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Preface

In 1992, the Iranian intelligence agency arrested a salesman for Crypto AG,
a Swiss company specialized in communications and information security,
accusing him of spying for the United States and Germany.

The salesman, Hans Buehler, on his 25th trip to Iran on behalf of Crypto,
was held in solitary confinement and interrogated, in his own words, “for
five hours a day for nine months”, until Crypto paid $1 million to win his
freedom.

This episode was only the beginning of a big inquiry on Crypto AG,
accused by many of his clients (Lybia, Iran and Iraq in particular) to col-
laborate with the N.S.A., the U.S. National Security Agency.

Their intelligence departments had evidence that, probably for decades,
the algorithms Crypto sold them were totally known by the N.S.A. and some
hidden functionalities were added to permit an easier attack.

As a consequence, all those countries, used to buy their security systems
from western companies, began to build their own cipher machines, now
totally unknown to the Occidentals.

This incredible story, that seems to come out of a 007 movie, brings us
to the main focus of this thesis:

is it possible to break a cryptosystem without knowing the type
of cipher being used?

Let’s make a brief overview.

When someone wants to send a message over an unprotected channel,
he has to face two different problems.

First, even in a very generic acceptation of the idea of “communicating
over a channel”, such as when we write on a hard-disk or a CD, we have
to face the eventuality that some data get distorted. The data we transmit
(or write) are usually altered with a certain probability, called noise of the
channel.

An entire branch of information theory, called coding theory, developed
expressly to manage this trouble, giving birth to a large set of error cor-
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recting codes, able to codify the informations in order to allow the detection
and correction of potential transmission errors.

In most cases, a code consists in adding to the message a redundancy,
as short as possible, calculated as a function of the message. The recipient
get the message together with the redundancy, both affected by the noise,
and uses the relation between them to identify the most probable original
message.

The codes are usually a public convention and a particular channel is
associated with a particular code, especially known to be efficient with that
channel.

The second problem, much more ancient, is to protect the message from
voluntary attacks, mining his confidentiality, integrity or authenticity. This
is the reign of cryptology, the art of hiding informations.

Before a message can be sent over an unprotected channel, it has to be
enciphered so that only the expected recipient can decipher it and get the
original message.

For handiness, the process of ciphering a message follow a particular con-
vention, depending on the cryptographic protocol being used, whose security
is based on the knowledge of a secret parameter, called the key.

In 1883, in a list of his fundamental principles for military ciphers, the
famous cryptographer Auguste Kerckhoffs stated what is known as the Ker-
ckhoffs’ principle:

“a cryptosystem should be secure even if everything about the
system, except the key, is public knowledge”

It means that the secrecy of the key should alone be sufficient for a
good cipher to maintain at least confidentiality under an attack, and the
strength of a cryptographical protocol shouldn’t be based on the secrecy of
the cipher’s algorithm.

Anyway, what usually happens in practice is that a message is first en-
ciphered and then coded, following a protocol shared by the sender and
the recipient. The attacker doesn’t know not only the key, but neither the
specifications of the cryptosystem and the error correcting code used.

In particular, contrary to what one could think, the continuous develop-
ment of intelligence agencies and espionage, with episodes like the one we
reported, is driving everybody to build their own cryptosystem, making the
attacker’s work more and more difficult.

What we will do in this thesis is to consider a particular class of ciphers
and put ourselves in the shoes of an attacker, to try to understand how
many informations are achievable about the cipher and the original message,
with the knowledge of the only material available in quite big quantity:
ciphertext.



Part I

Introduction and Theoretical
Background
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Chapter 1

Introduction to cryptology

The term cryptology, from greek κρυπτoς (kryptos), that means “hidden”,
and λoγoς (logos), that means “study”, is the “science of the secret”. It
pools two different branches:

• cryptography, whose task is defensive, using mathematical results to
build cryptosystems able to resist to every known attack

• cryptanalysis, whose task is offensive, trying to break or at least to
weak the ciphers, looking for flaws in their algorithm

These two points of view are tightly linked, two sides of the same coin,
since each of them needs the knowledge of the results of the other one.

The status of the cryptanalyst, anyway, is much more comfortable, be-
cause it’s easy for him to prove he broke a cipher. The cryptographer, on
the contrary, can only prove that his cipher is resistant to a certain number
of known attacks, but the so called “provable security” is almost impossible
to obtain.

Now, let’s make a little overview on the history of cryptography.

1.1 Cryptography

Hiding informations to the enemies is a necessity as old as mankind.

The first way to protect a secret message, called steganography, consisted
in hiding the message itself, for example tatooing it on the shaved head of
the messenger and waiting for his hair to grow again.

Cryptography, contrarily, does not hide the message, but hides the in-
formations contained in it, so that the enemy can’t understand the message,
even if he intercepts it.

We can formalize a cryptosystem as follows:

Definition 1.1. We call cryptosystem a quintuple (P, C,K, E,D), where:

3



4 CHAPTER 1. INTRODUCTION TO CRYPTOLOGY

• P, C and K are three sets, respectively of the plaintexts, the cipher-
texts, and the keys

• E and D are two classes of functions parameterized by two keys
K,K ′ ∈ K, such that EK : P → C is the encryption function and
DK′ : C → P is the corrisponding decryption function

The trivial way to break a system is the so-called brute force attack, the
exhaustive search of the key by trying every possible element of the keyspace
K. This set has a very important role, because it must be large enough not
to permit such an attempt.

In general, we call attack to the cryptosystem any strategy able to reduce
the set of the possible keys and/or the cost necessary to find the right one.

Usually, given an alphabet A, we have P = C = An, so both the plaintext
m and the ciphertext c are n-uples of elements of A. By definition, c =
EK(m) and m = DK′(c) = DK′(EK(m)).

1.1.1 Symmetric cryptography

If the key K ′ is equal to the encryption key K, the scheme is called symmet-
ric. The secret key K is shared by the sender and the recipient, and hidden
to anyone else.

Symmetric cryptography is very ancient, since some of the oldest known
ciphers are the jewish “atbash”, cited in the Old Testament, the spartan
“scytale” and the roman “Ceasar cipher”, all examples of symmetric en-
cryption.

The atbash and the Caesar cipher are substitutions ciphers, meaning
that the encryption consists in substituting every element of the alphabet
with another one. The key is simply the rule used for the substitutions:

• in the atbash the first letter of the alphabet was swapped with the last
one, the second with the penultimate and so on

• in the Caesar cipher every letter was substituted with the one three
positions further down in the alphabet

Figure 1.1: Caesar cipher

Let’s notice that the
Caesar cipher, for example,
being based on a transla-
tion of the letters of the al-
phabet, is very unsafe, be-
cause the keyspace has only
26 elements (with the en-
glish alphabet), allowing a
brute force attack.
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Figure 1.2: A scytale

The scytale, instead, was a
wooden cylinder used togheter
with a leather strip. The strip
was twisted around the cilinder
and the message was written in
the direction of the stick, trans-
versely to the strip. The key was
the diameter of the cylinder, be-
cause twisting the strip around
a cylinder of a different thick-
ness entailed the outcome of a
different message.

We will see later in details how symmetric cryptography develloped and
how it is used nowadays.

1.1.2 Asymmetric cryptography

In the asymmetric cryptography, contrarily, every user of the cipher has
his own couple of keys, the encryption key K, called public key, and the
decryption key K ′, called private key.

The public key is public knowledge, anyone can use it to encrypt a mes-
sage that only the owner of the corrispondent private key can decrypt.

Asymmetric cryptography, contrary to symmetric one, is very recent.
Needing a big computational power, it was introduced only in the 70’s by
W. Diffie and M. Hellman.

Asymmetric protocols are based on the so called trapdoor functions,
mathematical functions, such as the discrete logarithm, easy to calculate
with the knowledge of a parameter, the trapdoor, but almost impossible to
compute without it.

Probably the most famous asymmetric cryptosystem is the RSA, that
takes his name from D. Rivest, A. Shamir and L. Adleman who developped
it in 1978. The RSA grounds on the difficulty of factorizing big integers: the
private key is a couple of big primes (about 512 bits each) and the public
key is their product. The algorithm is shown in figure 1.3

Asymmetric cryptography, apparently easier to implement, is usually
used only to cipher little messages, in particular to exchange a secret key
later used for a symmetric protocol.

The reasons are primarily two:

• Cost: RSA, one of the faster asymmetric protocols, is a thousandfold
slower than the DES, one of the more diffused symmetric block ciphers
(see later)

• Security: the strenght of public-key cryptography is based on the com-
putational complexity theory. This theory supposes the existence of
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(and search for) problems impossible to solve in polynomial time, so
perfect to be used in asymmetric protocols. This “non-computability”,
however, hasn’t ever been proved. So what if someone finds a way, for
example, to factorize in a faster way than what is now believed possi-
ble?

Figure 1.3: RSA algorithm

1.2 Characterization of symmetric cryptography

In this work we’re only interested in symmetric cryptography. It is the kind
of protocols used in military and business security, mainly for the reasons
exposed above.

What follows is its basic classification in block ciphers and stream ci-
phers.

1.2.1 Block ciphers

A block cipher is a symmetric key cipher operating on fixed-length groups
of digits, termed blocks, with an unvarying transformation. Usually this
ciphers applies to binary transmissions, so we will refer to them in that
context. A formal definition follows.

Definition 1.2. Let A be an alphabet of q symbols and K be the keyspace.
We call block cipher a memoryless encryption scheme which breaks up the
plaintext message m ∈ A∗ into strings (called blocks) of a fixed length n,
m = m1|m2| . . . |mi| . . . where each mi ∈ An, and encrypts one block at a
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time. The encryption transformation is EK : An → An′ , where K ∈ K is
the key used and n′ can be bigger than n.

Introduced by H. Feistel in 1973, block ciphers achieved success with the
Data Encryption Standard (DES), publicly released in 1976 and adopted as
a U.S. government Federal Standard.

DES originally had a block size of 64 bits and a key size of 56 bits, but,
as time went on, its inadequacy became apparent and a variant of DES,
called Triple DES, was widely adopted as a replacement. It triple-encrypts
blocks with (usually) two different keys, resulting in a 112-bit keys and 80-bit
security, and it is still considered secure.

DES has been superseded as a U.S. Federal Standard by the Advanced
Encryption Standard (AES), developed by two belgian cryptographers, Joan
Daemen and Vincent Rijmen, and submitted under the name Rijndael. AES
has a block size of 128 bits and three possible key sizes, 128, 192 and 256
bits.

In a block cipher both algorithms, EK for encryption and DK for de-
cryption, accept two inputs: an input block mi of size n bits and a key K of
size k bits, yielding an n′-bit output block. Usually n′ = n, so for each key
K, EK is a permutation (a bijective mapping) over the set of all possible
input blocks: the key selects one permutation from the 2n! possible ones.

The block size, n, is typically 64 or 128 bits, although some ciphers
have a variable block size. 64 bits was the most common length until the
mid-1990s, when new designs began to switch to the longer 128-bit length.
One of several modes of operation is generally used along with a padding
scheme to allow plaintexts of arbitrary lengths to be formatted in n-blocks
and encrypted. Each mode has different characteristics in regard to error
propagation, ease of random access and vulnerability to certain types of
attack. Typical key sizes include 40, 56, 64, 80, 128, 192 and 256 bits, but
80 bits is normally taken as the minimum key length needed to prevent brute
force attacks.

Most block ciphers are constructed by repeatedly applying a simpler
function, with an approach known as iterated block cipher or Feistel cipher.
Each iteration is termed a round, and the repeated function is termed the
round function. Typically, the number of rounds varies from 4 to 32: DES
has 16 rounds, AES has 10, 12 or 14 rounds, according to the lenght of
the key. The round function is usually a composition of arithmetic and
logical operations (especially XOR), S-boxes (substitution boxes) and per-
mutations.

1.2.2 Stream ciphers

A stream cipher is a symmetric key cipher where plaintext digits are com-
bined one-to-one with a pseudorandom stream, called keystream, typically
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by a modular sum (an exclusive-or (XOR) in the binary case). Formally:

Definition 1.3. LetA be an alphabet of q symbols andm = m1m2 · · ·mi · · · ∈
A∗ be a message. Given a set K, let K = k1k2 · · · ki · · · ∈ K∗ be the
keystream and Eki : A → A be a family of simple substitutions on A. A
stream cipher is a memoryless encryption scheme which encrypts the plain-
text message m one element at a time into the ciphertext c = c1c2 · · · ci · · · ∈
A∗, where ∀i ci = Eki(mi).

This class of ciphers is inspired by the so-called One-Time Pad, a stream
cipher where the keystream is a random stream as long as the message, used
only once and then changed everytime a new message has to be encrypted.

In 1949 Claude Shannon[15] showed that the OTP is unbreakable, or, in
his words, it has the property of perfect secrecy, meaning that the knowledge
of the ciphertext c gives absolutely no additional informations about the
plaintext m.

In his work on Information Theory, Shannon defined a function called
entropy, that measures the uncertainty’s degree of a random variable. If X
is a random variable assuming the values x0, x1, . . . , xn each with probability
P (X = xi) = pi, the entropy of X is defined as:

H(X) =

n∑
i=0

pi log
1

pi

where the base of the logarithm is the same base used to store informa-
tions and the unit of measurement of the entropy, usually 2.

If we think of a message as the outcome of a random variable, Shannon’s
entropy is a measure, in the sense of an expected value, of the amount of
information contained in a message. At the same time, it measures the
average information content we’re missing when we do not know the value
assumed by that variable.

In terms of entropy, the perfect secrecy can then be formulated as:

H(m) = H(m|c)

where H(m) is the entropy of the plaintext m, while H(m|c) is the
conditional entropy of m given the ciphertext c.

Shannon also showed that a necessary condition for perfect secrecy is

H(K) ≥ H(m)

It means that the uncertainty on the secret key must be at least as high
as the one on the plaintext. If the key’s lenght is k and the elements of
the keystream are chosen randomly and regardless one of the others, the
entropy of the key is H(K) = k, so Shannon’s condition become k ≥ H(m),
and this condition is obviously verified by the OTP.
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The OTP is, however, impossible to realize, because it implies that the
sender of the message is able to communicate to the recipient a key as long
as the message he wants to transmit. That’s why stream ciphers use a
pseudorandom key, generated from a shorter key easy to share by the parts.

Stream ciphers are a very important class of ciphers, widely used either
in the military and governmental or in the industrial security. They are
very easy to implement both in hardware and software, much faster than
block ciphers and, usually, have the remarkable property that an error in
the trasmission of a digit only affect that digit in the ciphertext and does
not propagate to other parts of the message, since the plaintext digits are
encrypted one at a time.

Furthermore, Shannon’s theory put strong bases for the development of
stream ciphers, since it highlights how the security of such a cipher only
depends on the randomicity of the keystream.

We can further classificate stream ciphers into synchronous and self-
synchronous ciphers.

In a synchronous stream cipher the keystream is generated independently
from the ciphertext, while in a self-synchronous one a finite state machine
also uses ciphertext digits to create the keystream.

The effect of this different design is that in a self-synchronous cipher, if
ciphertext digits are inserted or deleted, only a fixed number of plaintext
digits are lost in the decryption, since these ciphers have the capability of
re-establishing the synchronization.

Anyhow, in our work synchronous stream ciphers have a more preemi-
nent role. We can describe them schematically as in figure 1.4.

Figure 1.4: A typical synchronous stream cipher
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• the function Init generate an initial state σ0 from the key K and an
initial vector IV :

σ0 = init(K, IV )

• in every round a function f is used to update the internal state of the
cipher:

σt = f(K,σt−1)

• another function g is then used to generate the keystream zt as a
function of the key and the internal state:

zt = g(K,σt)

• finally the plaintext digits mt are combined with the keystream zt
through a function h to generate the ciphertext digits ct:

ct = h(mt, zt)

Let’s note that the function h(x, y) must be invertible in the first variable,
namely there must exist a function h−1 such that ∀t mt = h−1(ct, zt).

Usually, the plaintext, keystream and ciphertext digits are elements from
a finite field Fq. If h(mt, zt) := mt + zt is the modular sum, then the stream
cipher is called additive. The most common case is the additive with q = 2,
where the sum coincide with the bitwise XOR operation.



Chapter 2

Linear Feedback Shift
Registers

In the description of synchronous stream ciphers we gave previously, we
skipped the characterization of the keystream generator functions, probably
the most important primitive of those ciphers.

Particularly interesting in our work is a basic component of many ciphers:
the Linear Feedback Shift Register (LFSR).

A shift register of length L over Fq is a register with L stages, whose
state is a sequence of L elements of Fq each one memorized in one of the
stages. Governed by a clock, at every clock stroke the register undergoes a
transition where every element “shift” to the next stage, but the last one
which is outputted. The first stage, now empty, is filled with a new element
calculated as a function of the previous state. If the input element of a
shift register is a linear combination of its previous state, then the register
is called linear, shorten LFSR.

Formally, in a generic instant t the state of the register is a L-tuple
st = (st, . . . , st+L−1) ∈ FLq .

The initialization of the register is s0 = (s0, . . . , sL−1) and the sequence
generated by the LFSR is defined recursively from the initial state as

st+L =
L−1∑
i=0

aist+i, t ≥ 0

where ai ∈ Fq for all i and the sum obviously is modular in Fq.
The stages of the register involved in the feedback function, namely those

with ai 6= 0, are termed taps.
Clearly, the element st generated at time t depends only on the previous

state st−1, thus the whole sequence depends only on the initial state s0 and
on the feedback coefficients ai.

In the next sections we will see more in details the properties of the
sequences generated by a LFSR.

11



12 CHAPTER 2. LINEAR FEEDBACK SHIFT REGISTERS

Figure 2.1: A LFSR of length 7 over F2. The taps are in position 2 and 6,
so the feedback relation is st+7 = st+2 + st+6. The present state is 0100101.

2.1 Linear recurring sequences in Fq
First of all a formal definition.

Definition 2.1. Let L be a positive integer, a Lth-order linear recurring
sequence over a finite field Fq is a sequence {st}t∈N of elements of Fq such
that

st+L = aL−1st+L−1 + aL−2st+L−2 + · · ·+ a0st + a ∀t ∈ N (2.1.1)

with a, ai ∈ Fq, for all i = 0, . . . , L− 1.
Relation 2.1.1 is called the linear recurrence relation of the sequence, and

the terms s0, s1, . . . , sL−1, which generate the whole sequence, are called the
initial values. If a = 0 the sequence is called homogeneous, otherwise is
called inhomogeneous.

Remark 2.1. An inhomogeneous Lth-order linear recurring sequence can
always be seen as a homogeneous (L+ 1)th-order linear recurring sequence.
In fact, given relation 2.1.1 with a 6= 0, we can write{

st+L = aL−1st+L−1 + · · ·+ a0st + a

st+L+1 = aL−1st+L + · · ·+ a0st+1 + a

for all t and, subtracting the two equations, we get

st+L+1 = (aL−1 + 1)st+L + (aL−2− aL−1)st+L−1 + · · ·+ (a0− a1)st+1− a0st

Now, if we put bL = aL−1 + 1, bL−i = aL−i−1 − aL−i for all i = 1, . . . , L− 1
and b0 = −a0, we have the equivalent homogeneous (L + 1)th-order linear
recurring sequence

st+L+1 = bLst+L + bL−1st+L−1 + · · ·+ b1st+1 + b0st ∀t ∈ N

Hereinafter, then, we will consider only homogeneous sequences of the
form

st+L = aL−1st+L−1 + aL−2st+L−2 + · · ·+ a0st ∀t ∈ N (2.1.2)
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Definition 2.2. Given a Lth-order linear recurring sequence {st}t∈N, we
call its tth-state vector the vector

st = (st, st+1, . . . , st+L−1) ∈ FLq

The vector s0 is called the initial state vector of the sequence.

As we have already remarked, a linear recurring sequence is completely
determined by the initial state and the coefficients ai, so it can be seen as a
pair (s0,a), where a = (a0, a1, . . . , aL−1) ∈ FLq is the vector of the coefficients
of the linear recurrence relation 2.1.2.

If we consider the matrix A ∈ML(Fq) defined as

A =


0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2
...

...
. . .

...
...

0 0 · · · 1 aL−1


we can write the recurrence relation as

st = st−1A = st−2A
2 = · · · = s0A

t ∀t ∈ N

Note that the matrix A depends only on the linear recurrence relation
2.1.2 and not on the elements of the sequence. Studying its properties,
then, gives us informations on all the sequences satisfying the same relation,
regardless of the initial state.

2.1.1 Periodicity properties

Recurring sequences have very interesting periodicity properties.

Definition 2.3. Let {st}t∈N be a sequence in Fq. If there exist two integers
r > 0 and tr ≥ 0 such that

st+r = st ∀t ≥ tr

then the sequence is called ultimately periodic and r is a period of the se-
quence. The smallest period r̃ of a sequence is called its least period. If
tr̃ = 0 then the sequence is called periodic.

Lemma 2.1. Let {st}t∈N be a ultimately periodic sequence whose least
period is r̃. If r is another period of the sequence, then r̃ | r.

Proof. Let tr and t0 be to integers such that st+r = st for all t ≥ tr and
st+r̃ = st for all t ≥ t0. If r̃ 6| r, by the euclidean division we can write
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r = mr̃ + k, for some integers m ≥ 0 and 0 < k < r̃. Hence, for all
t ≥ max(t0, tr) we have

st = st+r = st+mr̃+k = st+(m−1)r̃+k = · · · = st+k

which means that k is a period of the sequence, but that’s impossible since
k < r̃ and r̃ is the least period.

Definition 2.4. Let {st}t∈N be a ultimately periodic sequence whose least
period is r̃, then we call the preperiod t̃ of the sequence the smallest non-
negative integer such that the equality st+r = st holds for all t ≥ t̃.

The following Proposition states that, as we would expect, in an ulti-
mately periodic sequence, the preperiod t̃ is the same for every period of the
sequence, so every periodicity begins from the same point.

Proposition 2.1. Let {st}t∈N be a ultimately periodic sequence whose
preperiod is t̃. Let r be any period of the sequence, then t̃ is the small-
est non-negative integer for which the equality st+r = st holds for all t ≥ t̃.

Proof. Let r̃ be the least period of the sequence, and r any other period.
We have {

st+r̃ = st ∀t ≥ t̃
st+r = st ∀t ≥ tr

where tr is the smallest non-negative integer for which the second equality
holds.

We want to show that tr = t̃. From lemma 2.1 we know that r̃ | r, so
there exists an integer h such that r = hr̃. Now:

• tr ≤ t̃: clearly it holds st = st+r̃ = st+hr̃ = st+r ∀t ≥ t̃ but we
know that tr is the smallest integer for which the last equality holds,
so it implies that tr ≤ t̃.

• tr ≥ t̃: by definition of t̃, st̃−1 6= st̃+r̃−1. If tr < t̃, then st̃−1 =
st̃+r−1 = st̃+hr̃−1 = st̃+r̃−1, which contradicts the inequality above. So
it must be tr ≥ t̃.

Periodicity properties are particularly interesting thanks to the following
Theorem.

Theorem 2.1. For all L > 0, every Lth-order linear recurring sequence in
any finite field Fq is ultimately periodic with least period r̃ ≤ qL − 1.
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Proof. To prove the Theorem it suffices to recall that a recurring sequence
is completely determined by its initial state. Passing through the all-zero
state brings obviously to the all-zero sequence, which is ultimately periodic
with least period 1. Since any state of the sequence is a vector st ∈ FLq ,

clearly the number of possible non-zero states is qL−1, so that’s the longest
possible period.

Remark 2.2. Note that not every ultimately periodic sequence is periodic.
For example, applying the recurrence relation st = st−1 to the initial state
(0, 1) generates the sequence 01111 . . ., which is ultimately periodic but not
periodic, since its preperiod is the initial 0.

We can obtain periodic sequences just using the following simple result.

Proposition 2.2. Let {st}t∈N be a linear recurring sequence in Fq satisfying
the recurrence relation 2.1.2. If a0 6= 0 then the sequence is periodic.

Proof. Thanks to Theorem 2.1, we know the sequence to be ultimately pe-
riodic. Let r̃ be its least period and t0 be its preperiod, so that st+r̃ = st
for all t ≥ t0. If a0 6= 0 it is clearly invertible in Fq, thus from equation 2.1.2
we have

st = a−1
0 (st+L − aL−1st+L−1 − · · · − a1st+1)

now, if we suppose t0 ≥ 1, we can take t = t0 − 1 and obtain

st0−1 = a−1
0 (st0+L−1 − aL−1st0+L−2 − · · · − a1st0)

If, otherwise, we take t = t0 − 1 + r̃ and use the definition of periodicity we
have

st0−1+r̃ = a−1
0 (st0+L−1+r̃ − aL−1st0+L−2+r̃ − · · · − a1st0+r̃)

= a−1
0 (st0+L−1 − aL−1st0+L−2 − · · · − a1st0)

but it means that st0−1+r̃ = st0−1, which contradicts the definition of prepe-
riod.

The previous condition is only a sufficient one, but not necessary, as
shown by the following example.

Example 2.1. Every sequence (s0,a) with s0 = (g, g) (where g ∈ Fq) and
a = (a0, a1) = (0, 1) is clearly periodic (st = g for all t ∈ N).

Finally, we show how the least period of a sequence is related to its
recurrence relation.

Proposition 2.3. Let {st}t∈N be a Lth-order recurring sequence in Fq with
a0 6= 0 and let A be its associated matrix. Thus the least period r̃ of the
sequence divides the order of A in the group GLL(Fq) of L × L invertible
matrices over Fq: r̃ | ord(A).
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Proof. First of all, we have detA = (−1)L−1a0 6= 0, so actually A ∈
GLL(Fq). Let m be the order of A in GLL(Fq), namely m is the lowest
integer such that Am = IL. Then

st+m = s0A
t+m = s0A

tAm = s0A
t = st

so m is a period of the sequence and by lemma 2.1 r̃ | m.

2.1.2 Maximal period sequences

Our interest in the properties of linear recurring sequences is due to our
search for a easy way to generate pseudo-randomic streams.

Linear recurring sequences can be easily generated by a LFSR, but usu-
ally they do not have good statistical properties.

The circumstances change when the sequence has a long period, so the
purpose of this section is to recognize the features allowing to obtain a
recurring sequence of longest possible period.

Definition 2.5. An impulse response sequence is a homogeneous linear re-
curring sequence (d,a), such that d = (0, . . . , 0, 1).

Proposition 2.4. Let r̃s be the least period of a Lth-order linear recurring
sequence (s0,a) and let r̃d be the least period of the corresponding impulse
response sequence (d,a). Then r̃s | r̃d for all s0 ∈ FLq .

Proof. First, let dt denote the tth state vector of the impulse response se-
quence. Note that dn = dm if and only if An = Am. In fact dn = dm if
and only if dn+t = dtA

n = dtA
m = dm+t for all t ≥ 0, but the last relation

holds if and only if An = Am, since d,d1, . . . ,dL−1 obviously form a basis
for the L-dimensional vector space FLq over Fq.

Now, if t0 is the preperiod of (d,a), we have dt = dt+r̃d for all t ≥ t0. As
we have seen, it implies that At = At+r̃d for all t ≥ t0, so clearly st = st+r̃d
and then r̃d is a period of (s0,a). The conclusion follows from lemma 2.1.

Proposition 2.5. Let (d,a) be a Lth-order impulse response sequence in
Fq with a0 6= 0 and let A be its associated matrix. Then its least period r̃
is equal to the order of A in GLL(Fq): r̃ = ord(A).

Proof. Thanks to Proposition 2.3 we know that r̃ | ord(A). On the other
hand, by Proposition 2.2 we know the sequence to be periodic, so dr̃ = d.
It implies, as we have seen in the proof of Proposition 2.4, Ar̃ = A0 = IL,
which implies ord(A) | r̃.

Associated with a linear recurring sequence are two particular polyno-
mials.
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Definition 2.6. Let {st}t∈N be a Lth-order linear recurring sequence whose
recurrence relation is 2.1.2.

We call its characteristic polynomial the polynomial

f(X) = XL −
L∑
i=1

aL−iX
L−i = XL − aL−1X

L−1 − · · · − a1X − a0 (2.1.3)

while its feedback polynomial is

f∗(X) = 1−
L∑
i=1

aL−iX
i = 1− aL−1X − · · · − a0X

L (2.1.4)

Remark 2.3. Note that the feedback polynomial is the reciprocal of the char-
acteristic polynomial: f∗(X) = XLf

(
1
X

)
. Hence, every property of f∗ is

restatable in terms of f and vice versa. Since the two polynomials have very
different shapes, the context should allow the reader to distinguish which
polynomial we are talking about. Note, moreover, that these two polyno-
mials depend only on the recurrence relation and not on the initial state.
Thereafter, S(f∗) will denote the set of all sequences whose feedback polyno-
mial is f∗, or analogously S(f) the set of all sequences whose characteristic
polynomial is f .

Example 2.2. Take the recurrence relation of order 2 over F5 defined by
st+2 = 2st+1 + st, whose vector of coefficients is a = (1, 2).

The characteristic polynomial of the sequence is hence f(X) = X2−2X−
1, while its feedback polynomial is f∗(X) = 1 − 2X −X2. Since we are in
F5, they can be restated as f(X) = X2 +3X+4 and f∗(X) = 4X2 +3X+1.
The relation f∗(X) = X2f

(
1
X

)
is clearly verified.

Let’s now recall an important definition.

Definition 2.7. Let f(X) ∈ Fq[X], we call its order, denoted ord(f), the
smallest integer k such that Xk ≡ 1 mod f(X).

Remark 2.4. If {st}t∈N is a Lth-order linear recurring sequence over Fq whose
characteristic polynomial is f(X) and whose associated matrix is A, f(X)
is the characteristic polynomial of the matrix A: f(X) = det(A − XIL).
Analogously, A is the companion matrix of f(X), so, if a0 6= 0, then A is
invertible and ord(f) = ord(A).

Thanks to the characteristic polynomial, we can recast some of the pre-
vious Propositions as follows.

Theorem 2.2. Let (s0,a) be a linear recurring sequence in Fq and let f(X)
be its characteristic polynomial. Then

• the least period r̃ divides the order of f(X): r̃ | ord(f)
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• the least period of the corresponding impulse sequence (d,a) equals it:
r̃ = ord(f)

Many relations between linear recurring sequences and their characteris-
tic polynomials can be found on the basis of the following polynomial iden-
tity. We will not prove it now, the interested reader can find the original
proof in chapter 8 of [10], while we will give an alternative proof later.

Theorem 2.3. Let {st}t∈N be a Lth-order homogeneous linear recurring
sequence over Fq, periodic with period r. Let 2.1.2 be its recurrence relation
and f(X) be its characteristic polynomial. Then the identity

f(X)s(X) = (1−Xr)h(X) (2.1.5)

holds with

s(X) = s0X
r−1 + s1X

r−2 + · · ·+ sr−2X + sr−1 ∈ Fq[X]

and

h(X) =
L−1∑
j=0

L−1−j∑
i=0

ai+j+1siX
j ∈ Fq[X]

where we set aL = −1 for convenience.

Theorems 2.2 and 2.3 lead us to the following important result.

Proposition 2.6. Let (s0,a) be a linear recurring sequence in Fq with
s0 6= (0, 0, . . . , 0) and let f(X) ∈ Fq[X] be its characteristic polynomial. If
f(X) is irreducible over Fq and f(0) 6= 0, then the sequence is periodic with
least period r̃ equal to the order of f(X): r̃ = ord(f).

Proof. First, f(0) 6= 0 means a0 6= 0 and the periodicity of the sequence
follows from Proposition 2.2. Now, from identity 2.1.5 follows that f(X)
divides (X r̃ − 1)h(X). Since s(X) and h(X) are non-zero polynomials and
since deg(h) < deg(f), the irreducibility of f(X) implies that f(X) divides
X r̃− 1. It means that X r̃ ≡ 1 mod f(X), so necessarily ord(f) | r̃. On the
other hand r̃ | ord(f) by Theorem 2.2, hence r̃ = ord(f).

Let’s recap what we have seen until now.
Take any Lth-order recurrence relation over a finite field Fq and let f(X)

be its characteristic polynomial. The relation defines a partition of FLq in

distinct “orbits”: for every vector v ∈ FLq , the vectors in the same orbit of
v are all the state vectors, and only those, of the sequence with v as initial
vector and generated by that relation. The greatest possible least period
equals the order of f(X) and every other least period divides it. If f(X) is
irreducible, then every orbit has the same size, ord(f), obviously except the
orbit of the vector (0, . . . , 0) ∈ FLq , which is the only one element in its orbit.
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As we have seen, the impulse vector d = (0, . . . , 0, 1) ∈ FLq always generates
a sequence with period r̃ = ord(f), so its orbit is always the greatest one
(or one of the greatest).

Example 2.3. As in example 2.2, let’s take the recurrence relation st+2 =
2st+1 + st over F5 defined by the vector a = (1, 2). The characteristic
polynomial is f(X) = X2 − 2X − 1 which is irreducible over F5. The 25
elements of the set F2

5 are, then, partitioned in 3 orbits:

{(0, 0)} which obviously contain only the all-zero vector

{(0, 1), (1, 2), (2, 0), (0, 2), (2, 4), (4, 0), (0, 4), (4, 3), (3, 0), (0, 3), (3, 1), (1, 0)}

{(1, 1), (1, 3), (3, 2), (2, 2), (2, 1), (1, 4), (4, 4), (4, 2), (2, 3), (3, 3), (3, 4), (4, 1)}

Note that, since ord(f) = 12 and f(X) is irreducible, as we expected the
non-zero orbits both contain exactly 12 elements.

As we have already outlined, our first aim is to detect the conditions
producing the longest possible period. Thanks to the previous results, we
know that the best we can aspire to is a recurrence relation generating
only two orbits in FLq : the one with only the (0, . . . , 0) vector and another

one containing all the remaining qL − 1 vectors. The following result is
fundamental.

Theorem 2.4. Let {st}t∈N be a homogeneous Lth-order linear recurring
sequence whose characteristic polynomial is primitive over Fq and whose
initial state is non-zero. Then {st} is periodic and its least period is r̃ =
ord(f) = qL − 1.

We call such a sequence a maximal period sequence.

Proof. The Theorem is trivial. Every primitive polynomial is irreducible, so
by Proposition 2.6 r̃ = ord(f). Moreover ord(f) = qL − 1 by definition of
primitive polynomial.

Example 2.4. Let’s take again F2
5. If we choose the recurrence relation st+2 =

2st+1+2st, we have the characteristic polynomial f(X) = X2−2X−2 which
is known to be primitive over F5.

Hence, for every initial vector s0 6= (0, 0), we enter a maximal period
sequence of length r̃ = 52−1 = 24. If we started with the impulse s0 = (0, 1),
for example, the sequence would be:︷ ︸︸ ︷

0, 1, 2, 1, 1, 4, 0, 3, 1, 3, 3, 2, 0, 4, 3, 4, 4, 1, 0, 2, 4, 2, 2, 3, 0, 1, 2, . . .

The following Proposition shows that maximal period sequences also
have the other feature we were looking for: good statistical properties.
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Proposition 2.7. Let S = (s0,a) be a maximal period sequence of order L
in Fq. Let m be an integer such that 1 ≤ m ≤ L and S′ any subsequence of
S of length qL +m− q. Then every non-zero sequence of length m appears
exactly qL−m− 1 times as a subsequence of S′. The distribution of patterns
of fixed length m ≤ L is almost uniform.

In [18], the interested reader can find a proof of the previous Proposition
and check that a sequence with such properties also satisfies the Golombs
randomness postulates.

Finally, with the following Theorem we note that, at least in some spe-
cial cases, the introduction of the characteristic polynomial also permits
to explicitly represent the elements of a linear recurring sequence through
algebraic structures over Fq.

Theorem 2.5. Let {st}t∈N be a Lth-order linear recurring sequence over
Fq whose characteristic polynomial is f(X). If the roots α1, . . . , αL of f(X)
are all distinct, then for all t ≥ 0 we have

st =
L∑
j=1

βjα
t
j (2.1.6)

where β1, . . . , βL are elements of the splitting field of f(X) over Fq, uniquely
determined by the initial state of the sequence.

Proof. First of all, given the initial state s0, . . . , sL−1 of the sequence and
the roots α1, . . . , αL of f(X), let’s take the system of linear equations

L∑
j=1

αtjβj = st for all t = 0, . . . , L− 1

in the unknown β1, . . . , βL.
Clearly, the matrix V associated with the system is a Vandermonde

matrix1 and it’s known that for such a matrix holds

detV =
∏

1≤i<j≤L
(αj − αi)

By the hypothesis on the αj , we get hence detV 6= 0, so the system admits
a solution β1, . . . , βL, whose elements are obviously in the splitting field of
f(X).

Now, we know that the elements of the sequence must satisfy

st+L = aL−1st+L−1 + aL−2st+L−2 + · · ·+ a0st ∀t ∈ N
1A Vandermonde matrix, named after Alexandre-Thophile Vandermonde, is a matrix

with the terms of a geometric progression in each row
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If we substitute the 2.1.6, we get

L∑
j=1

βjα
t+L
j − aL−1

L∑
j=1

βjα
t+L−1
j − · · · − a0

L∑
j=1

βjα
t
j =

L∑
j=1

βjα
t
jf(αj) = 0

for all t ≥ 0, as wished.

Note that, thanks to what we have seen until now, we know that the
characteristic polynomial of a linear recurring sequence must always be cho-
sen primitive to obtain the longest possible period.

Since a primitive polynomial is irreducible and has no multiple roots,
Theorem 2.5 applies quite widely in practice.

Substantially, suppose we are handling a Lth order recurrence relation
over Fq whose characteristic polynomial f(X) is primitive. If we think of
a linear sequence generated by f(X) as something abstract, the first L ele-
ments s0, . . . , sL−1 are linearly independent objects, while any other st, for
t ≥ L, is a linear combination of them. If we take the quotient group

Fq[X]

(f(X))
∼= Fq[α] ∼= FqL

where α is a generic root of f(X), we can represent every element st of the
sequence as a combination of elements of FqL , since all the roots of f(X)
(and their powers) belong to that set. The coefficients of the combination
depend only on the initialization of the sequence, once they are fixed every
other element is, as expected, uniquely determined.

Example 2.5. Take the recurrence relation st+2 = st+1 + st over F2, whose
characteristic polynomial is f(X) = X2 −X − 1. If α2 − α − 1 = 0, F4 =
F2[α] = {0, 1, α, α+ 1}, where α and α+ 1 are the roots of f(X). Then, by
Theorem 2.5, the generic element of a sequence generated by that recurrence
relation is st = β1α

t + β2(α + 1)t. Only the first two elements s0 and s1

are free and their value determines the value of the coefficients β1, β2 ∈ F4.
Once β1 and β2 are fixed, every other element is uniquely determined.

For instance, if we take s0 = s1 = 1 we get the system{
β1 + β2 = 1

β1α+ β2(α+ 1) = 1

whose solution is β1 = α, β2 = α + 1. So the sequence can be expressed as
st = ααt + (α + 1)(α + 1)t = αt+1 + (α + 1)t+1 for all t ≥ 0. Since clearly
for every non-zero γ ∈ F4 we have γ3 = 1, the sequence has the property

st+3 = αt+1+3+(α+1)t+1+3 = αt+1α3+(α+1)t+1α3 = αt+1+(α+1)t+1 = st

so it’s trivially periodic with least period 3.
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2.1.3 Linear complexity

A linear recurring sequence satisfies many other recurrence relations besides
the one it is generated with. For example, if a sequence {st} has least period
r̃, so that st+r̃ = st for all t ∈ N, then the same sequence obviously satisfies
the relation st+hr̃ = st for every h ∈ Z.

Clearly, every recurrence relation satisfied by a sequence corresponds
to a different characteristic polynomial. To better describe the relation
between those polynomials, we need to introduce a different approach to
linear recurring sequences through the algebraic apparatus of formal power
series.

Given an arbitrary sequence {st}t∈N of elements of Fq, we associate with
it a purely formal expression called its generating function:

G(X) = s0 + s1X + · · ·+ stX
t + · · · =

+∞∑
t=0

stX
t (2.1.7)

The underlying idea is that G(X), storing all the terms of the sequence
in the correct order, should somehow reflect the properties of the sequence.
The name “generating function” must not be misunderstood: G(X) is not
a function and as a series we are not interested in its convergence, we think
of it as being nothing but a hieroglyph for the sequence {st}.

Two such formal power series

B(X) =

+∞∑
t=0

btX
t and C(X) =

+∞∑
t=0

ctX
t (2.1.8)

over Fq are considered identical if and only if bt = ct for all t ≥ 0. The set of
all formal power series over Fq is then in an obvious one-to-one correspon-
dence with the set of all sequences of element of Fq.

Hence, it may seem that we have not gained anything from the transition
to formal power series, but actually we will get many interesting results
thanks to the rich algebraic structure the set of all formal power series over
Fq can be naturally endowed with.

First of all, let’s note that a polynomial of finite degree L

p(X) = p0 + p1X + · · ·+ pLX
L ∈ Fq[X]

can be seen as a formal power series

p(X) =
+∞∑
t=0

ptX
t

where pt = 0 for all t > L.
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Now we can introduce the algebraic operations of addition and mul-
tiplication between formal power series as the extension of the analogous
operations for polynomials.

Let B(X) and C(X) be defined as in 2.1.8, then we define their sum as

B(X) + C(X) =

+∞∑
t=0

(bt + ct)X
t

and their product as

B(X)C(X) =
+∞∑
t=0

dtX
t where dt =

t∑
j=0

bjct−j for all t ≥ 0

Remark 2.5. Note that the substitution principle is not valid for formal
power series, since the expression B(a), where a ∈ Fq and B(X) is a formal
power series over Fq, may be meaningless.

Example 2.6. Let

B(X) = 2 +X2 and C(X) =
+∞∑
t=0

Xt

be formal power series over F3. Then

B(X) + C(X) = 0 +X + 2X2 +X3 + · · ·+Xt + · · · =
+∞∑
t=0

dtX
t

where d0 = 0, d2 = 2 and dt = 1 for all t 6= 0, 2, and

B(X)C(X) = 2 + 2X + 0X3 + · · ·+ 0Xt + · · · = 2 + 2X

Can be easily checked that addition of formal power series over Fq is
associative and commutative, the series 0 =

∑+∞
t=0 0Xt is the identity el-

ement for addition and, given B(X) =
∑+∞

t=0 btX
t, its additive inverse is

−B(X) =
∑+∞

t=0 (−bt)Xt.

Analogously, multiplication is associative and commutative and the se-
ries 1 = 1 +

∑+∞
t=1 0Xt is the multiplicative identity. Furthermore, the

distributive law is also satisfied.

Altogether, we have shown that the set of all formal power series over
Fq, furnished with this addition and multiplication, is a commutative ring
with identity, called the ring of formal power series over Fq and denoted by
Fq[[X]].

Theorem 2.6. The ring Fq[[X]] of formal power series over Fq is an integral
domain containing Fq[X] as a subring.



24 CHAPTER 2. LINEAR FEEDBACK SHIFT REGISTERS

Proof. It only remains to verify that Fq[[X]] has no zero-divisors. Sup-
pose that there exists two non-zero elements B(X) and C(X) such that
B(X)C(X) = 0. Let k and m be the least integers for which respectively
bk 6= 0 and cm 6= 0. Then the coefficient of Xk+m in B(X)C(X) is bkcm 6= 0,
hence B(X)C(X) 6= 0.

Now we want to identify those series B(X) ∈ Fq[[X]] that admit a multi-
plicative inverse. The following Theorem provides an easy characterization.

Theorem 2.7. The formal power series

B(X) =
+∞∑
t=0

btX
t ∈ Fq[[X]]

has a multiplicative inverse if and only if b0 6= 0.

Proof. Let

C(X) =
+∞∑
t=0

ctX
t ∈ Fq[[X]]

be such that B(X)C(X) = 1, then the following infinite system of equation
must be satisfied

b0c0 = 1

b0c1 + b1c0 = 0

b0c2 + b1c1 + b2c0 = 0
...

...

b0ct + b1ct−1 + · · ·+ btc0 = 0
...

...

If b0 = 0 the system clearly admits no solutions. Otherwise, if b0 6= 0,
from the first equation we know that c0 = b−1

0 is the multiplicative inverse
of b0 in Fq. Analogously, from the second equation we get c1 = −b−1

0 (b1c0)
and recursively for all t from the tth equation we get

ct = b−1
0

t∑
j=1

bjct−j

so we have constructed the multiplicative inverse C(X) of B(X) (and im-
plicitly shown that the inverse in unique).

Hereinafter, we will denote 1
B(X) the inverse of B(X) and write A(X)

B(X)

instead of A(X) 1
B(X) . The inverse of a series, or analogously the division
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between two series, can be computed in the usual way. Simply in most cases
the algorithm will be infinite.

Now let’s show a basic identity for the generating function of a given
sequence.

Theorem 2.8. Let {st}t∈N be a Lth-order homogeneous linear recurring
sequence over Fq satisfying 2.1.2. Let f∗(X) ∈ Fq[X] be its feedback poly-
nomial and G(X) ∈ Fq[[X]] be its generating function as defined in 2.1.7.
Then the identity

G(X) =
g(X)

f∗(X)
(2.1.9)

holds with

g(X) = −
L−1∑
j=0

j∑
i=0

ai+L−jsiX
j ∈ Fq[X] (2.1.10)

where we set aL = −1.

Conversely, if g(X) is any polynomial over Fq with deg(g) < L and
if f∗(X) ∈ Fq[X] is given by 2.1.4, then the formal power series G(X) ∈
Fq[[X]] defined by 2.1.9 is the generating function of a Lth-order homoge-
neous linear recurring sequence in Fq satisfying the linear recurrence relation
2.1.2.

Proof. First, we have

f∗(X)G(X) = −

(
L∑
t=0

aL−tX
t

)(
+∞∑
t=0

stX
t

)
=

= −
L−1∑
j=0

(
j∑
i=0

ai+L−jsi

)
Xj −

+∞∑
j=L

 j∑
i=j−L

ai+L−jsi

Xj =

= g(X)−
+∞∑
j=L

(
L∑
i=0

aisj−L+i

)
Xj (2.1.11)

Since {st} satisfies 2.1.2, for every j ≥ L we can take t = j − L in 2.1.2
obtaining

L∑
i=0

aisj−L+i = 0

Thus 2.1.11 becomes

f∗(X)G(X) = g(X)

and, since f∗(X) admits a multiplicative inverse in Fq[[X]], the identity 2.1.9
follows.
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Conversely, from 2.1.11 we infer that f∗(X)G(X) is equal to a polynomial
of degree less than L if and only if

L∑
i=0

aisj−L+i = 0 for all j ≥ L

But these identities just express the fact that the sequence {st} of the coef-
ficients of G(X) satisfies the linear recurrence relation 2.1.2.

We can summarize Theorem 2.8 by saying that the Lth-order homo-
geneous linear recurring sequences with feedback polynomial f∗(X) are in

one-to-one correspondence with the fractions g(X)
f∗(X) with deg(g) < L, where

every choice of the initial state of the sequence entails the choice of g(x) as
defined in 2.1.10. The identity 2.1.9 permits to compute the terms of the
sequence with that initialization by long division.

Example 2.7. Consider the linear recurrence relation

st+4 = st+3 + st+1 + st

over F2, whose feedback polynomial is

f∗(X) = 1−X −X3 −X4 = 1 +X +X3 +X4 ∈ F2[X]

If the initial state is (1, 1, 0, 1), we have g(X) = 1 + X2 and by long
division we compute

G(X) =
1 +X2

1 +X +X3 +X4
= 1 +X +X3 +X4 +X6 + · · ·

which corresponds to the sequence {1, 1, 0, 1, 1, 0, 1, . . .} of least period 3.
Otherwise, if we take the impulse response sequence, whose initial state

is (0, 0, 0, 1), we have g(X) = X3 and

G(X) =
X3

1 +X +X3 +X4
= X3 +X4 +X5 +X9 +X10 +X11 + · · ·

which corresponds to the sequence {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, . . .} of least
period 6.

Thanks to identity 2.1.9 we can give a proof of Theorem 2.3. Since
the sequence {st} is periodic with period r, its generating function can be
written as

G(X) = (s0 + s1X + · · ·+ sr−1X
r−1)(1 +Xr +X2r + · · · ) =

s∗(X)

1−Xr

where we called s∗(X) = s0 +s1X+· · ·+sr−1X
r−1 and we noted that 1−Xr

is the multiplicative inverse of 1 +Xr +X2r + · · · .
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Equating this expression with identity 2.1.9, we get

g(X)

f∗(X)
=

s∗(X)

1−Xr

or equivalently
s∗(X)f∗(X) = (1−Xr)g(X)

Now, if we recall the relation between characteristic and feedback polyno-
mial of a sequence

(
f∗(X) = XLf

(
1
X

))
and if we note that an analogous

relation exists between s∗(X) and the polynomial s(X) defined in Theorem
2.3

(
s∗(X) = Xr−1s

(
1
X

))
, we get

s∗(X)f∗(X) = Xr−1s

(
1

X

)
XLf

(
1

X

)
= (1−Xr)g(X)

which implies

s

(
1

X

)
f

(
1

X

)
=

1−Xr

Xr

1

XL−1
g(X) =

(
1

Xr
− 1

)
1

XL−1
g(X)

⇔ s(X)f(X) = (Xr − 1)XL−1g

(
1

X

)
and noting that, if h(X) is defined as in Theorem 2.3,

XL−1g

(
1

X

)
= −h(X) (2.1.12)

leads to the desired conclusion.

The following Theorem finally describes the relation between the differ-
ent linear recurrence relations valid for a given homogeneous linear recurring
sequence.

Theorem 2.9. Let {st}t∈N be a linear recurring sequence over Fq. Then,
there exists a uniquely determined monic polynomial m(X) ∈ Fq[X] such
that every other monic polynomial f(X) ∈ Fq[X] of positive degree is a
characteristic polynomial of {st} if and only if m(X) divides f(X).

Proof. Let f0(X) ∈ Fq[X] be the characteristic polynomial of a homogeneous
linear recurrence relation satisfied by the sequence. We know that, if the
sequence is periodic with period r, we can write f0(X)s(X) = (1−Xr)h0(X),
where the polynomials s(X) and h0(X) are defined as in Theorem 2.3. Now,
if d(X) is the (monic) greatest common divisor of f0(X) and h0(X), we can
write f0(X) = d(X)m(X) and h0(X) = b(X)d(X), with m(X), b(X) ∈
Fq[X]. We shall prove that m(X) is the desired polynomial.

Clearly m(X) is monic and divides f0(X). Now, let f(X) be any other
characteristic polynomial of the sequence and h(X) be the corresponding
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polynomial in Theorem 2.3. By applying Theorem 2.8, we obtain that the
ganerating function G(X) of the sequence satisfies

G(X) =
g0(X)

f∗0 (X)
=

g(X)

f∗(X)

with g0(X) and g(X) determined by 2.1.10. Therefore

g0(X)f∗(X) = g(X)f∗0 (X)

and using 2.1.12 we get

h(X)f0(X) = −Xdeg(f)−1g

(
1

X

)
Xdeg(f0)f∗0

(
1

X

)
=

= −Xdeg(f0)−1g0

(
1

X

)
Xdeg(f)f∗

(
1

X

)
= h0(X)f(X)

so now, dividing by d(X) entails

h(X)m(X) = b(X)f(X)

Since, by definition of d(X), m(X) and b(X) are relatively prime, then
necessarily m(X) divides f(X).

Conversely, suppose that f(X) ∈ Fq[X] is a monic polynomial of positive
degree and that it is divisible by m(X), say f(X) = c(X)m(X) with c(X) ∈
Fq[X]. Passing to reciprocal polynomials, we have f∗(X) = c∗(X)m∗(X).
Furthermore, clearly h0(X)m(X) = b(X)f0(X). Now, using 2.1.12 we get

g0(X)m∗(X) = −Xdeg(f0)−1h0

(
1

X

)
Xdeg(m)m

(
1

X

)
=

= −Xdeg(m)−1b

(
1

X

)
Xdeg(f0)f0

(
1

X

)
= −Xdeg(m)−1b

(
1

X

)
f∗0 (X)

Note that, since deg(h0) < deg(f0), then deg(c) < deg(m), so the product
−Xdeg(m)−1b

(
1
X

)
is a polynomial a(X) ∈ Fq[X]. Then we can write

g0(X)m∗(X) = a(X)f∗0 (X)

and multiplying for c∗(X) we get

g0(X)f∗(X) = a(X)f∗0 (X)c∗(X)

or analogously, dividing by f∗0 (X)f∗(X) and recalling the definition of G(X),

G(X) =
g0(X)

f∗0 (X)
=
a(X)c∗(X)

f∗(X)
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Since

deg(a · c∗) = deg(a) + deg(c∗) < deg(m) + deg(c) = deg(f)

the second part of Theorem 2.8 shows that f(X) is a characteristic polyno-
mial of the sequence.

Finally, by the way we have defined m(X) it is clearly uniquely deter-
mined.

Definition 2.8. The uniquely determined polynomial m(X) of Theorem
2.9 is called the minimal polynomial of the sequence.

If st = 0 for all t ≥ 0, the minimal polynomial is equal to the constant
polynomial 1, while for any other homogeneous linear recurring sequence
m(X) is a monic polynomial with deg(m) > 0. Note that the minimal
polynomial of a linear recurring sequence is the characteristic polynomial of
the linear recurrence relation of least possible order satisfied by the sequence.

Example 2.8. Let’s take the sequence in F2 defined by

st+4 = st+3 + st+1 + st

and with initial state (1, 1, 0, 1). To find its minimal polynomial, we proceed
as in the proof of Theorem 2.9. In this case f0(X) = X4 +X3 +X + 1 and
one can easily verify that h0(X) = X3 +X. Their greatest common divisor
is d(X) = X2 + 1 and

m(X) =
f0(X)

d(X)
= X2 +X + 1

which corresponds to the linear recurrence relation

st+2 = st+1 + st

actually satisfied by the sequence.
Note that ord(m) = 3 is equal to the least period of the sequence. The

following Proposition shows that this is true in general.

Proposition 2.8. Let {st}t∈N be a linear recurring sequence over Fq and let
m(X) be its minimal polynomial. Then the least period r̃ of the sequence
is equal to the order of m(X): r̃ = ord(m).

Proof. Let t0 be the preperiod of the sequence, then st+r̃ = st for all t ≥ t0
and the sequence satisfies the linear recurrence relation

st+t0+r̃ = st+t0 for all t ≥ 0

Thus, according to Theorem 2.9, m(X) divides Xt0+r̃−Xt0 = Xt0(X r̃− 1),
so it must be of the form m(X) = Xng(X) where n ≤ t0 and g(X) divides
X r̃ − 1 and is such that g(0) 6= 0. It follows from the definition of the order
of a polynomial that ord(m) = ord(g) | r̃, but by Theorem 2.2 we know that
r̃ | ord(m), then necessarily r̃ = ord(m).
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Now we can find the least period of a linear recurring sequence without
evaluating its terms, as shown in the following example. The method is
particularly effective if a table of orders of polynomials is available.

Example 2.9. Let’s take the sequence in F2 defined by

st+5 = st+1 + st

with initial state (1, 1, 1, 0, 1) and proceed as in the proof of Theorem 2.9.
In this case f0(X) = X5 +X+ 1, h0(X) = X4 +X3 +X2 and their greatest
common divisor is d(X) = X2 + X + 1. Then the minimal polynomial of
the sequence is

m(X) =
f0(X)

d(X)
= X3 +X2 + 1

whose order is 7, which we know to coincide with the least period of the
sequence.

Proposition 2.9. Let f(X) ∈ Fq[X] be monic and irreducible over Fq and
let {st} be a homogeneous linear recurring sequence in Fq not all of whose
terms are 0. If f(X) is a characteristic polynomial of the sequence, then it
is its minimal polynomial.

Proof. It follows easily from 2.9. In fact, since the minimal polynomialm(X)
of the sequence divides f(X), the irreducibility of f(X) implies that either
m(X) = 1 or m(X) = f(X). But m(X) = 1 holds only for the sequence all
of whose terms are 0, so necessarily m(X) = f(X).

Anyhow, a characteristic polynomial can be the minimal polynomial of a
sequence even if it is not irreducible. The following Theorem gives a general
criterion to verify it.

Theorem 2.10. Let {st}t∈N be a sequence in Fq satisfying a Lth-order ho-
mogeneous linear recurrence relation with characteristic polynomial f(X) ∈
Fq[X]. Then f(X) is the minimal polynomial of the sequence if and only if
the state vectors s0, s1, . . . , sL−1 are linearly independent over Fq.

Proof. First, suppose f(X) is the minimal polynomial of the sequence. If
there existed coefficients b0, b1, . . . , bL−1 ∈ Fq not all of which are 0 such
that b0s0 + b1s1 + · · ·+ bL−1sL−1 = 0, we could multiply from the right by
powers of the matrix A associated with f(X), obtaining

b0st + b1st+1 + · · ·+ bL−1st+L−1 = 0 for all t ≥ 0

In particular we would have

b0st + b1st+1 + · · ·+ bL−1st+L−1 = 0 for all t ≥ 0
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which define a new linear recurrence relation satisfied by the sequence. Now,
bj = 0 for all 1 ≤ j ≤ L − 1 implies st = 0 for all t ≥ 0, which contradicts
the assumption that the minimal polynomial of the sequence is f(X), whose
degree is L. So, let j ≥ 1 be the largest index with bj 6= 0. Then the sequence
clearly satisfies a jth-order homogeneous linear recurrence relation with j <
L, which again contradicts the assumption that the minimal polynomial of
the sequence is f(X). Therefore, we have shown that s0, s1, . . . , sL−1 are
linearly independent over Fq.

Conversely, suppose that s0, s1, . . . , sL−1 are linearly independent over
Fq. Since s0 6= 0, the minimal polynomial has positive degree. If f(X)
were not the minimal polynomial, the sequence would satisfy a recurrence
relation of order m with 1 ≤ m < L. But this eventuality is impossible,
since if

st+m = bm−1st+m−1 + · · ·+ b0st for all t ≥ 0

for some coefficients b0, . . . , bm−1 ∈ Fq, then the same identity is true for the
state vectors s0, s1, . . . , sm, contradicting the assumption of linear indepen-
dence.

Corollary 1. Let (d,a) be an impulse response sequence over Fq. Then
its minimal polynomial coincides with the characteristic polynomial of the
linear recurrence relation defined by the vector a.

Proof. The results follows trivially from Theorem 2.10, since the required
linear independence property is obviously satisfied by the initial states of an
impulse response sequence.

Example 2.10. Let’s go back in F2
5 as in example 2.3.

This time let’s take the recurrence relation st+2 = st+1 + st, whose char-
acteristic polynomial is f(X) = X2 − X − 1, which is reducible over F5,
being X2 − X − 1 = (X − 3)2. F2

5 is divided in 3 orbits: one obviously
contains only (0, 0), while the remaining 24 elements form two orbits with 4
and 20 elements respectively. The minimal polynomial of the shortest orbit
is the constant polynomial m0(X) = 1. The longest orbit corresponds to the
impulse response sequence and, as stated by corollary 1, its minimal poly-
nomial is f(X). The last orbit corresponds to the sequence 1, 3, 4, 2, 1, 3, . . .
and its minimal polynomial is m(X) = X − 3; in fact, as the reader can
easily check, it satisfies the shorter linear recurrence relation st+1 = 3st.

Finally, we give a definition which applies to every sequence in a finite
field Fq. It resumes somehow the characterization of a sequence given thus
far, describing its pseudo-randomness and the difficulty of recreating it or
predicting its next digit.

Definition 2.9. Let {st}t∈N be a generic sequence over Fq. We define
its linear complexity as the order of the shortest linear recurrence relation
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satisfied by the sequence, namely the degree of its minimal polynomial. If
the sequence does not satisfy any linear recurrence relation, we say its linear
complexity to be ∞, while the linear complexity of the all-zero sequence is
0.

2.2 Combining linear recurring sequences

Although we have seen how to generate linear recurring sequences with
maximal linear complexity and period, that’s not enough to build a strong
stream cipher. If we used the output of a LFSR as a keystream, the ci-
pher would be weak under many attacks, in the first place one mounted
using Berlekamp-Massey’s algorithm. That algorithm, invented by Elwyn
Berlekamp in 1968, is in fact able to find the minimal polynomial of a linear
recurring sequence in time O(Λ) knowing only 2Λ consecutive digits, where
Λ is the linear complexity of the sequence.

Furthermore, a linear recurring sequence couldn’t be directly used as a
keystream anyway, since, even if it has interesting randomicity properties,
it also has very strong linearity properties. Combining it directly to the
plaintext wouldn’t supply any security against the so-called algebraic attacks,
that recover the key of a cipher by formulating and solving a system of linear
equations.

A known-plaintext attack2, in particular, would be very simple to imple-
ment and very effective. According to Kerckhoffs’ principle, we can suppose
the attacker to know the structure of the LFSR, namely its length L and
feedback relation st+L =

∑L−1
i=0 aist+i. His aim is hence finding the initial

state of the register, which is actually the key of the cipher. If he knows any
L plaintext digits mt1 , . . . ,mtL and the corresponding ciphertext digits, he
can formulate the trivial system{

ctj = stj +mtj

j = 1, . . . , L

Recalling the recurrence relation of the sequence {st}, each digit stj can be
written as a linear combination of the key, so the system becomes a system
of L linear equations in the L unknowns s0, . . . , sL−1, solvable in O(L3)
operations with Gauss’ algorithm.

Many other very incisive similar attacks could be moved, so we need
to shatter the linearity of the sequence and make it unexploitable by the
cryptanalysts.

The natural solution to these two problems, increasing the linear com-
plexity of the sequence and shattering its linearity, consists in combining

2A known-plaintext attack is an attack mounted knowing some couples of plaintext
and corresponding ciphertext
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n registers in parallel through a non-linear function f : Fnq → Fq, called
combining function.

This approach further strengthens the cipher involving a considerable
increase of the keyspace, since the key of such a cipher is no longer the
initialization of a register, but those of n different registers.

The scheme of this kind of ciphers is shown in figure 4.1.

Figure 2.2: A typical LFSR combination generator

Si = {sit}t∈N denotes the output of the ith register, while the output of
f is the keystream Y = {yt}t∈N, which is usually added digit by digit with
the plaintext M = {mt}t∈N to generate the ciphertext C = {ct}t∈N.

In the previous section we studied how the choice of a LFSR and its
initialization affects the properties of the linear recurring sequence generated
by it. We are now going to do the same work for the sequence Y : detect
its properties and comprehend how they depend on the LFSRs and on the
combining function f .

Even if Y is not directly generated by a LFSR, we can still talk of its
period and linear complexity, since these two notions are defined for any
sequence in a finite field Fq. Furthermore, if we call N the keystream’s
total length, we can always imagine Y to be generated by a register whose
characteristic polynomial is g(X) = XN − 1 and thus take N as an upper
bound for both its period and its linear complexity. What we want to do is
to actually ensure that it does not exist a polynomial of lower degree that
could have generated Y .

2.2.1 Multivariate functions over finite fields

When talking about multivariate functions over a finite field Fq, first of all
we need the to introduce a fundamental instrument.

Definition 2.10. Let f : Fnq → Fq be any function in n unknowns over Fq.
f can always be represented as a multivariate polynomial called its Algebraic
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Normal Form. The ANF of f is the only polynomial

Qf ∈
Fq[X1, . . . , Xn]

(Xq
1 −X1, . . . , X

q
n −Xn)

such that
f(x) = Qf (x) for all x = (x1, . . . , xn) ∈ Fnq

The degree of f is then defined as the total degree of the polynomial Qf :
deg(f) = deg(Qf ).

This representation, which could seem not so natural at first sight, is
actually very simple. It just exploits the fact that every function f : Fnq →
Fq, assuming only q values, must be formulable as a polynomial and, since
Xq ≡ X in Fq, every variable can appear in the polynomial form of f only
with degree not greater than q − 1. Hence we can write the ANF of f as

Qf =
∑
u∈Fnq

auX
u

where we used the notation Xu = Xu1
1 · · ·Xun

n and we assumed that 00 = 1.
From here on, we will automatically suppose any function to be expressed

through its ANF.
Thanks to the polynomial representation of the combining function, we

can see the generic keystream digit yt as the result of a combination of sums
and products on the corresponding digits sit. This allows us to describe
Y just defining the operations of sum and product of two linear recurring
sequences and their properties.

Boolean functions

When q = 2, the functions from the set Fn2 of n-bit words into F2 are called
boolean functions.

In practical applications, this case is obviously the most frequent one.
Boolean functions have been thus deeply analyzed in literature and the par-
ticularly simple structure of F2 permitted a refined characterization of those
functions.

Let f : Fn2 → F2 be any boolean function, we usually represent f through
its ANF:

f(X) =
∑
u∈Fn2

auX
u (2.2.1)

Note that this time every variable Xi can appear only with degree 1.

Let u = (u1, . . . , un) ∈ Fn2 be any vector, we call its support, denoted
supp(u), the set of its non-zero components. supp(u) tells us which vari-
ables appear in the corresponding monomial Xu. If u = (01101) ∈ F5

2, for
example, then supp(u) = {2, 3, 5} and Xu = X2X3X5.
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If we divide f(X) by any monomial Xu, we obtain

f(X) = Xu(au + pu(X)) + ru(X) = auX
u +Xupu(X) + ru(X)

where pu(X) is a polynomial with free term 0.
A term Xv is divisible by Xu if and only if supp(u) ⊆ supp(v), namely

if and only if Xv = Xu ·Xi1 · · ·Xik for some indices i1, . . . , ik ∈ {1, . . . , n} \
supp(u).

Hence any monomial of pu(X) can’t contain any variable appearing in
Xu, while a monomial in ru(X) can contain some of the variables in supp(u),
but obviously there must be at least one it does not contain.

Proposition 2.10. Let f : Fn2 → F2 be any boolean function expressed in
its ANF 2.2.1. It holds

au =
⊕
x�u

f(x) for all u ∈ Fn2 (2.2.2)

where � denotes the partial order on Fn2 defined by “v � u if and only if
vi ≤ ui for all i = 1, . . . , n”. Namely, v � u if and only if supp(v) ⊆ supp(u).

Proof. Let x be any vector such that x � u.

• Since supp(x) ⊆ supp(u), any 1 in x is in a position corresponding to
a variable actually appearing in Xu, hence a variable not appearing
in any monomial of pu(X). This means clearly that pu(x) = 0 and
consequently

⊕
x�u x

upu(x) =
⊕

x�u 0 = 0.

• Take any monomial in ru(X), say Xv. We have shown that necessarily
supp(u) 6⊆ supp(v), so let i ∈ supp(u) \ supp(v) and hence Xi be
any variable appearing in Xu but not in Xv. Since i ∈ supp(u),
if we take the vector x′ obtained by x flipping its i-th bit, clearly
also x′ � u. But, since i /∈ supp(v), clearly the monomial Xv takes
the same value when evaluated on x and x′. More generally, every
monomial in ru(X) takes the same value on an even number of vectors
x � u, thus

⊕
x�u ru(x) = 0.

• Finally, Xu is worth 1 if and only if it is evaluated on a vector x such
that supp(u) ⊆ supp(x), but the only vector x � u with this property
is u itself. Hence,

⊕
x�u x

u = 1.

Now trivially⊕
x�u

f(x) =
⊕
x�u

(aux
u + xupu(x) + ru(x)) =

= au
⊕
x�u

xu +
⊕
x�u

xupu(x) +
⊕
x�u

ru(x) = au
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Example 2.11. Take the function

f(X1, X2, X3, X4) = X2 +X2X3 +X1X2X3 +X2X3X4 + 1

If u = (0110), Xu = X2X3 and obviously au = 1. We can easily verify the
Proposition:⊕

x�u
f(x) = f(0000) + f(0100) + f(0010) + f(0110) =

= 1 + 0 + 1 + 1 = 1

Furthermore, let’s practically see what we have said in the proof:

f(X) = X2X3(1 +X1 +X4) + 1 +X2 =

= X2X3 +X2X3(X1 +X4) + (1 +X2)

and ⊕
x�u

x2x3(x1 + x4) = 0 + 0 + 0 + 0 = 0

⊕
x�u

(1 + x2) = 1 + 0 + 1 + 0 = 0

⊕
x�u

x2x3 = 0 + 0 + 0 + 1 = 1

Another way to describe a boolean function is to identify it with its
truth table. The sets of functions from Fn2 into F2 is in fact in one-to-one
correspondence with the set F2n

2 .
The correspondence is built by simply associating to any function f its

truth table, namely the ordered sequence of the values taken by f on the
elements of Fn2 . The order in the sequence is induced by the order chosen
for the set Fn2 , such as the natural one obtained considering any x ∈ Fn2 as
the binary representation of a number between 0 and 2n − 1.

According to the previous definition, supp(f) should denote the set of
the non-zero components in f ’s truth table. Anyhow, it is usually used in
the classical meaning of the set {x ∈ Fn2 : f(x) 6= 0}. Substantially, the
two definitions agree, since any 1 in f ’s truth table correspond to a vector
x such that f(x) 6= 0.

Thanks to this different perspective, we can extend to boolean functions
the notions of Hamming weight and distance, defined for vectors in Fn2 for
all n.

Definition 2.11. Let u, v ∈ Fn2 be two vectors. The Hamming weight of u,
denoted wH(u), is defined as the number of its non-zero components, namely
the cardinality of supp(u):

wH(u) = |{i : ui = 1}|
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The Hamming distance between u and v, denoted dH(u, v), is the number
of components in which the two vectors differ, namely the Hamming weight
of their bitwise modular sum:

dH(u, v) = |{i : ui 6= vi}| = |{i : ui ⊕ vi = 1}|

Now, given two functions f and g, we can naturally talk of wH(f) and
dH(f, g), implicitly referring to their truth tables. It holds

dH(f, g) =
∑
x∈Fn2

(f + g)

A very useful instrument to study boolean functions from this point of
view is the Walsh-Hadamard transform.

Definition 2.12. Let f : Fn2 → F2 be any boolean function. We define its
Walsh-Hadamard transform as the Fourier transform of the corresponding
sign function, ϕf : x 7→ (−1)f(x), with respect to the representation ψu :
x 7→ (−1)u·x:

for all u ∈ Fn2 χ̂f (u) =
∑
x∈Fn2

(−1)f(x)(−1)u·x (2.2.3)

We recall that any function g of the form g(x) = u · x+ ε, where u ∈ Fn2
and ε ∈ F2, is called affine.

The Fourier transform of a function ϕ : Fn2 → C at a representation
ψ : Fn2 → C is defined as

ϕ̂(ψ) =
∑
x∈Fn2

ϕ(x)ψ̄(x) = 〈ϕ,ψ〉

The idea is to build a new instrument to compare f(x) with the affine
functions u · x for all u ∈ Fn2 , which does not work anymore in modular
arithmetic. Hence we need a function that can take a number of different
values equal to the number of possible values of f(x)− u · x.

The solution in the binary case is to take the primitive square root of
unity, -1, and raise it to the difference between f(x) and u ·x. This time the
obtained function is particularly useful because it takes values in R.

If we fix u ∈ Fn2 , the generic term of the sum in 2.2.3 is

(−1)f(x)+u·x =

{
+1 if f(x) = u · x
−1 if f(x) 6= u · x

that can be written as 1−2(f(x)+u·x). It follows that χ̂f (u) varies between
2n, when f(x) = u · x for all x ∈ Fn2 , and −2n, when f(x) = u · x+ 1 for all
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x ∈ Fn2 , and it’s 0 if f(x) and u · x coincide on exactly half of the possible
inputs.

It is then clear that χ̂f (u) estimates the Hamming distance between f
and the affine functions u · x+ ε. More precisely

χ̂f (u) =
∑
x∈Fn2

(−1)f(x)+u·x

= (−1)ε
∑
x∈Fn2

(−1)f(x)+u·x+ε

= (−1)ε
∑
x∈Fn2

(1− 2(f(x) + u · x+ ε))

= (−1)ε

2n − 2
∑
x∈Fn2

(f(x) + u · x+ ε)


= (−1)ε(2n − 2dH(f, u · x+ ε))

hence

dH(f, u · x+ ε) = 2n−1 − (−1)ε

2
χ̂f (u) (2.2.4)

The Walsh spectrum of a boolean function completely characterize it, as
shown by the following Proposition.

Proposition 2.11. Let f : Fn2 → F2 be any boolean function described
through its ANF as in 2.2.1.

Hence, for all u ∈ Fn2 it holds

au = 2wH(u)−1

1− 1

2n

∑
v�ū

χ̂f (u)

 mod 2 (2.2.5)

where ū denotes the bitwise completion of u, i.e. ūi = 1 if and only if ui = 0.

Proof. Thanks to equation 2.2.2 we get

au =
∑
x�u

f(x) mod 2 =
∑
x�u

1

2
(1− (−1)f(x)) mod 2

=
1

2
|{x � u}| − 1

2

∑
x�u

(−1)f(x) mod 2

= 2wH(u)−1 − 1

2

∑
x�u

(−1)f(x) mod 2

Since the normalized Fourier transform is involutive, it holds

for all x ∈ Fn2 , (−1)f(x) = 2−n
∑
v∈Fn2

χ̂f (v)(−1)v·x
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Now, combining these two results, we have

au = 2wH(u)−1 − 2−n−1
∑
x�u

∑
v∈Fn2

χ̂f (v)(−1)v·x mod 2

= 2wH(u)−1 − 2−n−1
∑
v∈Fn2

χ̂f (v)

∑
x�u

(−1)v·x

 mod 2

The set Eu = {x ∈ Fn2 : x � u} is a linear subspace of Fn2 of dimension
wH(u). Its orthogonal E⊥u clearly satisfies E⊥u = Eū, hence∑

x�u
(−1)v·x =

{
2wH(u) if v ∈ Eū
0 otherwise

In fact, if v /∈ Eū, there must exist an index i such that vi = ui = 1. Hence,
for any x ∈ Eu, the vector x′ ∈ Eu obtained flipping the ith bit of x satisfies
v · x 6= v · x′ and consequently (−1)v·x + (−1)v·x

′
= 0. Now finally

au = 2wH(u)−1 − 2−n−1+wH(u)
∑
v�ū

χ̂f (v) mod 2

In this context, boolean functions are used in keystream generators to
combine the outputs of some LFSR, thus we want them to have some prop-
erties essential to resist to some known attacks.

Since the main purpose is shattering the linearity of linear recurring se-
quences, we want the combining function to be definitely non-linear, namely
to be as “far” as possible to any affine function.

At first sight, one could imagine to simply look at the total degree of a
function, since the higher is deg(f) the most f is supposed to act differently
from any linear combination. If deg(f) is high, in fact, some monomials in f
depends on many of its input at the same time, making apparently difficult
any algebraic attack.

This is a proper remark, but what we actually need most is to be sure
that, given any linear combination g(x) = u · x, f ’s truth table does not
coincide too much neither with g or with g + 1.

Suppose, in fact, that f coincides with g on 90% of the possible inputs.
Many statistical attacks could be mounted by simply supposing that the
combining function used is actually g, but that with probability 1

10 the
ciphertext bit we have at our disposal is wrong.

The best way to measure how far a function f is from being linear is
hence to define its nonlinearity as its minimum distance from any affine
function:

nl(f) := min
g(x)=u·x+ε

dH(f, g)
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Thanks to identity 2.2.4, we can alternatively define it as

nl(f) = 2n−1 − 1

2
max
u∈Fn2

|χ̂f (u)| (2.2.6)

Note that, if f and g are two functions from Fn2 into F2, dH(f, g) =
2n−dH(f, g+1), hence evaluating dH(f, g) or dH(f, g+1) is equivalent and
only one of the two calculation is necessary.

When g is constant, say g(x) ≡ 0 (but g(x) ≡ 1 would be clearly equiva-
lent), we talk of a more particular and basic property of boolean functions,
called balance.

A function f : Fn2 → F2 is balanced if its output is uniformly distributed,
namely if P (f = 0) = P (f = 1) = 1

2 . The probability is usually simply
intended as

P (f = ε) =
|{x ∈ Fn2 : f(x) = ε}|

2n

hence f is balanced if and only if wH(f) = 2n−1.
The importance of this property is evident thanks to Shannon’s entropy,

as shown in the example.

Example 2.12. Suppose a combining function f is unbalanced, say p0 =
P (f = 0) = 1

4 and p1 = P (f = 1) = 3
4 . The entropy of the keystream Y is

H(Y ) = p0 · log2

1

p0
+ p1 · log2

1

p1

=
1

4
· log2 4 +

3

4
· log2

4

3

=
1

2
+

3

2
− 3

4
· log2 3 = 2− 3

4
· log2 3 > 1

hence the generic keystream bit yt carries more than a bit of information.
The value taken by yt depends on the output at time t of the n LFSRs

and allows to understand if the n-tuple belongs to a set of 2n

4 elements or
is one of the remaining 3·2n

4 . That’s why the amount of information carried
by yt is different from the one carried by a random bit. In particular, the
result highlights that the gain in information when yt = 0 is bigger than the
loss when yt = 1.

Note that, any time the plaintext is unbalanced, the same property is
transmitted to the ciphertext, and that’s obviously a problem.

The balance property can be easily expressed through the Walsh coeffi-
cients, since clearly a function f is balanced if and only if χ̂f (0) = 0.

The property of a function to be statistically independent from linear
combinations of its inputs was precisely defined by Siegenthaler in [16].

Definition 2.13. A boolean function f is t-th order correlation-immune if
the probability distribution of its output is unaltered when the values of any
t input variables are fixed.
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The definition equivalently asserts that the output of f is statistically
independent from any linear combination of t of its input variables. As
any other property, the correlation immunity order of a function can be
characterized by its Walsh spectrum. In fact

P (f(x) = u · x) =
|{x ∈ Fn2 : f(x) = u · x}|

2n

=
2n − dH(f, u · x)

2n

=
2n − 2n−1 + 2−1χ̂f (u)

2n

=
2n−1 + 2−1χ̂f (u)

2n

=
1

2
+
χ̂f (u)

2n+1

namely

P (f(x) = u · x) =
1

2

(
1 +

χ̂f (u)

2n

)
(2.2.7)

The following Proposition is now trivial.

Proposition 2.12. Let f be any boolean function. f is t-th order correlation-
immune if and only if

χ̂f (u) = 0 for all u ∈ Fn2 such that 1 ≤ wH(u) ≤ t

Proof. f is t-th order correlation-immune if and only if P (f(x) = u · x) = 1
2

for all u ∈ Fn2 such that 1 ≤ wH(u) ≤ t. Thus the conclusion follows easily
from equation 2.2.7.

Since any t-th order correlation-immune function is also k-th order correlation-
immune for any k ≤ t, we call correlation-immunity order of a function f
the largest t such that f is t-th order correlation-immune.

A function f is finally called t-resilient when f is balanced and its
correlation-immunity order is t.

Expressing the cryptographic properties of a boolean function through
the properties of its Walsh spectrum highlights the necessity of a trade-off
among them.

Parseval’s Theorem, which applies to any Fourier transform, states that∑
x∈Fn2

(
(−1)f(x)

)2
=

1

|Fn2 |
∑
u∈Fn2

(χ̂f (u))2

which means ∑
u∈Fn2

(χ̂f (u))2 = 2n
∑
x∈Fn2

1 = 22n
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Hence the Walsh coefficients of a function f can’t be all 0 and the bigger
is the number of null ones, the bigger the non-null ones are in absolute value.
Consequently, the higher is the correlation-immunity order of f , the bigger
maxu∈Fn2 |χ̂f (u)| is supposed to be, hence the lower may be f ’s nonlinearity.

Furthermore, the following (quite trivial) results holds [16]:

• the correlation-immunity order of a function f with n variables is
clearly bounded by n − 1 and if f ’s correlation-immunity order is t,
then deg(f) ≤ n− t

• if f is t-resilient, then

– if t ≤ n− 2, it holds deg(f) ≤ n− t− 1

– if t = n− 1, it holds deg(f) = 1

Finally, if we want the cipher to be fairly strong under any type of attack,
the best we can aspire to is hence a combining function with correlation-
immunity order t not too low and such that |χ̂f (u)| = c for all u with
wH(u) > t, where c is a constant.

Let’s now come back to the general case of any finite field Fq.
The functions from Fnq into Fq and their properties have not been deeply

analyzed in literature, since the q-nary case is probably considered more
interesting in theory than practice.

Anyhow, the notions of nonlinearity and correlation-immunity order can
be extended to any function f : Fnq → Fq and they have the identical
meaning.

The main difference with the binary case is that Proposition 2.10 can’t be
extended, since that result follows from the fact that a variable can appear
in the ANF of a boolean function only with degree 1.

Furthermore, the main instrument that allowed us to characterize the
boolean functions having a particular property and to understand which
properties are compatible is the Walsh spectrum of the function. Unfortu-
nately, it can be defined only for the finite fields Zp of prime cardinality and
anyway many of its properties are not valid anymore.

The idea of the Walsh coefficients is somehow to transform an additive
group in a multiplicative one. If f : Fnq → Fq and u ∈ Fnq , the difference
f(x)− u · x can take q different values. To build a complex-valued function
which can take those q values, we should take the q-th root of unity ω =

e
2πi
q ∈ C and elevate it to the integer associated to f(x)−u ·x. But ωf(x)−u·x

corresponds to the product ωf(x) ·ω−u·x only if Fq is a cyclic group with the
sum and this is true if and only if q = p is prime.

This means that the Walsh-Hadamard transform of f can be usefully
defined only for Zp as the Fourier transform of ϕf : x 7→ ωf(x) at the
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representation ψu : x 7→ ωu·x, namely as

χ̂f (u) =
∑
x∈Znp

ωf(x)ω̄u·x =
∑
x∈Znp

ωf(x)−u·x

where we have used ω̄ = e
− 2πi

q = ω−1.
Unlike the binary case, this function is actually complex-valued, hence,

even if its value is strictly correlated to the relative behavior of f(x) and
u · x, identities equivalent to 2.2.4, 2.2.5 and 2.2.6 cannot be stated.

These remarks, together with the complicated structure of Fq compared
to F2, will translate in the impossibility to recover the combining function
and in a more difficult recovery of the LFSRs in the general q-nary case.

2.2.2 Families of linear recurring sequences

Let P (x) ∈ Fq[X] be any polynomial over Fq. We recall that S(P ) denotes
the set of all the sequences S = {st}t∈N such that P is a characteristic
polynomial of S.

We may consider on S(P ) the operations of sum and scalar multiplication
defined termwise: if V is the sequence {vt}t∈N, W is the sequence {wt}t∈N
and c ∈ Fq, then

• (V +W ) = {v0 + w0, v1 + w1, . . .} = {vt + wt}t∈N

• (cV ) = {cv0, cv1, . . .} = {cvt}t∈N
S(P ) is clearly closed under these operations and is indeed a vector space

over Fq, where the role of the zero vector is played by the all-zero sequence,
all of whose terms are 0. Since S(P ) has qL elements, each one produced
with one of the qL possible initializations of the register, the dimension of the
vector space is L. Thanks to what we have seen in section 2.1.3, Theorem
2.9 in particular, the following result holds:

Theorem 2.11. Let P and Q be two non constant monic polynomials over
Fq. Then S(P ) is a subset of S(Q) if and only if P divides Q.

Now, given P (X), Q(X) ∈ Fq[X], we denote

S(P ) + S(Q) = {(V +W ) : V ∈ S(P ),W ∈ S(Q)}

S(P ) · S(Q) = {(V ·W ) : V ∈ S(P ),W ∈ S(Q)}
the set of all the sequences obtained respectively by termwise addition and
multiplication of two sequences in S(P ) and S(Q).

The following two Theorems are fundamental, since they show that the
elements of these two sets are linear recurring sequences as well and they
describe us their characteristic polynomials. We will not prove them, the
interested reader can find the proof and a detailed discussion of the argument
in [8], [10] or [13].
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Theorem 2.12. Let P1, . . . , Pn be n non constant monic polynomials over
Fq. Then

S(P1) + · · ·+ S(Pn) = S(Q)

where Q is the (monic) least common multiple of P1, . . . , Pn.

Theorem 2.13. Let P1, . . . , Pn be n non constant monic polynomials over
Fq. Then there exists a non constant monic polynomial Q such that

S(P1) · · · S(Pn) = S(Q) and deg(Q) ≤
n∏
i=1

deg(Pi)

Furthermore, if P1, . . . , Pn have coprime orders, then deg(Q) =
∏n
i=1 deg(Pi).

Remark 2.6. Note that, given P and Q, especially if they have coprime
orders, the degree of the polynomial generating the product of S(P ) and
S(Q) is much higher than the degree of the polynomial generating their
sum. This fact will be very important later, since the degree will permit us
to distinguish between the two cases (sum or product).

From here on, let Λ(S) denote the linear complexity of a sequence S and
ρ(S) its period.

The following Proposition follows trivially from Theorems 2.12 and 2.13.

Proposition 2.13. Let V = {vt}t∈N and W = {wt}t∈N be two linear recur-
ring sequences whose minimal feedback polynomial are P0 and Q0 respec-
tively. Then

• their sum verifies

Λ(V +W ) ≤ Λ(V ) + Λ(W )

ρ(V +W ) = lcm(ρ(V ), ρ(W ))

where the equality in 2.2.8 holds if and only if gcd(P0, Q0) = 1.

• their product verifies

Λ(V ·W ) ≤ Λ(V ) · Λ(W )

where the equality holds if and only if P0 and Q0 are primitive and
gcd(P0, Q0) = 1. In the latter case it also holds

ρ(V ·W ) = ρ(V ) · ρ(W )

The ideal situation is hence when the sequences all have primitive feed-
back polynomials and their periods are relatively prime. Proposition 2.13
can be easily extended to n sequences and leads to the following Theorem.
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Theorem 2.14. Let R1, . . . , Rn be n LFSR. Let their feedback polynomials
Pi for i = 1, . . . , n be primitive and relatively prime.

If Li denotes the length of Ri (and consequently the degree of its feed-
back polynomial), we know Li to be the linear complexity of Ri, since Pi is
irreducible and then is the minimal polynomial of the sequence.

If the registers are combined through a function f : Fnq → Fq and Y is
the keystream, we have

Λ(Y ) = f(L1, . . . , Ln)

where here f stands for its ANF, namely a polynomial in Fq[X1, . . . , Xn],
but evaluated on the integers.

Example 2.13. Let’s take for instance Geffe generator over F2, defined as
the combination of three registers through the function

f(x1, x2, x3) = x1 ⊕ x1x2 ⊕ x2x3

The feedback polynomials of the registers are taken primitive and with de-
grees L1, L2 and L3 relatively prime. Then the complexity of the keystream
is L1 + L1L2 + L2L3.
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Attacks
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Chapter 3

Correlation attack

In 1985, Thomas Siegenthaler proposed the first attack to a LFSRs’ combina-
tion cipher exploiting the correlation property of the combining function[17].

The attack is a ciphertext-only, namely it is moved without any knowl-
edge of the plaintext.

The cipher is assumed to work over F2 and the following specifics are
assumed to be known:

• the number n of registers involved

• their length

• the non-linear boolean function f used to combine their outputs

Figure 3.1: The model used by Siegenthaler

The system is described in figure 3.1. The registers are termed L1, . . . , Ln,
li denotes the length of the ith register and Xi = {xit}t∈N its output stream.
We call C = {ct}t∈N, M = {mt}t∈N and Y = {yt}t∈N respectively the ci-
phertext, the plaintext and the keystream.

49
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The generic keystream bit is obtained as yt = f(x1
t , . . . , x

n
t ) and then

XORed with the plaintext to produce the ciphertext: ct = mt ⊕ yt.

3.1 Introduction and statistical model

We can suppose that each register has his own key, composed of the initial-
ization and the feedback relation. The attack’s aim is to break the whole
cipher, recovering every key.

The registers are independently attacked one at a time, with an approach
known as divide-and-conquer.

Suppose we want to attack the ith register Li. It can be clearly initialized
in 2li − 1 different ways, while the possible feedback relations are Ri =
ϕ(2li−1)

li
, so the keyspace for Li has cardinality Ri(2

li−1). In the traditional
way the total cost of a brute force attack would be

K =
n∏
i=1

Ri(2
li − 1)

since we have to try any possible combination of the n registers’ keys.

With a divide-and-conquer strategy, also a brute force attack gets much
faster because attacking the registers separately permits us to find the right
key in

K ′ =

n∑
i=1

Ri(2
li − 1) << K

.

Finally, before describing the attack, we need to trace the statistical
model we’re in:

• The output Xi of the ith register and the keystream Y are distributed
as a binary balanced random variable: Xi, Y ∼ B(1

2).

• The different outputs are independent and identically distributed.

• The plaintext M is the output of a binary memoryless source where
p′ = P (Mt = 0) 6= 1

2 , so it is distributed as a Bernoulli of parameter
1− p′: M ∼ B(1− p′).

• We introduce an auxiliary variable X0 ∼ B(1
2), independent from all

the other Xi and such that p0 = P (ct = x0
t ) = 1

2 .



3.2. THE ATTACK 51

3.2 The attack

To attack register Li, we look for a correlation between a generic ciphertext
bit ct and the corresponding bit xit produced by the register.

We begin by calculating the probability of the two bits to be equal:

pi = P (ct = xit) = P (yt = xit)P (mt = 0) + P (yt 6= xit)P (mt = 1) =

= qip
′ + (1− qi)(1− p′) = 1− p′ − qi + 2p′qi

where qi = P (f(x1, . . . , xn) = xi) is the correlation between the output of f
and its ith input.

Given a portion of N bits of ciphertext, we introduce the variables zt
and α, defined as

• zt = ct ⊕ xit, for t = 1, . . . , N

• α =
∑N

t=1(−1)zt =
∑N

t=1(1− 2zt) = N − 2
∑N

t=1 zt

Note that α computes somehow the correlation between C and Xi along
these N bits, adding 1 every time ct = xit and subtracting 1 otherwise.

Remark 3.1. Since zt is a Bernoulli of parameter 1−pi, by the Central Limit
Theorem, for big values of N the variable

∑N
t=1 zt can be approximated by

a Gaussian with mean µ′ = N(1− pi) and variance σ′2 = Npi(1− pi).
This means that also α can be approximated by a Gaussian, but “stretched”

in the interval [−N,N ], with mean µ = N(2pi − 1) and variance σ2 =
4Npi(1− pi), as you can see in figure 3.2.

Figure 3.2: (a) shows the distribution of a Binomial of parameters N and
1− pi; (b) shows the same binomial, multiplied by -2 and shifted by N

The idea is to test every possible key for register Li, selecting the ones
leading to a value of α sufficiently close to the expected value N(2pi − 1).
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If we find more than one candidate, we will typically repeat the test using
more ciphertext bits to decide which is the right one.

For each key, we generate an output of maximal length N = 2li − 1 and
evaluate α according to its definition.

A priori we have to possible alternatives:

H0: If the key is not the one actually used to encrypt, then the N bits
obtained running the register with that key do not coincide with the
ones used to generate the keystream. In this case, α measures only
the correlation between C and the auxiliary uniform variable X0 and
it’s hence distributed as a normal random variable N (0, N), whose

probability density is P0(x) = e−
x2

2N√
2πN

H1: If the tested key is the same couple of initialization and feedback con-
nection used for that register in the encryption algorithm, then the N
bits generated in the test are exactly the same used to produce the
keystream. In this case, α is the correlation between C and Xi, hence,
as we have seen, it’s distributed as a N (µ, σ2), whose probability den-

sity is P1(x) = e
− (x−µ)2

2σ2√
2πσ2

Remark 3.2. Note that the two Gaussians of cases H0 or H1 (and conse-
quently the probability density functions P0(x) and P1(x)) coincide if and
only if pi = 1

2 , namely if p′ = 1
2 or qi = 1

2 . When p′ = 1
2 the whole cipher is

impossible to attack, otherwise when p′ 6= 1
2 we can attack every register Li

such that qi 6= 1
2 .

To understand which of the two hypothesis H0 and H1 is verified, we
use the obtained value of α. We fix a threshold T and we decide according
as α > T or α < T .

Figure 3.3: Graphs of the two probability densities: P0 is the blue line, while
P1 is the red line.
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As shown in figure 3.3, we clearly have two different situations when
pi >

1
2 or pi <

1
2 :

• If pi >
1
2 , then µ > 0 and the threshold T must be chosen in the

interval (0, µ). We accept hypothesis H0 if α < T and H1 if α > T .

• If pi <
1
2 , contrarily µ < 0 and the threshold T must be chosen in the

interval (µ, 0). We accept hypothesis H0 if α > T and H1 if α < T .

The conditions above are clearly symmetric and can be easily reported
to the positive case resuming them as

• H0 is taken when |α| < |T |

• H1 is taken when |α| > |T |

We still have to discuss how to set the value T . The threshold must be
chosen to minimize the error probabilities:

• pfa = P (|α| > |T ||H0), the probability to have a “false alarm”, namely
to select a wrong key

• pnd = P (|α| < |T ||H1), the probability of “non-detection” of a good
candidate

By definition of probability density function, we can compute these prob-
abilities as

pfa =

∫ +∞

|T |
P0(x)dx

pnd =

∫ |T |
−∞

P1(x)dx

It should be easy to understand that these two probabilities are tightly
linked, since when trying to minimize one of them we automatically increase
the other one, as we can see in figure 3.4. Hence we need to look for a good
compromise, remembering that if we detect more than one good candidate
we can still perform a tighter selection to choose the right key between
them, while if we miss the only good candidate the attack fails and has to
be entirely repeated.

To menage more easily with these error probabilities, we can normalize
the variables to reduce to the standard normal. Substituting y = x√

N
in the

first case (P0) and y = x−µ
σ in the second case (P1), we get:

pfa =

∫ +∞

|T |√
N

f(y)dy = F

(
|T |√
N

)

pnd =

∫ |T |−µ
σ

−∞
f(y)dy =

∫ +∞

− |T |−µ
σ

f(y)dy = F

(
µ− |T |
σ

)
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Figure 3.4: Graphs of the values of pfa (the areas in blue) and pnd (the areas
in red)

where f(y) = e−
y2

2√
2π

is the standard normal density function and F (x) =∫ +∞
x f(y)dy is its distribution function.

Now we choose a maximal accepted value δ for pnd and we obtain the
condition

pnd ≤ δ ⇔ F

(
µ− |T |
σ

)
≤ δ

which can easily be reversed using a standard normal table, getting

µ− |T |
σ

≤ F−1(δ)

allowing to find the threshold T as the value minimizing |T | among those
who verify

|T | ≥ µ− σF−1(δ)
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3.3 The algorithm

We have seen how to compute all the parameters we needed, the implemen-
tation of the attack is then described in details in algorithm 3.1.

Algorithm 3.1 (Correlation Attack).

Require: ciphertext C = c1c2 . . . cN
Require: number n and length li of the registers
Require: combining function f
Require: the values p′ 6= 1

2 and qi, for i = 1, . . . , n

Choose a value δ for pnd
for i = 1, . . . , n do

if qi 6= 1
2 then

pi ← 1− p′ − qi + 2p′qi
µ← N(2pi − 1)
σ ← 2

√
Npi(1− pi)

T ← µ− σF−1(δ)
for each pair “feedback connection - non-zero initial state” of Li do

generate an output X = x1x2 . . . xN of length N = 2li − 1
α = 0
for t = 1, . . . , N do
zt ← ct ⊕ xt
α← α+ (−1)zt

end for
if |α| > |T | then

store the pair
end if

end for
end if
if more than one pair is stored then

do additional tests
end if

end for

3.4 Comments

If we look at Siegenthaler’s correlation attack nowadays, it may appear to be
quite “primitive” and not much performing, but it was very revolutionary
at the time it was developed.

The attack is, actually, a brute force attack on the registers taken one
at a time, so it can easily be avoided with a trivial improvement: increasing
the length of the registers.
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As we have already seen, the keyspace’s cardinality of a registers of length

l is Kl = ϕ(2l−1)
l (2l − 1) and as l > 43 we get Kl > 280, enough to make an

exhaustive search infeasible.
Moreover, the main reason why the attack seems difficult to be imple-

mented in practice is because of the development of the theory of correlation-
immune functions. As shown by proposition 3.1, a 1-CI function is, in fact,
sufficient to prevent Siegenthaler’s attack, but we must remark that the in-
terest on this property rose actually to resist to the family of attacks inspired
by Siegenthaler’s.

Proposition 3.1. Let the correlation immunity order of a boolean function
f : Fn2 → F2 be r ≥ 1 and let x = (x1, . . . , xn) denote a generic element of
the set Fn2 . Then P (f(x) = xi) = 1

2 for all i = 1, . . . , n.

Proof. If we use the classical definition of probability as favorable cases on
possible ones, we get

P (f(x) = xi) =
|{x : f(x) = xi}|

|Fn2 |
=
|{x : f(x) = xi}|

2n

then we have to show that

|{x : f(x) = xi}| = 2n−1

For all i = 1, . . . , n we call ei the vector of Fn2 whose ith component is 1 and
whose every other component is 0. Clearly, the weight of ei is wH(ei) = 1
and x · ei = xi. From proposition 2.12, we know that

χ̂f (v) = 0 for all v ∈ Fn2 : 0 ≤ wH(v) ≤ r

so

χ̂f (ei) =
∑
x∈Fn2

(−1)f(x)+ei·x =
∑
x∈Fn2

(−1)f(x)+xi = 0

The last condition is valid if and only if the function f(x)+xi is balanced,
namely if

|{x : f(x) = xi}| = |{x : f(x) 6= xi}| = 2n−1

Although these weaknesses, correlation attack was used by Siegenthaler
to break three ciphers considered solid at that time: Geffe generator, Brüer
generator and Pless generator.

Moreover, the way Siegenthaler’s attack exploits the correlation between
a boolean function and its inputs inspired many attacks in the following 20
years, such as the very famous Fast Correlation Attack, conceived in 1989
by Meier and Staffelbach[?].
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All those attacks implement in different ways a model known as Binary
Symmetric Channel Model, which we will describe in the following chapter
and which is substantially the generalization of Siegenthaler’s idea.

Different correlation attacks were able to break many ciphers.
One of the most famous example is the A5/1 cipher, much implemented

in GSM communications, whose design was kept secret until 1994, when it
was leaked, before being completely reverse engineered in 1999. From 1997
to 2000 many tradeoff attacks appeared, some of which required a huge
preprocessing phase. The turning point in the attacks was in 2003, when
Ekdahl and Johansson published the first correlation attack to A5/1. The
following year Maximov et al. improved the attack, finally optimized in 2006
by Barkar and Biham.

In 2006 a correlation based attack was applied also to another stream
cipher much used in mobile communication, Grain cipher, which contains
only 2 shift registers, a linear and a nonlinear one.
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Chapter 4

Reconstruction of stream
ciphers

4.1 Introduction

In chapter 2 we have introduced a particular class of stream ciphers, whose
keystream is obtained combining the outputs of some LFSRs. Many other
stream ciphers can be shown to be equivalent to a LFSRs combination gener-
ator or at least to a noisy versione of it[5], so the following technique applies
quite widely.

We can formulate the problem as follows: when facing a counter whose
stream cipher’s specifications are completely unknown, how can we exploit
the interceptions of his transmissions to cryptanalyse the system?

This is a very common problem, especially in the military sphere, where
the features of the cryptosystem being used are usually kept secret.

The most famous historical case is probably the cryptanalysis of the
PURPLE machine by the US intelligence during World War II. The ci-
pher was used by the Japaneses to secretly communicate and the Americans
didn’t know anything about its specifications. The only way for them to
cryptanalyse the PURPLE machine was then to first reconstruct it or an
equivalent one. No one ever knew if the logic of the machine the Americans
built was the same of the one used by the Japaneses, but the reconstruction
worked, since they succeeded in breaking the cryptosystem. The Japaneses,
for their part, never believed to the story of the reconstruction and have
always been thinking that the algorithm was compromised thanks to human
espionage.

In this chapter we will show how algebrical and statistical results can be
actually used to reconstruct some of the primitives of a particular class of
stream ciphers. We will focus on LFSRs combination generators, describing
how to find out the number of registers used and their structure, namely

59
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their length and their feedback polynomial.
In 2000, in the first part of his Ph.D thesis[5], Eric Filiol proposed a

method to completely reconstruct the cipher in the most common case, the
binary one.

Filiol’s algorithm uses some algebraic results shown in our introduction,
togheter with the main ideas of correlation attacks.

Here we propose a generalization of his method to every finite field Fq.
The reconstruction of the registers substantially follows the same scheme

and can be completely achieved.
The recovery of the combining function as done by Filiol is not feasible

over Fq, since the properties of a generic function over any finite field are
much more complicated as we already noticed at the end of section 2.2.1.

4.2 Scenario

The hypothesis for the reconstruction are the following:

• We can only use ciphertext, in quite big, but realistic, quantity (some
thousands of digits). That’s the only material quite easy to obtain,
while the knowledge of the corresponding plaintext would be irrealistic.

• The time necessary to the reconstruction algorithm could be large.
This work, in fact, has to be done only once and for all, while the
lifetime of this kind of ciphers is usually very long, sometimes also 10
or 20 years.

• We know the code used to represent the plaintext (such as ASCII
for example) or at least we have some statistical informations on the
distribution of the digits of plaintext. In particular, in the binary case
we will suppose, as happens for most of the codes, that the plaintext
digits is zero with probability 0.6 ≤ p0 ≤ 0.7.

• The keystream generator is a combination of LFSRs and the number
of registers used is limited, typically not greater than 9.

The scheme of the cipher is shown in figure ??.
We suppose the number of registers to be n and the combining function

to be f : Fnq → Fq.
The ith register is termed Li and its feedback polynomial is Pi, whose

degree (equal to the length of the register) is li.
The output stream of Li is denoted Si = {sit}t∈N and the keystream is

Y = {yt}t∈N, where yt = f(s1
t , . . . , s

n
t ).

The plaintext is M = {mt}t∈N, while the ciphertext is termed C =
{ct}t∈N. The cipher is supposed to be additive, so the t-th digit of cipher-
text is obtained by modular addition of the corresponding keystream and
plaintext digits: ct = yt +mt.
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Figure 4.1: The model of the cipher we want to reconstruct

We will indistinctly use the sum either to denote the modular addition
over Fq or for the ordinary summation over Z, hoping that the context would
help the reader to distinguish.

4.3 The BSC Model

The idea of the reconstruction is to exploit the correlation property of the
function f as in Siegenthaler’s attack. The difference is that this time our
goal is to recover the feedback polynomials of the registers and not their
inizializations.

In this section we will referr to a binary cipher, since, being the simpliest
example, it is the best one to illustrate the idea.

Let pi = P (f(x1, . . . , xn) = xi) = P (yt = sit) be the correlation between
f and its ith input and p0 = P (mt = 0), then

p = P (ct = sit) = pip0 + (1− pi)(1− p0) = 1− pi − p0 + 2pip0

We have p0 6= 1
2 by hypothesis, so pi 6= 1

2 clearly implies p 6= 1
2 too.

On the contrary, for a random sequence S = {st}t∈N, we expect to have
P (ct = st) = 1

2 , since there’s not connection between the way the two
sequences are generated.

The sequences generated by a random polynomial, such S, and those
generated by the polynomials Pi, such as Si, are hence expected to behave
differently. This difference allows us to identify the right polynomials com-
paring the predictions with the results of a test.

For example, for a sufficiently big sample N , we expect the portion of
bits such that ct = sit to be approximately pN , while the number of bits
such that ct = st should be around N

2 .
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We could, then, text every possible couple of initial vector and feedback
polynomial, looking for the one generating a sequence which acts as similarly
as possible to the way we expect the sequence Si to do.

Unfortunately, this approach is clearly infeasible. First because we do not
know the function f and consequently we can’t evaluate the probabilities pi,
then because we do not even know the length of the registers and a research
over every possible polynomial of every possible degree would require too
much computational power.

Nevertheless, the idea to exploit the correlation property of the function
is valid, we just need to find a way to get around these problems.

Since the ciphertext of a stream cipher is always the result of some
operations performed on some basic sequences, everytime we do not know
exactly which operations have been done we can use a more general approach
known as Binary Symmetric Channel model, typical of information theory.

In our case, for example, to recover informations on the output sequences
of the registers from the ciphertext, we need to “bypass” the effect of the
function f and the addiction with the plaintext. This can be done as follows.

Suppose Ŝ = g(S1, . . . , Sn), where g is a boolean function. Such a se-
quence is supposed to be correlated with the ciphertext, in the sense that
we expect to have p̂ = P (ct = st) 6= 1

2 .

We can, then, forget what actually happens in the cipher and imagine
the ciphertext to be the result of the transmission of the sequence Ŝ through
a Binary Symmetric Channel of parameter 1 − p̂, namely a channel which
in every instant correctly transmit the bit with probability p̂ and “flips” it
with probability 1− p̂.

For example, if we take the function g(x1, . . . , xn) = xi, we simply have
Ŝ = Si, as in figure 4.2. Since p = P (ct = sit) = 1− pi − p0 + 2pip0 6= 1

2 , we
can consider the ciphertext as the noisy version of Si obtained sending Si

through a BSC of parameter 1− p, as in figure 4.3.

We call E = {εt}t∈N the noise sequence and write ct = sit + εt for all t,
so the noise clearly satisfies P (εt = 0) = p.

The reconstruction is now reduced to a sort of decoding problem, since we
can assume C to be the received message and we are interested in detecting
every possible message Ŝ that could have been originally sent over a BSC
with crossover probability different from 1

2 .

Such a sequence, in fact, being statistically dependent of C, is necessarily
of the form Ŝ = g(S1, . . . , Sn) for some function g, and we known it to be
generated by a polynomial which depends on the polynomials Pi according
to the algebraic normal form of g, as we have shown in Theorems 2.12 and
2.13.

Actually, we will not look for the sequences, but directly for the poly-
nomials, since every polynomial able to generate at least one sequence with
those properties gives us informations on the polynomials Pi.
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Figure 4.2: Forget the structure of the cipher and just concentrate on the
sequence Si.

Figure 4.3: The ciphertext can be seen as the message received sending Si

over a BSC of parameter 1− p.

4.4 Preliminary analysis

In general, we suppose the alphabet to be any finite field Fq.
We want to extend the idea of the BSC model, since also in this case

we want to express the ciphertext as a noisy version of g(S1, . . . , Sn), where
g : Fnq → Fq is a generic function over Fq.

Let be Fq = {α0 = 0, α1, . . . , αq−1}.
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The BSC of parameter 1 − p can be equivalently defined as a channel
which in every instant adds 0 to the transmitted bit with probability p or
adds 1 to it with probability 1− p.

Therefore, the natural way to extend the BSC model to Fq is to consider
a channel which in every instant adds αk to the transmitted digit with
probability pk, where k varies in {0, . . . , q − 1} and

∑q−1
k=0 pk = 1.

As already specified, we assume the plaintextM = {mt}t∈N to be nonuni-
formly distributed, namely we define

pm,k = P (mt = αk) for all k ∈ {0, . . . , q − 1}

where obviously
∑q−1

k=0 pm,k = 1, and we suppose there exists at least one
index k such that pm,k 6= 1

q .

Let gt be the sequence obtained as g(s1
t , . . . , s

n
t ), while yt = f(s1

t , . . . , s
n
t )

as usual denoted the keystream.
Now, let E = {εt}t∈N be the noise sequence, so that we write gt+ εt = ct

for all t.
The noise is distributed as follows:

pk = P (εt = αk) = P (ct − gt = αk) = P (yt +mt − gt = αk) =

=

q−1∑
h=0

pm,hP (yt − gt = αk − αh)

We are thus imagining to send the message sequence Ŝ = g(S1, . . . , Sn)
over a memoryless channel affected by the noise E, which correctly transmit
a digit with probability p0 or modifies it by one of the constant values αk
(k 6= 0), each with probability pk.

The reason why we are interested in any function g of the output of the
registers is given by the theorems we have showed in Chapter 2.

In fact, let P1(x), . . . , Pn(x), Q(x) ∈ Fq[x] be primitive polynomials, then

• if P | Q, then S(P ) ⊆ S(Q) (Theorem 2.11)

• S(P1) + · · · + S(Pn) = S(Q), where Q = lcm(P1, . . . , Pn) and so
deg(Q) =

∑n
i=1 deg(Pi) (Theorem 2.12)

• S(P1) · · · S(Pn) = S(Q) where Q is a polynomial such that deg(Q) =∏n
i=1 deg(Pi) (Theorem 2.13)

These results explicitly show some relations between the characteristic
polynomial of any sequence obtained as a function of the sequences produced
by the registers and the characteristic polynomials of the registers.

In particular, let g be any linear combination, namely g(x) = u ·x, where
x = (x1, . . . , xn) is the unknown vector and u = (u1, . . . , un) is a vector in
Fnq .
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As we have already seen, the set S(P ) is closed under multiplication for
a constant c ∈ Fq, so S and cS are generated by the same polynomial for
every sequence S.

Hence, the sets S(P ) and cS(P ) coincide, implying that the sequence
Ŝ = g(S1, . . . , Sn) = u1S

1 + · · ·+unS
n is generated by Q = lcm(P1, . . . , Pn)

(Theorem 2.12) or by one of its multiples (Theorem 2.11).

At the same time, according to Remark 2.6, Theorems 2.12 and 2.13
assure that if g isn’t linear the sequence Ŝ is generated by a polynomial of
degree much higher than that of lcm(P1, . . . , Pn).

The idea of the reconstruction is thus not to look directly for the poly-
nomials Pi, but just for any polynomial Q such that there exists at least one
sequence S ∈ S(Q) correlated with the ciphertext.

Such a sequence, in fact, can be seen as a function g of those generated
by (at least someone of) the registers.

If deg(Q) is very high compared to the expected degrees of the feedback
polynomials, we don’t have any information on the ANF of the function g.

But if Q belongs to a set Ω of polynomials of limited degree, g must be
a linear function and we know Q to be a multiple of the polynomials of the
registers involved in the linear combination.

Hence we choose a set Ω whose elements are polynomials whose degree
is bounded by an integer D and mount on it a brute force attack. To reduce
the complexity of the attack, we reduce the cardinality of Ω imposing that
its elements must have only a small number d of non-zero coefficients.

We select any polynomial Q ∈ Ω such that there exists a sequence S ∈
S(Q) which is correlated with the ciphertext and we factorize everyone of
the selected polynomials and look for common factors, expect them to be
the polynomials Pi.

The complexity is much reduced compared with a traditional brute force
attempt and the knowledge of the plaintext and the combining function is
not necessary, thanks to the information theory model we use.

In particular, we save much computational complexity thanks to the
approach used to verify the presence in S(Q) of sequences correlated with
the ciphertext.

A trivial way would be trying every possible inizialization to generate
every possible sequence in S(Q), then for each of them test its correlation
with C.

The algorithm proposed by Filiol, instead, allows somehow to check every
sequence at the same time, simply rearranging the method used to test
correlation in Siegenthaler’s attack, and we will do the same.

The idea is to check the correlation between the ciphertext and the most
correlated sequence in S(Q). Clearly, we do not know which one it is, but
we will show that this information is not necessary.
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4.5 Reconstruction over Fq
First of all, we need to formalize what we have noticed in the previous
section.

Proposition 4.1. Let S be a generic sequence over Fq and let x = (x1, . . . , xn)
denote a vector in Fnq .

If there exists α ∈ Fq such that P (ct − st = α) 6= 1
q , then S can be

written as a function of the outputs S1, . . . , Sn of the registers.
Namely, there exists a function g : Fnq → Fq such that for all t ∈ N

st = g(s1
t , . . . , s

n
t )

Moreover, we can write

P (ct − st = α) =

q−1∑
k=0

pm,kP (f(x)− g(x) = α− αk)

Proof. Clearly we have

P (ct − st = α) = P (yt +mt − st = α) = P (yt = st + α−mt)

=

q−1∑
k=0

pm,kP (yt = st + α− αk)

Now, since α is fixed, if P (yt = st+α−αk) = 1
q for all k ∈ {0, . . . , q−1},

we have

P (ct − st = α) =

q−1∑
k=0

pm,k
1

q
=

1

q

q−1∑
k=0

pm,k =
1

q

which contradicts our hypothesis.
Then there must exist at least one k ∈ {0, . . . , q − 1} such that P (yt =

st + α− αk) 6= 1
q .

Since in the last equation α−αk is a constant, it means that st and yt are
not statistically independent. Since yt = f(s1

t , . . . , s
n
t ), it means that st isn’t

statistically independent of s1
t , . . . , s

n
t . Hence, there must exist a function g

such that st = g(s1
t , . . . , s

n
t ).

Now trivially we can write

P (ct − st = α) =

q−1∑
k=0

pm,kP (yt = st + α− αk)

=

q−1∑
k=0

pm,kP (f(s1
t , . . . , s

n
t ) = g(s1

t , . . . , s
n
t ) + α− αk)

=

q−1∑
k=0

pm,kP (f(x)− g(x) = α− αk)
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Remark 4.1. The function g can be explicitly calculated. If we denote st =
(s1
t , . . . , s

n
t ) ∈ Fnq the input vector of f at time t, we can introduce the sets

Tx = {t : st = x} for all x ∈ Fnq

of all times when x is the input of f .
For every Tx we define its subsets

T kx = {t ∈ Tx : yt − st = αk} for all k ∈ {0, . . . , q − 1}

of the times when the difference between the sequences Y and S is αk.
These subsets are a partition of Tx, since clearly

q−1⋃
k=0

T kx = Tx and T kx ∩ T k
′

x = ∅ for all k 6= k′

By Proposition 4.1 we know that the sequences Y and S are not statis-
tically independent, so it’s impossible to have

|T kx | =
|Tx|
q

for all k ∈ {0, . . . , q − 1}

Therefore, we can just settle g(x) = αk′ where k′ is such that |T k′x | ≥ |T kx |
for all k 6= k′ (if there are more than one index with this property we just
choose one of them).

It’s easy to check that the so defined function g has the properties re-
quired by Proposition 4.1.

Note that some of the variables may not appear in the algebraic normal
form of g.

For our purpose, the most interesting case is when the function f is
τ − correlated for some integer 1 ≤ τ ≤ n, namely when, if we fix the values
of τ variables, its distribuition changes.

In fact, if there exists a set of indices i1, . . . , iτ ∈ {1, . . . , n}, τ elements
ui1 , . . . , uiτ ∈ Fq and α ∈ Fq such that

P (f(s1, . . . , sn) = ui1s
i1 + · · ·+ uiτ s

iτ + α) 6= 1

q
(4.5.1)

we can write the 4.5.1 as

P (f(s1, . . . , sn) = g(s1, . . . , sn) + α) 6= 1

q

where g is the linear function g(x) = u · x with u ∈ Fnq and uj = 0 for all
j /∈ {i1, . . . , 1τ}.

It means, as we noticed above, that the sequence Ŝ = ui1S
i1+· · ·+uiτSiτ ,

generated by the polynomial Q = lcm(Pi1 , . . . , Piτ ), is correlated with the
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ciphertext C, namely the distribution of the sequence C − Ŝ isn’t uniform.
In particular we could find an imbalance of the sequence C− Ŝ on the value
α.

Now, we just need to develop a correlation attack able to detect if a
polynomial Q can generate such a sequence.

We then apply the attack to polynomials of limited degree and we obtain
a selection of multiples of the polynomials of the registers.

4.5.1 Reconstruction of the registers

Let’s fix two integers d and D and take the set Ω ⊂ Fq[x] defined as

Ω = {Q ∈ Fq[x] : W (Q) = d, deg(Q) ≤ D and a0 = 1}

where W (Q) denotes the weight of Q, namely the number of non-zero co-
efficients of its ANF, and a0 is the free term. We impose a0 = 1 since any
feedback polynomial has free term 1 according to Definition 2.6.

The generic polynomial we are going to test is then

Q(x) = 1 +
d−1∑
j=1

ajx
ij

where aj ∈ Fq for all j ∈ {1, . . . , d−1}. It corresponds to the linear feedback
relation over Fq given by

st =
d−1∑
j=1

ajst−ij

To understand if S(Q) contains sequences correlated to the ciphertext
C, we use the parity check equation defined by Q.

Let Ŝ ∈ S(Q) be the sequence with maximal correlation with the cipher-
text C.

Ŝ can be defined as the sequence in S(Q) maximizing∣∣∣∣∣∣∣∣(P (ct − st = 0), . . . , P (ct − st = αq−1))−
(

1

q
, . . . ,

1

q

)∣∣∣∣∣∣∣∣
namely the sequence such that the distribution of ct− ŝt is the farther from
the uniform one, with respect to the usual distance defined by the euclidean
norm ||·|| in Rq.

Imagining C to be a noisy version of Ŝ, we can write ct = ŝt + εt for all
t, where the noise sequence E = {εt} has distribution

pε,k = P (εt = αk) = P (ct − ŝt = αk) for all k ∈ {0, . . . , q − 1}

with
∑q−1

k=0 pε,k = 1.
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If we define pε,k = 1
q + bk, we have

(pε,0, . . . , pε,q−1) =

(
1

q
, . . . ,

1

q

)
+ (b0, . . . , bq−1)

hence we can say that Ŝ maximize ||b||, where b = (b0, . . . , bq−1).
Now, we define the sequence

c′t =

d−1∑
j=1

ajct−ij

generated by Q from the first digits of C, and we call zt = c′t − ct.
We have

pk = P (zt = αk) = P

εt − d−1∑
j=1

ajεt−ij = αk


and we write

(p0, . . . , pq−1) =

(
1

q
, . . . ,

1

q

)
+ (r0, . . . , rq−1)

Intuitively, if ||b|| is maximal, namely if the noise corresponding to the
sequence Ŝ is the “less uniform”, the linear combination εt −

∑d−1
j=1 ajεt−ij

of independent digits of E should have the same property, namely should
have a distribution as far as possible from the uniform one. This means that
maximal ||b|| implies maximal ||r||, where we put r = (r0, . . . , rq−1)

Now we call ej the vector in Rq whose i-th component is 0 if i 6= j and
is 1 if i = j, namely the canonical bases vectors of Rq.

We define the vectorial variable Vt as a variable taking values in {e1, . . . , eq}
and such that

P (Vt = ek+1) = P (zt = αk) = pk

for k = 0, . . . , q − 1.
Substantially, in every instant Vt tells us which one of the events zt = αk

has occurred.
Hence the variable

W =
N−1∑
t=id−1

Vt = (|{t : zt = 0}|, . . . , |{t : zt = αq−1}|)

is a Multinomial of parameters N − id−1 and p0, . . . , pq−1.
By the Multivariate Central Limit Theorem, W can be approximated by

a Multivariate Gaussian whose mean is the vector

µ = ((N−id−1)p0, . . . , (N−id−1)pq−1) = (N−id−1)

(
1

q
, . . . ,

1

q

)
+(N−id−1)r

The effective distribution of W dipends on the polynomial Q we are
testing:
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• If every sequence in S(Q) is independent from C, then also Ŝ is in-
dependent from C and hence ||b|| = 0. This implies that ||r|| = 0
too, hence W is a Multivariate Gaussian with mean µ0 = (N −
id−1)

(
1
q , . . . ,

1
q

)
.

We call this hypothesis H0.

• If there exists at least one sequence in S(Q) correlated with C, then
||b|| takes the maximal possible value for a sequence in S(Q) and con-
sequently the same remark holds for ||r||. W is then a Multivariate
Gaussian with mean µ = µ0 + (N − id−1)r, where r 6= (0, . . . , 0).

We call this hypothesis H1.

The Gaussian of hypothesis H1 is thus a Gaussian whose mean is a point
on the q-dimensional sphere of ray (N − id−1)||r|| centered in µ0.

The test consist of fixing a ray R and for any Q ∈ Ω compute the vector
W according to its definition. Then we compute ||W − µ0|| and say that{

H0 is true if ||W − µ0|| < R

H1 is true if ||W − µ0|| > R

In the first case we discard Q, otherwise we store it.
The probability of a “false alarm”, namely to select a wrong polynomial,

is the volume under the Gaussian bell centered in µ0 outside the sphere of
ray R and centered in µ0. The probability of a “non detection”, namely to
discard a good polynomial, is the volume under the Gaussian bell centered
in µ inside the same sphere.

To precisely compute these probabilities and to decide how to chose
the ray R we can proceed as done by Filiol on F2 (see the next chapter
for a detailed description). Substantially, we standardize the two variables
reporting both to the Standard MultiNormal whose distribution function is
numerically computable.which generated at least one sequence such that the
corresponding variable W has mean that move away from µ0 of at least a
distance (N − id−1)||r||.
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4.6 Reconstruction over F2

In this section we see what happens when q = 2, reporting the work by Eric
Filiol which inspired this thesis.

As the reader can easily see, the following algorithm is substantially a
special case of the algorithm seen in section 4.5. Working over F2 permits
to better manage with probabilities and distributions, getting some more
explicit results. Furthermore, thanks to the properties of the Hamming
distance and consequently to those of the Walsh spectrum of a boolean
function, the recovery of the combining function can be easily achieved just
exploiting some results of the reconstruction of the register.

4.6.1 Introductory results

First of all, we recall that in the binary case we assume the plaintext M =
{mt}t∈N to have distribution

P (mt = 0) = p0, P (mt = 1) = 1− p0 with 0.6 ≤ p0 ≤ 0.7

The following proposition is equivalent to proposition 4.1, but on F2.

Proposition 4.2. Let S = {st}t∈N be any binary sequence and let x =
(x1, . . . , xn) denote a vector in Fn2 .

If P (ct = st) 6= 1
2 , then S can be written as a function of the outputs

S1, . . . , Sn of the registers.

Namely, there exist a boolean function g : Fn2 → F2 such that for all
t ∈ N it holds

st = g(s1
t , . . . , s

2
t )

Moreover, we can write

P (ct = st) = 1− p0 − pg + 2p0pg

where pg = P (f = g).

Proof. Clearly, it holds

P (ct = st) = P (yt ⊕mt = st)

= P (mt = 0)P (yt = st) + P (mt = 1)P (yt 6= st)

= p0P (yt = st) + (1− p0)(1− P (yt = st))

= 1− p0 − P (yt = st) + 2p0P (yt = st)

Now, P (yt = st) = 1
2 would imply

P (ct = st) = 1− p0 −
1

2
+ p0 =

1

2
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which contradicts our hypothesis.
Hence P (yt = st) 6= 1

2 , namely st and yt are not statistically independent.
Since yt = f(s1

t , . . . , s
n
t ), st is not statistically independent from s1

t , . . . , s
n
t ,

so there must exist a function g such that st = g(s1
t , . . . , s

n
t ).

Now trivially P (yt = st) = P (f = g) = pg and we can write

P (ct = st) = 1− p0 − P (yt = st) + 2p0P (yt = st) = 1− p0 − pg + 2p0pg

Remark 4.2. Over F2, the recovery of the function g of proposition 4.2 is
even easier. If we denote st = (s1

t , . . . , s
n
t ) ∈ Fn2 the input vector of f at time

t, we can introduce the sets

Tx = {t : st = x} for all x ∈ Fn2
of all times when x is the input of f .

For every Tx, we define its subsets

T 0
x = {t ∈ Tx : st = yt} and T 1

x = {t ∈ Tx : st = yt + 1}

to distinguish when st = yt or st 6= yt.
These subsets are a partition of Tx, since clearly

T 0
x ∪ T 1

x = Tx and T 0
x ∩ T 1

x = ∅

By proposition 4.2, we know that the sequences S and Y are not statis-
tically independent, so it’s not possible to have

|T 0
x | = |T 1

x | =
|Tx|

2

thus we can settle g(x) = 0 if |T 0
x | ≥ |T 1

x | and g(x) = 1 otherwise.
It’s easy to check that the so defined function g has the properties re-

quired by proposition 4.2.
Note that some of the variables may not appear in the algebraic normal

form of g.

If the function f is τ − correlated, its distribution changes as soon as we
fix the values of τ variables. We can exploit this property as follows.

Suppose there exist a set of indices i1, . . . , iτ ∈ {1, . . . , n} such that

P (f(s1, . . . , sn) = si1 + · · ·+ siτ ) 6= 1

2
(4.6.1)

we can write the 4.6.1 as

P (f(s1, . . . , sn) = g(s1, . . . , sn)) 6= 1

2

where g is the linear function g(x) = u · x with u = (u1, . . . , un) ∈ Fn2 and
uj = 1 if and only if j ∈ {i1, . . . , 1τ}.

Hence the correlation between the ciphertext C and the sequence S̃ =
Si1 + · · ·+ Siτ provides informations about the polynomials Pi1 , . . . , Piτ :
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• by theorem 2.12, in fact, S̃ ∈ S(Q), where Q = lcm(Pi1 , . . . , Piτ )

• by theorem 2.11, any polynomial generating the sequence S̃ its Q or
one of its multiples

4.6.2 Reconstruction of the registers

To reconstruct the registers, first we fix two integers d and D and take the
set Ω ⊂ F2[X] defined as

Ω = {Q ∈ F2[X] : W (Q) = d, deg(Q) ≤ D and a0 = 1}

where W (Q) denotes the weight of Q, namely the number of non-zero coef-
ficients of its ANF, and a0 is the free term.

The generic polynomial we’re going to test is thus

Q(X) = 1 +
d−1∑
j=1

Xij

which corresponds to the linear feedback relation over F2 given by

st =

d−1⊕
j=1

st−ij

To understand if S(Q) contains any sequence correlated to the ciphertext
C, we use the parity check equation defined by Q.

We define the sequence

c′t =
d−1⊕
j=1

ct−ij

which is the one Q would have generated if applied as feedback polynomial
to a register with initial state (c0, . . . , cid−i).

For all t ∈ {id−1, . . . , N − 1} let

zt = ct ⊕ c′t

be the sequence which in every instant checks if ct = c′t.
If we define p := P (ct 6= c′t) = P (zt = 1), for all t the variable zt is a

Bernoulli of parameter p, zt ∼ B(p).
To evaluate the correlation between ct and c′t, we compute Z ′ =

∑N−1
t=id−1

zt,

which just counts how many times ct 6= c′t.
The variables zt being independent and identically distributed, for large

values ofN−id−1, by the Central Limit Theorem, Z ′ can be approximated by
a Gaussian with mean µ′ = (N−id−1)p and variance σ′2 = (N−id−1)p(1−p).
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To better distinguish between good and bad cases, instead of Z ′ we
introduce the variable

Z =
N−1∑
t=id−1

(−1)zt

whose standard deviation is greater than Z ′’s one.

Z, in fact, varies between id−1−N , when for all t ct 6= c′t, and N − id−1,
when for all t ct = c′t. We can write it as

Z =

N−1∑
t=id−1

(−1)zt =

N−1∑
t=id−1

(1− (1− (−1)zt)) =

=
N−1∑
t=id−1

1−
N−1∑
t=id−1

(1− (−1)zt) = N − id−1 − 2
N−1∑
t=id−1

zt

since 1− (−1)zt =

{
0 if zt = 0

2 if zt = 1
= 2zt.

It should be evident now that also Z can be approximated by a Gaussian,
but stretched in the interval (id−1−N,N−id−1) and with mean and variance
respectively

µ = N − id−1 − 2µ′ = N − id−1 − 2(N − id−1)p

= (N − id−1)(1− 2p)

σ2 = 4σ′2 = 4(N − id−1)p(1− p)

Now, let Ŝ ∈ S(Q) be the sequence in S(Q) with the greatest correlation
with the ciphertext C. Ŝ can be defined as the sequence in S(Q) maximizing
the distance ∣∣∣∣∣∣∣∣(P (ct = st), P (ct 6= st))−

(
1

2
,
1

2

)∣∣∣∣∣∣∣∣
or, equivalently, the one maximizing∣∣∣∣P (ct = st)−

1

2

∣∣∣∣
If we imagine the ciphertext C to be a noisy version of Ŝ, we can write

ct = ŝt ⊕ εt for all t

where the noise sequence E = {εt} is distributed as

P (εt = 0) = P (ct = ŝt) = pε and P (εt = 1) = P (ct 6= ŝt) = 1− pε
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The condition ct 6= c′t can now be written as

ct 6=
d−1⊕
j=1

ct−ij

⇔ ŝt ⊕ εt 6=
d−1⊕
j=1

(ŝt−ij ⊕ εt−ij )

⇔ ŝt ⊕ εt 6=
d−1⊕
j=1

ŝt−ij ⊕
d−1⊕
j=1

εt−ij

⇔ εt 6=
d−1⊕
j=1

εt−ij

since Ŝ ∈ S(Q) implies ŝt =
⊕d−1

j=1 ŝt−ij .

Furthermore, it holds

p = P (zt = 1) = P (ct 6= c′t) = P

εt 6= d−1⊕
j=1

εt−ij



The last condition is true if and only if the number of indices t̄ ∈ {t, t−
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i1, . . . , t− id−1} such that εt̄ = 1 is odd, so p can be computed as

p = P

εt 6= d−1⊕
j=1

εt−ij

 =

d∑
l=0
l odd

(
d

l

)
(1− pε)lpd−lε

=
1

2

2

d∑
l=0
l odd

(
d

l

)
(1− pε)lpd−lε +

d∑
l=0

l even

(
d

l

)
(1− pε)lpd−lε +

−
d∑
l=0

l even

(
d

l

)
(1− pε)lpd−lε


(1)
=

1

2

 d∑
l=0
l odd

(
d

l

)
(1− pε)lpd−lε −

d∑
l=0
l odd

(
d

l

)
(pε − 1)lpd−lε +

+
d∑
l=0

l even

(
d

l

)
(1− pε)lpd−lε −

d∑
l=0

l even

(
d

l

)
(pε − 1)lpd−lε


=

1

2

[
d∑
l=0

(
d

l

)
(1− pε)lpd−lε −

d∑
l=0

(
d

l

)
(pε − 1)lpd−lε

]
(2)
=

1

2
[1− (2pε − 1)d]

where in (1) we have used

(1− pε)l =

{
−(pε − 1)l when l is odd
(pε − 1)l when l is even

while in (2) we have used Newton’s binomial theorem:

d∑
l=0

(
d

l

)
xlyd−l = (x+ y)d

.

We have therefore defined a variable Z which depends on the polynomial
Q we’re testing. Its distribution varies according as Q is correlated with C
or not, since:

1. If every sequence in S(Q) is independent from C, then neither Ŝ is
correlated with C and pε = 1

2 . In this case we can easily check that
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also p = 1
2(1 − (21

2 − 1)d) = 1
2 and then Z is a Gaussian with mean

and variance respectively

µ0 = (N − id−1)

(
1− 2

1

2

)
= 0

σ2
0 = 4(N − id−1)

1

2

(
1− 1

2

)
= N − id−1

We call this hypothesis H0.

2. If there exists at least one sequence in S(Q) correlated with the ci-
phertext C, then, by definition of Ŝ, pε 6= 1

2 , or better the distance
δ = |pε − 1

2 | is the biggest possible one. In this case

p =
1

2

[
1−

(
2

(
1

2
± δ
)
− 1

)d]
=

1

2
(1− (±2δ)d)

where the sign before δ is unknown depending on the sign of pε − 1
2 .

As we have seen, Z has mean and variance given respectively by

µ = (N − id−1)

(
1− 2

(
1

2
(1− (±2δ)d)

))
= (N − id−1)(±2δ)d

σ2 = 4(N − id−1)
1

2
(1− (±2δ)d)

1

2
(1 + (±2δ)d) = (N − id−1)(1− (2δ)2d)

We call this hypothesis H1.

In figure 4.4, we show the two Gaussian bells corresponding to the two
hypothesis. As you can see, the situation changes symmetrically according
as pε >

1
2 , so that µ > 0, or pε <

1
2 , so that µ < 0.

Figure 4.4: The Gaussian bell of hypothesis H1 (red) compared with the
one of hypothesis H0 (blue) in the two cases.
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The test consist in setting a threshold T and for every Q ∈ Ω compute
the corresponding value of Z and compare it with T .

Since when testing we don’t know the value of pε, for convenience we
choose to take T > 0: if Z > T or Z < −T we assume hypothesis H1 to
be true (supposing, respectively, µ > 0 or µ < 0) while if −T < Z < T we
assume as true hypothesis H0.

We can sum up these conditions as{
H0 is true when |Z| < T

H1 is true when |Z| > T

Clearly, in the first case (H0) we discard Q, while in the second one (H1)
we store it.

As any statistical attack, our test may fail.
In fact, we can have a “false alarm”, namely select a wrong polynomial,

with probability

pfa = P (|Z| > T | H0) = 2

∫ +∞

T

e
− x2

2σ20√
2πσ2

0

dx

since in the H0 case Z is a N (0, σ2
0) and thanks to its symmetry P (|Z| >

T ) = 2P (Z > T ).
Analogously, we can have a “non-detection”, namely discard a good

polynomial, with probability

pnd = P (|Z| < T | H1) =

∫ T

−T

e−
(x−µ)2

2σ2

√
2πσ2

dx

since in theH1 case Z is aN (µ, σ2) and we don’t need to distinguish between
µ < 0 and µ > 0 because, as we already noticed, the two cases are perfectly
symmetrical.

The threshold T must be actually settled to minimize these error prob-
abilities. Unfortunately, as it’s clearly visible in figure 4.5, we cannot min-
imize both pfa and pnd, since to reduce pnd we should move T towards 0,
resulting in increasing pfa.

Anyhow, that’s exactly what we will do, since for the success of the
algorithm it’s fundamental not to miss the good candidates. Obviously, we
cannot let pfa increase too much, because it would lead to a massive growth
of the computational complexity, but keep pnd low is crucial. Hence, we
have to choose the optimal compromise between pnd and pfa, set T to keep
pnd as low as we want to, then finally take an amount N of ciphertext as
big as necessary to limit pfa.

To explicitly compute the values of T and N allowing the algorithm to
work, let’s first evaluate pfa and pnd.
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Figure 4.5: The area in red is pfa, while the area in blue is pnd.

Let

Φ(x) =

∫ x

−∞

e−
y2

2

√
2π
dy

be the distribution function of the standard normal.

If we standardize the variable, substituting y = x
σ0

for hypothesis H0

and y = x−µ
σ for H1, we obtain

pfa = 2

∫ +∞

T
σ0

e−
y2

2

√
2π
dy = 2

∫ − T
σ0

−∞

e−
y2

2

√
2π
dy = 2Φ

(
− T
σ0

)
(4.6.2)



80 CHAPTER 4. RECONSTRUCTION OF STREAM CIPHERS

and

pnd =

∫ T−µ
σ

−T−µ
σ

e−
y2

2

√
2π
dy = Φ

(
T − |µ|
σ

)
− Φ

(
−T − |µ|

σ

)
≈ Φ

(
T − |µ|
σ

)
(4.6.3)

since we don’t know if µ > 0 or µ < 0 and in both cases Φ
(
−T−|µ|

σ

)
is

negligible, being << Φ
(
T−|µ|
σ

)
.

Now we can fix the accepted values for pnd and pfa and invert equations
4.6.2 and 4.6.3 (substituting the computed values of σ0, µ and σ) using a
Standard Normal Table, obtaining the system

N − id−1 =

(
−T

Φ−1
(
pfa
2

)
)2

T = Φ−1(pnd)
√

(N − id−1)(1− (2δ)2d) + (N − id−1)(2δ)d

Solving the system in the unknowns T and N permits to settle the best
values for the parameters necessary for the algorithm.

Usually N is given (it’s simply the total amount of available ciphertext),
so the second equation is used to settle T , while the first one only allows to
check if we have enough ciphertext digits to reduce pfa as desired.

4.6.3 The algorithm

We can now expose the algorithm for the recovery of the feedback polyno-
mials.

Since δ was defined somehow to measure the “distance” in the distribu-
tion of Z between hypothesis H0 and H1, we can fix a minimum accepted
value δmin. The following algorithm then examines all polynomials of degree
at most D and of weight d, detecting every polynomial Q in this set such
that |P (ct 6= c′t)− 1

2)| ≥ δmin.

Algorithm 4.1 (Reconstruction of the registers over F2).

Require: N and ciphertext C = c0c1 . . . cN−1

Choose: a value pnd for the probability to miss a good candidate
Choose: a value pfa for the probability to select a wrong a polynomial
Choose: a minimum value δmin
Choose: two parameters d and D
for each (d − 1)-tuple (i1, . . . , id−1) such that 0 < i1 < · · · < id−1 ≤ D
do
N ′ ← N − id−1

T ← Φ−1(pnd)
√
N ′(1− (2δmin)2d) +N ′(2δmin)d

Z ← 0
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for t = id−1, . . . , N − 1 do
c′t =

∑d−1
j=1 ct−ij

if ct = c′t then
Z ← Z + 1

else
Z ← Z − 1

end if
end for
if |Z| ≥ T then

factorize Q(X) = 1 +
∑d−1

j=1 X
ij and store the factors

end if
end for

4.6.4 Recovery of the combining function

Once we have implemented algorithm 4.2, the complete recovery of the co-
efficients of the combining function can be easily achieved.

First, the reconstruction of the registers tells us the value of n, namely
the number of variables of the combining function f .

Now, any polynomial we have detected is a multiple of some feedback
polynomials of the registers, thus it’s of the form

Q = R ·
∏
i∈I

Pi, I ⊆ {1, . . . , n}

where R is another polynomial in F2[X].
Take any set of indices I and suppose we have collected nI multiples of∏

i∈I Pi, denoted Qj for j = 1, . . . , nI .
For any Qj we have computed and stored the corresponding value Zj of

the variable Z. The arithmetic mean of those values gives us an esteem of
the expected value of Z:∑nI

j=1 Zj

nI
≈ E(Z) = N(2pε − 1)d

where pε = P (ct = st) with st = g(s1
t , . . . , s

n
t ) and g(x) = 1I · x1.

We can thus esteem the value of pε and use it to esteem the value of
pg = p(f = g), since by proposition 4.2 we know that

pε = 1− p0 − pg + 2p0pg

where p0 = P (mt = 0).
Finally, from identity 2.2.7, we have

pg =
1

2

(
1 +

χ̂f (1I)

2n

)
11I is the vector in Fn2 whose i-th component is 1 if and only if i ∈ I
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and we can quite precisely esteem the value of χ̂f (1I) since the Walsh coef-
ficients of a balanced boolean function are known to be multiple of 4.

We have thus shown how to completely recover the Walsh spectrum of
the function f . The coefficients of its ANF can be easily evaluated thanks
to proposition 2.11:

au = 2wH(u)−1

1− 1

2n

∑
v�ū

χ̂f (u)

 mod 2
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