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Towards the end of the ninetheenth century the king of Sweden Oscar II
offered a considerable sum of money as a prize to anyone who would have man-
aged to solve the three-body problem. The prize was awarded to Henri Poincaré.
The great french scientist proved that, in some sense, a general solution to the
three-body problem does not exist: indeed it would need a formulation of in-
conceivable complexity to deal with phenomena as open trajectories, collisions,
and caotic motions. In modern language, what Poincaré showed is just that
the three-body problem is a non-integrable dynamical system.

Even if it is not possible to find a general solution, of course it could be
very interesting to study particular ones. One of the main related questions
regards the existence of periodic trajectories. In “Les Méthodes nouvelles de
la Mécanique Céleste ” Poincaré wrote:

“...voici un fait que je n’ai pu démontrer rigoureusement, mais qui
me parait pourtant très vraisemblable. [...]
Étant données des équations de la forme définie dans le n. 13 1 et
une solution particulière quelconque de ces équations, one peut tou-
jours trouver une solution périodique (dont la période peut, il est
vrai, être très longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut.
D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses,
c’est qu’elles sont, pour ainsi dire, la seule brèche par où nous
puissons essayer de pénétrer dans une place jusu’ici réputée in-
abordable.”

( [Poi1892], Tome 1, ch. III, a. 36 )

This conjecture has been the basis for many research works concerning the
problem of the existence of periodic orbits for Hamiltonian dynamical sys-
tems. Among them we recall the ones of Poincaré himself, followed by Lya-
punov, Birkhoff, Moser, Weinstein, etc. However, the conjecture is still open
and we are still very far away from a complete proof.

An intermediate step is the search of periodic orbits in the vicinity of invariant
submanifolds. In the thirties, Birkhoff and Lewis ( [Bir]-[BL]-[Lew] ) estab-
lished the existence of infinitely many periodic solutions in a neighborhood of
an elliptic equilibrium2 whose linear frequencies are sufficiently non-resonant.
This result also requires a non-degeneracy “twist” condition, involving finitely
many Taylor coefficients of the Hamiltonian at the equilibrium, and implying
the system to be genuinely non-linear.

1The Hamilton’s equations for N -body problem.
2Actually, Birkhoff and Lewis established the existence of infinitely many periodic solu-

tions close to a non-constant periodic elliptic solution, but the proof is essentially the same
for an elliptic equilibrium.
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Moreover, if the Hamiltonian is sufficiently smooth, KAM theory ensures, in
a neighborhood of the equilibrium small enough, the existence of Lagrangian
(maximal) invariant tori filling up a set of positive Lebesgue measure. In
[CZ] the existence of infinitely many others periodic orbits (with larger and
larger minimal period) accumulating to the KAM torus itself has been proved
applying the Birkhoff-Lewis type Theorem of [Mos].

In the last years, an exhaustive perturbation theory for elliptic tori has been
developed by many authors, see [Mos], [Eli], [Kuk], [Pös89], [Pös96], [Bou], and
[XY]; in short, the persistence of elliptic tori is ensured requiring appropriate
“non-resonance conditions” among the frequencies and further non-degeneracy
conditions. We recall that a lower-dimensional invariant torus is called elliptic,
or linearly stable, if the linearized system along the torus, possesses purely
imaginary eigenvalues.

Recently, in [BBV], the existence of periodic orbits with larger and larger
minimal period clustering to elliptic invariant tori has finally been proved.

One of the main motivation for studying such problem comes from classical
topics in Celestial Mechanics such as the many-body problem, which of course
has inspired the whole development of KAM theory 3. Indeed, as we will show
in Chapter 2, in the planetary case, where one body (the “ Star” or the “ Sun”)
has mass much bigger than that of the other ones (the N “planets”), the
(N+1)-body problem could be seen as a nearly-integrable Hamiltonian system,
where, under suitable assumptions, the bounded motions of the unperturbed
(integrable) system lie on N -dimensional elliptic tori.

The persistence of a majority of such elliptic tori has been shown for the
spatial planetary three-body problem in [BCV03], and for the planar planetary
(N + 1)-body problem in [BCV06].

In [BBV] a general Birkhoff-Lewis type result about the existence of periodic
solutions accumulating onto elliptic invariant tori is proved. Furthermore, it
is shown that such result can be applied to the spatial planetary three-body
problem, proving the existence of infinitely many periodic solutions accumu-
lating on the elliptic KAM tori found in [BCV03].

In this thesis we extend the result of [BBV] to the planetary planar (N + 1)-
body problem discussed in [BCV06]. To this end we have first to prove a new
general theorem on the existence of periodic orbits close to elliptic tori; in
particular we have modified the hypotheses of the theorem in [BBV] requiring
the vector of linear and elliptic frequencies to be non-resonant up to a finite
order. Then, in order to show the applicability of the general theorem to the
(N + 1)-body problem of [BCV06], we need to check the non-resonance con-
dition above. This task will be accomplished through a careful KAM-analysis

3For a brief account of ideas and results concerning the application of KAM theory to
the N -body problem see [CC]
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exploiting (of course with some efforts) the analytic properties of the involved
functions.

We now proceed to present a detailed summary of the contempt of thesis.
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Chapter 1: Periodic orbits close to elliptic tori

We consider a normal form Hamiltonian describing the dynamics in a neigh-
borhood of an elliptic torus, namely

H∗(I∗, ϕ∗, Z∗, Z∗) = ω · I∗ + ΩZ∗ · Z∗ +
∑

2|k|+|a+a| ≥ 3

R∗
k,a,a(ϕ∗)Ik

∗Z
a
∗Z

a

∗ , (1)

where (I∗, ϕ∗) ∈ Rn × Tn are action-angle variables and (Z∗, Z∗) ∈ C2m are
called the normal (or elliptic) coordinates. The phase space is equipped with
the symplectic form dI∗ ∧ dϕ∗ + i dZ∗ ∧ dZ∗ . In these coordinates

T :=
{
I∗ = 0 , ϕ∗ ∈ Tn , Z∗ = Z∗ = 0

}
is the invariant elliptic torus, while

ω ∈ Rn and Ω ∈ Rm

are respectively the torus (or linear) frequencies and the elliptic (or normal)
frequencies.

The frequency vector (ω,Ω) is assumed to satisfy the “second order Mel-
nikov non-resonance condition”∣∣ω · ` + Ω · h

∣∣ ≥ γ

1 + |`|τ
,

(2)
∀ ` ∈ Zn , ∀h ∈ Zm, |h| ≤ 2 , (` , h) 6= (0 , 0),

for some positive constants γ, τ ∈ R. This implies that the linear frequency
vector ω is rationally independent (actually Diophantine), while a priori the
whole frequency vector (ω,Ω) could meet some resonance relations.

Expanding the functions R∗
k,a,a(ϕ∗) in Fourier series as

R∗
k,a,a(ϕ∗) =

∑
`∈Zn

R∗
k,a,a,` e

i`·ϕ∗ ,

we can define the symmetric “twist” matrix R ∈ Mat(n× n,R)

Rii′ :=
(
1 + δ(i,i′)

)
R∗

ei+ei′ ,0,0,0 +
(3)

−
∑

1≤j≤m
`∈Zn

1

ω · `+ Ωj

(
R∗

ei,ej ,0,`R
∗
ei′ ,0,ej ,−` +R∗

ei,0,ej ,−`R
∗
ei′ ,ej ,0,`

)
,

and the matrix Q ∈ Mat(m× n,R)

Qji := R∗
ei,ej ,ej ,0 +

−
∑

1≤i′≤n
`∈Zn

`i′

ω · `+ Ωj

(
R∗

ei,ej ,0,`R
∗
ei′ ,0,ej ,−` +R∗

ei,0,ej ,−`R
∗
ei′ ,ej ,0,`

)
+ (4)

−
∑

1≤j′≤m
`∈Zn

1

ω · `+ Ωj′

(
R∗

0,ej ,ej+ej′ ,−`R
∗
ei,ej′ ,0,` +R∗

0,ej+ej′ ,ej ,`R
∗
ei,0,ej′ ,−`

)
.
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Our general theorem about the existence of periodic orbits close to elliptic
invariant tori of Hamiltonian systems says:

Theorem 1. Given an Hamiltonian of the form (1), let the frequency vector
(ω,Ω) satisfy the second order Melnikov non-resonance condition (2) for some
positive constant γ, τ ∈ R.
Assume that the “twist” matrix is invertible, i.e.

det(R) 6= 0 ( “twist” condition ), (5)

and that the frequency vector (ω,Ω) satisfies the “non-resonance condition up
to order M”:

(ω,Ω) · ~k 6= 0 ∀~k ∈ Zn+m, 0 < |~k|1 ≤M , (6)

for a suitable constant M = M
(
n ,m ,

∣∣QR−1
∣∣ )

∈ N ,

Then, ∃ η0 > 0 such that ∀η ∈ (0, η0] there exists an open set of periods Θη ⊂
[ 1
η2 ,+∞] such that ∀T ∈ Θη the Hamiltonian system generated by H∗ admits

at least n geometrically distinct T -periodic solutions %̄η(t). The trajectories of
the %̄η(t)’s are closer and closer to the elliptic torus T as η tends to zero. In
particular T lies in the closure of the family of periodic orbits %̄η , η ∈ (0, η0] .

Theorem 1 consists in a suitable adaptation of Theorem 1.1 of [BBV]. The
main modification introduced lies in the non-resonance hypotheses. Apart from
the second order Melnikov condition (2) (that holds automatically for elliptic
KAM tori), we have assumed the non-resonance condition up to a finite order
(6): the frequency vector (ω,Ω) might as well admit some resonances, provided
they happen at a sufficiently large order.

Such condition was not present in the original result of [BBV]. Indeed, the
theorem of [BBV] had been thought to be applied to the three-body problem
KAM tori of [BCV03]: in such case the low number (m=2) of elliptic directions
allows to carry on the proof without further assumptions over the frequency
vector. Instead, the elliptic tori arising in the (N + 1)-body problem we are
dealing with (in particular for N ≥ 3) are N -dimensional; hence the result
of [BBV] seems no longer applicable (or rather we are not able to check its
hypoteses).

This is the reason why we have modified it ad hoc, obtaining Theorem 1.

Sketch of the proof of Theorem 1 : First of all, as we are interested in
the region of phase space near the torus T , we introduce a small rescaling
parameter η > 0 measuring the distance from T . Then, since (ω,Ω) satisfy
the second order Melnikov non-resonance conditions (2), in view of an averag-
ing procedure, the Hamiltonian H∗ is casted, in a suitable set of coordinates
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(I, φ, z, z) ∈ Rn × Tn × C2m, and sufficiently close to the torus T , in a small
perturbation of the integrable Hamiltonian

Hint := ω · I +
η2

2
RI · I + Ωzz + η2QI · zz .

The Hamiltonian system generated byHint possesses the elliptic tori T (I0) :=
{I = I0, φ ∈ Tn, z = z = 0}. The torus T (I0) supports the linear flow
t→ (I0, φ0 + (ω + η2RI0)t, 0, 0), whereas on the normal space the dynamic
is described by ż = i(Ω + η2QI0)z, ż = i(Ω + η2QI0)z.
ω̃ = ω + η2RI0 and Ω̃ = Ω + η2QI0 will be called respectively the vector of
the “shifted linear frequencies” and of the “shifted elliptic frequencies”.

By the “twist condition” (5) the system generated by Hint is properly non-
linear. In particular, such condition ensures that the shifted linear frequencies
ω̃ vary with the actions I0 . Hence is it always possible to find completely res-
onant frequencies ω̃ ∈ (2π/T )Zn for some T = O(η−2) and I0 = O(1). In such
case, T (I0) is a completely resonant torus supporting the family of T -periodic
motions P := {I(t) = I0, φ(t) = φ0 + ω̃t, z(t) = z(t) = 0.}

Our task is to find periodic solutions for the Hamiltonian system generated
by H∗ bifurcating from the ones of Hint. Nevertheless, in general, the family
P will not persist in its entirety for the complete Hamiltonian system due to
resonances among the oscillations.

The key point to continue some periodic solutions of the family P is to
choose properly the “1-dimensional parameter” T (the period) and the actions

I0 : the period T and the “shifted elliptic frequencies” Ω̃(I0) must satisfy a
suitable non-resonance property. Through “ergodization” arguments, condi-
tion (6) of Theorem 1 makes possible to find an open set of “non resonant”
periods T .

After this construction, the proof is based on a Lyapunov-Schmidt reduc-
tion. First, the non-resonance property over the periods T and the “twist
condition” (5) allow to solve the range equation by means of the Contraction
Mapping Theorem. Then, by a variational argument we find at least n ge-
ometrically distinct T -periodic solutions of the bifurcation equation given by
the previous Lyapunov-Schmidt reduction.
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Chapter 2: The planetary planar (N+1)-body problem

In this Chapter we report the result of [BCV06] concerning the existence of
quasi-periodic orbits lying on N -dimensional invariant elliptic tori for the plan-
etary planar (N+1)-body problem. Roughly, such orbits are the continuations
of Keplerian elliptic trajectories obtained neglecting the mutual interactions
among the N planets.

First of all, in order to deal with the planetary case, we introduce, as
customary, a small parameter ε such that, setting the mass of the “ Sun”
m0 := 1 (that is tantamount to fix a new unity of mass) and denoting by mi

the mass of the i th planet, we have

mi = ε µi , i = 1, . . . , N , 0 < ε < 1 (7)

for some fixed constants µi.
Then, as in the classical approach to the matter, we show that the planetary

(N + 1)-body problem could be viewed as a nearly-integrable Hamiltonian
system in the perturbative parameter ε : the integrable limit consists just of the
N decoupled two-body systems given by the Sun and the i th planet. As anyone
knows, for suitable initial data, each unperturbed two-body system admits the
Keplerian solutions with the planet revolving around the Sun on a ellipse.
Obviously, such solutions in general do not persist when the gravitational
interaction among the planets is taken into account. However, the orbital
elements of these “osculating” ellipses provide a good set of coordinates to
describe the true motions. Indeed, the main results of this chapter will be
stated, as usual, in terms of the major semi-axes ai , i = 1, . . . , N of the
osculating ellipses. Following [BCV06], we suppose that the ai’s satisfy

0 < ai < θ ai+1 , 1 ≤ i ≤ N − 1 , (8)

for a suitable constant 0 < θ < 1.
Moreover, we focus our attention on a caricature of the outer solar system:

we assume that two planets (such as Jupiter and Saturn in the real world) have
mass considerably bigger than the other ones; besides, the two big planets are
supposed to have an orbit which is internal with respect to the orbits of the
small planets (as in the case of the real small planets Uranus, Neptune...).
Precisely, we assume that, for some fixed µ̄i ,

µi = µ̄i for i = 1, 2 ,
(9)

µi = δ µ̄i for i = 3, . . . , N , 0 < δ < 1 .

Under this assumptions, the existence of N -dimensional elliptic tori for the
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planar N + 1-body problem has been proved in [BCV06] for a large set of
initial osculating major semi-axes. The proof is based on an appropriate aver-
aging/KAM procedure.

Thus, we have:

Theorem 2. Fix a compact set A ⊂ RN of osculating major semi-axes satisfy-
ing (8) for a small θ. There exist two positive constant δ? ε? = ε?(δ) such that
for any δ < δ? and for any ε < ε?(δ), there exists a Cantor set A(ε) ⊂ A such
that for any vector of semi-axes a ∈ A(ε) it is possible to find a real-analytic
symplectic transformation Φ casting the (N + 1)-body problem Hamiltonian
into the normal form (1). In particular, for a ∈ A(ε), the (N +1)-body system
possesses N-dimensional elliptic invariant tori foliated by the quasi-periodic
(Diophantine) flows t→ ψ∗ + ωt with frequency ω = ω(a).

Moreover the second order Melnikov non-resonance condition (2) holds true
for the frequency vector

(
ω(a),Ω∗(a)

)
, a ∈ A(ε).

Finally, the subset A(ε) ⊂ A has density close to one as ε tends to 0.

The hypotheses (7) and (9) over the masses of the planets are needed to check
that, for δ and ε small enough, the eigenvalues of the averaged quadratic part
of the (N + 1)-body problem Hamiltonian are non vanishing and distinct,
that is the main condition needed to apply elliptic KAM theory. Furthermore
(and this is the really original idea of [BCV06]), the “outer solar system”
model provides particular expressions in the quadratic part of the Hamiltonian,
making possible to compute the eigenvalues asymptotically.

Such explicit evaluation, besides allowing to perform elliptic KAM theory
as said before, will turn out to be fundamental in the sequel since the eigenval-
ues of the averaged Hamiltonian are strictly related to the elliptic frequencies
of the N -dimensional tori found in Theorem 2. In Chapter 3 the asymptotics
we be exploited in order to check the non-resonance condition (6) of Theorem
1 in the particular case of the (N + 1)-body problem, finally proving the an-
nounced result on the existence of periodic orbits accumulating on the elliptic
tori of [BCV06].

In short we note here that in Subsection 2.2.3 we state an abstract KAM The-
orem from [Pös89], that is of course the main tool used to get the existence of
the elliptic tori. Of such theorem, we present a fully detailed version, similar
to the one stated in [BBV], enriched with results from the original Pöschel’s
paper: in particular the KAM normal form describing the dynamics in a neigh-
borhood of the tori is furnished together with estimates concerning the KAM
transformation and other various relevant quantities. These informations are
indispensable in order to carry on the calculations of the third Chapter.

Another important ingredient for the proof of the next chapter is the ap-
propriate choice of the parameters involved in the KAM procedure.
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Chapter 3: Abundance of periodic solutions in the
planetary planar (N + 1)-body problem

In this chapter we prove that, for small parameters δ and ε, the hypotheses
of Theorem 1 are fulfilled for the (elliptic) normal form Hamiltonian for the
(N + 1)-body problem provided by Theorem 2, unless to discard a suitable
(small) subset of the set of osculating major semi-axes A(ε) found above.

First, in Section 3.1, we check the non-degeneracy “ twist ” condition (5) as
already done in [BBV] in the three-body case. At the same time, we provide
a uniform bound over the size of the matrices Q and R−1 in the statement of
Theorem 1: since the constant M depends upon them (and grows to ∞ with
them) we need to exclude that the norms of the matrices Q and R−1 tend to
∞ as ε→ 0. In order to do that, we exploit the special form of the symplectic
transformation Φ supplied by the KAM Theorem of Póschel to estimate the
Tailor-Fourier coefficients R∗

k,a,a,` involved in the definitions (3)-(4).

Then, in Section 3.2, we deal with the non-resonance condition (6). After
stating some preparatory results on analytic functions of several variables, the
non-resonance condition up to order M of Theorem 1 is shown to be met for
small δ and ε, and for suitable semi-axes.

The main difficulties to be overcome in the proof are due to the fact that
the linear and elliptic frequencies do not vary independently; moreover we
don’t know such dependence exactly.

Anyway, through a careful handling of the asymptotics found in Chapter
2 and an accurate control of the size of the (small) additive terms introduced
by the averaging/KAM procedure, we manage to find a subset of semi-axes

Ã(δ, ε) ⊂ A(ε) ⊂ A over which the non-resonance condition (6) holds, pro-
vided δ and ε are suitably small. Furthermore, the measure of the set of
“discarded” semi-axes A r Ã(δ, ε) is proved to be small with δ . This is cer-
tainly the most original part of the thesis. The proof makes use of the fact
that the frequency map a 7→

(
ω(a),Ω(a)

)
is analytic in order to exploit the

geometrical properties of (a certain “non-resonant” class of) analytic functions
(of several variables). We perform three consecutive steps in which the vector(
ω(a),Ω∗(a)

)
is split as the sum of an appropriate (Rüßmann non-degenerate)

“dominant part” Di(a) and a “perturbative part” Pi(a), i = 0, 1, 2. Roughly,
after proving the non-resonance up to order M of the dominant part over a
suitable subset of semi-axes, we will be able to find δ and ε small enough to
control the (small) perturbative part so that the whole frequency vector is still
non-resonant (up to order M).

At last, recollecting all the results shown so far, in section 3.3 we apply Theo-
rem 1 obtaining our final result:
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Theorem 3. Consider a planetary planar (N + 1)-body system (N ≥ 3) and
let the masses of the planets satisfy (7) and (9).
For every compact set A of osculating Keplerian major semi-axes, where (8)
holds for a suitable universal constant θ = θ0 (depending only on the masses
mi), there exists a positive constant δ̃ such that if 0 < δ ≤ δ̃, then for suf-
ficiently small ε, i.e. ∀ 0 < ε ≤ ε̃, for some ε̃ = ε̃(δ) ( with ε̃(δ) → 0+ as
δ → 0+), the system affords infinitely many periodic solutions, with larger and
larger minimal period, clustering to an elliptic KAM torus, provided that the
osculating major semi-axes belong to a suitable subset of A of density 4 closer
and closer to 1 as δ → 0.

4The “density” is intended with respect to the Lebesgue measure.

10



This was the content of the main body of the thesis. In addiction, we
provide three appendices in which some useful results are displayed.

In Appendix A we present the proof of the [BBV] averaging Theorem used in
the proof of Theorem 1.

In Appendix B a brief review of the Ljusternik-Schnirelman category theory
is provided. The variational argument in the first chapter makes use of these
results.

In Appendix C we recall in full details a linear algebra lemma from [BCV06]
about suitable “perturbations” of simple eigenvalues of real matrices. Such
result is needed to find the asymptotics of Chapter 2..

11



Bibliography

[BBV] M. Berti, L. Biasco, E. Valdinoci: Periodic orbits close to elliptic tori
and applications to the three-body problem, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. 5, vol. III, (2004), 87–138.

[BCV03] L. Biasco, L. Chierchia, E. Valdinoci: Elliptic two-dimensional in-
variant tori for the planetary three-body problem, Arch. Ration. Mech.
Anal. 170, no. 2, (2003), 91–135.

[BCV06] L. Biasco, L. Chierchia, E. Valdinoci: N-dimensional elliptic invari-
ant tori for the planar (N + 1)-body problem, SIAM J. Math. Anal. 37,
no. 5, (2006), 1560–1588

[Bir] G.D. Birkhoff: Une generalization á n-dimensions du dernier théorème
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