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Two centuries ago symplectic geometry provided a language for classical

mechanics. Symplectic structures first arose in the study of classical me-

chanical systems such as the planetary systems, and almost all the classical

work on symplectic geometry was focused on the attempt to understand how

these systems behave. Through its recent huge development, symplectic ge-

ometry conquered an independent and rich territory, as a central branch of

differential geometry and topology.

To mention just a few key landmarks, one may say that symplectic ge-

ometry began to take its modern shape with the formulation of the Arnold

conjectures in the 60’s and with the foundational work of Weinstein in the

70’s. A paper of Gromov in the 80’s gave the subject a whole new set of

tools: pseudo-holomorphic curves. Gromov also first showed that important

results from complex Kähler geometry remain true in the more general sym-

plectic category, and this direction was continued in the 90’s in the work

of Donaldson on the topology of symplectic manifolds and their symplectic

submanifolds, and in the work of Taubes in the context of the Seiberg-Witten

invariants.

This work is essentially divided in two parts, in the first two Chapters

we study some notions of linear theory, while in the other three Chapters we

introduce the nonlinear theory. Here is a description of the work chapter by

chapter.

We begin, in Chapter 1, with the concept of symplectic vector space,

which is a pair (V, ω) where V is a real vector space equipped with a skew-

symmetric and nondegenerate bilinear form ω called linear symplectic struc-

ture, or symplectic form. We show, using a standard theorem for skew sym-

metric bilinear forms (Theorem 1.1.2), that a symplectic vector space must

be necessarily of even dimension and we prove the existence of symplectic
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bases (Remark 1.1.3).

Therefore we introduce the notion of linear symplectomorphism. A linear

symplectomorphism between two symplectic vector spaces is a linear isomor-

phism which preserves the symplectic structure. An important result is the

following:

Proposition 1 (Remark 1.2.6). Every 2n-dimensional symplectic vector space

(V, ω) is symplectomorphic to the prototype (R2n, ω0). A choice of a symplec-

tic basis for (V, ω) yields a symplectomorphism to (R2n, ω0).

We conclude the Chapter by focusing attention on the subspaces of a sym-

plectic vector space and their properties, with particular regard to Lagrangian

subspaces. Lagrangian subspaces are closely related to symplectomorphisms,

as we can see from:

Lemma 2 (Lemma 1.3.7). Let (V, ω) be a symplectic vector space and let

Ψ : V → V be a linear map. Then Ψ is a linear symplectomorphism if and

only if the graph

ΓΨ := {(v, Ψ(v)) | v ∈ V }

is a Lagrangian subspace of the symplectic vector space (V ⊕ V, (−ω) ⊕ ω);

where ((−ω)⊕ω)((u, v), (r, s)) = −ω(u, r)+ω(v, s) with (u, v), (r, s) ∈

V × V .

In Chapter 2 we study linear symplectomorphisms of a symplectic vector

space in more detail.

Since all symplectic vector spaces of the same dimension are symplecto-

morphic, it suffices to consider the case V = R
2n with the standard symplectic

form ω0. Thus we can identify a linear symplectomorphism with the matrix

Ψ ∈ GL2n(R) which represents it. Such a matrix is said to be a symplectic

matrix. We prove that symplectic matrices form a group, namely the sym-

plectic linear group Sp(2n) (Lemma 2.1.2). In particular, Sp(2n) ≤ SL2n(R)

with equality if and only if n = 1 (Remark 2.1.3).
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Furthermore we study the relations between Sp(2n) and the Siegel upper

half space, which is the space of complex symmetric matrices with positive

definite imaginary part.

Proposition 3 (Proposition 2.4.1). The homogeneous space Sp(2n)/U(n) is

diffeomorphic to the Siegel upper half space Sn and hence it is contractible.

In Section 6 we prove the affine nonsqueezing theorem:

Theorem 4 (Theorem 2.6.2). Let ϕ ∈ ASp(2n) such that ϕ(B2n(r)) ⊂

Z2n(R). Then r ≤ R.

which states that a ball B2n(r) of radius r in R
2n can be embedded into

a symplectic cylinder Z2n(R) of radius R by an affine symplectomorphism

only if r ≤ R. Thanks to this result we can characterize the symplectic and

the anti-symplectic matrices. In particular we have:

Theorem 5 (Theorem 2.6.3). Let Ψ ∈ GL2n(R) such that Ψ and Ψ−1 have

the nonsqueezing property. Then Ψ is either symplectic or anti-symplectic.

Then we define the linear symplectic width of a subset of R
2n. An im-

portant statement is the following.

Theorem 6 (Theorem 2.6.7). Let Ψ : R
2n → R

2n. Then the following are

equivalent.

(i) Ψ preserves the linear symplectic width of the ellipsoids centred at 0.

(ii) The matrix Ψ is either symplectic or anti-symplectic.

Finally we introduce complex structures on a real vector space. In partic-

ular we examine the complex structures on a symplectic vector space (V, ω)

which are compatible with the symplectic form ω.

The third Chapter is dedicated to symplectic manifolds and their sub-

manifolds.
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A symplectic manifold is a pair (M,ω) where M is a smooth manifold

and ω is a symplectic form, that is a closed and nondegenerate differential

2-form on M . By Remark 3.2.2 symplectic manifolds are necessarily of even

dimension and orientable (Remark 3.2.4).

The first example is (M = R
2n, ω0), with coordinates x1, . . . , xn, y1, . . . , yn,

and ω0 =
n∑

i=1

dxi ∧ dyi. A fundamental class of symplectic manifolds is given

by the cotangent bundle of an n-dimensional manifold (Sections 3 and 4).

Therefore we study the submanifolds of a symplectic manifold, giving

some examples of Lagrangian submanifolds. For instance we show that,

if X is an n-manifold with cotangent bundle T ∗X, then the zero section

X0 ⊂ T ∗X is Lagrangian (Example 3.6.2). For what concern the image of

another section of the cotangent bundle, we have:

Proposition 7 (Proposition 3.6.3). The graph of a 1-form µ is a Lagrangian

submanifold of the cotangent bundle T ∗X of an n-manifold X if and only if

µ is a closed form.

The next theorem is the analogous for manifolds of Lemma 1.3.7.

Theorem 8 (Theorem 3.6.5). Let (M1, ω1) and (M2, ω2) be symplectic 2n-

manifolds, π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 be the projections,

and let ω̃ = (π1)
∗ω1 − (π2)

∗ω2. Then

1. (M1 × M2, ω̃) is a symplectic manifold.

2. A diffeomorphism ϕ : M1 → M2 is a symplectomorphism if and only if

its graph Γϕ is a Lagrangian submanifold of (M1 × M2, ω̃).

The aim of Chapter 4 is to prove a theorem of Darboux:

Theorem 9 (Theorem 4.3.2). Every symplectic form ω on a manifold M

is locally diffeomorphic to the standard symplectic form ω0 on R
2n. That

is: for any p ∈ M we can find a coordinate system (U , x1, . . . , xn, y1, . . . , yn)

centered at p such that on U
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ω =
n∑

i=1

dxi ∧ dyi.

The main ingredients in proving this important result are Moser’s argu-

ment on the isotopy of symplectic forms (see the discussion at the beginning

of section 3), and Moser theorem:

Theorem 10 (Theorem 4.3.1). Let M be a manifold, X a submanifold of M

and i : X →֒ M the inclusion map. Let ω0 and ω1 be symplectic forms in M

such that ω0|p = ω1|p for all p ∈ X. Then there exist neighborhoods U0, U1 of

X in M and a diffeomorphism ϕ : U0 → U1 such that

ϕ|X = Id, ϕ∗ω1 = ω0.

The great importance of Darboux theorem is that it shows that symplec-

tic geometry has no local invariant; this is a great contrast with Riemannian

geometry where the curvature is a local invariant.

Finally, in Chapter 5, we extend the concept of complex structure to

manifolds by defining almost complex structures. We also introduce the

notion of compatible almost complex structures and we prove that:

Proposition 11 (Proposition 5.1.4). Let (M,ω) be a symplectic manifold.

Then there always exist almost complex structures J on M which are com-

patible with ω.

This fact establishes a link from symplectic geometry to complex geom-

etry and it is a point of departure for the modern techniques in symplectic

geometry.

Hence we recall the notion of complex manifolds and we show that:

Proposition 12 (Proposition 5.2.2). Any complex manifold has a canonical

almost complex structure.

5



In this context we give a brief description of Kähler manifolds which are

important since the provide many example of symplectic manifolds. For some

time, people wondered whether every symplectic manifold was in fact Kähler.

Now we know that the situation is the following:

symplectic ⇐ Kähler

⇓ ⇓

almost complex ⇐ complex.

In general the opposite implications are false.
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