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SUMMARY

The present thesis deals with complete smooth surfaces of constant
Gaussian curvature K, embedded in the Euclidean space R3. We will treate
separately and in the following order the cases K = 0; K > 0; and K < 0.
We will show that if the Gaussian curvature is indentically zero, the surfaces
are union of parallel lines - i.e. cylinders - (Chapter 2); that every complete
and connected regular surface of positve and constant Gaussian Curvature,
is a round sphere and, in particular, that compact surfaces exist only in the
positive case (Chapter 3). Finally we will prove that complete surfaces do
not exist in the negative case - Hilbert’s theorem - (Chapter 4).

In particular this thesis is structured as follows:

0.1 Chapter 1

In the introduction (Chapter 1), we will treat some basic concepts.
First we will define the regular surfaces, the first fundamental form, and state
the Theorema Egregium.

Definition 1 A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there
exists a neighborhood V in R3 and a map X : U −→ V ∩ S of an open set
U ⊂ R2 onto V ∩ S ⊂ R3 such that

1. X is differentiable. This means that if we write

X (u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivates
of all orders in U.

2. X is a homeomorphism. Since X is continuous by condition 1, this
means that X has an inverse X−1 : V ∩ S −→ U which is continuous;
that is, X−1 is the restriction of a continuous map F : W ⊂ R3 −→ R2

defined on an open set W containing V ∩ S.

3. (The regularity condition). For each q ∈ U, the differential
dXq : R2 −→ R3 is one to one.

The natural inner product of R3 ⊃ S induces in each tangent plane Tp(S)
of a regular surface S an inner product, to be denoted by < , >p :
If w1, w2 ∈ Tp(S) ⊂ R3, then < w1, w2 >p is equal to the inner product of w1
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and w2 as vectors in R3. To this inner product, which is a symmetric bilinear
form (i.e., < w1, w2 >=< w2, w1 > and < w1, w2 > is linear both in w1 and
w2), there corresponds a quadratic form Ip : Tp(S) −→ R given by

Ip(w) =< w,w >p= |w|2 ≥ 0. (1)

Definition 2 The quadratic form Ip on Tp(S), defined by Eq.(1), is called
the first fundamental form of the regular surface S ⊂ R3 at p ∈ S.

Theorem 1 (THEOREMA EGREGIUM, GAUSS 1828) The
Gaussian curvature K of a surface is invariant by local isometries.

Remark 1 The Gaussian Curvature depends only on the first
fundamental form. Cf. [2, page 231].

Since a diffeomorphism ϕ : S −→ S̄ is an isometry if and only if the
differential dϕ preserves the first fundamental form I

Ip(w) = Iϕ(p)(dϕp(w))

for all w ∈ Tp(S) (cf. [2, page 218]); we can state that there exists two
parametrizations, X : U −→ S and X̄ : U −→ S̄ such that E = Ē,
F = F̄ , G = Ḡ in U, if and only if the map ϕ = X̄ ◦ X−1 : X (U) −→ S̄ is a
local isometry.
Cf. [2, page220].

Then we will study complete surfaces showing Hopf Rinow’s theorem:

Definition 3 A regular surfaces S is said to be geodedically complete when
for every point p ∈ S, any parametrized geodesic γ : [0, ε) −→ S of S, starting
from p = γ(0), may be extended into a parametrized geodesic γ̄ : R −→ S,
defined on the entire line R.
In other words, S is complete when for every p ∈ S the mapping
expp : Tp(S) −→ S is defined for every v ∈ Tp(S).

Theorem 2 (Hopf-Rinow) : Let S be a complete surface. Given two
points p, q ∈ S, there exists a minimal geodesic1 joining p to q.

1We say that a parametrized geodesic joining two points is minimal if its length is
smaller than or equal to that of any parametrized piecewise regular curve joining these
two points.
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Finally we will treat some topological concepts proving the
following results:

Proposition 1 A closed surface S ⊂ R3 is complete.

Proposition 2 A closed surfaces S ⊂ R3 is orientable. Cf. [6].

0.2 Chapter 2

In Chapter 2 our aim is to prove the following theorem:

THEOREM: Let S ⊂ R3 a complete surface of zero
Gaussian curvature. Then S is a cylinder or a plane.

Definition 4 A cylinder is a particular ruled surface S. It is a union of
parallel lines. Hence through each point p ∈ S there passes a unique line
R(p) (the generator through p) which satisfies the condition that if q 6= p
then the lines R(p) and R(q) are parallel or equal.

Example 1 A non-complete surface with K ≡ 0.

Let us consider the open triangle ABC and add to each side a cylindrical
surface, with generators parallel to the given side. (Fig. 1).

Figure 1: A non-complete surface with K ≡ 0.

It is possible to make this construction in such a way that the resulting
surface is a regular surface.
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For istance, to ensure regularity along the open segment BC, it suffices
that the section FG of the cylindrical band BCDE by a plane normal to
BC is a curve of the form

exp

(
1

x2

)
Let us observe that the verticesA, B, C of the triangle and the edgesBE, CD,
etc., of the cylindrical band do not belong to S.

Before proving the theorem we will deal with the study of ruled surfaces,
in particular the developable ones:

Definition 5 A (differentiable) one parameter family of (straight) lines
{α(t), w(t)} is a correspondence that assigns to each t ∈ I a point
α(t) ∈ R3 and a vector w(t) ∈ R3, w(t) 6= 0, so that both α(t) and w(t)
depend differentiably on t.
For each t ∈ I, the line Lt which passes through α(t) and is parallel to w(t)
is called the line of the family at t.
Given a one parameter family of lines {α(t), w(t)}, the parametrized surface

X (t, v) = α(t) + vw(t), t ∈ I, v ∈ R,

is called the ruled surface generated by the family {α(t), w(t)}. The lines Lt
are called the rulings, and the curve α(t) is called a directrix of the surface
X . It should be noticed that we also allow X to have singular points, that
is, points (t, v) where Xt ∧ Xv = 0.

Among the ruled surfaces, the deveolpables play a distinguished role.
Let us start with an arbitrary ruled surface

X (t, v) = α(t) + vw(t) (2)

generated by the family {α(t), w(t)} with |w(t)| ≡ 1. The surface (2.1) is
said to be developable if

(w,w′, α′) ≡ 0. (3)

To find a geometric interpretation for condition (3), we shall compute the
Gaussian curvature of a developable surface; and by a simple computation
we obtain that the Gaussian curvature K of a developable (regular) surface
is identically zero.
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To prove the main theorem, recalling that K(S) ≡ 0, (and stated U = S\P
where U is the set of parabolic points and P is the set of planar ones) we
will need a series of results:

Proposition 3 The unique asymptotic line that passes through a parabolic
point p ∈ U of a surface S of Gaussian curvature K ≡ 0 is an (open) segment
of a (straight) line in S.

Proposition 4 Let r be a maximal asymptotic line passing through a parabolic
point p ∈ U ⊂ S of a surface S of Gaussian curvature K ≡ 0 and let P ⊂ S
be the set of planar points of S. Then r ∩ P = ∅.

Proposition 5 (Massey) Let p ∈ Bd(U) ⊂ S be a point of the
boundary of the set U of parabolic points of a surface S of Gaussian curvature
K ≡ 0.
Then through p there passes a unique open segment of line C(p) ⊂ S.
Furthemore, C(p) ⊂ Bd(U); that is, the boundary of U is formed by segments
of lines.

We will end the Chapter with the proof of the theorem.

0.3 Chapter 3

In Chapter 3 our aim is to prove the following theorem:

THEOREM: Let S be a complete, connected, regular surface
of constant positive Gaussian curvature K.
Then S is a sphere.

Before proving this theorem we will introduce the Bonnet’s theorem,
which states that a complete surfaces of positive Gaussian curvature must
be compact.

Theorem 3 (Bonnet) Let the Gaussian curvature K of a complete
surface S satisfy the condition

K ≥ δ > 0.

Then S is compact and the diameter ρ of S satisfies the inequality

ρ ≤ π√
δ
.
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Then we will concentrate on compact surfaces, proving the following
result:

Proposition 6 A regular compact surface S ⊂ R3 has at least one
elliptic point.
Thus, if S is compact and K is constant, K must be positive on S.

Remark 2 The compact, connected surfaces of R3 for which the
Gaussian curvature K > 0 are called ovaloids.

For this reason and having regarded Proposition 6 and Bonnet’s
theorem; we will show the following equivalent theorem:

THEOREM 1: Let S be an ovaloid of constant Gaussian curvature. Then
S is a sphere.

Corollary (of the theorem 1): The sphere is rigid in the following sense.
Let ϕ : Σ −→ S be an isometry of a sphere Σ ⊂ R3 onto a regular surface
S = ϕ(Σ) ⊂ R3. Then S is a sphere.

Intuitively, this means that it is not possible to deform a sphere made of
a flexible but inelastic material.

Remark 3 It should be noticed that there are surfaces
homeomorphic to a sphere which are not rigid. An example is given in
Figure 2. We replace the plane region P of the surface S in Fig. 2 by a
‘‘bump’’ inwards so that the resulting surface S ′ is still regular. The surface
S ′′ formed with the ‘‘symmetric bump’’ is isometric to S ′, but there is no
linear orthogonal transformation that takes S ′ into S ′′. Thus S ′ is not rigid.

Figure 2: Surfaces that are homeomorphic to a sphere and that are not rigid.
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Finally, to prove the main theorem, we will need the following lemma:

Lemma 1 Let S be a regular surface and p ∈ S a point of S satisfying the
following condition:

1. K(p) > 0; that is, the Gaussian curvature in p is positive.

2. p is simultaneously a point of local maximum for the function k1 and a
point of local minimum for the function k2 (k1 ≥ k2).

Then p is an umbilical point of S.

Since in the proof of the Theorem 1 the assumption that K = k1k2 is
constant is used only to guarantee that k2 is a decreasing function of k1. The
same conclusion follows if we assume that the Mean curvature H is constant.
This allows us to state

Theorem 1a. Let S be an ovaloid with Mean curvature Hconstant. Then
S is a sphere.

The proof is entirely analougous to that of Theorem 1.
Actually, the argument applies whenever k2 = f(k1), where f is a decreasing
function of k1.
More precisely we have

Theorem 1b. Let S be an ovaloid. If there exists a relation k2 = f(k1)
in S, where f is a decreasing function of k1, k1 ≥ k2, then S is a sphere.
Cf. [2, page 322].

0.4 chapeter 4

In this Chapter our aim is to prove the following Hilbert’s theorem which
states that, a complete surface in R3, of constant negative curvature does
not exist.

THEOREM: A complete geometric surface S of constant
negative Gaussian curvature cannot be isometrically immersed
in R3.
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Definition 6 A geometric surface is an abstract surface S together with the
choice of an inner product <,>p at each Tp(S), p ∈ S, which varies
differentiably with p in the following sense.
For some (and hence all) parametrization X : U −→ S around p, the
functions

E(u, v) =< Xu,Xu >, F (u, v) =< Xu,Xv >, G(u, v) =< Xv,Xv >,

are differentiable function in U.

Definition 7 An Abstract surface (differentiable manifold of dimension 2)
is a set S toghether with a family of one-to-one maps: Xα : Uα −→ S of open
sets Uα ⊂ R2 into S such that:

1.
⋃
αXα(Uα) = S.

2. For each pair α, β with Xα(Uα) ∩ Xβ(Uβ) = W 6= ∅, we have that
X−1α (W ),X−1β (W ) are open sets in R2, and X−1β ◦ Xα, X−1α ◦ Xβ are
differentiable maps.

An example of abstract surface, that is olso a complete surface of constant
negative Gaussian curvature, is the Hyperbolic plane H.

Let S = R2 be a plane with coordinates (u, v) and define an inner prod-
uct at each point q = (u, v) ∈ R2 by setting〈

∂

∂u
,
∂

∂u

〉
= E = 1;

〈
∂

∂u
,
∂

∂v

〉
= F = 0;

〈
∂

∂v
,
∂

∂v

〉
= G = e2u.

R2 with this inner product is a geometric surface H called the hyperbolic
plane. The geometry of H is different from the usual geometry of R2. For
istance the Gaussian curvature of H is K ≡ −1.

Actually the geometry of H is an exact model for the non-euclidean
geometry of Lobachewski, in which all the axioms of Euclid, except the
axiom of parallels are assumed.

To prove the main theorem we shall start with some observations. By
multiplying the inner product by a constant factor, we may assume that the
Gaussian curvature K ≡ −1. Moreover, since expp : Tp(S) −→ S is a local
diffeomorphism, cf. [2, page 367], it induces an inner product in Tp(S). We
choose the unique inner product that makes expp a local isometry. Denote
by S ′ the geometric surface Tp(S) with this inner product. If i : S ′ −→ R3 is
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an immersion, then ϕ = i ◦ expp : S ′ −→ R3 is an isometric immersion.
Thus we are reduced to proving that there exists no isometric immersion
ϕ : S ′ −→ R3 of a plane S ′ with an inner product such that K ≡ −1.

Then we will need a series of results:

Lemma 2 The area of ϕ(S ′) is infinite.

Lemma 3 For each p ∈ ϕ(S ′) there is a parametrization
X : U ⊂ R2 −→ ϕ(S ′), p ∈ X (U), such that the coordinate curves of X are
the asymptotic curves of X (U) = V ′ and form a Tchebishef net (we shall
express this by saying that the asymptotic curves of V ′ form a Tchebishef
net).

Lemma 4 Let V ′ ⊂ ϕ(S ′) be a coordinate neighborhood of ϕ(S ′) such that
the coordinate curves are the asymptotic curves in V ′. Then the area A of
any quadrilater formed by the coordinate curves is smaller than 2π.

So far the considerations have been local. We shall now define a map
X : R2 −→ ϕ(S ′) that is a parametrization of the entire ϕ(S ′). The map X
is defined as follows. First we have to fix a point O ∈ ϕ(S ′) and choose
orientations on the asymptotic curves passing through O.

Figure 3: X : R2 −→ ϕ(S ′).

Then we have to make a define choice of one of these asymptotic curves,
to be called a1, and denote the other one by a2. For each (s, t) ∈ R2, lay off
on a1 a length equal to s starting from O. Let p′ the point thus obtained.
Through p′ there pass two asymptotic curves, one of which is a1. Then we
have to choose the other one and give it the orientation obtained by the
continuous extension, along a1, of the orientation of a2. Finally, over this
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oriented asymptotic curve, we have to lay off a length equal to t starting
from p′. The point so obtained is X (s, t) (Fig.3).

After showing, through a series of lemmas that X is a parametrization of
the entire ϕ(S ′), we will end the Chapter with the proof of the theorem and
with an example of a regular suface of constant, negative Gaussian curvature,
which is not-complete. That is the Pseudosphere.
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