
Università degli Studi “Roma Tre”

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Matematica

Cryptographic hash functions: algorithms
for collision searching and

lambda-calculus optimal reduction

Tesi di Laurea Magistrale
Anno Accademico 2007/2008

Laureanda
Simona Giovannetti
Matricola: 269957

Relatore
Marco Pedicini

KeyWords: Hash functions, Collision Attacks, Lambda-calculus, Optimal Reduction.
MSC AMS: 06e30, 94a60, 94a62, 03b40, 68n18.

1 HASH FUNCTIONS AND MD4 2

1 Hash Functions and MD4

Since the early development of internet as a data communication system,
there is a remarkable diffusion of data exchange even when they are private
and official. This led to the study of a way of assuring the authentication of
the sent document. This is due to the possible interceptions and potential
alterations of the data, that can occur during the path between the sender
and the receiver. A way of verifying this authenticity is the use of digital sig-
nature. The digital signature is an authentication of the digital documents
which is similar to the traditional handwritten signature. A pair (document,
signature) represents a signed document-record, or, to be more clear, a doc-
ument to which has been attached a signature. The verifying algorithm can
be used by anyone at any time in order to establish the authenticity of a
document digital signature.

Hash functions are creating and verifying algorithms of the digital sig-
nature. We give their formal definition.

Definition 1. A hash function (or unkyed hash function) is a function
h : X → Y, where X is the set of possible messages and Y is a finite set of
possible message digests or authentication tags.

In an abstract level, a hash function is a function that compress a binary
sequence of arbitrary length (generally very high) to another one with a
fixed low length (see Figure 1). Therefore, because the common and typical
use of hash functions, we give two additional important properties to be
added to their definition.

Property 1 (Compression). h maps an input x of arbitrary finite bitlength,
to an output h(x) of fixed bitlength n.

Property 2 (Ease of computation). Given h and an input x, h(x) is easy1

to compute.

Henceforth, we use notation

h : {0, 1}∗ −→ {0, 1}n

for unkeyed hash functions that satisfy the two properties above. Moreover,
we generally use m to identify input message.

Evidently, because the set length, a hash function could not be injective,
or better still, it is strongly not injective. This is not enough: given an
initial value, it has to be computationally hard compute one or more images

1The therm ”easy” (like ”computational infeasible”) is intentionally left without defi-
nition: it is intended it be interpreted relative to an understood frame of reference. Easy
might mean polynomial time and space, or within a certain number of machine operations
or time units.

1 HASH FUNCTIONS AND MD4 3

Figure 1: General idea for hash functions

that have the same hash value. This security concept is expressed in these
three problems:

Definition 2. Given a hash function h : {0, 1}∗ → {0, 1}n and a message
digest y, the Preimage problem consists in finding an initial message m
such that h(m) = y.

If Preimage can be solved for a given y, then (m, y) is a valid pair. A
hash function for which Preimage cannot be efficiently solved is said to be
one-way (OWHF)2 or preimage resistant .

Definition 3. Given a hash function h : {0, 1}∗ → {0, 1}n and an initial
message m, the Second Preimage problem consists in finding m′ such that
m′ 6= m and h(m′) = h(m).

If Second Preimage can be solved, given m ∈ {0, 1}∗, (m′, h(m)) is a
valid pair. A hash function for which Second Preimage cannot be efficiently
solved is said to be second preimage resistant (CRHF)3 or alternatively
weak collision resistant.

Definition 4. Given a hash function h : {0, 1}∗ → {0, 1}n, the Collision
problem consists in finding m,m′ ∈ {0, 1}∗ such that m′ 6= m and h(m′) =
h(m).

If Collision can be solved, if y = h(m) = h(m′), the two pairs (m, y)
and (m′, y) are valid pairs. A hash function for which Collision cannot be
efficiently solved is said to be collision resistant (CRHF)3 or alternatively
strong collision resistant.

An ”ideal” hash function is such that the only efficient way to determine
the value of h(m) for a given m is to actually evaluate the function h at the

2OWHF = One-Way Hash Function
3CRHF = Collision Resistant Hash Function. It is the same for second-preimage and

collision case: we will demonstrate that they are equivalent

1 HASH FUNCTIONS AND MD4 4

value m. It is important that this should remain true even if many other
values h(m1), h(m2), ... have already been computed.

The random oracle model provides a mathematical model of an ideal
hash function: in this model, a hash function h is chosen randomly, and we
can access to h only through ”the oracle”. This means that we have not a
formula or an algorithm to compute values of the function h: we can, just,
query the oracle to compute the value h(m).

A consequence of the definition of a random oracle model, is the following
independence property.

Theorem 1. Let h be an hash function chosen randomly. Let us suppose
that the values h(mi) have been determined (by querying an oracle for h) for
all 1 ≤ i ≤ k. Then Pr[h(x) = y | h(m1) . . . h(mk)] = 1

2n for all m 6= mi ∀i
and ∀y ∈ {0, 1}n.

Therefore, whatever is the number of evaluated terms, probability to
know which will be hash evaluation of initial message m, is 1

2n . A true
random oracle does not exist, but a good hash function ”behave” like a
random oracle.

For what we said, an algorithm in the random oracle model can be
applied to any hash function; for this reason we study the complexity of
the three problems defined above in this model. The algorithms we analyse
are randomized algorithms: they can make random choices during their
execution.

Preimage Following algorithm is a brute-force attack against preimage
problem.

Algorithm 1: FIND-PREIMAGE (h, y, Q)

choose any m1, . . . ,mQ ∈ 0, 1∗,
for each mi with 1 ≤ i ≤ Q

do
{

if h(mi) = y
then return (mi)

return (failure)

Theorem 2. For any m1, . . . ,mQ, the average-case success probability
of Algorithm 1 is ε = 1− (1− 1

2n)Q.

Second Preimage Next algorithm tries solve the Second Preimage prob-
lem.

1 HASH FUNCTIONS AND MD4 5

Algorithm 2: FIND-SECOND-PREIMAGE (h, m,Q)

y ← h(m)
choose m1, . . . ,mQ−1 ∈ 0, 1∗

for each mi with 1 ≤ i ≤ Q− 1

do
{

if h(mi) = y
then return (mi)

return (failure)

It is similar to the previous algorithm, in the steps and in the analysis.

Theorem 3. For any {m1, . . . , mQ−1} ∈ 0, 1∗, the success probability
of Algorithm 2 is ε = 1− (1− 1

2n)Q−1.

Collision Following algorithm is a brute-force attack against collision prob-
lem.

Algorithm 3: FIND-COLLISION (h, Q)

y ← h(m)
choose {m1, . . . , mQ} ∈ 0, 1∗

for each mi with 1 ≤ i ≤ Q
doymi ← h(mi)

if ymi = ymj for some mi 6= mj

then return (mi,mj)
else return (failure)

This algorithm has a high base in the birthday paradox: it says that
in a group of 23 people (obviously randomly chosen), at least two will
celebrate birthday in the same day with probability at least 1/2. This
fact allows to reduce complexity.

To compare rough complexities of above algorithms for a typical hash
function h : {0, 1}∗ → {0, 1}n, we can see the following table.

attack rough complexity
preimage 2n

2nd preimage 2n

collision
√

2n = 2
n
2

For Preimage and Second Preimage algorithms we have to compute all
variables mi. In case of collision algorithm we have base of birthday paradox,
and complexity go down to value 2

n
2 : for this reasons sometimes, to indicate

collision brutal attack we speak of birthday attack .
A particular construction for unkeyed hash functions is Iteration of hash

functions. It is composed by three steps:

1 HASH FUNCTIONS AND MD4 6

Figure 2: Compression by compression, every single part of padding product
xi takes part in the process in order to product an unique output ht with
length n.

preprocessing step: we fix a length n. Let x be an input string with |x| ≥ m + n + 1.
Using a public algorithm we construct a new string x′ such that |x′| ≡
0(Mod n). Therefore, we have

x′ = x1||x2|| . . . ||xt

where |xi| = n for 1 ≤ i ≤ t;

processing step: let IV be a public initial value, that is a bitstring of length n. We
make the following computation (resumed in Figure 2):

IV −→ h0

compress(h0||x1) −→ h1

compress(h1||x2) −→ h2
...

...
...

compress(ht−1||xt) −→ ht

output transformation: we consider public function g : {0, 1}n → {0, 1}l. We can define h(x)
output as g(ht).

A particular family that has this construction is the MD-Family. MDx-
family consists of the most useful hash functions (i.e. MD4, MD5, SHA-1
etc.). In 1990, Rivest developed a new hash function of this family, MD4[1],
for use in message integrity checks. It is again in use in computer world,
for example, in the ed2k URI scheme to provide a unique identifier for a
file in the popular eDonkey2000 / eMule P2P networks. Anyway, it was the
base for the most popular and used hash function of this family MD5[2],
developed in 1991. It has been employed in many security applications,
and is also commonly used to check the file integrity especially for online
softwere. It is even used by the Nevada State Gaming Authority to ensure
slot-machine ROMs have not been tampered with.

2 ATTACKS ON MD-FAMILY AND OPTIMAL REDUCTION 7

MD4

Here we present MD4 principal steps. With the preprocessing step,
input message m is transformed in M that is

M = m0 || m1 || . . . || mN−1

where every mi is a 32-bitstring, and N is multiple of 16. We can write M
in a different way:

M = M [0] || . . . || M [d] where d =
N

16
− 1

in which M [l] = [ml
0, · · · ,ml

15], so M is composed by 16 words that we can
recall with M [l][j] = ml

j . For each M [l], we apply MD4 processing step.
We denote with ri a 32-bit variable that records the MD4-algorithm value

in i-th step, where 0 ≤ i ≤ 47. It is called state variable, because contains
the state we have in step i. Fixed an initial value IV = (r−4, r−3, r−2, r−1),
to evaluate state variables, we apply rule

ri = (ri−4 + fi(ri−1, ri−2, ri−3) + mwi + ki) ≪si , for 0 ≤ i ≤ 47

where

• wi, ki and si are step constants;

• fi is a non-linear boolean function;

• ≪si is the left circular rotation of si bits.

After last step, we define a new initial value IV = (r44 +r−4, r45 +r−3, r46 +
r−2, r47 + r−1), and restart.

After d repetition of processing step, the output is given by the con-
catenation of the results of the last four process steps:

MD4(m) = r44 || r45 || r46 || r47

.

2 Attacks on MD-family and Optimal Reduction

Much of the studied hash function attacks have MD-family as target.
One of the attacks which most influenced the MDx-family cryptography
history, is Wang et al differential attack [3]. It gives a new beginning to
go on with studies, because it is not automated: in its first presentation,
the algorithm had some part in which intuition was used. One of the most
significant result of automation research is given by Schläffer and Oswald

2 ATTACKS ON MD-FAMILY AND OPTIMAL REDUCTION 8

[4]: they present an algorithm on MD4 for searching differential path using
signed difference and carry expansions.

Definition 5. Let x and x′ be in {0, 1}32. The signed difference ∆x between
x and x′, is defined bitwise by

∆x = x− x′ = (δx31, . . . , δx0) with δxj = x′j − xj ∈ {−1, 0, 1}, 0 ≤ j ≤ 32

An abbreviation form of ∆x is

∆x = ∆[d1, d2, ..., dw] where di =
{

j if δxj = 1
−j if δxj = −1

If we have a modular difference, we can obtain diverse signed difference, each
one connected to the other by a specific rule called Carry Expansion.

Definition 6. Carry expansion on a signed difference ∆[d1, . . . , dw], is given
by the rule

∆[d1, . . . , di, . . . , dw] =

=
{

∆[d1, . . . ,−di, . . . , dw] + ∆[di + 1] if sign(di) = 1
∆[d1, . . . ,−di, . . . , dw] + ∆[−(|di|+ 1)] if sign(di) = −1

(1)

Schläffer and Oswald find relations between input differences and prop-
agations of them during the computation. Their algorithm is composed by
three steps. We report their general aspects.

target differences computation: for every step we determine the target
output difference ∆ti for the function fi, that are the desired differ-
ence we want to obtain as output of function fi at step i. To obtain
target differences, the message differences are computed backward and
forward in the MD4 algorithm.

cancellation search: in each step i, we try to achieve differences in relation
to the target difference ti, using function fi and carry expansions. In
this step we found several conditions to evaluate differential path.

correction step: often, in previous step we obtain impossible paths, that
are differential paths with at least one contradiction. In such impos-
sible paths a specific target difference cannot be met in some step or
a zero output difference of the function fi cannot be achieved. As a
consequence, these additional (disturbance) differences induced by the
contradictions, need to be cancelled in some other step.

From automation of Schläffer and Oswald, we thought of trying some-
thing even more general: we reread cryptographic hash functions with the
more abstract λ-calculus. Schläffer and Oswald try to find collision on MD4,
researching a differential path. Using graph representation of λ-terms, we

2 ATTACKS ON MD-FAMILY AND OPTIMAL REDUCTION 9

try to find ”true” path on a graph that represent operations of the algorithm.
To do this, we use optimal reduction technique on graphs: if a λ-term or a
sub-λ-term is repeated, it is written only once. Shared parts conrespond to
partial collision of Schläffer and Oswald attack.

The graph representation of λ-terms are Syntactic trees.

Definition 7. Let M be in Λ. A syntactic tree of λ-term M is a labelled
tree4 that represent the λ-term M . G is the syntactic trees set.

Definition 8. We define T : Λ→ G application from λ-term set to syntactic
trees set. It is defined recursively:

1. let x be in V ; T (x) is that is called variable node;

2. let M, N be Λ; then T ((M)N) is that is called application
node;

3. let M be in Λ and x be in V ; then T (λxM) is that is called λ
node: left edge of λ node is connected with each occurrence of bound x
variable.

Example 1. Let M e λ-term λx((x)y)(x)y. Variables x and y are twice
used. The corrisponding syntactic tree T (M) is

Optimal reduction was introduced by Lévy [5] and developed by Lamping
[6]. It consists of modifying graphs without losing of sharing (if it is possible).

Using this technique, we tried to rewrite collision problem on MD4. This
approach has been harder than we thought and we have not been able to

4A tree is a connected and acyclic graph.

3 THESIS CONCLUSION 10

Figure 3: This is a 5-list of true results of functions AND and OR

bring it to an end. In any case we found a sharing propriety of the function
results which constitutes a preliminary step for the study of new methodol-
ogy for automatic research of collisions in hash functions.

Proposition 1. Given two functions F1 and F2 so that Fi : {0, 1}n →
{0, 1}m, there exist two λ-terms, MF1 and MF2, so that if (MF1)N=(MF2)P,
the two results are shared in corresponding Lamping’s graph.

This kind of approach is an exhaustive search of function inputs. Its
complexity is about O(k2n), where n is the input length and k function
complexity. However, if we want to evaluate the function more times, we
have to computed this search once. Therefore, if iteration is used, this
approach can be advantageous. Moreover, we can choose to control either
input or output: for example in both case Figure 3 and example above, we
shared results, but in first case we check similar output; instead in second
case, we check input sequences, so that we can have same result not shared:
in Figure 4, we have eight different result for function f ; actually, they are
True and False. We can share again, obtaining just two different result,
but in this way we lose informations. Therefore, we separate input cases.

3 Thesis Conclusion

As in all cryptography, also in this thesis algebra, probability and compu-
tational theory are involved. This last has a particular importance, because

3 THESIS CONCLUSION 11

Figure 4: Here we present an example in which eight shared part (eight little
triangles at the top of the graph) are achieve by twelve functions.

REFERENCES 12

we use λ-calculus to introduce a new point of view for hash functions. In ge-
ometry of interactions, this graphs are represented as matrices: edge labels
solve relations that define a particular algebra. Ultimate aim is to develop
tools based on mathematics properties for finding hash function collisions.
We think that this method with the property described in Proposition 1
could be useful for differential path search.

We were not able to find an attack algorithm, also because sometimes
graph read back is not easy enough. Anyway, in this thesis we begin
analysing hash function attacks from a new point of view.

References

[1] R. Rivest. The MD4 Message-Digest Algorithm. RFC 1320 (Informa-
tional), April 1992.

[2] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional), April 1992.

[3] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, Proceedings, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2005.

[4] Martin Schläffer and Elisabeth Oswald. Searching for Differential Paths
in MD4. In Matthew J. B. Robshaw, editor, Fast Software Encryption
2006, Proceedings, volume 4047 of Lecture Notes in Computer Science,
pages 242–261. Springer, 2006.

[5] Jean-Jacques Lévy. Optimal reduction on lambda-calculus. In To H.B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formal-
ism, pages 159–191, 1980.

[6] J. Lamping. An Algorithm for Optimal Lambda Calculus Reduction.
1990.

[7] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of
Functional Programming Languages, volume 45. 1998.

[8] J. L. Krivine. ”Lambda-calculus, Types and Models”. 1993.

[9] Douglas R. Stinson. Cryptography: Theory and Practice, Second Edi-
tion. Chapman & Hall/CRC, February 2002.

[10] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions
for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology
ePrint Archive, Report 2004/199, 2004. http://eprint.iacr.org/.

