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Synthesis

The aim of this thesis is to present, and to describe solutions in same cases, an

important problem posed by the mathematicianWilhelm Killing (1847− 1923) .

It consists in the ambitious study and classi�cation of Riemannian com-

plete and connected manifolds of constant curvature, called by Killing space

forms, because they represented models for the idea of physical space at

that time. Killing calls this the Clifford −Klein space form problem, in

honour of the e�orts which the two mathematicians put on this problem.

As a matter of fact, he who has pushed a way to these studies and who has

revolutionized the idea of space, he is B. Riemann in his fundamental paper

"On the Hypotheses which lies at the Foundation of Geometry". William

Kingdon Cli�ord (1845− 1879) and Felix Klein (1849− 1925) live and work

in the latter half of the XIX century, which is rightly called the "golden age"

of mathematics. Geometry as a science is born in ancient Greece and reaches

its apex in Euclid' s masterpiece The Elements; for nearly 2000 years after

that no many conceptional progresses are made on this subject. Even though

it is possible to �nd progresses among the Arab, in the Europe of Renaissance

and some reviviscences of pure geometry also in the period of French Revolu-

tion with Gaspard Monge (1746− 1818) and Lazare Carnot (1753− 1823),

in Newton' s Principles, geometry of space is still the Euclidean one and only

in XIX we see a nearly explosive recovery of geometry as a vital branch of

mathematics.

In 1829, the essay "O na£alach geometrii" (On the Principles of Geometry)

written by Nicolaj Ivanovi£ Loba£evskij (1793− 1856) indicates the o�cial
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birth of non-euclidean geometry, that is maybe the most representative sym-

bol of this new age of geometry, so that Loba£evskij is considered like the

"Copernicus of Geometry" [3]. In spite of this, it needs to say that very simi-

lar concepts have been enunciated, nearly in the same time, by the great Carl

Friedrich Gauss (1777− 1855) and by the hungarian mathematician János

Bólyai (1802− 1860) . [5]

For some decennia the non-euclidean geometry continues to represent a se-

condary aspect of mathematics, until when the general conceptions of G. F.

Bernhard Riemann (1826− 1866) consecrate the non-euclidean geometry as

an important part of mathematics. Riemann has a good education, he stu-

dies in Berlin and in Gottingen where he takes the degree.

In 1854 he becomes "Privatdozent" at Univesity of Gottingen with the state-

ment of one of the most famous thesis in the history of mathematics: "Ueber

die Hypothesen welche der Geometrie zu Grunde liegen" (On the Hypotheses

which lies at the Foundation of Geometry). In this thesis we �nd a global

vision of geometry as a study of manifolds of any number of dimensions

and in any kind of space . The Riemann' s geometries are non-euclidean in

a more general way than in Loba£evskij' s sense. According to Riemann' s

idea, the geometry would not talk necessarily about points, lines and space

in the ordinary way, rather it has to study set of ordinate n-folds associated

by means of any rules, following the idea of measurement.

Riemann attributes the di�culties encountered in the study of non-euclidean

geometry to the fact that geometers had never separated what we now call

the topological properties of space from its metric properties, and he pro-

posed to distinguish them. Moreover he promises to show how di�erent

metric structures can be put on this new idea of space, so that one cannot

possibly expect to deduce the parallel postulate of Euclid from topological

considerations alone.

Now we want to expose the main results expressed in Riemann' s work until

now examinated, thus the concept of manifold, the de�nition of distance

and of the curvature of a manifold. A manifold of dimension n is a set of n
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ordered real numbers (x1, x2, . . . , xn) .

About the operations of meausurement Riemann says:"...Measuring involves

the superposition of the quantity to be used as a standard for the others. O-

therwise, one can compare two quantities only when one is part of the other,

and then only as to "more" or "less", not as to "how much"..." [15].

So he gives the de�nition of distance considering the lenght of lines, and

looking to the quantities x and dx, the increment in the quantities x, he

obtains the formula ds =
√∑

(dx)2. He �nds the latter expression in the

simpler case of the plane and of the space (euclidean), which he calls flat

manifolds. But how do we can extend this to a curved manifold?

Riemann considers

(x1, x2, . . . , xn) , (x1 + dx1, x2 + dx2, . . . , xn + dxn)

as the coordinates of two in�nitely near points of a generic manofold. So he

generalizes the Pithagora' s Theorem and in this way, examining for example

the case of dimension n = 4, he has that the distance between these two

points is the square root of [1]

g11dx2
1 + g22dx2

2 + g33dx2
3 + g44dx2

4

+g12dx1dx2 + g13dx1dx3 + g14dx1dx4

+g23dx2dx3 + g24dx2dx4

+g34dx3dx4,

where g11, . . . , g34 are functions of x1, . . . , xn. Every time we do a speci�c

choice of the letters g, we are de�ning a space.

From a generalization of the common experience, Riemann (and before him

Gauss) takes his idea of curvature. It can be intended as the measurement

of how much a curve departes from a line, which has zero curvature. In the

same way for the surfaces, but in relation to a plane (of zero curvature too).

Nevertheless Riemann succeeds in expressing the measure of the curvature

in a point entirely in terms of all the g, in the general case of a space in n

dimensions. This expression is called the measure of the curvature of the
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space.

At the end, in other words, which results do we draw from the Riemann'

s revolution in geometry? Surely the creation of a non-limited number of

spaces and of geometries; moreover our concept of space is more clear.

Riemann' s work theaches to mathematicians to not believe in any geometry,

in any absolute space. It is the �rst step towards the abolition of the "ab-

solutes" of physics of the XIX century. Riemann' s results about metric and

curvature have had a physic interpretation in the Theory of Relativity. Thus

the real revolution of the scienti�c thought, caused by the Relativity would

not has been possible without the fundamental Riemann' s contribution.

Shortly after Riemann' s memoir many geometries are found which could

replace Euclidean vision of physical spaces. It is studying one of those ex-

amples, given by Cli�ord, that Killing folrmutes the so-called Cli�ord-Klein

problem: to study Riemannian manifolds of constant curvature.

After this important historical picture it is time to analyse the development

of the thesis. We start CHAPTER I with some remarks on the well-known

concepts of di�erentiable manifolds and vector �elds introducing the concept

of vector bundle. A vector bundle is a �ve-tuple

ξ = (E, π, M,⊕,�) ,

where E and M are spaces (the "`total space"' and "`base space"' of ξ,

respectively), with a continuos surjective map π : E → M , and ⊕ and � are

maps which make each �bre π−1 (x) into a n-dimensional vector space over R,

such that the following local triviality condition is satis�ed: for each x ∈ M,

there is a neighborhood Ux and a homeomorphism t : π−1 (Ux) → Ux × Rn

which is a vector space isomorphism from each π−1 (y) onto y × Rn. When

M is a manifold, the bundle π : TM → M is called the tangent bundle,

where TM =
⋃

x∈M Mx is the disjoint union of the tangent spaces Mx at

x ∈ M. A section of a bundle is a continuos function s : M → E such that

π ◦ s = identity of M and we can conclude that a vector �eld on a manifold

M is nothing less than a section of the tangent bundle TM.

Starting from a vector bundle we can obtain a new vector bundle over the
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same base space, simply replacing each �bre by some other vector space. In

this way we obtain the dual bundle π′ : E ′ → M, where

E ′ =
⋃
x∈B

[
π−1 (x)

]∗
.

When this construction is applied to the tangent bundle TM of M, the

resulting bundle, denoted by T ∗M is called the cotangent bundle of M. Sec-

tions of T ∗M are the covariant vector fields, sections of TM are called

contravariant vector field, they are also called covariant and contravariant

tensors (or tensor �elds) of order 1.

Thus if T : V1×. . .×Vm → R is a multilinear function and if V1, . . . , Vk = V,

we denote the set of all such T by Tm (V ) . We can obtain the vector bundle

π : E → B, this time with

E ′ =
⋃
x∈B

Tk
(
π−1 (x)

)
.

The section of the bundle Tk (TM) are called covariant tensor fields of

order k.

A contravariant tensor field of order k is just a section of the bundle

Tk (T ∗M) .

At this point we look a a special kind of covariant tensor �elds, an element

T ∈ Tk (V ) is called alternating if

T (v1, . . . , vi, . . . , vj, . . . , vk) = 0 if vi = vj (i 6= j) .

We denote by Λk (V ) the set of all alternating T ∈ Tk (V ) . Considering once

again vector bundles we replace each �bre π−1 (x) with Λk (π−1 (x)) , and we

obtain the exterior k bundle

Λk (TM) =
⋃

x∈M

Λk (Mx) .

Its sections are just alternating covariant tensor �elds of order k, are called

differential forms of degree k on M.

A Lie group G is a di�erentiable manifold endowed with a group structure
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such that the map G×G → G de�ned by (g, h) → gh−1 is di�erentiable. We

de�ne a di�erentiable action of a Lie group G on a di�erentiable manifold

M as a di�erentiable map F : G × M → M such that g → F (g, ·) is a

homomorphism of G into the group of di�eomorphisms of M. A fundamental

example of Lie group is GL (n, R) the group of all n × n non-singular real

matrices. If we consider on GL (n, R) the product [X, Y ] = XY − Y X, this

satis�es the axioms

[X,Y ] = − [Y,X] and

[[X,Y ] , Z] + [[Y, Z] , X] + [[Z,X] , Y ] = 0.

An algebra whose product satis�es such axioms is called a Lie algebra.

For any x ∈ M an ordered basis of the tangent space Mx, it is a frame at x.

Let an ordered n-tuple of vector �elds on an open set U ⊂ M (whose value at

every point x ∈ U forms a frame) X = {X1, . . . , Xn} , it is called a moving

frame.

The moving frame on all open sets U ⊂ M put a di�erentiable structure on

B. The manifold B has a natural projection map

π : B → M

such that X : U → B is a di�erentiable map such that π ·X is the identity

on U. So that exists a cover {Uα} of M such that π−1 (Uα) is di�eomorphic

to Uα × GL (n, R) . The Lie group GL (n, R) has a di�erentiable action on

B : B is called the frame bundle on M.

We de�ne a connection H = {Hb}b∈B on B as a choice of a subspace Hb ⊂ Bb,

such that GL (n, R) preverses the following decomposition Bb = Hb+Vb of the

total space in horizontal plus vertical space. Let X be a di�erentiable vector

�eld on an open subset U of B, we have a unique decompositon X = hX+vX,

where hX and vX are respectively horizontal and vertical �elds. Let Xx be

a vector at a point x ∈ M.

Given a point b ∈ π−1 (x), consider the projection π∗ : Bb → Mx; it has

kernel Vb, so π∗ : Hb
∼= Mx. Thus there is a unique horizontal vector Xλ

b ∈ Bb

which the map π∗ sends to the vector Xx. Recall that each point b ∈ π−1 (x)
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is a frame, then rightly we consider a horizontal vector �eld Xλ along the

fibre π−1 (x) , and we call it the horizontal lift of Xx.

Now let σ (t) , t1 ≤ t ≤ t2, be a di�erentiable curve from x ∈ M to z ∈ M. If

b ∈ π−1 (x) then σ has a unique horizontal lift σ̃b, such that σ̃b (t1) = b, and

(b, t) → σ̃b (t) is di�erentiable on π−1 (x)× [t1, t2] .

De�ne

τ : π−1 (x) → π−1 (z) by τ (b) = σ̃b (t2) .

Then τ is a di�eomorphism, τ (bg) = τ (b) g for every g ∈ GL (n, R) ,

and there is a unique vector space isomorphism τ0 : Mx → Mz

such that

τ {b1, . . . , bn} = {τ0 (b1) , . . . , τ0 (bn)} .

τ and τ0 de�ned above, are the operation of parallel translation,

respectively of frames and vectors along σ, determined by the con-

nection H on B.

So let σ (t) be a di�erential curve in M, and suppose that we have a vector

�eld t → Yt ∈ Mσ(t) along σ. For any two values t1, t2 of t, we have the

parallel translation τt1,t2 : Mσ(t1) → Mσ(t2) along σ|[t1,t2].

We can say that the vector �eld Y = {Yt} is parallel along σ if τt1,t2 (Yt1) =

Yt2 for all t1, t2. Now we de�ne functions si and yi by: σ′ (t) =
∑

si (t) Xiσ(t)

and Yt =
∑

yi (t) Xiσ(t); and we consider τh, the parallel translation of

vectors along σ from σ (t) to σ (t + h) . The di�erence quotient ∇σ′(t)Y ≡
limh→0

1
h
{τ−hYt+h − Yt} is given by

∇σ′(t)Y =
∑

i

{(
dyi +

∑
k

ykω̄i
k

)
(σ′ (t))

}
Xiσ(t),

where θ̄i are linear di�erential forms on U de�ned by θ̄i (Xj) = δi
j, and

ω̄i
k =

∑
Γi

jkθ̄, where the functions Γi
jk on U are the Christoffel symbols

(the components of the connection relative to the moving frame X).

More generally, a vector ∇ZY ∈ Mx is de�ned whenever Z ∈ Mx and Y is
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a smooth vector �eld on a neighborhood of x. ∇ZY is called the covariant

derivative of Y along Z.

Once a connection is given on the bundle B, if Y and Z are vector �elds on

an open set U ⊂ M, then we de�ne the fundamental tensors:

T (Y, Z) = ∇Y Z −∇ZY − [Y, Z] , the torsion tensor;

R (Y, Z) = ∇Y∇Z −∇Z∇Y −∇[Y,Z], the curvature tensor.

In CHAPTER II we introduce Riemannian manifolds: they are di�eren-

tiable manifolds endowed with a metric. If M a di�erentiable manifold, a

pseudo − riemannian metric on M is a di�erentiable �eld g = {gx}x∈M of

nondegenerate symmetric bilinear forms gx on the tangent spaces Mx of M.

In the language of bundles: let X = {X1, . . . , Xn} be a moving frame on an

open set U ⊂ M, and let {θi} be the dual coframe de�ned by θi (Xj) = δj
i .

Then we de�ne di�erentiable functions on U by gij (x) = gx (Xix, Xjx) and

see the traditional expression

g =
∑
i,j

gijθ
i ⊗ θj.

The Fundamental Theorem of Riemannian Geometry says:

Theorem 0.1. The frame bundle of a pseudo-riemannian manifold M has a

unique connection for which: (i) parallel translation of tangent vectors along

any curve in M preserves inner products, and (ii) the torsion tensor T = 0.

This connection is called the Levi− Civita connection.

From now on all a�ne concepts already seen like for example parallelism

and curvature, refer to this connection. One of the main instruments of

di�erential geometry is surely the Gaussian curvature. In "Disquisitiones

generales circa super�cies curvas" (1828), considering a surface S ⊂ R3,

Gauss looks, at any point x ∈ S, the "di�erence" between S and the tangent

space in x Sx as a real number, the Gaussian curvature. In particular let

<,> be the standard inner product de�ned on each tangent plane Sx, and

let x : S → R3 be the inclusion, viewed as position vector on S. Let ξ denote
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a smooth choice of unit normal on S, de�ned up to sign by < ξx, Sx >= 0

and < ξx, ξx >= ±1. Then the �rst and second fundamental forms on S are

given by

I = ds2 =< dx, dx > and II = − < dξ, dx > .

We write ||v||2 for < v, v > and say that v is "nondegenerate" if ||v2|| 6= 0.

If v ∈ Sx, we have I (v, v) = ||v||2, and if, further, v is nondegenerate, we

can de�ne the remember the de�nition of the "normal curvature" kn (v) as

II (v, v) = ||v||2kn (v) .

If P is the plane through x spanned by ξx and v, then kn (v) is the signed

curvature at x of the plane S ∩ P in P. We know that if kn takes extremal

values on Sx (which is automatic if I is positive or negative de�nite),we can

call them "principal curvatures". There are just two of them (for di�erent

directions), and their product K = k1k2 is the determinant of II divided by

the signed determinant of I, it is the Gaussian curvature.

The inner product in R3 <,> de�nes by restriction an inner product on

the tangent spaces of S, this gives S a natural structure of Riemannian

manifold. Now, considering a generic pseudo-riemannian metric, let {v1, v2}
be a moving frame on an open subset of S and let {α1, α2} the dual form,

we can express these ideas above in other words. So relative to the frame,

I =
∑

gijα
i ⊗ αj and II =

∑
bijα

i ⊗ αj

and the Gaussian curvature is

Kc = det (bij) /det (gij) ||ξ||2.

Riemann is able to generalize this concept passing form two to n dimension

with the de�nition of sectional curvature.

Let x ∈ M, a pseudo-riemannian manifold with metric g. Suppose that E is

a nondegenerate plane section (2-dimensional linear subspace) of the tangent

space Mx. We take U ⊂ E, if it is a su�ciently small neighborhood of 0

in E, then (i) expx : U → expx (U) = SE is a di�eomorphism, so SE is a

"local" surface containing x and with (SE)x = E, and (ii) if z ∈ SE then
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(SE)z is a nondegenerate subspace of Mz. Then the inner products on Mz

induce a pseudo-riemannian metric on the surface SE. We de�ne the sectional

curvature K (x, E) to be the Gauss curvature of SE at x,

K (x, E) = KSE
(x) .

Theorem 2.5 shows that the sectional curvature is a kind of normalization

on the plane section of the curvature tensor on the manifold, thus

K (x, E) = − g (R (Y, Z) Y, Z)

g (Y, Y ) g (Z,Z)− g (Y, Z)2 .

Given a number K and a point x ∈ M, we say that M has constant curvature

K at x if K (x, E) = K for every nondegenerate plane section E ⊂ Mx. Now

it can happen that the value of constant curvature is the same K for each

point of the manifold, so M has constant curvature K if M has constant

curvature at each of its points.

In CHAPTER III we denote with Rn
s , 0 ≤ s ≤ n, denote the vector space of

real n-tuples x = (x1, . . . , xn) with the bilinear form

bn
s (x, y) = −

s∑
i=i

xiyi +
n∑

j=s+1

xjyj.

Let gn
s be the pseudo-riemannian metric onRn

s obtained by euclidean-parallel

translation of the form bn
s (x, y) . Rn

s is a complete simply connected pseudo-

riemannian manifold of signature (s, n− s) (from the bn
s (x, y)) and of con-

stant curvature zero. After we �nd nonzero curvature models:

Sn
s =

{
x ∈ Rn+1

s : bn+1
s (x, x) = r2

}

Hn
s =

{
x ∈ Rn+1

s+1 : bn+1
s+1 (x, x) = −r2

}
.

are complete pseudo-riemannian manifolds of signature (s, n− s) and respec-

tive constant curvature r−2 and −r−2, the pseudo−riemannian spheres and

the hyperbolic spaces.

We de�ne :
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S̃
n

s = Sn
s for s 6= n− 1, n;

S̃
n

n−1 : universal pseudo-riemannian covering manifold of Sn
n−1;

S̃
n

n : component of (0, . . . , 0, 1) in Sn
n.

Similarly we de�ne H̃
n

s = Hn
s for s 6= 0, 1;

H̃
n

1 : universal pseudo-riemannian covering manifold of Hn
1 ;

H̃
n

0 : component of (1, 0, . . . , 0) in Hn
0 .

Now S̃
n

s and H̃
n

s are complete simply connected manifolds, thus we can ap-

ply the important Corollary 2.10. It says that a pseudo-riemannian manifold

M is complete and of constant curvature K, if and only if M is isometric

to the quotient N/Γ of N by a free properly discontinuos group of isome-

tries; Where N is a complete simply connected pseudo-riemannian manifold

of constant curvature K, and M has a tangent space isometric to a tangent

space of N (i.e., same dimension and signature of metric). We say that Γ acts

freely on N when the set {γ ∈ Γ : γ (x) = x} is trivial. Γ is called properly

discontinuos on N if every point x ∈ N has a neighborhood U such that

{γ ∈ Γ : γ (U) ∩ U} is �nite.
Finally

Theorem 0.2. Let Mn
s be a pseudo-riemannian manifold of signature (s, n− s) ,

0 ≤ s ≤ n and n ≥ 2, then Mn
s is complete, connected and of constant cur-

vature K, (a real number) if and only if it is isometric to a quotient

S̃
n

s /Γ if K > 0, Rn
s /Γ if K = 0, H̃

n

s /Γ if K < 0

where Γ is a group of isometries acting freely and properly discontinuosly.

In our main interest of the riemannian case there is the following Killing-

Hopf corollary

Corollary 0.1. Let Mn be a riemannian manifold of dimension n ≥ 2 and

let K be a real number. Then Mn is complete, connected and of constant

curvature K, if and only if it is isometric to a quotient
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Sn/Γ with Γ ⊂ O (n + 1) , if K > 0

Rn/Γ with Γ ⊂ E (n) , if K = 0

Hn/Γ with Γ ⊂ O1 (n + 1) , if K < 0

Where E (n) , O (n + 1) , O1 (n + 1) are the groups of all isometries re-

spectively of Rn, Sn and Hn.

These models are the so called spherical (if K > 0), euclidean (if K = 0) or

hyperbolic (if K < 0) space forms. The problem of studying these "space

forms" was �rst well-formulated by W. Killing, who gave the name "Cli�ord-

Klein space form problem" to the problem of classifyng them.

In CHAPTER IV we describe the solution of this important problem in the

fascinating case of homogeneous riemannian manifold.

Recall that more generally, a pseudo-riemannian manifold is called homoge-

neous if the full group of isometries is transitive: given x, y ∈ M, there exists

γ ∈ Γ (the full group of isometries) such that γ (x) = y.

Since the born of scienti�c thought until the Theory of Relativity there are

two properties which have characterized the space, isotropy and homogeneity.

So consider Euclid' s postulates:

III. Given any straight line segment, a circle can be drawn having the segment

as radius and one endpoint as center.

IV. All right angles are congruent.

In postulate III the possibility of drawing a circle in any point, indicates a

space with no preferred directions, then an isotropic space. Postulate IV says

that there is a transitive action of a group of isometries which sends right

angles in right angles, therefore it is talking about a homogeneous space.

Similarly looking at the "Cosmological Principle": Viewed on su�ciently

large distance scales, there are no preferred directions or preferred places in

the Universe;

we translate the isotropy of the space saying that it has constant curvature

K. Like above, all points are undistinguishable (no preferred places): an uni-
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form space which we call homogeneous.

Going in the middle of the question, we take an isometry f of a metric space

S, and we consider the displacement function given by

δf (x) is the distance from x to f (x) .

We say that f is a Clifford translation if δf is constant. We show that an

homogeneous manifold is complete, so from Killing' s models �nd in Corol-

lary ?? and by Cli�ord translations we obtain our classi�cation in the fol-

lowing theorem:

Theorem 0.3. Let Mn be a connected homogeneous riemannian manifold

of dimension n and constant curvature K = 0, then Mn is isometric to the

product Rm × Tn−m of a euclidean space with a �at riemannian torus. If

K < 0, then Mn is isometric to the hyperbolic space Hn. If K > 0, then Mn

is isometric to a manifold Sn/Γ where (i) F is a �eld R (real numbers), C

(complex numbers) or Q (quaternions), (ii) Sn is the sphere ||x|| = K− 1
2 in

a left hermitian vector space V over F where V has a real dimension n + 1,

(iii) Γ is a �nite multiplicative group of elements of norm 1 in F which is not

contained in a proper sub�eld F1,R ⊂ F1 ( F, of F, of F, and (iv) Γ acts on

Sn by F-scalar multiplication of vectors. Conversely, all the manifolds listed

are n-dimensional riemannian homogeneous manifolds of constant curvature

K.

We complete the case K > 0 obtaining:

Corollary 0.2. A connected riemannian homogeneous manifold Mn of di-

mension n and constant curvature K > 0 is determined up to isometry by the

fundamental group π1 (Mn) . The only cases are (i) Mn = Sn; (ii) Mn = Pn

(which is the real projective n− space Sn/ {±I} ; (iii) n + 1 ≡ 0 modulo 2,

while Mn = Sn/Zm with m > 2; and (iv) n + 1 ≡ 0 modulo 4, while

Mn = Sn/D∗
m with m > 2 or Mn = Sn/T∗ or Mn = Sn/O∗ or Mn = Sn/I∗.

Where Zm is the cyclic group of the integers modulo m, D∗
m is the binary

dihedral group and T∗, O∗, I∗ are the binary polyhedral groups.
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Recall that given an arcwise connected space S, an arc σ in S is based at

x ∈ S if σ (0) = x = σ (1) . Arcs σ, τ based at s are homotopic (rel. x) if

there is a homotopy, a continuos map G : [0, 1]× [0, 1] → S, such that

G (t, 0) = σ (t) , G (t, 1) = τ (t) ∀t,

and G (0, s) = σ (0) , G (1, s) = τ (1) ∀s.

This is an equivalence relation; the equivalence classes are the elements of

the fundamental group π1 (S, x) .

In CHAPTER V we consider �at riemannian manifolds. So we start from

the quotient Rn/Γ with Γ ⊂ E (n) acting freely and properly discontinuosly

on Rn, and we �nd that they are �at tori Tn/Γ where Γ is a discrete uni-

form (compact quotient) subgroup of E (n) consisting of pure translations.

After, there are the �at cylinders Rn/∆ where ∆ is a discrete group of pure

translation of Rn. Now if Rk ⊂ Rn is the span of ∆, then Rk/∆ is a �at

torus and Rn/∆ is isometric to
(
Rk/∆

)
×Rn−k. Let M be a manifold with

a connection on its frame bundle. We say that a manifold N ⊂ M is totally

geodesic if every geodesic of M tangent to N at a point is completely con-

tained in N. Thus we see that every �at cylinder may be retracted onto a

compact totally geodesic submanifold which carries much of the geometric

informations concerning the cylinder. Theorem 5.6 generalize this retraction

for all �at complete connected riemannian manifolds. So we devote our at-

tention completely to compact �at manifolds. Given x ∈ M and a sectionally

smooth curve σ based at x, we have the parallel translation τσ : Mx → Mx of

tangent vectors along σ. These τσ form a group Ψx of linear transformations

of Mx. Ψx is the linear holonomy group at x. For �at manifold the map

h : π1 (M, x) → Ψx is called the holonomy homomorphism.

Let p : S → T a covering, and consider the homomorphisms h : S → S, such

that p · h = p, they are called deck transformations. We de�ne a normal

riemannian covering as a covering p : S → T (with p a local isometry) of rie-

mannian manifolds, such that, considering the map p∗ : π1 (S, s) → π1 (T, t) ,

we have that p∗π1 (S, s) is a normal subgroup of π1 (T, t) for every s ∈ S,
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where t = p (s) .

Applying these ideas we have:

Corollary 0.3. Let Mn be a connected compact �at n-dimensional rieman-

nian manifold. Then there is a normal riemannian covering p : Tn → Mn,

by a �at torus, in which the (necessarily �nite) group of deck transformations

is isomorphic to the linear holonomy group of Mn; so Mn = Tn/Ψ.

At this point it is natural to ask which �nite groups occur as linear holon-

omy groups of �at riemannian manifolds. The surprising answer is given by

the following Auslander-Kuranishi theorem:

Theorem 0.4. Let G be any �nite group. Then G is the linear holonomy

group of some �at compact connected riemannian manifold.

With this theorem we conclude our thesis.

16



Figura 0.1

Picasso, Les Damoisselle d' Avignon, 1907, New York, Museum of Modern

Art.

"It is the �rst picture of the cubist art. Picasso, like Riemann, smashes

the classical space, like Einstein, he starts a revolution, but in �gurative

arts."
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FIgura 3.1

Picasso, Violon et verre sur un table, 1903, St. Petersburg, The State

Hermitage Museum.
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