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Abstract

In this thesis we aim at showing how the tensor product A⊗k B, where k is a field

and A,B are k-algebras, inherits several properties from A and B. In the first chap-

ter, after giving the definitions of the tensor product of modules and of algebras and

recalling some properties, we focus our attention on three questions:

1. When every invertible element in A ⊗ B is of the form a ⊗ b, with a ∈ U(A)

and b ∈ U(B).

2. When the tensor product of k-algebras is local.

3. When the tensor product of extension fields of k is Noetherian.

The second chapter is about the computation of the Krull dimension of tensor prod-

ucts of k-algebras, with a particular interest to a special class of algebras, called

AF-rings. We show how it is possible to determine precisely the value of the dimen-

sion for tensor products of AF-rings and give an estimate for the tensor product of

two domains. In the last part of the second chapter we show an analogue of the

Seidenberg’s inequalities for polynomial rings, that holds for the dimension of the

tensor product of a domain with a ring. In the third chapter we seek conditions for

a tensor product to have S-property, strong S-property and catenarity. Throughout

the thesis, we only consider commutative and unitary rings.
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0.1 Chapter 1

We first introduce the definition of tensor product of A-modules:

Proposition 1. Let M,N be A-modules. Then there exist an A-module T and an

A-bilinear map g : M ×N −→ T with the following properties:

1. If P is an A-module and f : M ×N −→ P is an A-bilinear map, there exists

a unique A-linear map ψ : T −→ P such that f = ψ ◦ g.

2. If T ′ is an A-module and g′ is a map with the same properties of T and g, then

there exists a unique isomorphism j : T → T ′ such that j ◦ g = g′.

T is called the tensor product of M and N and

T :=

{ k∑
i=1

(mi ⊗ ni), mi ∈M, ni ∈ N
}

;

furthermore, for every mi ∈M , a ∈ A and ni ∈ N , we have:

(m1 +m2)⊗ n1 = m1 ⊗ n1 +m2 ⊗ n1

m1 ⊗ (n1 + n2) = m1 ⊗ n1 +m1 ⊗ n2

(am1)⊗ n1 = a(m1 ⊗ n1) = m1 ⊗ (an1).

Let us give some examples:

Example 1. 1.
Z
mZ
⊗Z

Z
nZ
∼=

Z
dZ

, where d = gcd(m,n).

2. Let G be a finite abelian group; then Q⊗Z G = 0.

Let T := B⊗AC, where B and C are two A-algebras; we define a multiplication

on T as follows: (∑
i

(bi ⊗ ci)

)(∑
j

(b′
j ⊗ c′

j)

)
=
∑
i,j

(bib
′
j ⊗ cic′

j).
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With such a definition, T is a commutative ring with unit 1⊗ 1.

Like most authors, we are interested in particular in tensor products over a

field k. In this case, if A and B are k-algebras we have the following commutative

diagram:

k

A

B

A � B

f

g

h

i

where h(a) = a ⊗ 1 and i(b) = 1 ⊗ b are injective. Hence, it is natural to ask

under which conditions A ⊗k B inherits some properties from A and B. We show,

for example, that a tensor product of two k-algebras is not always a domain, even

though A and B are domains.

Example 2. Let k = Q and A = B = Q(i), A ⊗k B is not a domain. Indeed

the element (1
2
⊗ 1 − i

2
⊗ i) is a zero divisor: (1

2
⊗ 1 − i

2
⊗ i)(1

2
⊗ 1 + i

2
⊗ i) =

1
4
⊗ 1 + i

4
⊗ i− i

4
⊗ i− 1

4
⊗ 1 = 0.

In [29], Zariski gives several basic properties of tensor products of algebras and

in particular he proves:

Proposition 2. ([29], Chap. III, Corollary 1, p. 198)

If k is an algebraically closed field and L, F are two extension fileds of k, then L⊗kF

is a domain.

Remark 1. The condition that k has to be algebraically closed is not necessary:

indeed, it suffices to note that, for example, Q⊗Q K ∼= K, for every field K ⊃ Q.
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The first question we focus on, is when every invertible element of A ⊗ B is of

the form a ⊗ b, with a ∈ U(A) and b ∈ U(B). In [24], M. E. Sweedler proves the

following theorem:

Theorem 1. ([24], Th. 1.2, p. 260)

Let k be an algebraically closed field, A,B be k-algebras and k algebraically closed

in A and B. Then every invertible element of A ⊗k B is of the form a ⊗k b, where

a ∈ U(A) and b ∈ U(B).

Later in [25], he gives conditions that characterize when a tensor product of

algebras over a field is local:

Theorem 2. ([25], Th. 1, p. 8)

If A and B are k-algebras, then the following statements are equivalent:

1. A⊗B is local.

2. (a) A is local (with maximal ideal M) and B is local (with maximal ideal N).

(b) Either A or B is algebraic over k.

(c)
A

M
⊗ B

N
is local.

The last part of the first chapter is concerned with the Noetheriannes of a tensor

product of two fields. We can easily show an example of a tensor product of two

algebras that is Noetherian:

Example 3. Let R be a ring and A and B be two R-algebras. If A is finitely

generated over R and B is a Noetherian ring, then A⊗R B is Noetherian.

Indeed the hypothesis on A leads to assert that A⊗RB is a finitely generated algebra

over B; since B is Noetherian, then A⊗R B is Noetherian.
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The question, anyway, is not trivial, because we may find examples of tensor

products of two Noetherian rings that are not Noetherian. In particular, we have:

Lemma 1. ([27], Lemma 9, p. 33)

Let k be a field and F,L,M be extension fields of k, let ϕ : M −→ L, χ : M −→ F

be homomorphisms. If there exists a proper ascending chain of fields k ⊂ k1 ⊂ k2 ⊂

... ⊂ kn ⊂ ... ⊂M , then L⊗k F is not Noetherian.

The problem of determining when a tensor product of algebras is Noetherian is

unsolved, at the present, in the general case; in the thesis we give necessary and

sufficient conditions for a tensor product of a field with itself to be Noetherian.

Hence, we have:

Theorem 3. ([27], Th. 11, p. 34)

For an extension field F of k the following statements are equivalent:

1. F ⊗k F is Noetherian.

2. The ascending chain condition is satisfied by the intermediary fields between k

and F .

3. F is a finitely generated extension field of k.

Proof. • 1) =⇒ 2): The statement follows directly from Lemma 1.

• 2) =⇒ 3): Let K be a field that is maximal among the finitely generated

subfields of F . If K ⊂ F , then there exists a in F \K such that K ⊂ K(a),

but this is a contradiction. Hence K = F .

• 3) =⇒ 1): Since F ⊗k F is a finitely generated algebra over F and F is

Noetherian, the statement is done.
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0.2 Chapter 2

The second chapter is about the Krull dimension of tensor products; for a ring R,

we denote with d(R) the (Krull) dimension of R. In particular we consider a special

class of commutative algebras, that is the class of AF-rings. First, we extend the

definition of “transcendence degree over a field”1, to arbitrary k-algebras. If K is

an extension field of k, we denote with t(K) the transcendence degree of K over k.

Definition 1. Let R be a k-algebra. The transcendence degree of R over k (denoted

with t(R)) is defined as follows:

1. If R is a domain, then t(R) := t(K), where K is the quotient field of R.

2. If R is a ring, then t(R) := sup

{
t

(
R

P

)
, P ∈ Spec(R)

}
We assume throughout this chapter that t(R) is finite.

Before introducing Wadsworth’s class of algebras, we prove an inequality holding for

every k-algebra:

Proposition 3. Let R be a k-algebra, then

ht(P ) + t

(
R

P

)
≤ t (RP ) , (1)

for every P ∈ Spec(R).

Remark 2. In view of Formula (1), from our assumption that t(R) <∞ it follows

that also d(R) <∞.

Since Grothendieck published [13], only a few authors have studied the prime

ideal structure of tensor products of k-algebras (e.g Sharp in [23] (1977), Vámos

in [27] (1977), Wadsworth in [28] (1979), Bouchiba et al. in [4] (2002)). All these

1For the basic properties of the transcendence degree of a field, see e.g. ([29], Ch. II, § 12)
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works deal with dimension of tensor products of some special algebras; at the present

the general problem is still unsolved.

In [23], Sharp proved that, if K and L are two extension fields of k, then

d(K ⊗ L) = min{t(K), t(L)} (2)

(actually, this result was already found by Grothendieck ten years earlier). In 1979,

A. Wadsworth, for giving a generalization of Sharp’s result, introduced a new class

of k-algebras, called the AF-rings :

Definition 2. A k-algebra A is an AF-ring if it satisfies

htP + t

(
A

P

)
= t(AP ),

called the Altitude Formula, for every prime ideal P in A.

Examples of AF-rings are zero-dimensional rings and finitely generated k-algebras.

In [28], Wadsworth proved that AF-rings are the most tractable rings for Krull

dimension computation; to see this, we show how tensor products behave with them.

Proposition 4. If A1, A2, ..., An are AF-rings, then A1⊗A2⊗...⊗An is an AF-ring.

Corollary 1. Let A be an AF-ring. Then A[X] is an AF-ring.

Proof. Since A[X] ∼= k[X]⊗A, the statement follows directly from Proposition 4.

Now, let us recall two functions, defined in [28], that are useful to express the

value of the dimension of tensor products.

Definition 3. Let R be a k-algebra, P ∈ Spec(R), d, s ∈ Z with 0 ≤ d ≤ s. Then:

∆(s, d, P ) := htPR[X1, ..., Xs] + min

(
s, d+ t

(
R

P

))
;

D(s, d, R) := max{∆(s, d, P ) | P ∈ Spec(R)}.
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Wadsworth found a formula to compute the Krull dimension of a tensor product

of two k-algebras, in which one of them is an AF -domain; we have:

Theorem 4. Let A be an AF-domain, t := t(A), d := d(A) and R a k-algebra.

Then:

d(A⊗R) = D(t, d, R).

Later, he proved a fundamental theorem, that shows how a tensor product of AF-

domains can be easily expressed in terms of transcendence degrees and dimensions:

Theorem 5. Let A1, A2, ..., An be AF-domains and ti := t (Ai) and di := d (Ai).

Then:

d (A1 ⊗ A2 ⊗ ...⊗ An) = t1 + t2 + ...+ tn −max{ti − di ; 1 ≤ i ≤ n}.

Remark 3. Theorem 5 is a generalization of Formula (2).

If A1 and A2 are domains but not AF-rings, Wadsworth shows in [28] that in

general it is no longer possible to express d(A1⊗A2) in terms of the above invariants,

but we can only obtain upper and lower bounds. We recall from [15]:

Definition 4. 1. Let R be a domain and K be its quotient field. R is said to

have valuative dimension n (dv(R) = n), if each valuation overring of R has

dimension at most n and if there exists a valuation overring of R of dimension

n. If such integer does not exist, R is said to have infinite valuative dimension.

2. Let A be a ring, then

dv(A) := sup

{
dv

(
A

P

)
: P ∈ Spec(A)

}
.

Furthermore, we have:
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Proposition 5. Let A be a k-algebra, then:

d(A) ≤ dv(A) ≤ t(A).

Proof. For the proof we remind to ([15], Proposition 5 of Chapter IV).

Now, we can show bounds for the dimension of a tensor product of a domain R

with itself:

Theorem 6. ([28], Th. 4.1, p. 399)

Let R be a domain and a k-algebra. Then:

d(R) + t(R) ≤ d(R⊗R) ≤ dv(R) + t(R).

Remark 4. If d(R) = dv(R), Theorem 6 gives the exact value of d(R ⊗ R). For

example, if R is Noetherian or if it is a valuation ring (cfr. [15], Corollary 1, p.67),

we have:

d(R⊗R) = d(R) + t(R).

In 1953, Seidenberg in [22] proved one of the most important inequalities holding

for a polynomial ring A[X], that is:

1 + d(A) ≤ d(A[X]) ≤ 1 + 2 d(A).

Actually, this formula was extended by Jaffard in [15], who proved:

n+ d(A) ≤ d(A[X1, ..., Xn]) ≤ n+ (n+ 1) d(A). (3)

In the last part of the chapter we show some properties to have analogues of these

inequalities for tensor products of k-algebras; we denote with A[n] the polynominal

ring A[X1, ..., Xn] for any ring A. Bouchiba in [3], proved:
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Theorem 7. Let A and R be k-algebras and assume that A is a domain. Then:

d(R[t(A)])− (t(A)− d(A)) ≤ d(A⊗R) ≤ d(R[t(A)]).

Hence, we have:

Corollary 2. Let A and R be k-algebras such that A is a domain. Then:

d(A) + d(R) ≤ d(A⊗R) ≤ t(A) + (t(A) + 1) d(R)

Proof. By the Jaffard’s inequalities in (3), it follows that

d(R) + t(A) ≤ d(R[t(A)]) ≤ t(A) + (t(A) + 1) d(R)

and by Theorem 7 the proof follows immediately.

0.3 Chapter 3

Finally in the third chapter, we investigate sufficient conditions for a tensor product

to inherit the S-property and the catenarian property. Kaplansky in [16], in order

to treat Noetherian domains and Prüfer domains in a unified manner, introduced

the concept of S(eidenberg)-domains and Strong S(eidenberg)-rings ; these rings have

been subsequently studied by S. Malik and J.L. Mott in [17].

Definition 5. A domain R is said to be an S-domain if for every prime ideal P of

height 1, PR[X] again has height 1.

Definition 6. Let A be a ring. A is said to be a Strong S-ring if for every prime

ideal Q in A,
A

Q
is an S-domain.

The class of S-domains is not actually stable with respect to polynomial exten-

sions (see [8], Example p.40), hence we recall from [17] the following definition:

10



Definition 7. Let A be a ring. A is said to be a stably strong S-ring if A[X1, ..., Xn]

is a strong S-ring, for every n ≥ 0.

In particular we have by [17]:

Proposition 6. Let A be a stably strong S-ring. Then

d(A[X1, ..., Xn]) = n+ d(A),

for every n ≥ 1.

Let us recall the definition of a catenarian domain:

Definition 8. A domain R is said to be a catenarian domain if it is locally finite

dimensional (LFD), in the sense that every prime ideal has a finite height, and if

for every pair of adjacent primes P ⊂ Q in R, htQ = 1 + htP (or, equivalentely,

if for every pair of prime ideals P ⊆ Q, all the saturated chains between P and Q

have the same length).

The class of catenarian domains, like the class of strong S-rings, is not stable in

polynomial extensions. Hence we recall by [7] the following definition:

Definition 9. A domain R is said to be a universally catenarian domain if R[X1, ..., Xn]

is catenarian for every positive n.

We also show from [7] that if R is a universally catenarian domain, then R is a

stably strong S-domain.

One of our aims in this chapter is to extend the definitions we have given, to

arbitrary rings. To do this, we recall from [4] the following definition:

Definition 10. Let A be a ring. A is said to satisfy MPC (Minimal Prime Co-

maximality) if its mimimal prime ideals are pairwise comaximal or, equivalentely, if

every maximal ideal in A contains only one minimal prime ideal.
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Following [4], we see now how to extend the definitions of the S-property and

catenarity to the MPC context.

Let A be an arbitrary ring and consider the following properties:

• (P1):
A

P
is an S-domain for every minimal prime ideal P of A.

• (P2): If htP = 1 then ht(PA[X]) = 1, for each prime ideal P of A.

• (Q1): A is LFD and htQ = htP + 1, for all adjacent primes P ⊂ Q of A.

• (Q2):
A

P
is a catenarian domain for each minimal prime ideal P of A.

It is easy to prove that if A satisfies MPC, then A satisfies (P1) (resp. (Q1)) if

and only if it satisfies (P2) (resp. (Q2)).

Hence, we can give the following definitions:

Definition 11. Let A be a ring. A is said to be an S-ring if it satisfies MPC and

(P1) (or (P2)).

A is said to be a catenarian ring if it satisfies MPC and (Q1) (or (Q2)).

We are interested in studying the transfer of these properties to tensor products of

k-algebras. After showing several examples in which the MPC property is inherited,

we can give necessary and sufficient conditions for a tensor product of k-algebras to

have S-property.

Theorem 8. Let A and B be k-algebras such that A⊗B satisfies MPC. Then A⊗B

is an S-ring if and only if at least one of the following statements holds:

1. A and B are S-ring.

2. A is an S-ring and t

(
A

p

)
≥ 1, for each p ∈ Min(A).
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3. B is an S-ring and t

(
A

q

)
≥ 1, for each q ∈ Min(B).

4. t

(
A

p

)
≥ 1 and t

(
B

q

)
≥ 1, for each p ∈ Min(A) and q ∈ Min(B).

Seeking conditions for a tensor product to inherit the strong S-property and

catenarian property, we focus our attention mainly on A⊗B, where at least one of the

algebras is an algebraic extension of k; indeed in [4] it is shown that, moving beyond

this hypothesis, the study of the transfer of these properties to tensor products

becomes more difficult. In this context, we show some cases in which tensor products

inherit the strong S-property and catenarity:

Theorem 9. Let K be an algebraic field extension of k and A be a k-algebra.

1. If A is a domain and it contains a separable algebraic closure of k, then K⊗A is

a strong S-ring (resp. stably strong S-ring, catenarian, universally catenarian)

if and only if A is a strong S-ring (resp. stably strong S-ring, catenarian,

universally catenarian).

2. If A is two-dimensional and K⊗A satisfies MPC, then K⊗A is a strong S-ring

(resp. catenarian) if and only if A is a strong S-ring (resp. catenarian).

However, it is still an open problem to determine under which hypotheses K⊗A

inherits the catenarity from A; following [26], we give a positive answer in some

special cases. In particular, in the last part, we reformulate the notion of catenarian

rings, removing the MPC property and show:

Theorem 10. Let A be a Noetherian ring that is a k-algebra and let K be an

extension field of k with t := t(K) < ∞. If A is universally catenarian, then so is

K ⊗ A.
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Corollary 3. Let K and L be two extension fields of k, such that either t(K) <∞

or t(L) <∞. Then K ⊗ L is universally catenarian.

Proof. Since every field is universally catenarian, the statement follows directly from

Theorem 10.

Theorem 11. Let A be a universally catenarian ring which is a k-algebra, K be

an extension field of k such that K ⊗ A is Noetherian. Then K ⊗ A is universally

catenarian.
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