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One of the aims of multiplicative ideal theory is the description of an in-

tegral domain by means of the multiplicative semigroup of fractional ideals.

In this context, the ideal class group C(R), built by the isomorphism classes

of invertible fractional ideals, has been one of the major objects of investi-

gations. The ideal class group of the ring of integers of an algebraic number

field was the first being studied in details. Afterwards several important

generalizations of that particular case have been obtained in Commutative

Algebra. Among them, the ideal class groups associated with star operations

and ideal systems are the most general and fruitful ones (see [3],[15] and [25,

Ch. 12]). In particular, the divisor class groups of Krull domains and Krull

monoids are special cases of the previous concepts (for more details we refer

to [23]).

Only recently the ideal class semigroup S(R), built by the isomorphism

classes of all nonzero fractional ideals, has been introduced and investigated

by several authors. For instance, E.C. Dade, O. Taussky and H. Zassenhaus

[19] investigated the structure of the ideal class semigroup of a non-principal

order in algebraic number field. More generally, Halter-Koch [27] considered

the case of the ideal class semigroup of lattices over Dedekind domains.

We focus on the interesting situation when the ideal class semigroup S(R)

is a Clifford semigroup.

Recall that a commutative semigroup S is a Clifford semigroup if every

element a of S is regular (in the sense of von Neumann), i.e. a = a2x for some

x ∈ S. It is known that a commutative semigroup S is a Clifford semigroup

if and only if it is a disjoint union of groups He, where e ranges over the

idempotent elements of S. Here He denotes the largest subgroup of S with

identity element e and it is called the constituent group associated to e:

He = {ae | abe = e for some b ∈ S}.

We say that a domain R is a Clifford regular domain if the ideal class semi-

group S(R) of R is a Clifford semigroup. To understand the structure of the
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ideal class semigroup of a Clifford regular domain R, one has to describe the

idempotent elements of S(R), the constituent group associated to them, and

the bonding homomorphisms between those groups.

The first significant examples of Clifford regular domains are valuation

domains. In fact, in [7], Bazzoni and Salce proved that the ideal class semi-

group of any valuation domain is a Clifford semigroup whose constituent

groups are either trivial or groups associated to the idempotent prime ideals

P of R. The constituent groups are described as quotients of the form Γ/Γ,

where Γ is the value group of the localization RP and Γ is the completion of

Γ in the order topology; they are also called the archimedean groups of the

localization RP .

In 1994, Zanardo and Zannier studied the class semigroup of particular

orders in algebraic number rings, proving that all orders in a quadratic field

have Clifford class semigroup, whereas the ring of all entire function in the

complex plane (which is Bezout) fails to have this property [45].

In [8] Bazzoni considered the case of a Prüfer domain proving that, if a

Prüfer domain has finite character, i.e. every nonzero element is contained

only in a finite number of maximal ideals, then it is Clifford regular. Later,

in [9] and [10], for a Prüfer domains R of finite character, Bazzoni gave a

description both of the idempotent elements of S(R), and of their associated

groups. The idempotents are shown to be either the isomorphism classes of

fractional overrings having as associated group the ideal class groups of the

overrings, or the isomorphism classes of products P1 · P2 · · ·PnD, where the

Pi’s are idempotent prime ideals of R, and D is a fractional overring of R. In

this latter case, the associated group is an extension of the direct product of

the archimedean groups of the localizations RPi
by means of the ideal class

group of D.

A complete characterization of the class of integrally closed Clifford regu-

lar domains was achieved in [11], where it was proved that this class coincides
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with the class of the Prüfer domains of finite character.

In addition [11] explores the relation between Clifford regularity, stability

and finite stability. Recall that an ideal I of a domain R is said to be stable

if it is invertible in its endomorphism ring, i.e. if (I : I) = I((I : I) : I).

A domain R is said to be stable if every ideal of R is stable. The notion of

stability was first introduced in the Noetherian case with various different

definitions which turned out to be equivalent in the case of a Noetherian

local domain (for more details we refer to [36]). Olberding has described

the structural properties of an arbitrary stable domain. In [35] and [36] he

proved that a domain is stable if and only if it is of finite character and locally

stable. Rush, in [39], considered the class of finitely stable domains, that is,

domains with the property that every finitely generated ideal is stable and

proved that the integral closure of such a domain is a Prüfer domain.

In [11] it is shown that the class of Clifford regular domains is properly

intermediate between the class of stable domains and the class of finitely

stable domains. In particular, from this, it follows that the integral closure

of a Clifford regular domain is a Prüfer domain. In addition, we have that a

Noetherian domain is Clifford regular if and only if it is a stable domain.

In [11] it was also outlined a relation between Clifford regularity and the

local invertibility property. A domain R is said to have the local invertibility

property if the following condition holds:

an ideal I of R is invertible if and only if every localization IM at maximal

ideal M of R is invertible, or equivalently principal.

In [8] and again in [11] the problem of determining whether, for a Prüfer do-

main, the local invertibility property is equivalent to the finite character con-

dition was posed as a conjecture by Bazzoni, and so it is called the Bazzoni’s

conjecture. The question attracted the interest of many authors. Recently

the validity of the Bazzoni’s conjecture has been proved by Holland, Mar-
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tinez, McGovern and Tesemma in [28], and independently by Halter-Koch in

[25].

On the other hand it is possible to prove that if a Clifford regular do-

main R is either integrally closed or Noetherian, then it is of finite character

(see the discussion at page 71 for the Noetherian case and Theorem 5.4.10

for integrally closed case). In the general case, the problem of determining

whether Clifford regularity always implies finite character has been open for

more than a decade. Very recently Bazzoni, in a still unpublished work, gave

a positive answer to the problem ([12, Theorem 4.6]).

In this expository work we study the most important properties of Clifford

regular domains. In particular in the Noetherian and Prüfer case.

Furthermore, following [26], we give a proof of Bazzoni’s conjecture. Pre-

cisely, we show that a Prüfer domain R is Clifford regular if and only if R

has finite character, if and only if the locally invertibility property holds in

R.

We also give some conditions under which the Clifford regularity is inher-

ited by overrings, i.e. if R is Clifford regular then every overring of R is also

Clifford regular.

In Chapter 1, we define Clifford semigroups, and study various properties

of regular and idempotent elements. Thanks to Clifford’s theorem (Theorem

1.1.20) stating that if a semigroup is a union of groups then such union is

disjoint, we can give a characterization of commutative Clifford semigroups.

Theorem 1 (Theorem 1.3.16). Let S be a commutative semigroup. Then S

is Clifford if and only if it is a disjoint union of commutative groups.

Moreover, S =
⋃

e

He where e ranges over the set of all idempotent ele-

ments of S and He := {a ∈ S | ae = a and ax = e for some x ∈ S} is the
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largest subgroup of S having e as identity element.

In Chapter 2, we introduce fractional ideals and invertible fractional ideals

of a domain R and we study some of their properties. Recall that, given an

integral domain R, an R-submodule I of K = qf(R) is said to be a fractional

ideal if there exists a nonzero element x of R such that xI ⊆ R.

Proposition 2 (Proposition 2.1.2). Let I be an R-submodule of K, then :

I is a fractional ideal of R if and only if I = 1

d
J , where J is an ideal of R

and d ∈ R∗.

A fractional ideal I is said to be an invertible fractional ideal if there

exists a fractional ideal J of R such that IJ = JI = R.

Lemma 3 (Lemma 2.2.3). Let I be a invertible fractional ideal, then there

is a unique J ∈ F (R) such that IJ = JI = R. Moreover, J = (R : I).

Finally, in Section 3 we introduce Prüfer domains, characterized by the

property to be locally valuation domains (Theorem 2.3.8). Recall that, a

domain R is called a Bezout (respectively Prüfer) domain if every nonzero

finitely generated fractional ideal of R is principal (respectively invertible).

An integral domain R is called a valuation domain if for every nonzero ele-

ment x ∈ K then either x ∈ R or x−1 ∈ R.

Moreover, we show that if R is a Prüfer domain, then every overring T

of R is still a Prüfer domain and can be represented as an intersection of

localizations with respect to a particular set of prime ideals of R, that is

T =
⋂

P∈S

RP where S = {M ∩ R | M ∈ Max(T )} (Corollary 2.3.10).

In Chapter 3, we define the ideal class (semi)group of an integral domain.

First, we prove that the ideal class semigroup S(R) is isomorphic to factor

semigroup F (R)/P (R), where F (R) denote the set of nonzero fractional ide-
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als of R, and P (R) denote the set of nonzero principal fractional ideals of

R.

In Section 2 we study the regular elements of S(R). The most important

results of this section are:

Proposition 4 (Proposition 3.2.2). Let I be a fractional ideal of R. Then

the following are equivalent:

1. [I] is a regular element of S(R).

2. I = I2X for some X ∈ F (R).

3. I = I2(I : I2).

4. I is a regular element of F (R).

Proposition 5 (Proposition 3.2.7). Let I be a nonzero ideal of R. Then the

following hold:

1. If I is invertible in E = (I : I), then [I] is a regular element of S(R).

2. If I is finitely generated, then I is invertible in E = (I : I) if and only

if [I] is a regular element of S(R).

In Chapter 4 we define Clifford regular and (finitely) stable domains, and

we examine the relations between these two classes of domains. In particular,

we show that the class of Clifford regular domains stands between the class

of stable domains and the class of finitely stable domains.

We also study the overrings of Clifford regular domains by giving some

conditions for the Clifford regularity to be an ascent property. To do this,

we use the surjectivity of the canonical map φR

T
: R → T , I 7→ IT where

T is an overring of R. In fact, let R be a Clifford regular domain and T be

an overring of R. Suppose that the canonical map is surjective, i.e. every

fractional ideals of T is extended from R, then T is a also a Clifford regular

domain (Proposition 4.4.1). So, we can show the following proposition:
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Proposition 6 (Proposition 4.4.2). If R is a Clifford regular domain and

T is an overring of R, then T is Clifford regular in either of the following

cases:

1. T is a fractional overring of R.

2. T is a localization of R.

3. T is a flat overring of R.

4. T is well-centered on R.

5. T is Noetherian.

Furthermore, we prove that:

Proposition 7 (Proposition 4.4.7). Let R be an integrally closed Clifford

regular domain, then every overring T of R is Clifford regular.

In Chapter 5, we completely characterize integrally closed and Noetherian

Clifford regular domains (Theorem 5.1.1 and Theorem 5.4.10).

Theorem 8 (Theorem 5.1.1). A Noetherian domain is Clifford regular if and

only if it is stable.

Moreover, we outline the interesting relation between Clifford regularity

and local invertibility property. Thanks to the special properties of ideals

in a Prüfer domain pointed out by Halter-Koch in [26], we give a proof of

Bazzoni’s conjecture.

Theorem 9 (Theorem 5.4.9). Let R be a Prüfer domain. Then the following

conditions are equivalent:

1. R is Clifford regular.

2. R is of finite character.
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3. R has the local invertibility property.

Thus, since an integrally closed Clifford regular domain is a Prüfer domain

(Proposition 4.1.10), the validity of Bazzoni’s conjecture allows us to give the

following characterization:

Theorem 10 (Theorem 5.4.10). Let R be an integrally closed domain. Then,

R is Clifford regular if and only if R is a Prüfer domain of finite character.

In Chapter 6 we outline some recent results on more general classes of

domains. We define star operations of an integral domain and we introduce

star regularity and star stability.

The ⋆-stability was studied by Gabelli and Picozza in [21] for any star

operation ⋆ and in particular when ⋆ = w.

Kabbaj and Mimouni studied Boole and Clifford ⋆-regularity for ⋆ = t

[29],[31],[32],[33]. In particular they extended the characterization of Prüfer

Clifford regular domains to PvMDs.

Theorem 11 (Theorem 6.0.13). A PvMD is Clifford t-regular if and only

if it is a Krull-type domain (i.e. in a PvMD, Clifford t-regularity coincides

with the finite t-character condition).

Halter-Koch extended the results of Kabbaj and Mimouni to every star

operation in the following sense ([26, Proposition 6.11] and [26, Proposition

6.12]):

Theorem 12 (Theorem 6.0.14). Let R be a domain and let ⋆ be a star

operation. Then the following hold:

1. R is Clifford ⋆-regular if and only if it is a Krull-type domain.

2. If R is ⋆-integrally closed and Clifford ⋆-regular, then R is a P⋆MD and

even a Krull-type domain.

Finally the relations between Clifford star regularity and star stability

was investigated in [22].
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character, Comm. Algebra 28 (2000), 135-155.

[11] Bazzoni S., Clifford regular domains, J. Algebra 238 (2001), 703-722.

[12] Bazzoni S., Finite character of Clifford regular domains, manuscript

(2010).

[13] Bazzoni S. and Kabbaj S. E. Class semigroup and t-class semigroup of

integral domains, manuscript (2010).

[14] Bourbaki N., Commutative Algebra, Chapters 1-7, Springer-Verlag,

1989.

[15] Bouvier A. and Zafrullah M., On some class groups of an integral do-

main, Bull. Greek Math. Soc. 29 (1988), 45-59.

[16] Butts H.S. and Vaughan N., On overrings of a domain, Journal of Sci-

ence of the Hiroshima University Ser. A-I Math. 33 (1969), 95-104.

[17] Clifford A. H., Semigroups admitting relative inverse. Annals of Math.

42 (1941), 1037-1049.

[18] Conrad P., Some structure theorems for lattice-ordered groups, Trans.

Amer. Math. Soc. 99 (2) (1961), 212-240.

[19] Dade E. C., Taussky O. and Zassenhaus H., On the theory of order, in

particular on the semigroup of ideal classes and general on an order in

an order in algebraic number field, Marh. Ann. 148 (1962), 31-64.

[20] Evans Jr. E. G., A generalization of Zariski’s main theorem, Proc. Amer.

Math. Soc. 26 (1970), 45-48.

[21] Gabelli S., Picozza G., Star stable domains, J. Pure Appl. Algebra 208

(2007), 853-866.

10



[22] Gabelli S., Picozza G., Stability and Clifford regularity with respect to

star operations, manuscript (2010).

[23] Geroldinger A. and Halter-Koch F., Non-Unique Factorizations. Alge-

braic, Combinatorial and Analytic Theory, Pure and Applies Mathemat-

ics, vol. 278, Chapman & Hall\CRC, 2006.

[24] Gilmer R., Multiplicative ideal theory, Dekker, New York, 1972.

[25] Halter-Koch F., Ideal Systems. An Introduction to Multiplicative Ideal

Theory, Marcel Dekker, 1998.

[26] Halter-Koch F., Clifford semigroups of ideals in monoids and domains,

Forum Math. 21 (2009), 1001-1020.

[27] Halter-Koch F., Ideal semigroups of Noetherian domains and Ponizovski

decompositions, J. Pure Appl. Algebra 209 (2007), 763-770.

[28] Holland W. C., Martinez J., McGovern W. Wm. and Tesemma M.,

Bazzoni’s conjecture, J. Algebra 320 (4) (2008), 1764-1768.

[29] Kabbaj S. and Mimouni A., Class semigroups of integral domains, J.

Algebra 264 (2003), 620-640.

[30] Kabbaj S. and Mimouni A., Corrigendum to ”Class semigroups of inte-

gral domains” [J. Algebra 264 (2003), 620-640], J. Algebra 320 (2008),

1769-1770.

[31] Kabbaj S. and Mimouni A., t-Class semigroups of integral domains, J.

Reine Angew. Math. 612 (2007), 213-229.

[32] Kabbaj S. and Mimouni A., Constituent groups of Clifford semigroups

arising from t-closure, J. Algebra 321 (2009), 1443-1452.

11



[33] Kabbaj S. and Mimouni A., t-Class semigroups of Noetherian domains,

to appear in ”Commutative Algebra and Applications”, Walter de

Gruyter, Berlin.

[34] Kaplansky I., Commutative Rings, Allyn and Bacon Inc., Boston, MA,

1970.

[35] Olberding B., On the Classification of Stable Domains, J. Algebra 243

(2001), 177-197.

[36] Olberding B., On the structure of stable domains, Comm. Algebra 30

(2) (2002), 877-895.
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demi-groupe inversif. C.R. Acad. Sci.Paris 234 (1952), 33-34.

[44] Vagner V. V., Generalized groups. Doklady Akad. Nauk SSSR (N.S.) 84

(1952), 1119-1122.

12



[45] Zanardo P. and Zannier U., The class semigroup of orders in number

fields, Math. Proc. Cambridge Philos. Soc. 115 (1994), 379-391.

[46] Zariski O., Samuel P., Commutative Algebra, vol. II, van Nostrand, 1960.

13


