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Chapter 1

1.1 b-operation and integral closure

Our work starts from the definition of the b-operation, a (semi)star operation

on an integral domain D. Here, we start by giving some notation.

Let D be an integral domain with quotient field K. Let F(D) be the set of all

nonzero D-submodules of K and F(D) the nonzero fractionary ideals of D and,

finally, let f (D) be the finitely generated D-submodules of K. Hence:

f (D) ⊆ F(D) ⊆ F(D).

Definition 1.1.1. If M is a D-module contained in K, the completion of M is

the D-module

M̃ :=
⋂
Vλ∈S

MVλ.

The module M is said to be complete if M = M̃ .

Remark 1.1.2. If D̄ denotes the integral closure of D in K and if we set

M̄ := MD̄, then ˜̄M = M̃ , where ˜̄M is the completion of the D̄-module M̄ .

Proof: By definition, S is the set of all valuation overrings of D̄, hence:

˜̄M =
⋂
Vλ∈S

M̄Vλ =
⋂
Vλ∈S

MVλ = M̃.

It follows that the class of complete D̄-modules coincides with the class of com-

plete D-modules. Whenever K is the quotient field of D, let F(D) be the set

of all nonzero D-submodules of K and f (D) the set of finitely generated D-

submodules of K. Hence, we can introduce a semistar operation on K using the

completion, as follows.
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Definition 1.1.3. The mapping b : F(D) −→ F(D), E 7→ Eb such that Eb :=

Ẽ is called b-operation on D.

The following result shows in particular that the b-operation is a semistar

operation on D.

Proposition 1.1.4. Let D̄ be the integral closure of D in K. Let M,N,L ∈
F(D). The b-operation satisfies the following conditions:

1. Db = D̄;

2. M b ⊇M ;

3. If M ⊇ N then M b ⊇ N b;

4. (M b)b = (M)b;

5. (MN)b = (M bN b)b, where by the product MN of two D-modules M,N

we mean the D-module generated by the products mn (m ∈ M , n ∈ N ,

the product is meant to be inside K);

6. (zM)b = zM b, z ∈ K;

7. If (MN)b ⊆ (ML)b, and if M is either finite or is the completion of a

finite D-module, then N b ⊆ Lb.

Corollary 1.1.5. We have

(Dx)b = D̄x, x ∈ K (1.1)

D̄M b = M b. (1.2)

In this context, it is important to define the integral dependence of an el-

ement in a very general form. For any non-negative integer q, we denote by

Mq the D-module, submodule of K, generated by the monomials m1m2 . . .mq,

mi ∈M , and M0 stands for D.

Definition 1.1.6. An element z of K is said to be integrally dependent on the

module M⊆ K if it satisfies an equation on the form

zq + a1z
q−1 + . . . + aq = 0, ai ∈M i. (1.3)

This definition is equivalent to the following one: z is integrally dependent on

M if there exists a finite D-module N, contained in K, such that

zN ⊆MN. (1.4)
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Relation (1.3) is a consequence of (1.4), using a basis of N . On the other hand,

if (1.3) holds, then (1.4) is satisfied by taking for N the module Mq−1
f +Mq−2

f z+

. . .+Mfz
q−2 +Dzq−1, where Mf is a finite submodule of M such that ai ∈M i

f

for i = 1, 2, . . . , q − 1.

By relation (1.4), it follows that the set of elements of K which are integrally

dependent on M is itself a D-module. We may call that D-module the integral

closure of M in K.

Theorem 1.1.7. The completion M b of M in K coincides with the integral

closure of M in K.

Remark 1.1.8. By Definition 1.1.6 and Theorem 1.1.7 it follows that the com-

pletion of M is independent of the choice of the ring D. Therefore, if M is also

a module over another ring D1, subring of K, (for example, if D1 is a subring

of D) then the completion of M as a D1-module is the same as the completion

of M as a D-module.

Since ideals are special modules, we are interested in complete ideals in D,

where an ideal I is said to be complete if it is complete as a D-module.

Corollary 1.1.9. If I is an ideal in D, then the completion Ib of I is a complete

ideal in the integral closure D̄ of D in K. Furthermore, if S∗ denotes the set of

all valuations v of the quotient field of D̄ which are non-negative on D, then:

Ib =
⋂
v∈S∗

IAv, (1.5)

where Av is the valuation ring associated to the valuation v.

We are interested, now, to the case of complete ideals in an integrally closed

domain D.

Let D be a domain, integrally closed in K and let I be an ideal in D. By

Corollary 1.1.9, we have that the completion Ib of I is a complete ideal in

D = D̄. Hence, we have:

Ib =
⋂
v∈Σ

IAv =
⋂
v∈Σ

(D ∩ IAv).

We recall now some notions on valuation ideals.

Definition 1.1.10. Let D be an integral domain and K the quotient field of

D. An ideal J in D is said to be a valuation ideal if it is the intersection of D

with an ideal J ′ of a valuation overring Av of D. If v is the valuation associated

to Av, we say that J is a valuation ideal associated with v.

3



Proposition 1.1.11. If v is a valuation, non-negative on D and J is an ideal

of D, then the following properties are equivalent:

1. J is a valuation ideal;

2. If a, b ∈ D, a ∈ J and v(a) ≤ v(b), then b ∈ J ;

3. The following condition holds:

JAv ∩D = J. (1.6)

Now, coming back to complete ideals, since D ∩ IAv is a valuation ideal, we

see that every complete ideal in D is an intersection of valuation ideals. On the

other hand, if J is a valuation ideal in D associated to v ∈ Σ, then J = D∩JAv
by condition (1.6), where from Jb = D ∩ Jb ⊆ D ∩ JAv = J , so that Jb = J .

This means that every valuation ideal in D is a complete ideal, as every finite or

infinite intersection of valuation ideals. Therefore, the class of complete ideals

in D coincides with the class of ideals which are intersections of valuation ideals.

At any time, we can replace K by the quotient field K0 of D, just restricting v

to K0. So, we assume that K is the quotient field of D.

If I is a complete ideal, then

I =
⋂
v∈Σ

(D ∩ IAv)

represents I as intersection (also infinite) of valuation ideals: this representation

can be non-unique and it may be even not the finer one. There may be some

representations that are finite intersections. We present a result in the case of

Noetherian domains.

Theorem 1.1.12. Let D be a Noetherian domain, K a field containing D and

let D̄ be the integral closure of D in the quotient field of D.

If an ideal I is the completion in K of an ideal J in D (in particular, if D =

D̄ and I is complete), then I is a finite intersection of valuation ideals of D̄

associated with discrete valuations of rank 1.

The proof of this theorem needs the following Lemma on complete D-modules

and can be found in the complete thesis in Theorem 1.1.14.

Lemma 1.1.13. Let K be a field containing D, let M ∈ f (D) and let {mi}
be a finite D-basis of M . For each i denote with Di the ring generated by the
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quotients mj/mi, j 6= i, over D and let D̄i be the integral closure of Di in K.

If M b is the completion of M in K, then

M b = ∩iD̄imi.

1.2 Integral closure and properties

In the first section, we introduced the notion of integral closure over modules.

Now, we want to study more in detail this topic in a different situation: we will

consider ideals in rings, not necessarily integral domains. First of all, we remind

the definition of integral closure in the case of an ideal of a ring.

Note that the definition of integral dependence has been stated for modules.

Since the ideals are very important in Commutative Algebra, we give here the

definition of integral dependence for ideals.

Definition 1.2.1. Let R be a ring and let I be an ideal of R. An element z ∈ R

is said to be integral over I if there exist an integer n ≥ 1 and elements ai ∈ Ii,

i = 1, . . . , n, such that:

zn + a1z
n−1 + · · ·+ an−1z + an = 0.

An equation of this type is said to be an equation of integral dependence of z

over I, of degree n.

Let’s give now some examples of the integral closure of an ideal.

Examples 1.2.2.

1. Let D be a ring and let z and w be arbitrary elements in D. Consider

the ideal I = (z2, w2) of D. Hence zw ∈ Ī = (z2, w2), since it satisfies an

equation of integral dependence over I: a0 + a1(zw) + (zw)2 = 0, where

a1 = 0 ∈ I and a0 = −z2w2 ∈ I2 = (z2, w2)2. In the same way, for any

integer 0 ≤ i ≤ d, ziwd−i ∈ (zd, wd).

2. Ī ⊆
√
I, since by the equation of integral dependence over I, zn ∈

(a1, . . . , an) ⊆ I.

3. Radical and prime ideals are integrally closed.

4. The nilradical of the ring is contained in the integral closure of any ideal

of the ring, since for each nilpotent element there exists n ∈ N such that

zn = 0, that is an equation of integral dependence of z over any ideal I.

5



5. Intersections of integrally closed ideals are integrally closed. (See [SH-06,

Remark 1.1.3 (6)])

6. Persistence: If R
ϕ−→ S is a ring homomorphism, then ϕ(Ī) ⊆ ϕ(I)S. In

fact, if we apply the homomorphism ϕ to an equation of integral depen-

dence of an element z over I, we obtain an equation of integral dependence

of ϕ(z) over ϕ(I)S. (See [SH-06, Remark 1.1.3 (7)] )

Talking about integral closure of an ideal, it is important to show some

properties of this notion, like the good behaviour under localization.

Proposition 1.2.3. Let R be a ring and I an ideal in R. For any multiplica-

tively closed subset T of R, T−1Ī = T−1I.

Furthermore, the following statements are equivalent:

1. I = Ī;

2. For every multiplicative part T of R, T−1I = T−1I;

3. For every prime ideal P of R, IP = IP ;

4. For every maximal ideal M of R, IM = IM .

We have proved that the completion of an ideal is an ideal, so when the

completion coincides with the integral closure, we already know that the integral

closure of an ideal is an ideal. Now, we will prove this fact in general.

Proposition 1.2.4. Let R be a ring and L an ideal in R. Then, the integral

closure L̄ of L is an integrally closed ideal (in R).
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Chapter 2

2.1 The Kronecker function ring

Definition 2.1.1. Let D0 be a PID with quotient field K0 and let K be a finite

field extension of K0. Let D be the integral closure of D0 in K. Let D[X] be

the polynomial domain with coefficients in D.

The classical Kronecker function ring of D is:

Kr(D) :=
{
f
g | f, g ∈ D[X], g 6= 0 and c(f) ⊆ c(g)

}
=
{
f ′

g′ | f
′, g′ ∈ D[X], and c(g′) = D

}
where c(g) denotes the content of a polynomial g ∈ D[X], that is the ideal of

D generated by the coefficients of g.

Note that we are assuming that D is a Dedekind domain, since it is the

integral closure of D0, which is a PID, in a finite field extension K of the quotient

field K0 of D0 ([G-78, Thm. 37.8 and Thm. 41.1]).

Under these hypothesis, every nonzero ideal in D is invertible, so that for every

0 6= g ∈ D[X] we can choose a polynomial u ∈ K[X] such that (D : c(g)) :=

c(g)−1 = c(u). This ring has some basics properties:

Proposition 2.1.2.

1. Kr(D) is a domain with identity with quotient field K(X) and, in partic-

ular, Kr(D) ∩K = D

2. Kr(D) is a Bézout domain.

3. If I is a finitely generated ideal of D, then IKr(D) ∩K = ID.

Since we are working with a Dedekind domain, we can immediately see an

important result:
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Lemma 2.1.3. Gauss Lemma: Let f, g ∈ D[X], where D is an integral

domain. If D is a Prüfer domain, then:

c(fg) = c(f)c(g),

and conversely.

This theory has been generalized by Krull, who worked in a more general

context using integrally closed domains, (not necessarily Dedekind domains).

One of the greatest troubles that exists in the generalization of the Kronecker

idea is that Gauss Lemma works fine for Prüfer (and in particular Dedekind

domains), but not in general.

However, in an integral domain, it holds always the inclusion of ideals

c(fg) ⊆ c(f)c(g).

A very useful result is the Dedekind-Mertens Lemma.

Lemma 2.1.4. Dedekind-Mertens Lemma: Let f, g ∈ D[X], where D is an

integral domain. Let m := deg(g), then:

c(f)mc(fg) = c(f)m+1c(g)

Lemma 2.1.5. Gauss-Krull Lemma. Let ? be an e.a.b. star operation on

an integral domain D and let f, g ∈ D[X] then:

c(fg)? = c(f)?c(g)?.

Definition 2.1.6. Let D be an integrally closed domain with quotient field K

and let ? be an e.a.b. star operation on D.

The Star-Kronecker function ring of D is given by:

Kr(D, ?) :=
{
f
g | f, g ∈ D[X], g 6= 0 and c(f)? ⊆ c(g)?

}
.

It is an integral domain with quotient field K(X) and it is called the ?-Kronecker

function ring of D

Then the following properties hold:

Proposition 2.1.7.

1. Kr(D, ?) is a domain with identity with quotient field K(X) and, in par-

ticular, Kr(D, ?) ∩K = D? = D
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2. Kr(D, ?) is a Bézout domain.

3. If I is a finitely generated ideal of D, then IKr(D, ?) ∩K = I?D.

Proof: For the proof, see Proposition 2.1.7 in the complete thesis.

It is important to show that the two definitions of the Kronecker function

ring coincide when we are in a Dedekind domain. Actually, we only need to

assume to have a Prüfer domain.

Theorem 2.1.8. If D is a Prüfer domain, then each ?-operation on D is a.b.,

and any two ?-operations on D are equivalent.

Proof: For the proof, see Theorem 2.1.8 in the complete thesis.

Hence, in such a domain, every star operation is equivalent to the identical

one and Kr(D, ?) = Kr(D).

Corollary 2.1.9. If D admits an e.a.b. star operation, then D is integrally

closed.

We give here the proof, since it is rather easy and illuminating.

Proof: Let F 7→ F ? be an e.a.b. ?-operation and let Kr(D, ?) be the star-

Kronecker function ring of D. We have proved that Kr(D, ?)∩K = D and that

Kr(D, ?) is a Bézout domain, so it is integrally closed. Therefore, D is integrally

closed too.

Theorem 2.1.10. Let D be an integrally closed domain with quotient field K

and let ? be an e.a.b. ?-operation on D, with Kronecker function ring Kr(D, ?).

If W is a valuation overring of Kr(D, ?), then W is the trivial extension of

W ∩K to K(X).

Corollary 2.1.11. Each Kronecker function ring of an integrally closed domain

D contains Kr(D, b), the Kronecker function ring of D with respect to the b-

operation.

Theorem 2.1.12. Let D be an integrally closed domain with quotient field K,

and let Kr(D, b) be the Kronecker function ring of D.
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1. If V is an integrally closed overring of D, then each Kronecker function

ring Kr(V, ?) of V is an overring of Kr(D, b) such that Kr(V, ?)∩K = V .

2. If R is an overring of Kr(D, b), then R is a Kronecker function ring of

R ∩K.

Theorems 2.1.10 and 2.1.12 imply that there is a one-to-one correspondence

between valuation overrings of an integrally closed domain D and valuation

overrings of Kr(D, b). Since Kr(D, b) is a Bézout domain, the set of valuation

overrings of Kr(D, b) is in one-to-one correspondence with the set of proper

prime ideals of Kr(D, b). This is a good reasons to consider the Kronecker

function ring D: we have reduced the problem of finding all valuation overrings

of D to the study of the set of proper ideals of Kr(D, b).

Since Kr(D, b) is a Prüfer domain, the dimension of Kr(D, b) is the same as

the valuative dimension of Kr(D, b) (where the valuative dimension of D is the

maximum of the Krull dimension of its valuation overrings if finite, otherwise

it is infinite). Moreover, a valuation v and each its trivial extension have the

same value group and the same rank, so that D and Kr(D, b) have the same

valuative dimension. Therefore, we have proved the following:

Proposition 2.1.13. Let D be an integrally closed domain with Kronecker

function ring Kr(D, b). Then dimvD = dim Kr(D, b).

2.2 General setting

The problem of the construction of a Kronecker function ring for general in-

tegral domains was investigated independently by Halter-Koch in 2003 and by

Fontana-Loper since 2001.

Halter-Koch had an axiomatic approach and used the theory of module sys-

tems. He established a connection with Krull’s theory and Kronecker function

rings and introduced the Kronecker function rings for integral domains with

an ideal system which does not verify, necessarily, the cancellation property

(e.a.b.).

Fontana-Loper based their work on the theory of semistar operations.

Halter-Koch gave an abstract definition which does not depend on semistar

operations or valuation overrings.

Definition 2.2.1. Let K be a field, R a subring of K(X) and D := R ∩K. If
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(Kr.1) X is a unit in R;

(Kr.2) f(0) ∈ fR for each f ∈ K[X];

Then R is called K-function ring of D.

Using only these two axioms, he proved that R has similar properties as a

Kronecker function ring:

Theorem 2.2.2. Let R be a K-function ring of D = R ∩K, then:

1. R is a Bézout domain with quotient field K(X);

2. D is integrally closed in K;

3. For each polynomial f := a0 + a1X + · · · + anX
n ∈ K[X], we have

(a0, . . . , an)R = fR.

Note that these properties are very close to those described in Proposition

2.1.2.

The next step is to describe Fontana-Loper’s approach and to find out the

relation with Halter-Koch’s K-function rings. Using the semistar operations,

we generalize the concept of Kronecker function ring and we can now define the

Kronecker function ring for any e.a.b. semistar operation:

Definition 2.2.3. Let D be any integral domain and let ? be any semistar op-

eration. We define the Kronecker function ring of D with respect to the semistar

operation ? by:

Kr(D, ?) := {f/g | f, g ∈ D[X], g 6= 0 and there exists

h ∈ D[X] r {0} with (c(f)c(h))? ⊆ (c(g)c(h))?} ∪ {0}.

Our next steps are:

� Show that the semistar Kronecker function ring leads to a natural exten-

sion of the classical Kronecker function ring;

� Study the connections between the semistar Kronecker function ring Kr(D, ?)

and the axiomatically defined K-function ring;

� Show that Kr(D, ?) defines a new semistar operation on D.

Definition 2.2.4. Given any semistar operation ? of D, we can associate to ?

an (e.)a.b. semistar operation of finite type ?a of D, called the (e.)a.b. semistar

operation associated to ?, defined as follows for each F ∈ f (D) and for each

E ∈ F(D):
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F ?a :=
⋃
{((FH) : H?) | H ∈ f (D)},

E?a :=
⋃
{F ?a | F ⊆ E, F ∈ f (D)}.

It is clear that (?f )a = ?a. Furthermore, if ? = ?f , then ? is (e.)a.b. if and

only if ? = ?a. Hence, if ? is an e.a.b. semistar operation, then ?a is the unique

(e.)a.b. semistar operation of finite type and that is equivalent to ?.

Then:

� When ? = ?f , then ? is e.a.b. if and only if ? = ?a.

� D?a is integrally closed and contains the integral closure of D.

Remark 2.2.5. Focusing on the star operations, ?a is expected to be a star

operation too and that is because it is defined on the ”star closure” of D, or

on an integral domain which is ”star closed”. Precisely, even if ? is a semistar

operation, we call the ?-closure of D:

Dcl? := ∪{(F ? : F ?) | F ∈ f (D)}.

It follows immediately that Dcl? is an integrally closed overring of D and D is

said ?-closed if D = Dcl? . Let’s define now a new (semi)star operation on D,

when D = Dcl? or more in general a semistar operation on D, denoted by cl?:

for each F ∈ f (D) and for each E ∈ F(D), define

F cl? := ∪{((H? : H?)F )? | H ∈ f (D)},
Ecl? := ∪{F cl? | F ⊆ E, F ∈ f (D)}.

Setting ?̄ = cl?, it is easy to see that Dcl?̄ = Dcl? , it coincides with D?a and

that Dcl? contains the classical integral closure D̄ of D. Furthermore:

?f ≤ cl? ≤ ?a and (?f )a = (cl?)a = (?a)a = ?a.

We have seen in Section 2 that for a domain D and a semistar operation ? on D,

a valuation overring V of D is a ?-valuation overring of D whenever F ? ⊆ FV

for each F ∈ f (D). By definition, the ?-valuation overrings coincide with the

?f -valuation overrings.

Proposition 2.2.6. Let D be a domain and let ? be a semistar operation on

D.

1. The ?-valuation overring of D also coincide with the ?a-valuation over-

rings.
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2. Dcl? = ∩{V | V is a ?−valuation overring of D}.

Proof: For the proof, see Proposition 2.3.5 in the complete thesis.

Now, let’s see how the two approaches are related.

Theorem 2.2.7. Let ? be a semistar operation of an integral domain D with

quotient field K. Then:

1. V is a ?-valuation overring of D if and only if V (X) is a valuation

overring of Kr(D, ?). The map W 7→W ∩K establishes a bijection between

the set of all valuation overrings of Kr(D, ?) and the set of all the ?-

valuation overrings of D.

2. Kr(D, ?) = Kr(D, ?f ) = Kr(D, ?a) =

= ∩{V | V is a ? −valuation overring of D} is a Bézout domain with

quotient field K(X).

3. E?a = EKr(D, ?)∩K = ∩{EV | V is a ?−valuation overring of D}, for

each E ∈ F(D).

4. R := Kr(D, ?) is a K-function ring of R ∩ K = D?a , in the sense of

Definition 2.2.1.

Proof: For the proof, see Theorem 2.3.6 in the complete thesis.
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Chapter 3

3.1 Nagata ring

Nagata extended the notion of Kronecker function ring, considering a special

ring of rational functions for arbitrary integral domains and, even, arbitrary

rings.

Definition 3.1.1. Let D be a ring with identity. We define the Nagata ring of

D, the ring

Na(D) := D(X) :=

{
f

g
| f, g ∈ D[X] and c(g) = D

}
Nagata’s ring is particularly interesting, because it has some important prop-

erties that D itself need not have, even though it maintains a strong relation

with the ideal structure of D. For the proof of the following, see Proposition

3.1.2 in the complete thesis.

Proposition 3.1.2. Let D be an arbitrary ring and let Na(D) be the Nagata

ring of D.

1. The map M 7→ MD(X) establishes a 1-1 correspondance between the

maximal ideals of D and the maximal ideals of D(X).

2. For each ideal I of D,

ID(X) ∩D = I,
D(X)

ID(X)
∼=
(

D

ID

)
(X);

I is finitely generated ⇔ ID(X) is finitely generated.

Among the new properties acquired by D(X) are the following:

3. The residue field at each maximal ideal of D(X) is infinite;
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4. An ideal contained in a finite union of ideals is contained in one of them;

5. Each finitely generated locally principal ideal is principal and, therefore,

Pic(D(X)) = 0.

In the proof of this proposition, we needed the following Lemma, whose proof

can be found in [G-78, Lemma 33.2].

Lemma 3.1.3. Let Q be an ideal of the ring R, and let {Xλ}λ∈Λ be a set of

indeterminates over R. Then QR[{Xλ}]∩R = Q, and if Q is P -primary in R,

then QR[{Xλ}] is PR[{Xλ}]-primary in R[{Xλ}].

In general, Na(D) is not a Bézout domain, but it has the following properties:

Proposition 3.1.4. Let D be an integral domain. The following properties are

equivalent:

1. D is a Prüfer domain;

2. Na(D) concides with Kr(D);

3. Na(D) is a Bézout domain;

4. Na(D) is a Prüfer domain;

5. Every ideal of Na(D) is extended from D.

Proof: For the proof, see Proposition 3.1.4 in the complete thesis.

An easy example is the following:

Example 3.1.5. Let V be a valuation ring of a field K. Let v be the valuation

associated to V and Γ be the value group of v. Then the map:

w : K[X] −→ Γ ∪ {∞}

f :=
∑n
i=0 aix

i 7−→ w(f) :=

 ∞ if f = 0;

min{v(ai) | 0 ≤ i ≤ n} else;

defines naturally a valuation on K(X), called Gaussian extension of the valua-

tion v, just setting for each f/g ∈ K(X), w(f/g) = w(f)− w(g).

The valuation ring W of w is such that:

W = Kr(V ) = Na(V ) = V (X).
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Using the semistar operations, we generalize the Nagata ring:

Definition 3.1.6. Given any integral domain D and any semistar operation ?

on D, we define the semistar Nagata ring as follows:

Na(D, ?) :=

{
f

g
| f, g ∈ D[X], g 6= 0 and c(g)? = D?

}
.

Remarks 3.1.7.

1. Note that Na(D, ?) = Na(D, ?f ). So the assumption ? = ?f is not restric-

tive in Nagata semistar rings.

2. If ? = d is the identity (semi)star operation of D, then:

Na(D, d) = D(X).

Since Kang generalized the Nagata rings with the star operations in the

1980’s, we will show some results, that he proved on star Nagata rings, gener-

alized to the semistar setting:

Proposition 3.1.8. Let ? be a nontrivial semistar operation of an integral

domain D. Set:

N(?) := ND(?) := {h ∈ D[X] | c(h)? = D?}.

1. N(?) = D(X) \ ∪{Q[X] | Q ∈ M(?f )} is a saturated multiplicatively

closed subset of D[X] and N(?) = N(?f ).

2. Max(D[X]N(?)) = {Q[X]N(?) | Q ∈M(?f )}.

3. Na(D, ?) = D[X]N(?) = ∩{DQ(X) | Q ∈M(?f )}.

4. M(?f ) coincides with the canonical image in Spec(D) of the maximal

spectrum of Na(D, ?); i.e. M(?f ) = {M ∩D |M ∈ Max(Na(D, ?))}.

From the last point of previous proposition we have:

Corollary 3.1.9. Let D be an integral domain, then:

Q is a maximal t-ideal of D ⇔ Q = M ∩D, for some M ∈ Max(Na(D, v)).

Let study now the semistar-operation associated to Na(D, ?), but first we

need some notions.

Definition 3.1.10. Let D be an integral domain.

16



1. If ∆ is a nonempty set of prime ideals of D, then the semistar operation

?∆ defined on D as follows, for each E ∈ F(D),

E?∆ := ∩{EDP | P ∈ ∆},

is called the spectral semistar operation associated to ∆.

2. A semistar operation ? of D is called a spectral semistar operation if there

exists a nonempty subset ∆ ⊆ Spec(D) such that ? = ?∆.

3. We say that ? is a quasi-spectral semistar operation of D if, for each

nonzero ideal I of D such that I? ∩D 6= D, there exists a quasi-?-prime

P of D such that I ⊆ P .

4. A semistar operation of D is said to be stable if for all E,F ∈ F(D)

(E ∩ F )? = E? ∩ F ?.

Let’s see some properties of this new operation ?∆. For the proofs of the fol-

lowing two lemmas, see, respectively, [FL-03, Lemma 2.4] and [FL-03, Lemma

2.5].

Lemma 3.1.11. Let D be an integral domain and let ∅ 6= ∆ ⊆ Spec(D). Then:

1. E?∆DP = EDP , for each E ∈ F(D) and for each P ∈ ∆.

2. (E ∩ F )?∆ = E?∆ ∩ F ?∆ , for all E,F ∈ F(D).

3. P ?∆ ∩D = P , for each P ∈ ∆.

4. If I is a nonzero integral ideal of D and I?∆ ∩D 6= D, then there exists

P ∈ ∆ such that I ⊆ P .

Lemma 3.1.12. Let ? be a nontrivial semistar operation of an integral domain

D. Then:

1. ? is spectral if and only if ? is quasi-spectral and stable.

2. Assume that ? = ?f , then ? is quasi-spectral and M(?) 6= ∅.

Theorem 3.1.13. Let ? be a nontrivial operation and let E ∈ F(D). Set

?̃ := (?f )sp := ?M(?f ).

[?̃ is called the spectral semistar operation associated to ?.] Then:

17



1. ?̃ ≤ ?f .

2. E?̃ = ∩{EDQ | Q ∈M(?f )} [and E?f = ∩{E?fDQ | Q ∈M(?f )}].

3. ENa(D, ?) = ∩{EDQ(X) | Q ∈M(?f )}, thus:

ENa(D, ?) ∩K = ∩{EDQ | Q ∈M(?f )}.

4. E?̃ = ENa(D, ?) ∩K.

Proposition 3.1.8 (4 ) assures that, whenever we contract a maximal ideal of

Na(D, ?) is to D, we obtain exactly a prime ideal in M(?f ). This conclusion

can be reversed. Furhermore, the two semistar operations, ?̃ and ?, generate

the same Nagata ring.

Corollary 3.1.14. Let ?, ?1, ?2 be semistar operations of an integral domain

D. Then:

1. Max(Na(D, ?)) = {QDQ(X) ∩Na(D, ?) | Q ∈M(?f )}.

2. (?̃)f = ˜̃? .

3. M(?f ) =M(?̃).

4. Na(D, ?) = Na(D, ?̃).

5. ?1 ≤ ?2 ⇒ Na(D, ?1) ⊆ Na(D, ?2)⇔ ?̃1 ≤ ?̃2.

Proof: For the proof, see Proposition 3.2.6 in the complete thesis.

At this point, a natural question is: what kind of relationship exists between

Kr(D?) and Na(D, ?)?

3.2 Relations between Na(D, ?), Kr(D, ?) and the

semistar operations.

Let’s turn our attention to the question of valuation overrings. We introduced

this topic in Section 3, talking about the two definitions of Kronecker function

ring in the semistar case.

Proposition 3.2.1. Let D be a domain and let ? be a semistar operation on

D. A valuation overring V of D is a ?̃-valuation overring if and only if V is

an overring of DP for some P ∈M(?f ).
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An important fact is the following:

Proposition 3.2.2. Let D be a domain with quotient field K and let ? be a

semistar operation on D. Then Na(D, ?) ⊆ Kr(D, ?).

Proof: See [FL-03, Proposition 4.1]

An immediate first question to ask is whether the two semistar operations ?̃

and ?a are the same or very different. Proposition 3.2.1 shows that for a semistar

operation ? on a domain D, the ?̃-overrings of D are all the valuation overrings

of the localizations of D at the primes in M(?f ). We also know from Theorem

2.3.6 that the ?a-valuation overrings, or equivalently the ?-valuation overrings,

of D correspond exactly to the valuation overrings of the Kronecker function

ring Kr(D, ?). In particular: each ?a-valuation overring is also a ?̃-valuation

overring.

It is clear that these two set of valuation domains can be different and, even

if they coincide, it may happen that ?̃ 6= ?a. It is possible to make positive

statements about the relationship between (̃−) and (−)a under certain condi-

tions. Despite that we limit to stating a result that generalizes the fundamen-

tal result that is at the basis of Krull’s theory of Kronecker function rings:

Na(D) = Na(D, d) = Kr(D, b) = Kr(D) if and only if D is a Prüfer domain

[G-78, Thm. 33.4].
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and semistar operations, J.Algebra Appl., 2, (2003) 21-50.

[FL-01a] Marco Fontana and K. Alan Loper Kronecker function rings: a

general approach. Ideal theoretic methods in commutative algebra,

189–205, Lecture Notes in Pure and Appl. Math., 220, Dekker,

New York, 2001. (MR1836601 (2002h: 13029); Reviewer: David E.

Dobbs) 13F05 (13A15 13B22 13G05)

[FL-01b] Marco Fontana and K. Alan Loper A Krull-type theorem for the

semistar integral closure of an integral domain. Commutative alge-

bra. AJSE, Arab. J. Sci. Eng. Sect. C Theme Issues 26 (2001), no.

1, 89–95. (MR1843459 (2002e: 13019)). 13B22

20



[FL-03] Marco Fontana and K. Alan Loper Nagata rings, Kronecker

function rings and related semistar operations. Comm. Algebra,

31 (2003), 4775-4805. 13G05 (MR1998028 (2004e:13034); Re-
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