UNIVERSITÀ DEGLI STUDI DI ROMA TRE FACOLTÀ DI SCIENZE M.F.N.

Sintesi della Tesi di Laurea in Matematica di Luca Di Persio

Comportamento anomalo delle correzioni al Teorema del Limite Centrale per un modello di Random Walk in mezzo aleatorio nello spazio e nel tempo in dimensione 1 e 2

Relatore Prof. Alessandro Pellegrinotti

Il Candidato Il Relatore

ANNO ACCADEMICO 2000 - 2001 FEBBRAIO 2002

Classificazione AMS: 82B41, 60F05, 78A48

Parole Chiave: Random Walk, Central Limit Theorem, Random Media

0.1 Descrizione del modello

0.1.1 Generalità.

In questa tesi ci siamo occupati della descrizione di un particolare modello di Random Walk in mezzo aleatorio nel tempo e nello spazio.

Il contesto nel quale ci muoviamo è costituito da un reticolo a coordinate intere di dimensione arbitraria ($\mathbb{Z}^{\nu}, \nu \geq 1$) nel quale pensiamo in movimento una particella la cui posizione, istante per istante, è descritta da una variabile aleatoria vettoriale $X(t) \equiv X_t$, con t a valori in \mathbb{Z} .

Il valore che X_t assume al variare del tempo è determinato dalle particolari condizioni (realizzazione) del mezzo in cui si muove. Più precisamente assumiamo di assegnare un certo stato ad ogni punto del reticolo ν -dimensionale, scegliendolo in un insieme finito di elementi per mezzo di un'assegnata distribuzione di probabilità.

Indicheremo l'insieme degli stati possibili con:

$$\mathscr{S} \equiv \{s_1, s_2 \dots s_n\}$$

mentre ξ sarà la generica realizzazione del mezzo, ovvero:

$$\xi \equiv \{\xi_t(x) \in \mathscr{S} : x \in \mathbb{Z}^{\nu}, t \in \mathbb{Z}\}$$

Per quanto detto l'insieme:

$$\hat{\Omega} \equiv \{ \xi \in \mathscr{S}^{\mathbb{Z}^{\nu+1}} \}$$

costituirà lo spazio di tutte le configurazioni possibili per l'ambiente in cui avviene il moto.

0.1. DESCRIZIONE DEL MODELLO

Gli stati $s \in \mathscr{S}$ da assegnare ad ogni sito del reticolo, vengono scelti ponendo una distribuzione π_0 sull'insieme \mathscr{S} , conseguentemente assegneremo una probabilità Π_0 su Ω definita come misura prodotto a partire dalla π_0 .

L'evoluzione, ad un passo, del nostro modello è definita attraverso la seguente probabilità di transizione:

$$P(X_{t+1} \equiv y \mid X_t = z, \xi) = P_0(y - z) + \epsilon c(y - z, \xi_t(z))$$

con $x, y \in \mathbb{Z}^{\nu}$ e con:

- · $P_0(x)$ la probabilità per la nostra particella di transire dall'origine alla posizione x in un passo
- \cdot ϵ un parametro che rende conto dell' intensità dell'interazione tra particella e mezzo.
- · $c(y, \eta(x))$ la perturbazione al Random Walk (RW) libero che esprime l'influenza dell'ambiente sul moto della particella.

0.1.2 Formalizzazione.

Denoteremo con $X_t \in \mathbb{Z}^{\nu}$, $\nu \geq 1$, la posizione del random walk ad un generico tempo t. L'ambiente prende valori in un certo insieme $\mathscr{S} \equiv \{s_1, s_2, \ldots, s_n\}$ di stati. Lo spazio delle configurazioni del mezzo ad un dato tempo t è denotato come $\xi_t \equiv \{\xi_t(x) : x \in \mathbb{Z}^{\nu}\} \in \Omega$, essendo $\Omega \equiv \mathscr{S}^{\mathbb{Z}^{\nu}}$, infine $\hat{\Omega} \equiv \mathscr{S}^{\mathbb{Z}^{\nu+1}}$ è lo spazio delle storie dell'ambiente che saranno indicate con:

$$\xi \equiv \{\xi_t(x) : (t, x) \in \mathbb{Z}^{\nu+1}\}\$$

Sull' insieme degli stati $\mathscr S$ poniamo una distribuzione di probabilità π_0 e tramite essa generiamo la misura prodotto $\Pi_0 \equiv \pi_0^{\mathbb Z^{\nu+1}}$ sullo spazio delle configurazioni $\hat{\Omega}$. Nel seguito indicheremo le medie calcolate rispetto alla misura Π_0 , o relativamente alla misura π_0 per un singolo punto $(t,x) \in \mathbb Z^{\nu+1}$, con la simbologia $<\cdot>$.

La probabilità di transizione ad un passo, per una fissata configurazione ξ dell'ambiente, è definita come:

$$P(X_{t+1} = y \mid X_t = z, \xi) = P_0(y - z) + \epsilon c(y - z, \xi_t(x))$$

ed affinchè si tratti di una probabilità chiediamo che per $\epsilon \in (0,1)$ e per ogni coppia $(u,s) \in \mathbb{Z}^{\nu} \times \mathscr{S}$, con $\nu \geq 1$, siano soddisfatte le seguenti condizioni:

(a)
$$0 \le P_0(u) + \epsilon c(u, s) \le 1$$

(b)
$$\sum_{u \in \mathbb{Z}^{\nu}} c(u, s) = 0$$

(c)
$$\sum_{s \in \mathscr{S}} c(u, s) \pi_o(s) = 0$$

Dalla condizione (c) si vede subito come P_0 sia la media della probabilità di transizione:

$$\langle P(X_t = z \mid X_{t-1} = x; \xi) \rangle = P_0(z - x), \quad \forall (t, x) \in \mathbb{Z}^{\nu+1}$$

Chiediamo inoltre che valgano le seguenti ipotesi:

(i) (range finito)
$$\exists D \geq 1 : P_0(u) = c(u, s) = 0 \quad \forall ||u|| > D, \forall s \in \mathscr{S}$$

(ii) La funzione caratteristica associata a P_0 :

$$\tilde{p}_0(\lambda) = \sum_{u \in \mathbb{Z}^{\nu}} P_0(u) e^{i(\lambda, u)}, \quad \lambda \equiv (\lambda_1, \dots, \lambda_{\nu}) \in T^{\nu}$$

essendo T^{ν} l' usuale toro $\nu-$ dimensionale, deve soddisfare:

(iia)
$$| \tilde{p}_0(\lambda) | < 1, \quad \forall \lambda \neq 0$$

(iib) il termine quadratico dell'espansione di Taylor nell'intorno del punto $\lambda=0$:

$$\ln \tilde{p}_0(\lambda) = i \sum_{k=1}^{\nu} b_k \lambda_k - \frac{1}{2} \sum_{i,j=1}^{\nu} \mathfrak{c}_{ij} \lambda_i \lambda_j + \cdots$$

è strettamente positivo per $\lambda \neq 0$.

Il modello così costruito è chiaramente invariante per traslazioni, quindi non è restrittivo assumere che il nostro random walk parta sempre dall'origine al tempo t=0. La probabilità che il RW si trovi nel sito $u \in \mathbb{Z}^{\nu}$ al tempo t, per una data configurazione $\xi \in \hat{\Omega}$, si scriverà come $P(X_t = u | X_0 = 0; \xi)$.

Dai risultati ottenuti in [9] sappiamo che, sotto le condizioni espresse in (iia,iib) il Teorema del Limite Centrale (TLC) vale per il RW mediato P_0 .

Infatti se consideriamo i seguenti funzionali:

$$\mu_T^0(f) \equiv \sum_{z \in \mathbb{Z}^{\nu}} P_0^T(z) f\left(\frac{z - \mathbf{b}T}{\sqrt{T}}\right) \tag{1}$$

definiti su $\mathcal{C}_{0,b}$, lo spazio delle funzioni continue e limitate da \mathbb{R}^{ν} a \mathbb{R} , dove:

- · $\mathbf{b} = \sum_{u \in \mathbb{Z}^{\nu}} u \cdot P_0(u) = (b_1, \dots b_{\nu})$ è il vettore in (iib)
- · P_0^T la convoluzione di T copie di P_0 ovvero: $P_0^T \equiv \underbrace{P_0 * P_0 * \cdots P_0}_{Tvolte}$, con la convenzione che $P_0^0\left(u\right) = \delta_{u,0}$,

allora otteniamo:

$$\lim_{T \to \infty} \mu_T^0(f) = \int_{\mathbb{R}^\nu} \sqrt{\frac{C}{(2\pi)^\nu}} e^{-\frac{1}{2}\mathcal{A}(u)} f(u) du$$
 (2)

essendo $g(u) \equiv \sqrt{\frac{C}{(2\pi)^{\nu}}} e^{-\frac{1}{2}\mathcal{A}(u)}$ la densità della misura gaussiana μ , \mathcal{A} la forma quadratica $\mathcal{A} = \sum_{i,j=1}^{\nu} \mathfrak{a}_{ij} v_i v_j, v \in \mathbb{R}^{\nu}, \mathfrak{a} = \{\mathfrak{a}_{ij}\}$ l'inversa della matrice $\mathfrak{c} = \{\mathfrak{c}_{ij}\}$ che appare in (iib) ed infine $C = \det \mathfrak{a}$.

0.1.3 Principali risultati noti sul modello.

Consideriamo l'insieme dei seguenti funzionali lineari su $\mathcal{C}_{0,b}$:

$$\mu_T^{\xi}(f) \equiv \sum_{u \in \mathbb{Z}^{\nu}} P\left(X_T = u | X_0 = 0; \xi\right) f\left(\frac{u - \mathbf{b}T}{\sqrt{T}}\right), \quad \xi \in \hat{\Omega}, \ f \in \mathcal{C}_{0,b} \quad (3)$$

allora valgono i seguenti risultati:

Teorema 0.1. Per ogni $\nu \geq 1$, se ϵ sufficientemente piccolo, $\exists \hat{\Omega}' \subset \hat{\Omega}$ tale che $\Pi_0(\hat{\Omega}') = 1$ e $\forall \xi \in \hat{\Omega}'$, le misure μ_T^{ξ} convergono debolmente, quando $T \to \infty$, alla misura gaussiana μ .

Dal teorema (0.1) segue l'usuale formulazione per il TLC. I seguenti teoremi riguardano le correzioni al valor medio, ovvero al vettore \mathbf{b} incontrato precedentemente, ed alla matrice di correlazione \mathcal{A} .

Teorema 0.2. Per ogni $\nu \geq 3$ e per ogni $n \geq 1$ fissato, \exists un numero $\epsilon_{\nu,n}$ tale che $\forall \epsilon < \epsilon_{\nu,n}$ la sequenza $\mathscr{E}^T(\xi) \equiv \mathbb{E}(X_T \mid X_0 = 0; \xi) - T\mathbf{b}$ converge in $L^{2n}(\Pi_0)$ ad un funzionale vettoriale limite $\mathscr{E}(\xi) = \{\mathscr{E}_i : i = 1, \dots \nu\}$.

Inoltre se $n\left(\frac{\nu}{2}-1\right) \geq 1$, allora $\forall \epsilon < \epsilon_{\nu,n}$ la sequenza $\mathscr{E}^T(\xi)$ converge $\Pi_0 - q.o.$ in $\hat{\Omega}$.

Teorema 0.3. $\forall \nu \geq 5$ e per ogni fissato $n \geq 1$ si può trovare un numero positivo $\epsilon'_{\nu,n}$ tale che le sequenze:

$$\mathscr{C}_{ij}^{T}\left(\xi\right) \equiv \mathbb{E}\left(\left(X_{T} - \mathbb{E}\left(X_{T}|\xi\right)\right)_{i}\left(X_{T} - \mathbb{E}\left(X_{T}|\xi\right)\right)_{j}|X_{0} = 0;\xi\right) - \mathfrak{c}_{ij}T, \quad i, j \leq \nu$$

convergono in L_{Π}^{2n} ai funzionali limite $\mathscr{C}_{ij}(\xi)$.

Inoltre se $n\left(\frac{\nu}{2}-2\right) > 1$, allora $\forall \epsilon < \epsilon'_{\nu,n}$ le sequenze $\mathscr{C}_{ij}\left(\xi\right)$ convergono $\Pi_0 - q.o.$ in $\hat{\Omega}$.

Per i funzionali $\mathscr{E}(\xi)$ e $\mathscr{E}_{ij}(\xi)$ è possibile una scrittura esplicita che viene effettivamente data in [6].

Dal teorema (0.1) si evince che il termine leader nell'asintotica del funzionale $\mu_T^{\xi}(f)$ non dipende dall'ambiente. Le correzioni aleatorie al TLC appaiono quando consideriamo i termini successivi nell'espansione di $\mu_T^{\xi}(f)$ per funzioni f sufficientemente regolari.

Per formalizzare questa asserzione consideriamo lo spazio $\mathscr{C}_{k,b}, k=1,2,\ldots$ delle funzioni, da \mathbf{R}^{ν} a \mathbf{R} , di classe \mathscr{C}^k su \mathbb{R}^{ν} limitate con le proprie derivate, dotato della seguente norma:

$$||f||_{k} \equiv \max_{\substack{x \in \mathbb{N}^{\nu} : |\alpha| < k}} |\mathcal{D}_{\alpha}f(x)|$$

dove $\alpha = (\alpha_1, \dots \alpha_{\nu})$ è un multi indice a valori interi, $\mathscr{D}_{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_{\nu}^{\alpha_{\nu}}}$, e $|\alpha| = \sum_{i=1}^{\nu} \alpha_i$.

Il seguente teorema descrive la correzione al TLC in dimensione $\nu \geq 3$:

Teorema 0.4. Per ogni $\nu \geq 3$ e per ogni fissato $n \geq 1$, se ϵ è sufficientemente piccolo, la sequenza dei funzionali:

$$\Phi_T(f|\xi) \equiv \sqrt{T} \left[\mu_T^{\xi}(f) - \mu(f) \right]$$

converge in $L^{2n}\left(\Pi_{0}\right)$ per ogni $f \in \mathscr{C}_{2,b}$ ad un funzionale limite $\Phi\left(f \mid \xi\right)$.

Inoltre per ogni $n\left(\frac{\nu}{2}-2\right) > 1 \; \exists \; \bar{\Omega} \subset \hat{\Omega} \; tale \; che \; \Pi_0\left(\bar{\Omega}\right) = 1 \; e \; \forall \xi \in \bar{\Omega} \; la$ sequenza $\Phi_T\left(f \mid \xi\right) \; converge \; \forall f \in \mathscr{C}_{2,b}.$

In dimensione $\nu \geq 5$ la correzione al TLC è descritta da un risultato analogo:

Teorema 0.5. Per ogni $\nu \geq 5$ e per ogni fissato $n \geq 1$, se ϵ è sufficientemente piccolo, la sequenza dei funzionali:

$$\Psi_{T}\left(f\mid\xi\right)\equiv T\left[\mu_{T}^{\xi}\left(f\right)-\mu\left(f\right)-\frac{1}{\sqrt{T}}\Phi\left(f\mid\xi\right)\right]$$

converge in $L^{2n}\left(\Pi_{0}\right)$ per ogni $f \in \mathscr{C}_{3,b}$ ad un funzionale limite $\Psi\left(f \mid \xi\right)$.

Inoltre per ogni $n\left(\frac{\nu}{2}-2\right) > 1 \ \exists \ \bar{\Omega}' \subset \hat{\Omega} \ tale \ che \ \Pi_0\left(\bar{\Omega}'\right) = 1 \ e \ \forall \xi \in \bar{\Omega}' \ la$ sequenza $\Psi_T\left(f \mid \xi\right)$ converge $\forall f \in \mathscr{C}_{3,b}$.

I teoremi (0.4) e (0.5) studiano i contributi di ordine $O\left(\frac{1}{\sqrt{T}}\right)$ e $O\left(\frac{1}{T}\right)$ che appaiono nel TLC ottenendo correzioni finite dipendenti dalla particolare realizzazione ξ del mezzo. È inoltre possibile dare una formula ricorsiva per le correzioni di ordine successivo. Infatti se per ogni $m \in \mathbb{N}^+$ definiamo le grandezze:

$$\Phi_{T}^{1}\left(f|\xi\right) \equiv \sqrt{T} \left[\mu_{T}^{\xi}\left(f\right) - \mu\left(f\right)\right]$$

$$\Phi_{T}^{2}\left(f\mid\xi\right) \equiv T \left[\mu_{T}^{\xi}\left(f\right) - \mu\left(f\right) - \frac{1}{\sqrt{T}}\Phi^{1}\left(f\mid\xi\right)\right]$$

$$\Phi_{T}^{m}\left(f\mid\xi\right) \equiv T^{\frac{m}{2}} \left[\mu_{T}^{\xi}\left(f\right) - \mu\left(f\right) - \frac{1}{\sqrt{T}}\Phi^{1}\left(f\mid\xi\right) - \dots \frac{1}{T\frac{m-1}{2}}\Phi^{(m-1)}\left(f\mid\xi\right)\right]$$
 dove:

$$\Phi^{(k)}\left(f\mid\xi\right) \equiv \lim_{T\to\infty} \Phi_{T}^{(k-1)}\left(f\mid\xi\right), \qquad 1\leq k\leq m$$

vale allora , come si dimostra nella tesi (non pubblicata) del Dott. L. Pasqualini, il seguente risultato:

Teorema 0.6. Dato $m \ge 1$, per ogni $\nu \ge 2m + 1$ e per ogni fissato $n \ge 1$, se ϵ è sufficientemente piccolo, la sequenza dei funzionali:

$$\Phi_{T}^{m}\left(f\mid\xi\right)\equiv T^{\frac{m}{2}}\left[\mu_{T}^{\xi}\left(f\right)-\mu\left(f\right)-\frac{1}{\sqrt{T}}\Phi^{1}\left(f\mid\xi\right)-\dots\frac{1}{T^{\frac{m-1}{2}}}\Phi^{(m-1)}\left(f\mid\xi\right)\right]$$

converge in $L^{2n}_{\Pi_0}$, per ogni $f \in \mathscr{C}_{m+1,b}$, ad un funzionale limite $\Phi^{(m)}(f|\xi)$ Inoltre per ogni $n(\frac{\nu}{2}-2) > 1 \exists \tilde{\Omega} \subseteq \hat{\Omega}$ tale che $\Pi_0(\tilde{\Omega}) = 1$ e $\forall \xi \in \tilde{\Omega}'$ la sequenza $\Psi_T(f|\xi)$ converge $\forall f \in \mathscr{C}_{m+1,b}$.

Ne viene che i risultati ottenuti in merito all'andamento dei termini di ordine maggiore nell'espansione del TLC, per tempi lunghi e $\nu \geq 3$, dipendono dall'ambiente e la tradizionale espansione delle potenze di $T^{-\frac{1}{2}}$ si riduce ad un numero finito di termini, più precisamente essa è data dai termini di ordine $T^{-\frac{k}{2}}$, dove $k = \left[\frac{(\nu-1)}{2}\right]$ è l'intero più grande tra quelli più piccoli di $\frac{\nu}{2}$. Le tecniche utilizzate per ottenere i teoremi (0.4), (0.5) e (0.6) falliscono in dimensione $\nu = 1$ e $\nu = 2$ dove le correzioni al TLC non sono più date da termini finiti, ovvero dai funzionali $\Phi^{(m)}(f|\xi)$, ma risultano essere, quando opportunamente normalizzate, delle variabili gaussiane.

In particolare in [7] si dimostra che in dimensione $\nu=1$ la correzione al TLC è data da un termine di ordine $T^{-\frac{1}{4}}$, dipendente dall'ambiente che, se opportunamente normalizzato, tende, per $T\to\infty$, ad una variabile aleatoria gaussiana.

Più precisamente sia f una funzione regolare e consideriamo, fissata una particolare realizzazione ξ del mezzo, l'usuale media normalizzata. Separiamo il contributo dovuto alla perturbazione aleatoria al RW libero nel seguente modo:

$$\sum_{x \in \mathbb{Z}} P\left(X_T = x | X_0 = 0; \xi\right) f\left(\frac{x - \mathbf{b}T}{\sqrt{T}}\right) =$$

$$= \sum_{x \in \mathbb{Z}} P_0^T(x) f\left(\frac{x - \mathbf{b}T}{\sqrt{T}}\right) + T^{-\frac{1}{4}} \hat{\mathcal{Q}}_T(f|\xi). \tag{4}$$

Il risultato principale di [7] consiste nel seguente:

Teorema 0.7. Se ϵ è sufficientemente piccolo, la correzione $\hat{\mathcal{Q}}_T(f|\xi)$ tende in distribuzione, quando $T \to \infty$, ad una variabile gaussiana centrata avente dispersione pari a:

$$\mathfrak{M} \int_0^1 ds \int du K_\sigma^2(s, u) \zeta(s, u) \left(\int dv K_\sigma(1 - s, v) f'(u + v) \right)^2.$$
 (5)

dove:

- · $\sigma^2 \equiv \sum_{u \in \mathbb{Z}} P_0(u) (u \mathbf{b})^2$ rappresenta la dispersione del RW mediato.
- $K_{\sigma}(s,u) \equiv \frac{e^{-\frac{u^2}{2\sigma^2 s}}}{\sqrt{2\pi\sigma^2 s}}$ è il nucleo del calore.
- $\cdot \zeta(s,u)$ rappresenta un rumore bianco nello spazio tempo, ovvero:

$$\langle \zeta(s, u) \zeta(s', u') \rangle \equiv \delta_{s,s'} \delta_{u,u'}.$$

· M è una costante che viene determinata in [7].

L'equazione (5) dimostra come l'ambiente agisca sostanzialmente punto per punto nello spazio e nel tempo.

0.1.4 Risultati contenuti nella tesi.

I risultati originali di questa tesi consistono nello studio delle correzioni al TLC tanto per il RW X_T , in dimensione $\nu=2$, quanto per i corrispondenti cumulanti di ordine 1 e 2 in dimensione $\nu=1,2$.

In particolare definito:

$$Q_T(x \mid \xi) \equiv P(X_T = x \mid X_0 = 0; \xi) - P_0^T(x)$$
(6)

faremo vedere che il termine aleatorio:

$$\mathcal{Q}_T(f \mid \xi) \equiv \sqrt{\frac{T}{\ln T}} \sum_{x \in \mathbb{Z}^2} Q_T(x \mid \xi) f\left(\frac{x - \mathbf{b}T}{\sqrt{T}}\right) \tag{7}$$

tende in distribuzione, per f sufficientemente regolare e per $T \to +\infty$, ad una variabile gaussiana con media nulla e varianza pari a:

$$\sum_{i=1}^{2} \mathfrak{M}_{i} \int_{0}^{1} ds \int du \ K_{C}^{2}(s, u) \left(\int K_{C}(1 - s, v) f_{i}(u + v) dv \right)^{2}$$
 (8)

dove:

$$K_C(s,v) = \frac{\sqrt{C}}{2\pi s} \cdot e^{-\frac{A(v)}{2s}}$$

mentre le costanti \mathfrak{M}_i verranno determinate nel Capitolo 2 della tesi.

Inoltre una volta definite le componenti del vettore della media:

$$\mathscr{E}_i^T(\xi) \equiv \mathbb{E}\left((X_t)_i \mid X_0 = 0, \xi\right) - b_i T \tag{9}$$

essendo $\mathbf{b} \equiv (b_1, \dots, b_{\nu})$ e quelle della matrice di covarianza:

$$\mathscr{C}_{ij}^{T} \equiv \mathbb{E}\left((X_T - \mathbf{b}T)_i(X_T - \mathbf{b}T)_j \mid X_0 = 0, \xi\right) - \mathfrak{c}_{ij}T$$
(10)

per $i,j=1,\dots,\nu$ e $\nu=1,2$ faremo vedere che valgono i seguenti teoremi:

Teorema 0.8. Per $\nu = 1$, se ϵ è sufficientemente piccolo, una volta definita $S^T \equiv \langle (\mathcal{E}_T)^2 \rangle^{\frac{1}{2}}$, la sequenza:

$$\frac{\mathscr{E}_T(\xi)}{S^T}$$

converge in distribuzione, per $T \to \infty$, ad una variabile gaussiana avente media nulla e varianza pari ad 1 ed inoltre si ha $S^T \asymp T^{\frac{1}{4}}$.

Teorema 0.9. Per $\nu = 2$, se ϵ è sufficientemente piccolo, una volta definita $S^T \equiv \langle (\mathcal{E}_T)^2 \rangle^{\frac{1}{2}}$, la sequenza:

$$\frac{\mathscr{E}_T(\xi)}{S^T}$$

converge in distribuzione, per $T \to \infty$, ad una variabile gaussiana avente media nulla e matrice di covarianza:

$$\Sigma \equiv \{\mathfrak{b}_{ij}\} = \{\langle \mathfrak{b}_i(\cdot)\mathfrak{b}_j(\cdot)\rangle\}$$

essendo $\mathfrak{b}_i(\cdot) \equiv \sum_{u \in \mathbb{Z}^2} u_i c(u; \cdot)$. Inoltre $S^T \asymp (\ln T)^{\frac{1}{2}}$.

Teorema 0.10. Per $\nu = 1$, se ϵ è sufficientemente piccolo, una volta definita $\tilde{S}^T \equiv \langle (\mathscr{C}^T)^2 \rangle^{\frac{1}{2}}$, la sequenza:

$$\frac{\mathscr{C}^T(\xi)}{\tilde{S}^T}$$

converge in distribuzione, per $T\to\infty$, ad una variabile gaussiana avente media nulla e varianza pari ad 1 ed inoltre si ha $\tilde{S}^T\asymp T^{\frac34}$.

Teorema 0.11. Per $\nu = 2$, se ϵ è sufficientemente piccolo, una volta definita $\tilde{S}_{ij}^T \equiv \langle (\mathscr{C}_{ij}^T)^2 \rangle^{\frac{1}{2}}$, la sequenza:

$$\frac{\mathscr{C}_{ij}^T(\xi)}{\tilde{S}_{ij}^T}$$

converge in distribuzione, per $T \to \infty$, ad una variabile gaussiana avente media nulla e varianza pari ad 1 ed inoltre $\tilde{S}_{ij}^T \simeq T^{\frac{1}{2}}$.

Bibliografia

- [1] Boldrighini C., Ignatyuk I.A., Malyshev V.A., Pellegrinotti A.: Random walk in dynamic environment with mutual influence. Stochastic Processes and their applications 40, 157-177 (1992)
- [2] Boldrighini C., Minlos R.A., Pellegrinotti A.: Central limit theorem for the random walk of one and two particles in random environment with mutual interaction. Advances in soviet Mathematics Volum **20** (1994) (American Mathematical Society)
- [3] Boldrighini C., Minlos R.A., Pellegrinotti A.: Interacting random walk in dynamical random environment. I. Decay of correlations. Amn. Inst. Henri Poincarè 30, n.4, 519-558 (1994)
- [4] Boldrighini C., Minlos R.A., Pellegrinotti A.: Interactin random walk in dynamical random environment. II Environment from the point of view of the particle. Ann. Inst. Henri Poincarè 30, n.4, 559-605 (1994)
- [5] Boldrighini C., Minlos R.A., Pellegrinotti A.: Almost-sure central limt theorem for a direct polymers and random corrections. Commun. Math. Phys. (1997)

BIBLIOGRAFIA BIBLIOGRAFIA

[6] Boldrighini C., Minlos R.A., Pellegrinotti A.: Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment. Probability Theory and realted fields 109, 245-273, Springer Verlag (1997)

- [7] Boldrighini C., Pellegrinotti A. : $T^{-1/4}$ noise for a random walks in dynamic environment on \mathbb{Z} Moscow Mathematical Journal, Volume 1, Number 3, July-September 2001, Pages 1-16
- [8] Boldrighini C., Minlos R.A., Pellegrinotti A.: Central limit theorem for a random walk in dynamical environment: integral and local. Theory of Stochastic Processes, vol. 5 (21). n.3-4 1999 pp. 16-28.
- [9] Gihman I.I., Skorohod, A.V.: The theory of stochastic processes I. Grundlhren der methematischen wissenschaften 210 Springer-Verlag (1974)
- [10] Ibraghimov I.A., Linnik Yu. V.: Independent and stationary sequences of random variables. Ed. by J. F. C. Kingman. - Groningen, Wolters-Noordhoff. (1971).
- [11] Revesz P.: Random walk in random and non-random environments, ed. World scientific. (1990)
- [12] Billingsley P.: Convergence of probability mesaures. ed. Jhon Wiley and Sons. (1968)
- [13] SinaI Y.: Probability theory: an introductory course. ed. Springer-Verlag, 1974-1979, vol I.