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The essence of mathematics lies in its freedom.

Georg Ferdinand Ludwig Philipp Cantor

Geometry is not true, it is advantageous.

Henri Poincaré

A child’s first geometrical discoveries are topological. If you ask him to copy a

square or a triangle, he draws a closed circle.

Jean Piaget
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Introduction

Tropical geometry is a very young branch of mathematics that is currently cre-

ating a brand new geometry over the so called tropical semifield. Many math-

ematicians are venturing on rewriting classical results of algebraic geometry

using the new tropical language. Since the main objects studied by geometry

are varieties, one of the first purposes of tropical geometry is to understand

how tropical varieties behave and interact with each other, starting from the

1-dimensional case: tropical curves. Among all classic results of algebraic ge-

ometry of which we would like to have a tropical version, we are interested in

the Torelli’s Theorem. The statement of the theorem is the following:

Theorem. Two curves C and C ′ are isomorphic if and only if the Jacobians of

the curves C and C ′ are isomorphic as principally polarized abelian varieties.

An alternative statement is:

Theorem. The map

Mg −→ Ag

C 7−→ (Jac(C),Θ(C)),

from the moduli space of curves of genus g ≥ 1, to a moduli space of principally

polarized abelian varieties of dimension g, is injective.

Since is proved that tropical curves are, actually, metric graphs that are

embedded into a tropical space, then our problem is to determine if Torelli’s

Theorem is true for this type of graphs. So, first of all, we need a graph theoret-

ical version of the Torelli’s Theorem. We’ll prove that the theorem doesn’t hold,

in its stronger form, for general graphs, but only for a special class of graphs,

the 3-edge connected graphs.

This thesis is entirely based on a 2009 work, [CV], by Lucia Caporaso and Fil-

ippo Viviani, published in 2010. The purpose of the thesis is to present the
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article’s main results, providing the reader with the basic theoretical tools of

topology and graph theory needed for a full understanding of the paper.

In this summary we will present only the new and most important tools that

were used to prove the Torelli Theorem assuming that the reader is confident

with homology and graph theory.

II



Chapter 1

Homology and Graph

Theory

In the first chapter of the thesis we introduced the reader to singular homology

providing the basic theoretical instruments needed in order to determine the

homology group of a graph. After that we focused our attention on graphs from

the point of view of graph theory, introducing the concepts of connectivity,

orientation, connectivization and C1-sets. These instruments have been used to

prove the graph-theoretical version of the Torelli Theorem in Chapter 2.

For us, a graph will be always a finite multigraph that we define as:

Definition 1.0.1. A multigraph is a pair G = (V,E) where:

� V is a set with elements called vertices;

� E is a multiset of unordered pairs of vertices, called edges: E consists of

pairs of the form (u, v) with u, v ∈ V , where multiple copies of the same

pair and elements of the form (v, v) can occour.

We say that two graphs, G and G′ are isomorphic if there exists a bijection

ϕ : V −→ V ′ such that uv ∈ E ⇐⇒ ϕ(u)ϕ(v) ∈ E′.
If G in connected and a vertex v is such that G − v is not connected then v

is a separating vertex or a cutvertex. Similarly, an edge e such that G − e is

disconnected is called a separating edge or a bridge. If a pair of non-separating

vertices or edges disconnects a graph when removed, it will be called a separating

pair of vertices or a separating pair of edges ; the set of all separating edges of a
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graph is denoted E(G)sep. If G is not connected we say that an edge or a vertex

is separating if it’s separating for a component of G.

Proposition 1.0.2. e is a separating edge if and only if it doesn’t lie on any

cycle.

A graph G is called k-connected, with k ≥ 1, if G has at least k + 1 vertices

and G−X is connected for every X ⊆ V with |X| < k. So a graph is k-connected

if we can remove any k − 1 vertices keeping the graph connected. The greatest

integer k such that G is k-connected is the connectivity, κ(G), of G.

If G has at least 2 vertices and the graph obtained from G by deleting any k−1

edges is connected then G is said to be k-edge connected. The greatest integer k

such that G is k-edge connected is its edge connectivity, λ(G). Again λ(G) = 0

if G is disconnected, λ(G) = 1 if and only if G is connected and λ(G) = 2 if and

only if G is connected and free from separating edges.

Proposition 1.0.3. If G is non-trivial then κ(G) ≤ λ(G) ≤ δ(G). Where δ(G)

is the minimun degree of G.

By this proposition we can conclude that if a graph is k-connected then it is

also k-edge connected but the converse fail.

A graph without cycles is called acyclic. An acyclic graph is usually called

a forest, a connected forest is called a tree. Every non trivial tree has always at

least one vertex of degree 1, these vertices are called leaves.

Proposition 1.0.4. Given a connected graph T, the following are equivalent:

(i) T is a tree;

(ii) Any two vertices in T are linked by a unique path in T;

(iii) T is minimally connected, that is T is connected but T − e is disconnected

for every e ∈ E;

(iv) T is maximally acyclic, i.e. T contains no cycle but T + xy does, for very

two non-adjacent vertices x,y ∈ T .

An immediate consequence of this proposition is the following

Corollary 1.0.5. Every connected graph contains a spanning tree.

Corollary 1.0.6. A connected graph with n vertices is a tree if and only if it

has n− 1 edges.
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For our purposes, it is necessary to define a very important operation on

a graph: the edge contraction. Let e = (u, v) be an edge in G, by G/e we

denote the graph obtained from G by contracting the edge e into a new vertex

ve, which becomes adjacent to all the previous neighbours of u and v. So

G/e = G′ = (V ′, E′) with

V ′ := (V r {u, v}) ∪ {ve}

and

E′ := {f ∈ E | f ∩ e = ∅} ∪ {vew | uw ∈ E or vw ∈ E},

thus we just delete e, identify u and v and then create an edge from ve to every

vertices that were adjacent to u or v and we don’t mind if any loops or multiple

edges arise.

u

v
ve

G = G/e =

e

Figure 1.1: Contraction of the edge e

If G is a graph with n components, we define its first Betti number as

b1(G) := n− |V (G)|+ |E(G)|.

A subgraph ∆ of G is a cycle if it is connected, free from separating edges and

b1(∆) = 1. If S is a subset of E(G) we define G(S) as the graph obtained from

G by contracting all the edges in G−S. So there’s a (surjective and continous)

contraction map σS : G −→ G(S) sending to a point every component of G−S.

Thus E(G(S)) = S and |V (G(S))| = m where m is the number of components

of G−S. If S = E then G(S) = G and G(∅) is a graph with n isolated vertices,

one for every component of G.

Lemma 1.0.7. G is connected if and only if G(S) is connected.

There’s an useful formula that involves the first Betti number of a graph:

Lemma 1.0.8. If G is a graph and S ⊆ E(G) then

b1(G) = b1(G− S) + b1(G(S)).
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Definition 1.0.9. Let G and G′ be two graphs. We say that a bijection between

their edges ε : E(G) −→ E(G′) is cyclic if it induces a bijection between the

cycles of G and the cycles of G′.

We say that G and G′ are cyclically equivalent or 2-isomorphic, G ≡cyc G′, if

there exists a cyclic bijection between their edges.

The cyclic equivalence class of a graph G will be denoted [G]cyc.

To describe the cyclic equivalence class of a graph we can consider the fol-

lowing theorem of H. Whitney. A proof can be found in [Whit].

Theorem 1.0.10. Two graphs, G and G′, are cyclically equivalent if and only if

they can be obtained from one another via iterated applications of the following

two moves:

(1) Vertex gluing

v w u
≡cyc

Figure 1.2: Vertex gluing. (The dashed arrow means identification)

(2) Twisting at a separating pair of vertices

u

v

≡cyc

v

u

Figure 1.3: Twisting at the separating pair of vertices {u, v}.

We have an easy consequence of this theorem.

Corollary 1.0.11. Let G, G′ be two graphs such that G is 3-connected. Then

G ≡cyc G
′ if and only if G ∼= G′.

We are now going to define a very special class of subsets of the edge set of

a graph, the C1-sets.

Definition 1.0.12. Let G be a connected graph such that E(G)sep = ∅. Let

S ⊆ E(G); we say that S is a C1-set of G if
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� G(S) is a cycle

� G− S has no separating edge.

In general, if G̃ = G− E(G)sep, we say that S is a C1-set of G if S is a C1-set

of a component of G̃.

The set of all C1-sets of a graph will be denoted Set1G.

It can be very hard to tell whether a subset of edges of a graph is a C1-set

or not. The definition by itself doesn’t give us a way to identify the C1-sets of

a graph without contracting edges of transforming the original graph.

The following lemma gives us an easier way to find which edges belong to some

C1-set and how the elements of these subsets relate to each other.

Lemma 1.0.13. Let G be a graph and e, e′ ∈ E(G). Then

(i) Every C1-set S of G satisfies S ∩ E(G)sep = ∅.

(ii) Every non-separating edge e of G is contained in a unique C1-set, Se. If

E(G)sep = ∅, then Se = E(G− e)sep ∪ e.

(iii) e and e′ belong to the same C1-set if and only if they belong to the same

cycles.

(iv) If G is connected and e, e′ /∈ E(G)sep, then e and e′ belong to the same

C1-set if and only if (e, e′) is a separating pair of edges.

Remark 1.0.14. By the lemma above it is to see that the set of edges of a cycle

of a graph is a disjoint union of C1-sets. So we can define

Set1
∆ := {S ∈ Set1G : S ⊂ E(∆)}

and we have

E(∆) =
∐

S∈Set1
∆

S.

Lemma 1.0.13 yields a very useful corollary that allows us to characterize a

class of graphs that play an importan role: the 3-edge connected graphs.

Corollary 1.0.15. A graph G is 3-edge connected if and only if there’s a bijec-

tion E(G) −→ Set1G mapping e ∈ E(G) to {e} ∈ Set1G
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Corollary 1.0.16. Let G and G′ be two ciclically equivalent graphs, then |E(G)sep| =
|E(G′)sep|. Let ε : E(G) −→ E(G′) be a cyclic bijection, then ε induces a bijec-

tion

βε : Set1G −→ Set1G′

Se −→ Sε(e)

such that |S| = |βε(S)| for every S ∈ Set1G.

The cyclic equivalence class of a graph is a very useful tool for our purposes

and that’s why we want to find an easier way to tell wheter two graphs are

cyclically equivalent or not. So we are now going to define two types of edge

contraction that come in handy.

Definition 1.0.17. Given a connected graph G, we define two types of edge

contractions, (A) and (B) as follows:

(A) Contraction of a separating edge

(B) Contraction of an edge of a separing pair of edges.

The 2-edge connectivization of G is the 2-edge connected graph G2, obtained

from G by iterating the operation (A) for all the separating edges of G.

The 3-edge connectivization of G is the 3-edge connected graph G3, obtained

from G2 by iterating the operation (B) for all the separating pair of edges of G2

until there are no separating pairs left.

If G is not connected we define G2 and G3 as the 2 and 3-edge connectivization

of its components.

As before there’s a (surjective) contraction map σ : G→ G2 → G3 obtained

by composing the contaction maps defining G2 and G3.

Remark 1.0.18. The 2-edge connectivization of a graph is always uniquely de-

termined while the 3-edge connectivization is not.

Although the 3-edge connectivization of a graph is not uniquely determined,

we have that any two such connectivizations are cyclically equivalent as we’ll

prove soon. The connectivization of a graph mirrors many important properties

of the starting graph, many of them related to the cyclic equivalence class of G,

so, wherever possible, we will look at G2 or G3 rather than G.

Lemma 1.0.19. Let G be a graph.
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(i) We have b1(G3) = b1(G2) = b1(G).

(ii) There are two canonical bijections

Set1G3 ←→ E(G3)←→ Set1G.

(iii) Two 3-edge connectivizations of G are cyclically equivalent.

(iv) G2 ≡cyc G− E(G)sep.

Proposition 1.0.20. Let G and G′ be two graphs.

(i) Assume G2 ≡cyc G
′2. Then G ≡cyc G

′ if and only if |E(G)sep| = |E(G′)sep|.

(ii) Assume G3 ≡cyc G
′3 and E(G)sep = |E(G′)sep| = ∅. Then G ≡cyc G

′ if

and only if the natural bijection

β : Set1G
ψ−→ E(G3)

ε3−→ E(G′3)
(ψ′)−1

−→ Set1G′

satisfies |S| = |β(S)|, where ψ and ψ′ are the bijections defined in Lemma

1.0.19, ε3 is a cyclic bijection and S ∈ Set1G.

Remark 1.0.21. By this result, and by the bijection between the C1-sets of G3

and G, we can conclude that the cyclic equivalence class of the 3-edge con-

nectivization of a graph depends solely on [G]cyc. Furthermore, suppose G

connected, since any two 3-edge connectivizations of G are 3-edge connected

and 2-isomorphic then we will refer to [G3]cyc as the 3-edge connected class of

G.

If we are interested in giving a direction to some edge, that is, we would like to

say that an edge starts from x and ends in y, then we can modify our definition

by saying that a directed graph (or digraph) is a graph such that its edge set is a

multiset whose elements are ordered pair of vertices. If e = (x, y) ∈ E(G) then

we say that e is an edge from x to y and they are its source and target point. The

orientation of a graph is obtained by assigning a direction to every edge. Any

directed graph constructed this way is called an oriented graph. We say that a

cycle is an oriented cycle if it has all the edges oriented in the same direction.

A path, P , is oriented if all its edges are oriented in the same direction, i.e., if

P = v1v2 . . . vk then every edge in P goes from vi to vi+1 and we say that the

path goes from v1 to vk. A directed acyclic graph is an oriented graph with no

oriented cycles.
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Definition 1.0.22. If G is connected, we say that an orientation on G is totally

cyclic if there exists no proper non-empty subset W ⊂ V (G) such that the edges

between W and its complement V (G)rW go all in the same direction, that is,

either all from W to V (G) rW or all in the opposite direction.

If G is not connected that we say that G is totally cyclic if the orientation

induced on each component of G is totally cyclic.

Theorem 1.0.23 (Robbins’s Theorem). A connected graph G admits a totally

cyclic orientations if and only if E(G)sep = ∅ .

So every 2-edge connected graph admits a totally cyclic orientation.

We want to study now the following useful lemma.

Lemma 1.0.24. Let G be an oriented graph with E(G)sep = ∅ . The following

are equivalent:

(a) the orientation of G is totally cyclic;

(b) for any distinct u, w ∈ V (G) belonging to the same component of G, there

exists a path oriented from w to v;

(c) H1(G,Z) has a basis of cyclically oriented cycles;

(d) every edge e ∈ E(G) is contained in a cyclically oriented cycle.
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Chapter 2

Torelli theorem for graphs

In this chapter we shall use the results of Chapter 1 to prove the Torelli Theorem

for graphs. To prove the theorem, we need to associate to a graph two important

objects, the Albanese Torus and the Delaunay decomposition. We will follow

the work of [OS], [BHN] and [Al]. We start this chapter by recalling the steps

needed in order to costruct the first homology group of a graph.

Given an oriented graph G, we can define two functions from the edge set to

the vertex set of G which send every edge to its source and target point. So if

e = uv is an oriented edge from u to v, we define:

s : E(G) −→ V (G), t : E(G) −→ V (G)

e 7−→ u e 7−→ v.

Definition 2.0.25. If G = (V,E) is an oriented graph and A is an abelian

group, we define:

� The space of 0-chains of G with values in A as

C0(G,A) :=
⊕

v∈V (G)

A · v

� The space of 1-chains of G with values in A as

C1(G,A) :=
⊕

e∈E(G)

A · e

Remember that all the sums are purely formal.

We have thus defined our spaces of chains. The second and last thing that

we need is a boundary map that goes from C1 to C0 and we define it as follows:

∂ : C1(G,A) −→ C0(G,A)
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e 7−→ t(e)− s(e)

Definition 2.0.26. The first homology group of a graph G with values in an

abelian group A is H1(G,A) := ker ∂.

Remark 2.0.27. Notice that H1(G,A) is independent from the choice of the

orientation of G.

We need to set up some notation

Notation 2.0.28. For any edge e ∈ E(G), we denote by e∗ ∈ C1(G,R)∗ the

functional on C1(G,R) defined as, for e′ ∈ E(G),

e∗(e′) =

1 if e = e′,

0 otherwise.

We will abuse notation by calling e∗ ∈ H1(G,R)∗ also the restriction of e∗ to

H1(G,R) and we will keep denoting this scalar product on H1(G,R) as ( , ).

Remark 2.0.29. e ∈ E(G)sep if and only if the restriction of e∗ to H1(G,R) is

zero since bridges don’t lie on any cycle.

Usually, to give rise to a torus, one can define a discrete lattice into some

bigger space and then perform a quotient. In our case, we consider the lattice

H1(G,Z) inside H1(G,R) and, passing to the quotient, we obtain a torus defined

as H1(G,Z)/H1(G,R).

Definition 2.0.30. The Albanese torus, Alb(G), of a graph G is

Alb(G) := (H1(G,R)/H1(G,Z); ( , ))

with the flat metric derived from the scalar product defined before.

Remark 2.0.31. In the previous chapter we proved that every graph contains

a spanning tree, T , and it is well known that such a tree can be retracted to

a point. The T -chords (edges that are not contained in T that joins two dis-

tinct vertices of the graph) become cycles in the graph obtained contracting

every edge of T , and so the first homology group is entirely determined by the

number of these T -chords. So if we consider a spanning tree T ⊂ G such that

{e1, . . . , ek} are the T -chords in G, then H1(G,A) is free abelian on k genera-

tors.

It is clear that if we consider a graph G, with a spanning tree T , and its 2-edge

connectivization G2, the latter is obtained by performing an edge contraction
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for every bridge of G, that are of course contained in T . From all of this fol-

lows immediately that H1(G,A) ∼= H1(G2, A). If we consider now the inclusion

H1(G,A) ↪−→ C1(G,A) and notice that the edges of G2 can be naturally iden-

tified as E(G2) = E(G) r E(G)sep ⊂ E(G) then the diagram below follows.

H1(G2,Z)
j̃

∼=
//

� _

��

H1(G,Z)� _

��
C1(G2,Z) �

� j // C1(G,Z).

The vertical maps are the inclusion, j is the isclusion induced by the edge

identification above and j̃ is the restriction induced by j.

Proposition 2.0.32. Let G be a graph.

(i) Alb(G) depends only on [G]cyc

(ii) Alb(G) = Alb(G2)

Corollary 2.0.33. If G2 ≡cyc G
′2 then Alb(G) = Alb(G′).

Definition 2.0.34. Consider the finite dimensional real vector space H1(G,R)

and the Z-lattice H1(G,Z) inside it. The scalar product induced by ( , ) on

C1(G,R) coincide with the usual euclidean scalar product. We denote the norm

of an element x by ||x|| := (x, x)
1
2 .

Let α ∈ H1(G,R). An element x of the lattice H1(G,Z) is called α-nearest if

||x− α|| = min{||y − α|| : y ∈ H1(G,Z)}.

For a fixed α ∈ H1(G,R) we consider the convex hull

D(α) := 〈x0, . . . , xk〉 =
{∑

aixi ≥ 0,
∑

ai = 1
}

where {x0, . . . , xk} is the set of the α-nearest elements of H1(G,Z).

A set of the form D(α) is called a Delaunay cell (or Delaunay polyhedron) and

we denote by Del(G) the set of polyhedra in H1(G,R) of the form D = D(α)

and it is the Delaunay decomposition of G.

If G and G′ are two graphs we say that Del(G) ∼= Del(G′) if there exists a lin-

ear isomorphism H1(G,R) −→ H1(G′,R) sending the lattice H1(G,Z) into the

lattice H1(G′,Z) and mapping every Delaunay cell in Del(G) into the Delaunay

cells of Del(G′).
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Remark 2.0.35. What we said in Remark 2.0.31 and in Proposition 2.0.32 about

the Albanese torus applies also in this case. So it is clear that Del(G) is uniquelly

determined by the inclusion of the first homology group into the space of 1-

chains, and that, again Del(G) ∼= Del(G2) (check Remark 2.0.29).

Now recall the notation for S ∈ Set1G used in Lemma 1.0.19, the following

result is a corollary of Lemma 1.0.24.

Corollary 2.0.36. Let G be a graph, and fix an orientation inducing a totally

cyclic orientation on G− E(G)sep. Then the following facts hold.

(1) For every c ∈ H1(G,Z) we have

c =
∑

S∈Set1G

rS(c)

#S∑
i=1

eS,i, rS(c) ∈ Z.

(2) Let e1, e2 ∈ E(G) r E(G)sep. There exists u ∈ R such that e∗1 = ue∗2 on

H1(G,R) if and only if e1 and e2 belong to the same C1-set of G; moreover,

in this case, u = 1.

To prove the next proposition we need the following result from [Al]:

Theorem 2.0.37. The 0-skeleton of the hyperplane arrangment {e∗ = n with n ∈
Z} is the lattice H1(G,Z) itself.

Proposition 2.0.38. Let G and G′ be two graphs.

(i) Del(G) depends only on [G]cyc.

(ii) Del(G) ∼= Del(G3) for any choice of G3.

(iii) Del(G) ∼= Del(G′) if and only if G3 ≡cyc G
′3.

We are now ready to state and prove the Torelli theorem for graphs that

gives us a necessary and sufficient condition for two graphs to have isomophic

associated Albanese torus.

Theorem 2.0.39 (Torelli theorem for graphs). Let G and G′ be two graphs.

Then Alb(G) ∼= Alb(G′) if and only if G2 ≡cyc G
′2.

A straightforward corrolary of the Torelli theorem is the following.

Corollary 2.0.40. Let G be a 3-connected graph and let G′ be a graph with no

vertex of valency 1. Then Alb(G) ∼= Alb(G′) if and only if G ∼= G′

12



Chapter 3

Tropical curves and metric

graphs

In this chapter we introduce the reader to tropical geometry, defining firstly the

tropical semifield and the tropical operations. After defining abstract tropical

curves we will show the correspondence between these curves and metric graphs.

If we assign a metric to a graph, then we need to rephrase the results of Chapter

2 to let them work in the metric case. Since the theoretical results are quite

similar to those of the non-metric case, we will omit them, sending, the reader

to the whole thesis if interested. However, we propose a brief introduction to

tropical geometry.

Tropical algebra is defined on the set of tropical numbers T = R ∪ {−∞}
endowed with the two tropical operations (we will use quotation marks to make

a distinction between usual operations and tropical operations):

� Tropical sum: “x+ y” := max{x, y};

� Tropical product : “x · y” = “xy” := x+ y.

Definition 3.0.41. We can now define the tropical semifield as

(T, “ + ”, “ · ”)

that is a commutative semiring, i.e. a set equipped with commutative and

associative operations of addition and multiplication so that the distribution law

holds while the addition and multiplication operations have neutral elements,

such that the non-zero elements T× form a group with respect to multiplication.
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We can define a topology on the semifield T by identifying it with the half-

open interval [−∞,+∞). This topology is generated by the sets {x ∈ T | x > a}
and {x ∈ T | x < b} for a, b ∈ T× = (−∞,+∞). From an algebraic point of

view, this two sets can be described as {x ∈ T r {a} | “x + a” = x} and

{x ∈ T r {b} | “x+ b” = b}.

Definition 3.0.42. The tropical affine n-space is the topological space defined

as

Tn = [−∞,+∞)n

and the so called n-torus is

(T×)n = (−∞,+∞)n = Rn ( Tn.

Once we have defined the tropical operations we can define a tropical poly-

nomial as P (x) = “

d∑
i=0

aix
i” with ai ∈ T, hence P (x) = maxdi=0{ai + ix}. The

first thing that we might want to ask is what is a tropical root? In the real

case we know that a root would be a value x0 such that P (x0) = 0, hence, if

we bring the definition to the tropical case we should look for those x0 such

that P (x0) = −∞. If a0 is the constant term of P (x) then P (x) ≥ a0 since

max{a0, x} ≥ a0 for every x ∈ T. Therefore, if a0 6= −∞ then our polynomial

would have no roots.

This definition is clearly unsatisfying but, if we recall the fact that we call x0 a

root of P (x) if there exists a polynomial Q(x) such that P (x) = (x− x0)Q(x),

then we have a correct definition.

Definition 3.0.43. The tropical roots of a tropical polynomial

P (x) = “

d∑
i=0

aix
i” = maxdi=0{ai + ix} are exactly the values x0 such that there

exist i 6= j such that P (x0) = ai + ix0 = aj + jx0. So the roots are those

values for which the maximum is reached more than once. The degree of the

root is equal to max{|i− j|} for all possible i and j that realize the maximum.

Equivalently, x0 is a tropical root of order k for P (x) if there exists a polynomial

Q(x) such that P (x) = “(x+ x0)kQ(x)”.

Notice that we can look at P (x) as a function

P : T −→ T

x 7−→ P (x).
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Since we want to study tropical curves, we need a definition for a two variables

polynomial.

Definition 3.0.44. Let P (x, y) = “
∑
i,j ai,jx

iyj” = max{ai,j + ix + jy} be

a tropical polynomial. The tropical curve C, defined by P (x, y) is the set of

points (x0, y0) of R2 such that there exist (i, j) 6= (k, l) verifying P (x0, y0) =

ai,j + ix0 + jy0 = ak,l + kx0 + ly0. In other words, C is the locus where the

maximum is reached by more than one of the “monomials” of P .

So we have that a tropical curve is piecewise-linear. More precisely, is the

union of either straight rays or segments, both with rational slope and the points

of intersection of these are called vertices (or nodes) while the linear pieces are

called edges, a point lying on an edge is called inner and for every vertex v we

define its valency as the number of edges that intersect at v.

Definition 3.0.45. The Tropical projective space TPn consists of the classes of

(n+ 1)-tuple of tropical numbers, not all of them equal to −∞, with respect to

the equivalence relation

(x0 : · · · : xn) ∼ (y0 : · · · : yn) :⇐⇒ ∃ λ ∈ T× such that xi = λ+yi for i = 0, . . . , n.

Clearly if we assign to the n-tuple (x1, . . . , xn) ∈ Rn = (T×)n the n + 1-tuple

(0 : x1 : · · · : xn) ∈ TPn we have an embedding ιn : Rn ↪−→ TPn.

Let Vn ⊂ Tn be subspace generated by

e1 = (−∞, 0, . . . , 0), e2 = (0,−∞, 0, . . . , 0), . . . , en = (0, . . . , 0,−∞),

that is Vn = {v ∈ Tn : v = “
∑n
j=1 cjej” with cj ∈ T}. Consider now the

equivalence classes of the elements of Vn, P(Vn), given by

v ∼ v′ :⇐⇒ v = “λv′”, ∃ λ ∈ T×.

P(Vn) is called the projectivization of Vn and we set P(Vn) = Γn. A different,

and for us useful alternative definition for tropical curves comes by defining

them abstracly as follows.

Definition 3.0.46. A Z-affine map is an affine-linear map A : Rk −→ Rk′ ,

where A decomposes into a linear map LA : Rk −→ Rk′ and a translation, such

that its linear part, LA, in defined over Z, that is, LA is a matrix with integer

entries.
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Now let C be a connected topological space homeomorphic to a locally finite 1-

dimensional simplicial complex (i.e. C is homeomorphic to a graph). A complete

tropical structure on C is an open covering {Uα} of C with a collection of

embeddings

φα : Uα ↪−→ Rkα−1

called the charts, with kα ∈ N, such that for every α and β the following

conditions hold:

� φ(Uα) ⊂ Γkα .

� If U ′ ⊂ Uα is an open subset then φα(U ′) is open in Γkα ⊂ TPkα−1.

� Whenever Uα∩Uβ 6= ∅ we can define an overlap map ι−1
kα−1◦φα◦φ

−1
β ◦ιkβ−1

such that it is a restriction of a Z-affine linear map Rkβ−1 −→ Rkα−1. The

map ιn is the embedding of Rn into TPn defined before.

� If S ⊂ Uα is a closed set in C then f(S) ∩ ιkα−1(Rkα−1) is a closed set in

ιkα−1(Rkα−1).

The space C equipped with a complete tropical structure is called a tropical

curve.

We are interested on compact tropical curves and the compactness of a tro-

pical curve fails when it has some unbounded edges. We can overcome this

problem by adding a point at infinity for each open end creating a 1-valent

vertex.

Definition 3.0.47. A metric graph (G, l) is a finite graph G endowed with a

function

l : E(G) −→ R>0

called the lenght function.

So a metric graph is just a usual graph with a length assigned to every edge.

Remark 3.0.48. A metric graph is a complete space.

Thanks to [MZ] we can state the following proposition that gives us a way

to look at tropical curves as metric graph and viceversa.

Proposition 3.0.49. There is a natural 1-1 correspondence between compact

tropical curves and metric graphs.

16



Definition 3.0.50. We say that two tropical curves, C and C ′, are tropically

equivalent if one can be obtained from the other by suppressing or adding a

vertex of degree 1 together with its adjacent edge, or a 2-valent vertex over an

edge as shown in figure.

v

Figure 3.1: Suppressing/adding the 2-valent vertex v

Remark 3.0.51. Since in [MZ] the length function assumes the value +∞ on

the leaves of G, to avoid confusion among definitions, we shall assume that our

graphs have minimum degree 2; moreover, since we shall consider compact tro-

pical curves up to tropical equivalence, then we can assume that the associated

metric graphs have minimum degree 3, as we can suppress every vertex with

degree smaller than three. So we can choose a unique (up to isomorphism) rep-

resentative graph for each tropical equivalence class of tropical curves.

We will use the graph theoretic terminology also for tropical curves. In partic-

ular we shall say that C is k-connected if so is G.

If we assign a length function to a graph then we need to rephrase the

definitions given in the previous chapters. More precisely we have to give the

analogous definitions for the Albanese torus, cyclic equivalence and the 3-edge

connectivization of a metric graph. Clearly, most of the previous results apply

also on these new graphs.

Definition 3.0.52. Let (G, l) and (G′, l′) be two metric graphs. We say that

(G, l) and (G′, l′) are cyclically equivalent, and we write (G, l) ≡cyc (G′, l′), if

there exists a cyclic bijection ε : E(G) −→ E(G′) such that l(e) = l′(ε(e)) for all

e ∈ E(G). The cyclic equivalence class of (G, l) will be denoted by [(G, l)]cyc.

Definition 3.0.53. A 3-edge connectivization of a metric graph (G, l) is a

metric graph (G3, l3) where G3 is the 3-edge connectivization of G, and l3 is the

length function defined as follows,

l3(eS) =
∑

e∈ψ−1(eS)

l(e) =
∑
e∈S

l(e)

where S ∈ Set1G and ψ is the natural bijection defined in 1.0.19

ψ : Set1G −→ E(G3)
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S 7−→ e(S).

Notice that by Lemma 1.0.19 part (iii) we still have a cyclic equivalence between

any 3-edge connectivizations of a metric graph.

Definition 3.0.54. Given a metric graph (G, l), we define the scalar product

(, )l on C1(G,R) as follows

(e, e′)l =

l(e) if e = e′,

0 otherwise.

The Albanese torus Alb(G, l) of the metric graph (G, l) is

Alb(G, l) := (H1(G,R)/H1(G,Z); (, )l)

with the metric derived from the scalar product (, )l.

Definition 3.0.55. We say that a tropical curve C is irreducible if it is con-

nected as a topological space. The genus of an irreducible tropical curve is

g = dimH1(C,R) = b1(C). We define, according to [MZ], the Jacobian variety

of a tropical curve C to be

Jac(C) := Ω(C)∗/H1(C,Z) ∼= Rg/Λ

where g is the genus of the tropical curve, Ω(C) is the space of global 1-forms

on C, Ω(C)∗ is the vector space of R-valued linear functionals on Ω(C) and Λ is

the lattice in Ω(C)∗ obtained by integrating over the cycles of H1(C,Z). Now

consider the positive definite symmetric bilinear form Q : Ω(C)∗ −→ R, defined

by the metric of C by Q(γ, γ) := l(γ) on simple cycles γ (i.e. γ has no self

intersections), and the tropical theta function given by

Θ(x) := max
λ∈Λ
{Q(λ, x)− 1

2
Q(λ, λ)}, x ∈ Ω(C)∗.

We have that Θ(−x) = Θ(x) and, for every µ ∈ Λ, Θ(x+µ) = Θ(x)+ 1
2Q(µ, µ).

The locus in which the maximum is attained for more than one λ, denoted as

ΘC ⊂ Jac(C), is a divisor on Jac(C) and it is called theta divisor.

Definition 3.0.56. We shall denote (Jac(C),ΘC) the principally polarized Ja-

cobian of C, where the principal polarization is given by the theta divisor ΘC .

Remark 3.0.57. Giving a principal polarization by the theta divisor on an

abelian variety is equivalent to giving a metric. By [MZ] we can naturally

identify (Jac(C),ΘC) with Alb(G, l).
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Definition 3.0.58. The Delaunay decomposition of a metric graph, Del(G, l),

is the Delaunay decomposition (cf. Definition 2.0.34) of G associated to the

scalar product ( , )l defined on H1(G,R) with respect to the lattice H1(G,Z).

We are now going to state and prove a “metric” analogue of the results

needed in order to prove the metric and tropical version of the Torelli theorem.

As we expect, the properties of Alb(G, l) and Del(G, l) mirror those of Alb(G)

and Del(G).

In the subsequent Proposition, the reader will surely notice that, differently from

Proposition 2.0.32, we will state an isomorphism between the Albanese torus

of a metric graph and that of its 3-edge connectivization (instead of the 2-edge

connectivization). This occours because the values that the length function

assumes on the separating edges of G can be ignored, that is, [(G3, l3)]cyc is

completely independent of the separating edges of G and on the value that l

takes on them. So [(G3, l3)]cyc is well defined, for a metric graph associated to

a tropical curve C, even if l takes value +∞ on the leaves of G. Hence we can

call [(G3, l3)]cyc the 3-edge connected class of C.

Proposition 3.0.59. Let (G, l) be a metric graph.

(i) Alb(G, l) depends only on [(G, l)]cyc.

(ii) Alb(G, l) ∼= Alb(G3, l3) for every 3-edge connectivization of (G, l).

Theorem 3.0.60 (Torelli theorem for metric graphs). Let (G, l) and (G′, l′)

be two metric graphs. Then Alb(G, l) ∼= Alb(G′, l′) if and only if [(G3, l3)]cyc =

[(G′3, l′3)]cyc.

Once we have the metric version of the Torelli theorem we can prove its

tropical version.

Theorem 3.0.61 (Torelli theorem for tropical curves). Let C and C ′ be compact

tropical curves. Then (Jac(C),ΘC) ∼= (Jac(C ′),ΘC′) if and only if C and C ′

have the same 3-edge connected class.

Suppose that C is 3-connected. Then (Jac(C),ΘC) ∼= (Jac(C ′),ΘC′) if and only

if C and C ′ are tropically equivalent.
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