bounded,
but it suffices the hypothesis of “v-sublinearity”, that is v(|mD|) can go to
infinity but in a “sublinear” way with respect to m.
As a corollary, considering all the discrete valuations on K(X)/C together
and noting that D is semiample if and only if D is v-semiample for every
valuation v, we can generalize Theorem 5 with a different characterization of
semiampleness involving v-boundedness:

Theorem 12. Let X be a normal variety with function field K = K(X) and
let D be a Cartier divisor on X with k(X,D) ≥ 0.
Then the following statements are equivalent:

1. D is semiample

2. D is finitely generated and there exists a constant C > 0 such that

multx|mD| ≤ C

for every m > 0 such that |mD| 6= ∅, for every x ∈ X.

3. D is finitely generated and, for every discrete valuation v on K/C, D
is v-bounded.
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On the other hand we extend the notion of asymptotic order of vanishing of
a divisor along a valuation v, defined in [ELMNP06] only in the big case, to
non-big divisors:

Definition 13. Let X be a normal variety with function field K = K(X),
let D be a Cartier divisor on X with k(X,D) ≥ 0 and let v be a discrete
valuation on K/C.
We define the exponent of D as

e(D) = g.c.d.{m ∈ N : |mD| 6= ∅}.

If e = e(D) is the exponent of D, the asymptotic order of vanishing of D
along v is

v(||D||) = lim
m→∞

v(|meD|)
me

.

We can simply extend this definition to Q-divisors. In particular we fix as
the right work environment the set of Q-linearly effective Q-divisors:

Definition 14. Let X be a variety and let D be a Q-divisor on X.
A Q-divisor F is Q-linearly equivalent to D if there exists an integer r > 0
such that rD and rF are linearly equivalent integral divisors.
We define the Q-linear series |D|Q as the set of all the effective Q-divisors
that are Q-linearly equivalent to D.
D is Q-linearly-effective if |D|Q 6= ∅.

Finally, we present the main result in [ELMNP06, §2] about the asymptotic
order of vanishing of big Q-divisors.

Theorem 15. Let X be a smooth variety with function field K = K(X)
and let v be a discrete valuation on K/C, having center Zv on X.
If D is a big Q-divisor on X, then the following conditions are equivalent:

1. D is v-bounded;

2. v(||D||) = 0;

3. Zv 6⊆ B−(D).

One of the aims of this thesis is, using Definition 13, to study which impli-
cations of the above theorem are still true in the non-big case. In particular,
if D is a Q-linearly effective Q-divisor, we first observe that

(i) D is v-bounded ⇒ v(||D||) = 0;
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(ii) v(||D||) = 0 ⇒ Zv 6⊆ B−(D)

are still true, using the same argument of [ELMNP06].
On the other hand the reverse implication of (ii) does not hold and we
provide a counter-example in Section 5.6.
Finally we outline the questions that, at the moment, remain unsolved:

Open questions:

• We do not know whether D is v-bounded whenever the asymptotic
order of vanishing of D along v is zero. However it is true if D is a
divisor on a curve or a normal surface.

• It remains an open problem how we can weaken the hypothesis of the
second statement of Theorem 11 in order to have the viceversa.

Remark 16. Besides Theorem 5, the original results in this thesis are Theo-
rem 11 and Theorem 12 (which are inspired by Theorem 5) and the example
in Section 5.6.
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