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Introduction

The category of complex manifolds is much more rigid than that of topological or C∞

manifolds: e.g. partitions of unity do not exist and on compact complex manifolds the
only global sections of the structure sheaf are constant ones.
This allows us to appreciate a wide range of phenomena that such rigidity causes.
One of the most interesting (and studied) ones is that of variation of complex structure:
suppose we are given two complex spaces X ,B and a smooth proper morphism between
them

π : X → B.
Moreover, suppose that over a fixed point 0 ∈ B the fibre of π, π−1(0), is a compact
complex manifold, X0. In this case we will say that the analytic set Xb = π−1(b), b ∈ B
is a deformation of X0. It is an easy consequence of Ehresmann’s Theorem (see [V02, I,
Ch. 9, Thm. 9.2]) that, if B is connected, all fibres over points in B are diffeomorphic,
i.e. the family parametrized by B is trivial in the category of C∞ manifolds. Hence
all deformations of a compact complex manifold are diffeomorphic complex manifolds,
while that does not happen in the category of complex manifolds, i.e. the deformations
of a compact complex manifold are not necessarily biholomorphic. One of the most
studied situations, in algebraic geometry, in which this phenomenon takes place, is that
of moduli spaces [of geometric objects].

In this thesis, our point of view will be that of complex manifolds and of variations
of their structures.
We will focus particularly on compact Kähler manifolds:

Definition. A Kähler manifold, X, is a complex manifold endowed with a Kähler metric,
i.e. a metric corresponding to a closed positive (1, 1) form ω, i.e.

dω = 0.

Kähler geometry, on compact complex manifolds, provides several deep results, the most
important of which is the famous

Hodge Decomposition Theorem. Let X be a compact Kähler manifold, then we have
a canonical decomposition

Hk(X,C) =
⊕

p≥0,q≥0
p+q=k

Hp,q(X) ∼=
⊕

p≥0,q≥0
p+q=k

Hq(X,Ωp).
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Hodge Decomposition Theorem and its consequences (e.g. Hard Lefschetz Theorem,
Hodge-Riemann bilinear relations) have the striking advantage to turn many important
geometrical questions into questions involving linear algebra (in the cohomology vector
spaces of a manifold). In this sense, they provide a linearization of many geometrical
problems.

A first glimpse of that situation is offered by projective manifolds. Since PN can be
endowed with a Kähler metric, namely the Fubini-Study metric, and Kähler metric are
well-behaved under pull-back, we see that any analytic (equivalently algebraic, by Chow’s
Lemma) submanifold of PN is automatically Kähler. An interesting problem is to un-
derstand under what hypotheses we can carachterize projective manifolds among Kähler
ones. In 1954, Kodaira solved this question with a very nice and powerful criterion:

Kodaira Theorem ([Kd54]). A compact Kähler manifold X is projective if and only
if there is a Kähler class β ∈ H2(X,Q), i.e. there exists a Kähler metric h, whose
associated positive (1, 1) form ω give rise to a cohomology class [ω] = β contained in the
rational cohomology of X.

In view of this criterion, we see that Kähler geometry is an extension of projective ge-
ometry obtained by relaxing the rationality condition on a Kähler class.

This point of view, together with the many restrictive conditions on the topology of
Kähler manifolds provided by Hodge theory (the strongest one being the formality the-
orem, see [DGMS75]), would indicate that compact Kähler manifolds and complex pro-
jective ones cannot be distinguished by topological invariants.
This hypothesis is supported by a result obtained by Kodaira in 1960, in the case of
Kähler surfaces:as an outcome of his classification of compact complex surfaces (see
[Kd63]) he found that

Theorem. Let X be a compact Kähler surface, then X has a deformation which is
projective.

He actually found a slightly stronger result, asserting that it is possible to find a family
of deformations for X such that projective manifolds are arbitrarily near to X.

The last theorem tells us that, in dimension 2, Kähler geometry on compact mani-
folds can be obtained by slightly varying the complex structure of projective manifolds
(which is equivalent by variations of Hodge structures to the assertion made above on
the relaxation of the rationality of the Kähler class). The case of dimension 1 is trivial,
since all compact Riemann surfaces are projective.
Thus, we have the following

Question. Is any compact n-dimensional Kähler manifold, n ≥ 3, deformation equiva-
lent to a projective manifold?

This question is called the Kodaira problem. It is the natural higher-dimensional gen-
eralization of the case of surfaces, solved by Kodaira.
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We know that for certain classes of compact Kähler manifolds, such as complex tori, the
answer to the Kodaira problem is affermative. And in many examples, that naturally
arise in geometry, this is tipically the situation (again moduli spaces).

The first result presented in this thesis is that the answer to the previous question
is negative. We show that

Theorem ([V03]). For any n ≥ 4, there exist n−dimensional compact Kähler manifolds
which are not deformation equivalent to any projective manifold.

This is an immediate consequence of a stronger result obtained by Voisin

Theorem ([V03]). Given n ≥ 4, it is always possible to find n-dimensional compact
Kähler manifoldswhich do not have the homotopy type of a complex projective manifold.

In view of what we said in the first paragraph, this prevents our examples to be defor-
mations equivalent to projective manifolds, otherwise, by Eheresmann’s Theorem, they
should be diffeomorphic to a projective manifold and hence they should also have the
same homotopy type of a projective manifold.

To construct counterexamples, we start by a complex torus T admitting a particular
endomorphism φ. The existence of such an endomorphism implies that T is not an
abelian variety and, furthermore, its algebraic dimension (i.e. the trascendence degree
of the field of meromorphic functions of T ) is 0. Nonethelesse, T does not contain posi-
tive dimensional proper analytic subvarieties.
We then obtain a compact manifold X by blowing-up certain submanifolds of T × T .
We show the following

Theorem. Let Y be a Kähler manifold such that there is an isomorphism of graded
vector spaces

γ : H∗(Y,Z)→ H∗(X,Z)

preserving the cup-product. The Y is not a projective manifold.

We also show that, modifying the approach in the proof of this theorem, it is possible to
provide new examples for which the isomorphism γ is now defined only over Q or only
over C (i.e. under milder hypotheses), respectively. This is possible thanks to a lemma
due to Deligne, which tells us how we can find sub-Hodge structures in cohomology
starting from subsets of the cohomology ring obtained as zeros of polynomials for cup-
product multiplication.

Lemma (Deligne). Let Z be as above, i.e. Z := {z ∈ Hk(X,C) | fi(z) = 0, i ∈ I}, for
certain homogenous polynomials fi ∈ H∗(X,C)[X], where the grading is the one induced
by the cohomology degree and the multiplicative structure is given by the cup-product.
Let Z1 be an irreducible component of Z. Assume the C-vector space < Z1 > generated
by Z1 is defined over Q, i.e. < Z1 >= Bk

Q ⊗ C, for some Bk
Q ⊂ AkQ. Then Bk

Q is a
rational sub-Hodge structure of AkQ.
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With that trick and an easy application of the Hodge Index Theorem, we also establish
simply connected examples, which are desingularizations of quotients of complex tori
under suitable involutions (so-called generalized Kummer manifolds).

In the last part of the thesis, we analyze a further generalization of the Kodaira problem.

Question. Let X be a compact Kähler manifold. Does there exist a bimeromorphic
model X ′ of X (i.e. a compact complex manifold X ′ and a bimeromorphic map ψ :
X ′ 99K X) which deforms to a complex projective manifold?

This will be the birational (or bimeromorphic) Kodaira problem.
Again such a generalization is quite natural: in fact, counterxamples obtained for the Ko-
daira problem are bimeromorphic to products of complex tori or to generalized Kummer
manifolds and these are well-kown to be deformation equivalent to projective manifolds.

We will answer the birational Kodaira problem negatively, too. In fact, we shall show
the following

Theorem ([V05]). In any even dimension n ≥ 10, there are Kähler compact manifolds
providing counterexamples to the birational Kodaira problem, i.e. such that any of their
bimeromorphic model does not have the homotopy type of a projective manifold.

The strategy will be similar to the one used in the construction of counterxamples to
the Kodaira problem.
We begin with the same torus T as above, endowed with the endomorphism φ. On the
product T × T̂ , where T̂ is the dual torus of T , we take the fibre product

R := P(E)×T×T̂ P(Eφ),

where E,Eφ are fixed rank 2 vector bundles. Then, we take X, a desingularization of
the quotient of R by the action of a finite group generated by involutions.
We analyze, in details, the cohomology structure of manifolds bimeromorphic to this
desingularization and we snow that

Theorem. Let X ′ be any compact complex manifold bimeromorphically equivalent to
X, and let Y be a Kähler compact manifold. Assume there is an isomorphism of graded
algebras:

γ : H∗(Y,Q) ∼= H∗(X ′,Q).

Then Y is not projective.

Also in this case, the proof will strongly rely on Deligne’s Lemma and the same Hodge
Index argument already used. More precisely we shall show that, as a consequence of
the hypotheses on X ′, the existence of γ imply that there are not rational polarizations
on the cohomology of Y .

Note that, since any X ′ is bimeromorphic to a P1 × P1-bundle over a quotient of tori,
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the Kodaira dimension of X ′ is −∞.
After these counterexamples, we can identify the following open problems, which will
not be treated in this thesis:

• what is the answer to the Kodaira problem in dimension 3?

• is the birational Kodaira problem true in the case of manifolds whose Kodaira
dimension is non-negative?

The first is the only open case remained in the Kodaira problem but both of these
questions are really interesting for their connections with the classification of compact
complex manifolds. Particularly, the latter (see Section 1.5.4) would provide an ex-
tremely surprising result. Indeed, it would show that a property, defined only in terms
of the algebraic (or analytic) structure of a manifold, the Kodaira dimension, imposes
a strong topological condition, i.e. that homotopy type of manifolds whose Kodaira
dimension is non-negative is completely determined by projective ones.
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Chapter 1

Preliminaries

1.1 Kähler manifolds

On a complex vector space V , a Hermitian bilinear form h is decomposed into real and
imaginary parts as h = g − iω, where g is a symmetric real bilinear form and ω is
a real 2-form which is of type (1, 1) for the complex structure on V. Here the notion
of (complex valued) form of type (p, q) on V is the following: the space V ∗ ⊗ C of
complex valued forms on V splits as a direct sum of (V ∗)1,0 ⊕ (V ∗)0,1, where (V ∗)1,0 is
the space of C-linear forms and (V ∗)0,1 is its complex conjugate. Then forms of type
(p, q) are generated by forms α1∧· · ·∧αp∧β1∧· · ·∧βq, αi ∈ (V ∗)1,0, βj ∈ (V ∗)0,1. The
correspondence h → ω is a bijection between Hermitian bilinear forms and real forms
of type (1, 1) on V . Thus the notion of (semi)-positivity for Hermitian bilinear forms
provides a corresponding notion of (semi)-positivity for real forms of type (1, 1). Note
that when h is positive definite, ω is non degenerate, i.e. ωn 6= 0, n = dimC V .
On a complex manifold X, the tangent space TXx at any point is endowed with a
complex structure, and the above correspondence induces a bijective correspondence
between Hermitian bilinear forms on TX, and real 2-forms of type (1, 1) on X, i.e. of
type (1, 1) on TXx for any x ∈ X. In particular, if h is a Hermitian metric on TX, one
can write h = g − iω, where g is a Riemannian metric (compatible with the complex
structure), and ω is a positive real (1, 1)-form.

Definition 1.1.1. The metric h is said to be Kähler if furthermore the 2-form ω is
closed.

We can restate that as follows: a complex manifold is Kähler if it admits a Hermitian
metric, written in local holomorphic coordinates as

h =
∑
i,j

hijdzi ⊗ dz̄j ,

satisfying the property that the corresponding real (1, 1)-form

ω :=
i

2

∑
i,j

hi,jdzi ∧ dz̄j
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1.1 Kähler manifolds

is closed.
There are a number of other local characterizations of such metrics. The most useful
one is the fact that at each point, there are holomorphic local coordinates centered at
this point, such that the metric can be written as

h =
∑
i,j

dzi ⊗ dz̄j +O(|z|2).

1.1.1 Laplacians

Let Y be a compact differentiable manifold equipped with a metric g. We then have an
induced metric (, ) on each vector bundle Ωk

X,R; if e1, . . . , en is an orthonormal basis for
(TX,x, gx) and e∗i is the dual basis, the e∗i1 ∧ · · · ∧ e

∗
ik

form an orthonormal basis for the
metric (, )x on Ωk

X,x.
Assume now that X is compact and oriented, and let V ol be the volume form of X
relative to g. The L2 metric on the space Ek(X) of differential forms on X is defined by

(α, β)L2 =
∫
X

(α, β)V ol,

where (α, β) is the function x 7→ (αx, βx) on X, which is continuous whenever α, β and
g are continuous.
Let n = dimRX. For each x ∈ X, we have a natural isomorphism, given by the proper
exterior product

p :
n−k∧

ΩX.x → Hom(
k∧

ΩX,x,
n∧

ΩX,x).

The metric (, )x gives an isomorphism

m :
k∧

ΩX,x → Hom(
k∧

ΩX,x,R),

thanks to the orientability assumption. We can thus define the operator

∗x = p−1 ◦m :
k∧

ΩX,x →
n−k∧

ΩX,x,

which varies differentiably with x when g is differentiable, and which is of the same class
as g.

Definition 1.1.2. Let ∗ denote the isomorphism of vector bundles

∗ : Ωk
X,R → Ωn−k

X,R

constructed above. Let ∗ also denote the induced morphism on the level of sections, i.e.
of differential forms

∗ : Ek(X)→ En−k(X).

The operator ∗ is called the Hodge operator.
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1.1 Kähler manifolds

The essential property of ∗ is the following

∀α, β ∈ Ek(X), (α, β)L2 =
∫
X
α ∧ ∗β (1.1)

One has the Laplacian ∆d acting on differential forms, preserving the degree, defined as

∆d := dd∗ + d∗d,

where d∗ := ± ∗ d∗ is the formal adjoint of d.
In the case of a compact complex manifold X, equipped with a hermitian metric h, the
g above will be given by the real part of h that descends to a metric on the real tangent
bundle of X.
Hodge theory states that if X is compact and orientable, any de Rham cohomology
class has a unique representative α which is a C∞ form both closed and coclosed (i.e.
dα = d(∗α) = 0), or equivalently harmonic (i.e. ∆dα = 0).
On the other hand, on a general complex manifold endowed with a Hermitian metric,
the operator d splits as

d = ∂ + ∂̄,

where each operator preserves, up to a shift, the bigrading given by decomposition of
C∞-forms into forms of type (p, q). We can also extend by C-linearity the operator ∗ on
complex forms on X.
Moreover, it is always possible to associate to ∂ and ∂̄ corresponding Laplacians ∆∂ and
∆∂̄ defined as

∆∂ := ∂∂∗ + ∂∗∂, ∆∂̄ := ∂̄∂̄∗ + ∂̄∂̄,

where the ∗means the formal adjoint for the induced metric on forms. For obvious formal
reasons ∆∂ and ∆∂̄ preserve the bigrading and even the bidegree. However, it is not the
case in general that ∆d preserves the bigrading. It turns out that, as a consequence of
the so-called Kähler identities, when the metric h is Kähler, one has the relation

∆d = ∆∂ + ∆∂̄ ,

which implies that ∆d preserves the bidegree.
This has for immediate consequence the fact that each cohomology class can be written
as a sum of cohomology classes of type (p, q), where cohomology classes of type (p, q)
are defined as those which can be represented by closed forms of type (p, q).

1.1.2 Hodge Theorem

The main consequence of Hodge theory can be stated as follows:

Theorem 1.1.3. Let X be a compact Kähler manifold. Then there is a canonical de-
composition

Hk(X,C) =
⊕

p+q=k,
p≥0,q≥0

Hp,q(X),

10



1.1 Kähler manifolds

where the Hp,q are defined as above.
Furthermore we can identify Hp,q = Hq(X,Ωp). The Hp,q’s satisfy a further property
called Hodge symmetry:

∀k,∀p, q s.t. p+ q = k, Hp,q = Hq,p.

The main benefit of Hodge theory is the fact that it allows us to translate many geomet-
rical problems into linear algebra problems relating to the cohomology ring of a variety.
This principle will be probably one of the most relevant aspects of this thesis, even if
not the central one.

Example 1.1.4. Not all complex manifolds are Kähler manifolds.
A classical example of a complex manifold which is not Kähler is provided by the so-
called Hopf surfaces: let A ∈ GL(2,C) be a matrix with eigenvalues of norm > 1 and let
< A >⊂ GL(2,C) be the subgroup generated by A. Clearly < A >∼= Z. The action of A
on X = C2 \ {0} is free and properly discontinuous. Therefore the quotient SA = X/A
is a compact complex manifold called Hopf surface: the holomorphic map X → SA is
the universal cover and then for every point x ∈ SA there exists a natural isomorphism
π1(SA, x) ∼= Z. This implies that SA is not Kähler, otherwise π1(SA, x) wuold have even
rank, by Hodge symmetry.
It is a well known result, instead, that any analytic submanifold (or any algebraic sub-
manifold, by Chow’s Theorem) of Pn is Kähler. Indeed, on Pn, we have a well-defined
Kähler metric, called the Fubini-Study metric (see [V02, I, Ch. 3, § 3.3.2]). By pulling-
back the Fubini-Study metric on the given submanifold of Pn, we obtain a Kähler metric.
As we will see below, among Kähler manifolds, projective ones are carachterized by a
special cohomological condition, which was discovered by Kodaira in [Kd54].

Theorem (1.1.3) has a wide number of consequences and applications (e.g. see [V02],
[GH78], [Le91]). We will not state them in this section, but rather we will recall them
when needed throughout the thesis.

Example 1.1.5. We will work out the Hodge decomposition in a special example that
will be of fundamental importance in the next chapters.
Let X be an n-dimensional complex torus, i.e. the quotient of Cn by a 2n-dimensional
lattice Λ ⊂ Cn. We have a quotient map

π : Cn → Cn/Λ

which is also the universal covering map. Furthermore, X is also a complex commutative
Lie group: as a consequence, we have that the tangent bundle TX is trivial and given
linear coordinates z1, . . . , zn on Cn, the images of the vector fields ∂

∂zi
, i = 1, . . . , n via the

map dπ∗ : TCn → TX give n linearly indipendent sections of TX, hence a trivialization.
The same happens for the standard Hermitian metric on TCn:

H =
∑
i

dzi ⊗ dz̄i.
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1.1 Kähler manifolds

The real part of H, G is the standard Euclidean metric on the underlying real vector
space. If we take real linear coordinates x1, . . . , xn, y1, . . . , yn by the equalities

zj = xi + iyj , j = 1, . . . , n,

G is simply described by the formula

G =
∑
i

dx2
i + dy2

i .

It is immediate to show that the metric H induces a Hermitian metric HX on the tangent
bundle TX, which is Kähler (since it is Kähler on Cn).
From a cohomological point of view, it is a well known fact that X is homeomorphic
to the cartesian product of 2n copies of S1. It is a straightforward application of the
cup-product properties that there is a isomorphism

H∗(X,Z) ∼=
∗∧
H1(X,Z)

and by universal coefficient theorem the same is true with rational (real, complex) coef-
ficients.
By definition the Laplacian induced by G on differential forms of degree k on Cn is
nothing but the usual Laplacian, computed on the coefficients, i.e.

∆dα = ∆d(
∑
I,J

|I|+|J |=k

αIJdxI ∧ dyJ) =
∑
I,J

|I|+|J |=k

∆αIJdxI ∧ dyJ ,

where the αIJ are C∞ complex functions on CN . Hence a differential form of degree k
is harmonic if and only if its coefficients are harmonic functions.
Since by the maximum principle, harmonic functions on the torus are costants, we deduce
that harmonic forms on X are induced by differential forms with costant coefficients on
Cn. These have the form ∑

I,J
|I|+|J |=k

cIJdxI ∧ dyJ , cIJ ∈ C. (1.2)

Since zj = xj + iyj , it follows that

dzj = dxj + idyj , dz̄j = dxj + idyj , j = 1, . . . , n.

Thus, we can write (1.2) in the form∑
p≥0,q≥0
p+q=k

∑
I,J

|I|=p,|J |=q

sIJdzI ∧ dz̄J , sIJ ∈ C

which naturally gives the Hodge decomposition on the k-th cohomology group with
complex coefficients.
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1.2 Hodge structures

1.2 Hodge structures

We have already said that the complex valued de Rham algebra E∗(X) of a complex
manifold splits as a direct sum Ek(X) =

⊕
p+q=k Ep,q(X), where Ep,q(X) is the set

of C∞ differential forms of type (p, q). The Hodge decomposition theorem says that,
when X is compact Kähler, this decomposition descends to the cohomology groups with
complex coefficients.
On the other hand, cohomology groups with complex coefficients are complex vector
space endowed with a canonical integral structure, given by the universal coefficients
theorem:

Hk(X,C) = Hk(X,Z)⊗ C.

In the sequel we will denote by Hk(X,Z), the integral cohomology of X modulo torsion.
Thus, Hk(X,Z) is a lattice in Hk(X,C), and Hodge theory provides us with an inte-
resting continuous invariant attached to a Kählerian complex structure on X, namely
the position of the complex subspaces Hp,q(X), p + q = k with respect to the lattice
Hk(X,Z). This leads to the notion of Hodge structure.

Definition 1.2.1. A weight k (integral) Hodge structure is a lattice V , with a decompo-
sition

VC =
⊕
p+q=k

V p,q, V q,p = V p,q,

where VC := V ⊗ C.
By taking a rational space instead of a lattice, we can define analogously a rational Hodge
structure.

The contents of the previous section can be summarized by saying that if X is a compact
Kähler manifold, each cohomology group (modulo torsion) Hk(X,Z) carries a canonical
Hodge structure of weight k.
Given a weight k Hodge structure V , we can define a representation ρ of C∗ on VR, defined
by the condition that z ∈ C∗ acts by multiplication by zpz̄q on V p,q. Then the restriction
of ρ to R∗ is the map R 3 λ 7→ λkId ∈ Hom(VC, VC). Conversely, given a representation
of C∗ on VR satisfying the last condition, the associated character decomposition of VC
will provide a Hodge structure on V (see [V02, I, Ch. 6, page 154]).
Given a Hodge structure (defined over Z or over Q) H of weight h, in the sequel we will
sometimes consider the so-called Hodge filtration defined by

F lHC =
⊕
k≥l

Hk,h−k, HC := H ⊗ C.

Notice that the Hodge filtration of H satisfies the following two properties:

1. ∀p ∈ Z, F pHC ∩ F h−p+1HC = ∅;

2. ∀p ∈ Z, F pHC ⊕ F h−p+1HC = HC.
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1.2 Hodge structures

The data of a Hodge filtration F pHC, p ∈ Z satisfying the two properties above, is
equivalent to the data of the Hodge decomposition, because by Hodge symmetry, we
recover Hp,q as

Hp,q = F pHC ∩ F qHC.

In view of the definition of the Hodge filtration F pHC, p ∈ Z of a Hodge structure H,
we will also indicate H by the notation

(H,F pHC).

A number of operations can be done in the category of Hodge structures. We can take
the direct sum of two Hodge structures of weight k: the lattice is the direct sum of the
two lattices, and the (p, q) components are the direct sum of the (p, q)-components of
each term. We can take the dual of a Hodge structure of weight k, which will have weight
−k. Its underlying lattice is the dual of the original one, and its Hodge decomposition is
dual to the original one, with the rule (V p,q)∗ = (V ∗)−p,−q. With this definition, we can
verify that if X is a compact Kähler manifold of dimension n, whose cohomology has
no torsion, the Hodge structures on Hk(X,Z) and H2n−k(X,Z) are dual via Poincaré
duality, up to a shift of the degree. The tensor product of two Hodge structures V,W of
weight k, l is the Hodge structure of weight k+ l whose underlying lattice is M = V ⊗W
and which has

Mp,q =
⊕

r+t=p,s+u=q

V r,s ⊗W t,u.

1.2.1 Morphisms of Hodge structure

Definition 1.2.2. A morphism of Hodge structure V = ⊕p+q=kV p,q,W = ⊕s+t=k+2rW
p,q

of respective weights k, k+2r is a morphism of lattices φ : V →W , such that the C-linear
extension φC of φ sends V p,q to W p+r,q+r. Such a morphism is said to be of bidegree
(r, r), as it shifts by (r, r) the bigrading given by the Hodge decomposition.

Natural examples of morphisms of Hodge structure are induced by holomorphic maps
f : X → Y between compact Kähler manifolds. The pull-back map in cohomology

f∗ : Hk(Y,Z)→ Hk(X,Z)

is a morphism of Hodge structure of weight k. Indeed, the pull-back by f of a closed
form of type (p, q) is again a closed form of type (p, q).
We also have the Gysin map

f∗ : Hk(X,Z)→ Hk+2r(Y,Z), r := dimC Y − dimCX.

It is defined on integral cohomology as the composition

PD−1
Y ◦ f

∗ ◦ PDX ,
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1.2 Hodge structures

where PDX is the Poincaré duality isomorphism

PDX : H l(X,Z)→ H2n−l(X,Z), n = dimCX

and similarly for PDY , while the map f∗ at the middle is the natural push-forward map
induced on homology by f . We can also define the Gysin morphism (on the cohomology
modulo torsion) as the composition

Hk(X,Z) PD // H2n−k(X,Z)∗
(φ∗)t // H2n−k(Y,Z)∗ PD // Hk+2r(Y,Z),

where PD is the Poincare duality morphism induced in cohomology by the perfect pairing

Hk(X,Z)⊗H2n−k(X,Z)→ H2n(X,Z) ∼= Z,

and (φ∗)t is the adjoint of φ∗. One can easily prove that f∗ is a morphism of Hodge
structure of bidegree (r, r).
Up to now, we have been working with integral Hodge structures. It is sometimes more
convenient to use rational Hodge structures. Morphisms of rational Hodge structures are
defined in the same way as above, morphisms of lattices being replaced with morphisms
of Q-vector spaces. Given a morphism of Hodge structure φ : VQ → WQ there is an
obvious induced Hodge structure on kerφ, due to the fact that, since φ preserves up to
a shift the bigrading given by Hodge decomposition, its kernel is stable under Hodge
decomposition. For the same reason there is an induced Hodge structure on Cokerφ.
Thus we have kernels and cokernels in the category of rational Hodge structures.
Let us note the following important fact, that we will use very often in the next chapters.

Proposition 1.2.3. Let φ : X → Y be a holomorphic surjective map, between compact
complex manifolds, with X Kähler. Then the map φ∗ : Hk(Y,Q)→ Hk(X,Q) is injective
for every k.

Proof. [V02, I, Ch. 7, Lemma 7.28]

Remark 1.2.4. The rational coefficients in the previous proposition can be replaced by
integral (in this case we take torsion free cohomology), real or complex coefficients.

Remark 1.2.5. When dimC Y = dimCX, we do not need the Kähler hypothesis on X.
When the morphism φ has finite generic fibre of cardinality d, it is of degree d > 0, since
its differential is C-linear and thus preserves the orientation. In this case we have the
following formula:

φ∗ ◦ φ∗ : Hk(Y,Z)→ Hk(Y,Z), φ∗ ◦ φ∗ = d · IdY

In particular, we find that if φ : X → Y is a differentiable map of degree d 6= 0 between
compact differentiable manifolds, the map φ∗ : Hk(Y,Z) → Hk(X,Z) is injective for
every k.
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1.2 Hodge structures

Another simple application of the definition of morphism of Hodge structure is the
following: given a cohomology class α ∈ H2r(X,Z) ∩ Hr,r(X) on a compact Kähler
manifolds X, this gives rise to morphisms of Hodge structure

∪α : Hk(X,Z)→ Hk+2r(X,Z),∀k ∈ N

a fact which will be very much used in the sequel. It is immediate to see that an
analoguos statement is true when α ∈ H2r(X,Q) ∩ Hr,r(X) and the map induced by
cup-product multiplication by α is in rational cohomology.

1.2.2 Hodge classes

Let X be compact Kähler; we have the Hodge decomposition on H2k(X,C). We make
the following definitions:

Definition 1.2.6. An integral Hodge class of degree 2k on X is a class in H2k(X,Z)
whose image in H2k(X,C) is of type (k, k). We will denote the group of such classes by
Hdg2k(X,Z). One defines similarly the space of rational Hodge classes by Hdg2k(X) :=
H2k(X,Q) ∩Hk,k(X).

Here are some classic examples of Hodge classes.

• Cohomology classes of closed analytic subspaces Z ⊂ X of codimension k are of
Hodge type (k, k). Indeed, the singular locus Zsing of such a Z is then a closed
analytic subset of X which has codimension ≥ k + 1 and thus real codimension
≥ 2k + 2. Thus one can define [Z] ∈ H2k(X,C) by taking the cohomology class
[Z] ∈ H2k(X \ Zsing,Z) of the closed complex submanifold Z \ Zsing ⊂ X \ Zsing
and by observing that H2k(X \Zsing,Z) ∼= H2k(X,Z). The class [Z] is an integral
Hodge class. This can be seen using Lelong’s theorem, showing that the current of
integration over Z \ Zsing is well-defined and closed, with cohomology class equal
to the image of [Z] in H2k(X,C).On the other hand, this current annihilates all
forms of type (p, q), p 6= q, p + q = 2n − 2k, n = dimCX, and it follows dually
that its class is of type (k, k). Let us recall the famous Hodge conjecture, which
is intimately related to classes of analytic proper subvarieties of a given projective
manifold:

Hodge Conjecture. Let X be a complex projective manifold. Then the space
Hdg2k(X) of degree 2k rational Hodge classes on X is generated over Q by classes
of the form [Z] constructed above, for suitable analytic closed subsets Z ⊂ X.

• If E is a complex vector bundle on a topological manifold X, we have the rational
Chern classes ci(E) ∈ H2i(X,Q). (Note that the Chern classes are usually defined
as integral cohomolgy classes, ci ∈ H2i(X,Z), but in the text, the notation ci will be
used for the rational ones.) If E is now a holomorphic vector bundle on a complex
manifold X, the Chern classes of E are Hodge classes. This follows indeed from
Chern–Weil theory, which provides de Rham representatives of ci(E) as follows:
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1.2 Hodge structures

if ∇ is a complex connection on E, with curvature operator R∇ ∈ E2
X ⊗ End(E),

then a representative of ck(E) is given by the degree 2k closed form σk( i
2πR∇),

where σk is the polynomial invariant under conjugation on the space of matrices,
which to a matrix associates the k-th symmetric function of its eigenvalues. Now,
if E is a holomorphic vector bundle on E, there exists a complex connection ∇ on
E such that R∇ is of type (1, 1), i.e. R∇ ∈ E1,1

X ⊗ End(E). Given a Hermitian
metric h on E, one can take the so-called Chern connection, which is compatible
with h, and has the property that its (0, 1)-part is equal to the ∂̄ operator of E.
This implies that σk( i

2πR∇), and shows that ck(E) is Hodge.

Remark 1.2.7. In the case of a compact Kähler manifold X which is also projective, we
have a strong result asserting that these two construction generates the same subgroups
of Hdg2k(X):

Theorem 1.2.8. Let X be an algebraic variety. Then the subgroup of Hdg2k(X) gen-
erated by cohomology classes of analytic subsets of X, and the subgroup generated by
Chern classes of holomorphic vector bundles, coincide.

We have the cup-product between the cohomology groups Hk(X,Z) of a manifold (topo-
logical space would be enough):

∪ : Hk(X,Z)⊗H l(X,Z)→ Hk+l(X,Z). (1.3)

At the level of complex cohomology, where cohomology classes are represented via de
Rham theory as classes of closed forms modulo exact ones, the cup-product is given by
the exterior product, namely, if α ∈ Hk(X,C), β ∈ H l(X,C) are represented respectively
by closed complex valued differential forms α̃, β̃, then α∪ β is represented by the closed
differential form α̃ ∧ β̃. Now, if X is a complex manifold and α̃, β̃ are respectively of
type (r, s), r + s = k, (t, u), t + u = l, then α̃ ∧ β̃ is closed of type (r + t, s + u). Thus,
if X is a compact complex manifold, the definition of the Hp,q groups of X shows that
Hr,s(X) ∪Ht,u → Hr+s,t+u. Using the definition of the Hodge structure on the tensor
product Hk(X,Z)⊗Hk(X,Z) this amounts to say that the cup-product is a morphism
of Hodge structure of weight k + l. Moreover, Poincaré duality and cup product allows
us to determine pairings of the form

Hk(X,Z)⊗H2n−k(X,Z)→ H2n(X,Z), n = dimCX.

Poincaré duality simply tells us that these pairings are perfect, i.e. gives a duality of
vector spaces between Hk(X,Z) and H2n−k(X,Z), once we have choosen an isomorphism
H2n(X,Z) ∼= Z. Again using the definition of the subgroups Hp,q(X), the following result
can be easily proved.

Proposition 1.2.9. We have

Hr,s(X) =
{ ⊕

t+v=2n−r−s
(t,v)6=(n−r,n−s)

Ht,v(X)
}⊥

,

where the ortogonality is relative to the Poincaré duality on Y
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1.2 Hodge structures

Proof. See [V02, Ch. 7, Lemma 7.30]
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1.3 Polarizations

A very deep application of Hodge theory is the hard Lefschetz theorem, which says
the following: let X be a compact Kähler manifold of complex dimension n and ω ∈
H2(X,R) the class of a Kähler form Ω on X. Cup-product with ω gives an operator
usually denoted by L : H∗(X,R)→ H∗+2(X,R). We will denote by Lj the composition
L ◦ · · · ◦ L, j times. Clearly, Lj : H∗(X,R) → H∗+2j(X,R). By abuse of notation, we
will often indicate by Lj its restriction to H l(X,R) ⊂ H∗(X,R), too.

Theorem 1.3.1 (Hard Lefschetz Theorem). For any k ≤ n, the restriction of the
the map Ln−k to Hk(X,R) gives an isomorphism

Ln−k|Hk(X,R)
: Hk(X,R)→ H2n−k(X,R).

The proof involves first a pointwise computation, saying that wedge product with Ωn−k

induces a pointwise isomorphism between the k-th and 2n− k-th exterior powers of the
complexified cotangent bundle of X. The second ingredient is the fact that wedge prod-
uct with the Kähler form Ω preserves harmonic forms, which are the canonical de Rham
representatives of cohomology classes on X, once we have given the Kähler metric. Thus
one has to check the result by looking at the wedge product with Ωn−k on harmonic
forms. And the last ingredient is Poincaré duality, which says that both spaces have the
same dimension, so that bijectivity is equivalent to injectivity.
It is interesting to note that if X is projective, then we can take for ω the first Chern
class of a very ample line bundle (i.e. a line bundle providing a projective immersion
of X, see [GH78]) and then the hard Lefschetz theorem (see [V02, II, Ch. 1-2]) implies
immediately the injectivity statement in the Lefschetz theorem on hyperplane sections,
at least for smooth hyperplane sections and rational coefficients.
A first formal consequence of the hard Lefschetz Theorem (1.3.1) is the so-called Lef-
schetz decomposition. With the same notations as before, let us define for k ≤ n the
primitive cohomology of X in degree k, by

Hk(X,R)prim := ker{Ln−k+1 : Hk(X,R)→ H2n−k+2(X,R)}

For example, if k = 1, the whole cohomology is primitive, and if k = 2, primitive
cohomology is the same as the orthogonal subspace, with respect to Poincaré duality, of
ωn−1 ∈ H2n−2(X,R). The Lefschetz decomposition is the following

Theorem 1.3.2 (Lefschetz decomposition). The cohomology groups Hk(X,R), k ≤
n decomposes as

Hk(X,R) =
⊕
2r≤k

LrHk−2r(X,R)prim

Note that Lefschetz decomposition can also be extended to the case k > n using the
hard Lefschetz isomorphism.

Remark 1.3.3. If ω ∈ H2(X,Q), then the same things are true for the rational coho-
mology of X.
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1.3 Polarizations

1.3.1 Hodge-Riemann bilinear relations

We consider a Kähler compact manifold X with Kähler class ω. We can define an
intersection form qω on each Hk(X,R) by the formula

qω(α, β) =
∫
X
ωn−k ∪ α ∪ β.

By the hard Lefschetz theorem and Poincaré duality, qω is a non-degenerate bilinear
form (i.e. its representing matrix with respect to a fixed basis of Hk(X,R) is invertible,
no matter how the basis is choosen). It is skew-symmetric if k is odd and symmetric if
k is even.
It is clear that we can extend qω to H∗(X,C) = H∗(X,R)⊗C: in this case, the extension
of qω satisfies the property that

qω(α, β) = 0, α ∈ Hp,q, β ∈ Hp′,q′ , (p′, q′) 6= (q, p).

This property is indeed an immediate consequence of the fact thatH2n(X,C) = Hn,n(X), n =
dimCX by Hodge symmetry, as H2n(X) is 1-dimensional. Another way to rephrase this
is to say that the Hermitian pairing hω on Hk(X,C) defined by

hω(α, β) = ikqω(α, β̄)

has the property that the Hodge decomposition is orthogonal with respect to hω.

Remark 1.3.4. This property is summarized under the name of first Hodge-Riemann
bilinear relations

Coming back to qω, note also that the Lefschetz decomposition is orthogonal with respect
to it. Indeed, if α, β ∈ Hk(X,C), α = Lrα′, β = Lsβ′, r < s and α′, β′ are primitive,
then

Ln−kα ∪ β = Ln−k+r+sα′ ∪ β′,

and Ln−k+r+sα′ = 0, since by primitivity Ln−k+2r+1α′ = 0.
The second Hodge-Riemann bilinear relations given below play a crucial role, especially
in the study of the period maps. Note first that, because the operator L shifts the Hodge
decomposition by (1, 1), the primitive cohomology has an induced Hodge decomposition:

Hk(X,C)prim = ⊕p+q=kHp,q
prim(X),

where Hp,q(X)prim := Hp,q(X) ∩Hr(X,C)prim. We have now the following result:

Theorem 1.3.5 (Second Hodge-Riemann bilinear relations). The sesquilinear
form hω is definite of sign (−1)

k(k−1)
2 ip−q−k on the component LrHp,q(X)prim, 2r+ p+

q = k of Hk(X,C)

Example 1.3.6. A basic application of this theorem is the well known Hodge index
theorem for the intersection form on 2-degree cohomology group of a compact Kähler
surface X, equipped with a Kähler class ω ∈ H2(X,R). As we are looking at the middle
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cohomology, the form qω is equal to the natural intersection pairing on H2(X). In this
case, the primitive cohomology is the orthogonal complement of the Kähler form and
the second Hodge-Riemann bilinear conditions say that qω is negative definite on the
real part of H1,1(X)prim and positive definite on the real part of H2,0(X)⊕H0,2(X). It
is also obviously positive on the line given by ω, which is perpendicular to both of these
spaces. This shows that the Hodge numbers of compact Kähler surfaces are determined
by their topology, which is not the case in higher dimension.

Another application of this principle, which will be used later on, is the following

Lemma 1.3.7. Let X be a compact Kähler manifold. Assume there is a rank 2 subspace
V ⊂ H2(X,R) such that ∀α, β ∈ V, α ∪ β = 0 ∈ H4(X,R), then the Hodge structure on
H2(X,Q) is non trivial.

Proof. Indeed, if H2(X,Q) were trivial, that is entirely of type (1, 1), then for ω a
Kähler form on X, the non-degenerate intersection form qω on H2(X,R) would have one
positive sign, and thus the dimension of a maximal isotropic subspace would be 1. But
V is isotropic, which is a contradiction.
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1.4 Blow-ups

1.4.1 Vector bundles

Recall the following

Definition 1.4.1. Let X be a complex manifold, a n-dimensional holomorphic vector
bundle E over X, is a complex manifold E together with a map π : E → X such that
∀x ∈ X there is a neighbourhood U of x and a biholomorphic map τU : π−1(U)→ U×Cn

such that the following diagram commutes

π−1(U)
τU //

π
##GG

GG
GG

GG
G

U × Cn

pr1
{{wwwwwwwww

U

(1.4)

and for any z ∈ U1 ∩ U2 ⊂ X, U1, U2 neighbourhoods for which there are trivializing
maps τU1 , τU2 as in (1.4), the transition functions

τU1 ◦ τ−1
U2

: τU2(U1 ∩ U2)→ τU1(U1 ∩ U2)

are C-linear on the fibres, {z} × Cn. The maps {τUi} for a suitable open cover {Ui} of
X, satisfying the compatibility conditions above, will be called trivialisations of E.
A holomorphic m-dimensional vector subbundle E′ of E, m ≤ n, is a submanifold of
E such that π(E′) = X and for any x ∈ X, π−1(x) ∩ E is an m-dimensional vector
subspace of {x} × Cn.
A (holomorphic, differentiable, continous) section of a holomorphic vector bundle φ :
E → X, is a (holomorphic, differentiable, continous) map σ : X → E such that π ◦ σ =
IdX .

An equivalent description for E can be given by simply specifying an open cover {Ui} of
X and for i, j such that Ui ∩ Uj 6= ∅, an invertible n× n matrices gij whose entries are
holomorphic functions on Ui ∩ Uj under the further condition that if Ui ∩ Uj ∩ Uk 6= ∅
then

gijgjkgki = IdUi∩Uj∩Uk .

In the category of holomorphic vector bundles, all standard linear algebra operations,
e.g. direct sums, products, exterior powers, symmetric powers, quotients (by holomor-
phic sub-bundle) are admissible.
Since we are particularly interested in forms on Kähler manifolds, especially those in-
duced by metrics, we recall also the following construction.
Suppose we are given a line bundle L (i.e. a vector bundle whose fibres have dimension
1 over C) on a compact Kähler manifold X. Let {Ui} be an open cover of X such that
L|Ui admits a holomorphic trivialisation L|Ui ∼= Ui×C. Such a trivialisation is equivalent
to giving an everywhere non-zero holomorphic section σi of L on Ui (the one which can
be identified with the constant section equal to 1 in the trivialisation). The transition
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1.4 Blow-ups

matrices gij corresponding to these trivialisations are given by invertible holomorphic
functions on Ui ∩ Uj . Obviously, we have

σi = gijσj

on Ui∩Uj . Now, let h be a Hermitian metric on L. For x ∈ X, h(x) is clearly determined
by its value on any non-zero element of Lx, since hx(λu) = |λ|2hx(u). Set hi = h(σi). It
is a strictly positive function on Ui

hi = |gij |2hj

on ui ∩ Uj . The 2-forms

ωi =
1

2πi
∂∂̄ log hi

on Ui thus coincide on Ui ∩Uj , since ∂∂̄ log |gij |2= 0, and provide a 2-form ω on X. The
forms constructed in this way are clearly closed, since they are locally exact, and real of
type (1, 1).

Definition 1.4.2. The form ω just constructed will be called the Chern form relative to
the metric h on L.

1.4.2 Projective bundles

The Fubini-Study metric on Pr generalises to projective bundles, and makes it possible
to show that a projective bundle (coming from a vector bundle) over a Kähler manifold
X is also a Kähler manifold.

Definition 1.4.3. Let E be a holomorphic vector bundle of rank r + 1 over a complex
manifold X. The manifold P(E), which is the quotient of E minus the zero section by
the natural fibrewise action of C∗, is called the projective bundle associated to E.

The complex structure on P(E) is obvious: P(E) admits a natural morphism π to X,
which can be deduced from that of E by passing to the quotient. On open sets {Ui} of
a trivialisation of E, we have1

π−1(Ui) ∼=i Ui × Pn,

and the identifications between

π−1(Ui ∩ Uj) ∼=i Ui ∩ Uj × Pn

and
π−1(Ui ∩ Uj) ∼=j Ui ∩ Uj × Pn

are given by the projective morphisms induced by the transition matrices of E, and are
thus holomorphic.

1The subscript i means that the trivialisation of the projective bundle depends on the open set
choosen.
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There is a natural relative version of the line bundle OPn(1) defined on an n-dimensional
projective space. Recall that OPn(1) is given by the dual of the tautological bundle on
Pn.
Let now S be the line subbundle of π∗E over P(E) whose fibre at a point (x, v), v ∈ P(Ex)
is the line l contracted on P(Ex) in v. We then define OP(E)(1) as the dual of S. On
each fibre of P(E), naturally isomorphic to Pr, the restriction of OP(E)(1) is naturally
isomorphic to OPr(1).
Let h be a Hermitian metric on the bundle E. Then h induces a Hermitian metric on
π∗E and thus, by restriction, a metric on S and its dual OP(E)(1), hOP(E)(1). Summing
up to the Kähler form of X an appropriate multiple of the Chern form of hOP(E)(1), we
can prove the following

Theorem 1.4.4. If X is compact Kähler and E is a holomorphic bundle over X, then
the manifold P(E) is Kähler.

Remark 1.4.5. It is a direct consequence of its construction that P(E) is compact: in
fact, we can consider it as a quotient of the bundle of unit spheres of E for any Hermitian
metric on E.

1.4.3 Blow-ups

Let X be a complex manifold, and Y ⊂ X a complex submanifold of codimension k.
Locally along Y , there exist holomorphic functions f1, . . . , fk with independent differen-
tials, such that locally Y is given by the by the point satisfying the equations

f1(z) = · · · = fk(z) = 0.

These equations are not unique, but we have the following relations:

Lemma 1.4.6. If g1, . . . , gk form another system of local equations for Y , then locally
in a neighbourhood of Y , there exists a matrix Mij of holomorphic functions such that

gi =
∑
j

Mjifj .

Moreover, the matrix Mij is invertible along Y , and its restriction to Y is uniquely
determined by the fi, gj.

Let U be an open set of X, on which there exist functions f1, . . . , fk with independent
differentials such that

Y ∩ U = {z ∈ U | fi(z) = 0, i = 1, . . . , k}.

Now set

ŨY := {(Z, z) ∈ Pk−1 × U | Zifj(z) = Zjfi(z), 1 ≤ i, j ≤ k}. (1.5)

24
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Here, Z = (Z1, . . . , Zk) is a representative vector of the corresponding point of Pk. ŨY is
a smooth complex complex submanifold of Pk−1×U . We have a map τU = pr2 : ŨY → U
which is an isomorphism over U \ (Y ∩ U). Above Y ∩ U , the fibre of pr2 is equal to
Pk−1. It is now easy to show that given an open cover {Ui} of Y , the blown up open
sets {ŨiY } glue together (clearly, where they have common intersections) to construct
the blow-up of X along Y .
More precisely, it can be verified that given two open sets U, V ⊂ X, U ∩ V ∩ Y 6= ∅ in
which Y is defined by equations fU1 , . . . , f

U
k and fV1 , . . . , f

V
k respectively, if τU : ŨY → U

and τV : ṼY → V are the blow-ups of U and V along U ∩ Y and V ∩ Y respectively,
there exists a natural isomorphism

φUV : τ−1
U (U ∩ V )→ τ−1

V (U ∩ V )

such that τU = τV ◦ φUV . Indeed, it suffices to construct the isomorphism locally in
the neighbourhood of τ−1

U (Y ∩ U), since such an isomorphism is certainly unique by
continuity, and is already defined outside Y. Thus, up to restricting U, we can assume
that we have a holomorphic invertible matrix MUV which sends the equations fUi to the
equations fVi (as in the previous lemma), i.e.

fUi =
∑
j

MUV
ji fVj .

Let now PUV = (MUV )−t. Then the biholomorphism

ψUV : Pk−1 × (U ∩ V )→ Pk−1 × (U ∩ V )

defined by ψUV (Z, z) = (PUV (z) · Z, z) (where Z is considered as a column vector)
clearly sends τ−1

U (U ∩ V ) to τ−1
V (U ∩ V ) and the inverse map is given by the inverse

diffeomorphism.

Definition 1.4.7. The manifold X̃Y obtained by gluing together the manifolds {ŨiY }
above the common intersections Ui ∩ Uj, is called the blow-up of X along Y . We will
often call τ−1(Y ) the exceptional divisor of the blow-up (the reason will be clear in a
moment), while we will sometimes refer to X as the base-space of the blow-up.

We have a blow-up map τ : X̃Y → X, equal to τU over ŨY . It is an isomorphism
above X \ Y . We also have τ−1(Y ) = P(NY/X), since the matrices Mij which give the
transition morphisms for the projective bundle τ−1(Y ) are the transition matrices for
the normal bundle NX/Y = TX|Y /TY . We easily see that τ−1(Y ) ⊂ X̃Y is a smooth
hypersurface, i.e. a smooth complex submanifold of codimension 1. In fact, considering
the local definition of the blow-up, if (y, [Z1 : · · · : Zk]) ∈ ŨY , y ∈ Y , then there exists
Zi such that Zi 6= 0. It is easy to show that the function fi ◦ τ gives a local holomorphic
equation for τ−1(Y ) in ŨY in the neighbourhood of (y, [Z1 : · · · : Zk]). Since τ−1(Y ) is
an hypersurface, it gives over X̃Y an effective divisor. To that divisor, we can associate a
well defined line bundle L, trivial outside τ−1(Y ), whose transitions functions are given
by the equations that cut out τ−1(Y ) over X̃Y (this line bundle is usually indicated
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1.4 Blow-ups

by the symbol O eXY (−τ−1(Y ))). It is a well known fact that the restriction of L to
τ−1(Y ) is isomorphic to OP(NY/X)(1). This fact is very useful, in order to understand
the cohomology of a blow-up in terms of the class of the exceptional divisor and of the
base space.
The first fundamental result abuot blow-ups of Kähler manifolds is the following:

Theorem 1.4.8. If X is Kahler and Y ⊂ X is a compact complex submanifold of X,
the blown-up manifold X̃Y is Kähler, and it is compact if X is.

1.4.4 Hodge structure of a blow-up

Let X be a Kähler manifold, and let Z ⊂ X be a submanifold. We know that the blow-up
τ : X̃Z → X of X along Z is still a Kähler manifold. Let E := τ−1(Z) ∼= P(NZ/X) be the
exceptional divisor. As we have seen E is a projective bundle of rank r−1, r = codimZ.
In view of this fact, we have on E the line bundle OE(1), defined above. Moreover, E
is a smooth hypersurface of X̃Z . Let us denote by j : E ↪→ X̃Y the inclusion map. The
Hodge structure on Hk(X̃Z ,Z) is described as follows.

Theorem 1.4.9. Let h = c1(OE(1)) ∈ H2(E,Z). Then we have a isomorphism of
Hodge structure

τ∗ +
∑
i

φi : Hk(X,Z)
r−2⊕
i=0

Hk−2i−2(Z,Z)→ Hk(X̃Z ,Z), (1.6)

where φi is given by j∗ ◦ hi ◦ τ∗|E.

Here, hi is the morphism of Hodge structure given by the cup-product by hi ∈ H2i(E,Z).
On the components Hk−2i−2 of the left-hand term, we put the Hodge structure of Z
shifted by (i+ 1, i+ 1) in bidegree, so as to obtain a Hodge structure of weight k.
Sketch of the proof. By the results of the preceding section, the morphism (1.6) is a
morphism of Hodge structure. It thus suffices to prove that it is an isomorphism of
Z-modules. Let U ⊂ X be defined as

U := X \ Z.

Then U is also isomorphic to the open set X̃Z \E of X̃Z . As τ gives a morphism between
the pair (X̃Z , U) and the pair (X,U), we have a morphism τ∗ between the long exact
sequences of cohomology relative to these pairs (where we are considering cohomology
groups with integral coefficients):

. . . // Hk−1(U)

τ∗U
��

// Hk(X,U)

τ∗X,U
��

// Hk(X)

τ∗X
��

// Hk(U)

τ∗U
��

// . . .

. . . // Hk−1(U) // Hk(X̃Z , U) // Hk(X̃Z) // Hk(U) // . . .

(1.7)
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The first and last maps are of course the identity. Furthermore, by excision and by the
Thorn isomorphism (see [BT82] or [Hat02]), we have

Hk(X,U) ∼= Hk−2r(Z), Hk(X̃Z , U) ∼= Hk−2(E).

Moreover the morphism Hk(X̃Z , U) ∼= Hk−2(E) → Hk(X̃Z) can be identified with j∗,
and the morphism Hk(X,U) ∼= Hk−2r(Z) → Hk(X) can be identified with jZ∗, where
jZ is the inclusion of Z in X. Now, using Leray-Hirsch Theorem ([BT82]), we have that
the cohomology H∗(E,Z) of the projective bundle E → Z is a free module over the ring
H∗(Z,Z) with basis 1, h, . . . , hr−1. We can give a more compact description as follows:
there is a isomorphism of graded modules (where the grading is naturally induced by
the degree in cohomology)

H∗(E,Z)→ H∗(Z,Z)[h]/(hr +
r∑
i=1

(−1)ici(NY/X)hr−i),

where we are treating the cohomology class h as a variable and ci(NY/X) ∈ H2i(E,Z) is
the i-th Chern class of the normal bundle.
We now conclude as follows: since τ has degree 1, then τ∗X : Hk(X) → Hk(X̃Z): is
injective. The description of the cohomology of E implies that

τ∗X,U : Hk(X,U)→ Hk(X̃Z , U)

is injective: more precisely, we can consider τ∗X,U as a morphism which we denote by

α : Hk−2r(Z)→ Hk−2(E) =
r−1⊕
i=0

hiτ∗Hk−2−2i(Z).

It is not difficult to see that the (r− 1)-th component αr−1 of α is equal to hr−1τ∗, and
thus τ∗X,U is indeed injective.
The commutativity of the diagram of long exact sequences of relative cohomology (1.4.9)
then implies that the natural map

(τ∗, j∗) : Hk(X)⊕Hk−2(E)→ Hk(X̃Z)

is surjective, and the injectivity of τ∗X,U in degree k−1 shows that the kernel of this map
is

Im(jZ∗,−α) : Hk−2r(Z)→ Hk(X)⊕Hk−2(E).

From the fact that αr−1 = −hr−1τ∗ it follws that (1.6) is an isomorphism.

Remark 1.4.10. Let Y be an n-dimensional Kähler manifold, E ⊂ Y a compact sub-
manifold of codimension k ≥ 2. Consider ỸE , the blow-up of Y along E, and let Ẽ be
exceptional divisor of ỸE .
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The blow-down map τ : ỸE → Y gives an injective map τ∗ : H∗(Y,Z)→ H∗(ỸE ,Z). We
want to analyze the behaviour of the map

[Ẽ] ∪ τ∗ : H∗(Y,Z)→ H∗+2(ỸE ,Z).

Let j eE : Ẽ ↪→ ỸE , jE : E ↪→ Y be the inclusion maps of the respective submanifolds and
τ| eE : Ẽ → E the restriction of the blow-down map to the exceptional divisor. The map

τ| eE gives Ẽ a structure of Pn−k−1-bundle over E.

We claim that the map [Ẽ] ∪ τ∗ can be written in the form

j eE∗ ◦ τ∗| eE ◦ j∗E . (1.8)

Indeed, let Ψ be a De-Rham rapresentative of the fundamental class of Ẽ in the coho-
mology of ỸE (e.g. we could take a De-Rham rapresentative of the Thom class of the
normal bundle of Ẽ in ỸE); we have the following relation:∫

eYE Ψ ∧ α =
∫

eE α| eE =
∫

eE j∗eE(α),

where α is a closed form of degree 2n− 2 on ỸE .
Hence we have

< [Ẽ] ∪ τ∗([β]), [σ] >=
∫

eYE Ψ ∧ τ∗(β) ∧ σ =
∫

eE j∗eE(τ∗(β)) ∧ j∗eE(σ) =

=< j∗eE(τ∗([β])), j∗eE([σ]) >| eE=< j eE∗(j∗eE(τ∗([β]))), [σ] >, (1.9)

where < ·, · > represents the Poincaré duality on ỸE , while < ·, · > eE represents the
Poincaré duality on Ẽ and [α] ∈ Hj(Y,Z), [σ] ∈ H2n−2−j(ỸE ,Z). From (1.9) we deduce
that

[Ẽ] ∪ τ∗ = j eE∗ ◦ j∗eE ◦ τ∗.
Now, since

j∗eE ◦ τ∗ = τ∗| eE ◦ j∗E ,
by the commuting diagram

Ẽ

τ| eE
��

j eE // ỸE

τ

��
E

jE // Y,

(1.8) is proved.
We are interested in finding out the kernel of (1.8). From the proof of (1.4.9), the
composition j eE∗ ◦ τ∗| eE is an injective map, hence

ker j eE∗ ◦ τ∗| eE ◦ j∗E = ker j∗E . (1.10)

This formula will often be used in the next chapters.
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1.5 The Kodaira problem

1.5 The Kodaira problem

1.5.1 Analytic spaces and deformations

We start with the definition of analytic set.

Definition 1.5.1. Let M be a complex analytic manifold. A subset A ⊂ M is said to
be an analytic subset of M if A is closed and if for every point x0 ∈ A there exist a
neighborhood U of x0 and holomorphic functions g1, . . . , gn ∈ O(U) such that A ∩ U =
{z ∈ U | gi(z) = 0, i = 1, . . . , n}. Then gi are said to be (local) equations of A in U .

In particular we will focus on analytic subsets of open sets Ω ⊂ Cn. We also define the
structure sheaf of an analytic set.
Given an analytic set A ⊂ Ω ⊂ Cn, we have that the local equations for A, in a
neighbourhood U such that U∩A 6= ∅, give an ideal IA∩Ux in the ring OU of holomorphic
functions in U . Hence, we take the radical of such an ideal

√
IA∩U ⊂ OU . We define the

structure sheaf of A in the open set A ∩ U as the quotient

OA∩U := OU/
√
IA∩U .

We can repeat this operation on an open cover {Uj} of A. It is not difficult to see that
the sheaves of rings {OA∩Ui} are indipendent by the choice of local equations for A in
the Ui’s and that if Ui ∩Uj 6= ∅ then the restrictions of OA∩Ui and OA∩Uj on Ui ∩Uj are
equal. Hence we can glue this sheaves and we obtain a well defined sheaf of rings on A.
Moreover, this sheaf is indipedent by the choiche of the open cover {Uj}.

Definition 1.5.2. The sheaf of rings just defined will be called the structural sheaf of
A, OA

It is clear that if x is a point of A and in a neighbourhood Ux of x, A is given by
holomorphic equations gi = 0, i = 1, . . . , n, then, the stalk of OA at x is nothing but the
localization at x of the ring OUx/

√
(gi) Now that we have the complete definition of an

analityc set, we want to define also a good class of morphism.

Definition 1.5.3. Let A ⊂ ΩA ⊂ Ca, B ⊂ ΩB ⊂ Cb be analytic sets. A morphism from
A to B is by definition a continuous map F : A→ B such that for every x ∈ A there is
a neighborhood U of x and a holomorphic map F̃ : U → Cb such that F̃|U∩A = f|U∩A.
Equivalently, such a morphism can be defined as a continuous map F : A→ B such that
for all x ∈ A and g ∈ OB,F (x), we have g ◦ F ∈ OA,x. The induced ring morphism

F ∗x : OB,F (x) → OA,x

is called the comorphism of F at point x.

The next step is to define complex analytic spaces. These will be defined, as it often
happens in geometry, as spaces that locally look like special sets, in this case analytic
sets in Cn.
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1.5 The Kodaira problem

Definition 1.5.4. A complex analytic space X is a locally compact separable (i.e. pos-
sessing a countable basis of the topology) Hausdorff space, together with a sheaf OX of
continuous functions on X, such that there exists an open covering {Ui} of X and for
each Ui a homeomorphism Fi : Ui → Ai onto an analytic set Ai ⊂ Cni such that the
comorphism F ∗i : OAi → OX|Ui , OAi 3 g 7→ g◦F , is an isomorphism of sheaves of rings.
OX is called the structure sheaf of X. A complex analytic space X is said to be proper if
X is compact.

An analytic subset A of a complex analytic space X will be a closed set such that on an
open cover {Ui}, with the same properties as in previous definition, A∩Ui is an analytic
subset. A complex space X is said to be irreducible if it is not a finite union of analytic
subsets Xi, Xi ( X.

Remark 1.5.5. Analytic spaces share many of the properties of analytic sets. In par-
ticular they have a decomposition in irreducible analytic subsets, i.e. for any complex
analytic space X, there exist a finite collection of analytic subsets {Xi} such that

X =
⋃
i

Xi

and such decomposition is unique up to a permutation of the Xi’s. We can also define the
dimension of an irreducible complex space X, analogously to the concept of dimension
in classical algebraic geometry. For a more complete treatment of analytic spaces see
[GH78] and [Dem].

Morphisms of compex analytic spaces are defined as morphism that locally on an open
cover are morphism of analytic sets.
We are particularly interested in some properties of morphism of analytic sets.

Definition 1.5.6. Let F : X → Y a morphism of analytic sets. F is said to be proper
if F is proper as a continuos map between X and Y , i.e. if the counterimage of compact
subsets of Y is compact.
A morphism G : X → Y of irreducible analytic sets is said to be smooth if G is flat,
i.e. ∀x ∈ X, OX,x is flat as OY,f(x)-algebra and the fibre of G are smooth connected
manifolds.

Thus, by definition, if F : X → Y is a smooth morphism of analytic spaces, then the
fibre of F over any point y ∈ Y, F−1(y) is a smooth complex manifold. If, moreover, F
is also proper, then F−1(y), will be a compact complex manifold, for any y ∈ Y .
Next we have the following theorem due to Ehresmann

Theorem 1.5.7. Let F : X → Y be a proper submersion (i.e. ∀x ∈ X the differential
dFx : TxX → Tf(x)Y is a surjective morphism of vector spaces) of C∞ manifolds. Then
F is a fibration, i.e. there is an open cover {Ui} of Y and diffeomorphism gi : F−1(Ui)→
Ui × F0, where F0 is the manifold F0 := f−1(0), 0 ∈ Y such that the diagram below
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commutes

F−1(Ui)
gi //

F|Ui ##GG
GGG

GG
GG Ui × F0

pr1
{{wwwwwwwww

Ui .

Here pr1 is the projection on the first factor of the cartesian product.

Hence if F : X → Y is a proper smooth morphism of complex spaces, fixing a point
0 ∈ Y we can consider the manifold X0 := F−1(0). We want to understand how the
complex and differentiable structures of X0 change, when the point t vaires in Y .
By considering a curve s : [0, 1]→ Y connecting a point t ∈ Y to 0, we can consider the
fibre product

Z := X ×Y [0, 1]

xxqqqqqqqqqqqq

''OOOOOOOOOOOO

X

F
''NNNNNNNNNNNNNN [0, 1]

s
wwoooooooooooooo

Y

and it is easy to show that Z can be given the structure of smooth manifold, inducing
the right differentiable structure on fibres of F . Thus, by means of Ehresmann’s theorem
we see that all the fibres on F are diffeomorphic. The same is not true in the category
of complex manifolds and that is an important point. In the following paragraphs and
chapters, we will use this point of view to discuss the Kodaira problem.

Definition 1.5.8. Given a compact Kähler manifold X, a deformation of X is the data
of (X , π,B, 0) where X ,B are analytic spaces, π is a proper smooth morphism between
π : X → B, 0 ∈ B and we have a fixed biholomorphims between X and X0 = π−1(0).

Here we consider any deformation parameterized by a connected analytic space B, that
is any smooth proper map of analytic spaces π : X → B, with π−1(0) = X for some
0 ∈ B, with B connected. Then any fiber Xt, t ∈ B, will be said to be a deformation of
X0. We shall also say that Xt is deformation equivalente to X0.

1.5.2 The Kodaira criterion

The Kodaira criterion (see [Kd54]) characterizes projective complex manifolds inside the
class of compact Kähler manifolds.

Theorem 1.5.9. A compact complex manifold X is projective if and only if X admits
a Kähler class which is rational, i.e. that belongs to

H2(X,Q) ⊂ H2(X,R).
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1.5 The Kodaira problem

The “only if” comes from the fact that if X is projective, one gets a Kähler form on X
by restricting the Fubini-Study Kähler form on some projective space PN in which X
is imbedded as a complex submanifold. But the Fubini-Study Kähler form has integral
cohomology class, as its class is the first Chern class of the holomorphic line bundle
OPN (1) on PN . Conversely, if the class β of a Kähler form Ω is rational, some multiple
α = mβ is integral, and as α is represented by a closed form of type (1, 1), its image
in H2(X,OX) vanishes. Thus, via the long exact sequence induced by the exponential
exact sequence:

H1(X,O∗X)
c1 // H2(X,Z) // H2(X,OX),

one concludes that α = c1(L) for some holomorphic line bundle L.
The conclusion then follows from the following two facts:

• L can be endowed with a Hermitian metric whose Chern form is equal to mΩ, a
non-trivial fact which involves the ∂∂̄-lemma, and uses the fact that X is Kähler.

• Kodaira’s vanishing theorem for line bundles endowed with metrics of positive
associated Chern forms, applied to the blow-up of X along points, which finally
allow to conclude that L is ample.

Definition 1.5.10. A polarization on a projective manifold X is the data of a rational
Kähler cohomology class.

As explained in the previous section, a polarization on X induces an operator L of cup-
product with the given Kähler class and a Lefschetz decomposition on each cohomology
group Hk(X,Q) and a polarization on each component LrHk−2r(X,Q)prim of the Lef-
schetz decomposition, which is essential for most statements concerning the period map.
The simplest application of Kodaira characterization of projective complex manifolds is
the following

Theorem 1.5.11. Let X be a compact projective Kähler manifold such that H2(X,OX) =
0 then X is projective.

This is a simple application of the fact that the set of Kähler classes in H2(X,R) ∩
H1,1(X) is a cone, which, if H2(X,OX) = 0, is open.

1.5.3 Kodaira’s theorem for surfaces

Kodaira’s embedding theorem (1.5.9) can also be used to show that certain compact
Kähler manifolds X become projective after a small deformation of their complex struc-
ture. The point is that Kähler classes belong to

H1,1(X)R := H1,1(X,R) ∩H2(X,R),

the set of degree 2 cohomology classes which can be represented by a real closed (1, 1)-
form. They even form an open cone, the Kähler cone, in this real vector subspace
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of H2(X,R). This subspace deforms differentiably with the complex structure, and
by Kodaira’s criterion we are reduced to see whether one can arrange that after a small
deformation of the complex structure on X, the deformed Kähler cone contains a rational
cohomology class.
Let us state the beautiful theorem of Kodaira which was at the origin of this circle of
problems.

Theorem 1.5.12 ([Kd63]). Let S be a compact Kähler surface. Then there is an arbi-
trarily small deformation of S which is projective.

By an arbitrarily small deformation, we mean here that there is a deformation of S,
(X,π,∆, 0), where ∆ is the open unit disk in C and 0 is the origin and there are points
tn → 0, n ∈ N in ∆ for which π−1(tn) is a projective manifold. Kodaira proved this
theorem using his classification of surfaces. Recently, Buchdahl (see [Bu06], [Bu08])
gave a proof of Kodaira Theorem which does not use the classification. His proof uses
techniques of analytical geometry and shows for example that a rigid compact Kähler
surface is projective.

1.5.4 Various aspects of the Kodaira problem

Kodaira’s theorem (1.5.12) leads immediately to ask a number of questions in higher
dimensions:

Question 1 (The Kodaira problem). Does any compact Kähler manifold admit an ar-
bitrarily small deformation which is projective?

In order to disprove this, it suffices to find rigid Kähler manifolds which are not pro-
jective. However, the paper [DEP05] shows that it is not so easy. The authors show
that a complex torus T , carrying three holomorphic line bundles L1, L2, L3 such that the
deformations of T preserving the Li are trivial, is projective. The relation with the pre-
vious problem is the fact that from (T, L1, L2, L3), one can construct a compact Kähler
manifolds whose deformations identify to the deformations of the 4-uple (T, L1, L2, L3).
Hence it is not so easy to find concrete examples of the rigidity phenomena above, that
would contradict the Kodaira problem.
Thus, one can try to answer a weaker question concerning global deformations.

Question 2 (The global Kodaira problem). Does any compact Kähler manifold X admit
a deformation which is projective?

Here we consider any deformation parameterized by a connected analytic space B, that
is any smooth proper map of analytic spaces π : X → B, with π−1(0) = X for some
0 ∈ B.
As explained in Section 1.5.1, for any t ∈ B, Xt will be diffeomorphic to X. In that case,
even the existence of rigid Kähler manifolds which are not projective would not suffice to
provide a negative answer, as there exist varieties which are locally rigid but not globally
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(consider for example the case of P1×P1which deforms to a different Hirzebruch surface).
In particular, X and Y should be homeomorphic, hence have the same homotopy type,
hence also the same cohomology ring. Thus Question 2 can be weakened as follows :

Question 3 (The topological Kodaira problem). Is any compact Kähler manifold X
diffeomorphic or homeomorphic to a projective complex manifold? Does any compact
Kähler manifold X have the homotopy type of a projective complex manifold?

A part of the results outlined in this thesis will provide a negative answer to all these
questions, answering negatively the last one.
Nevertheless, the examples built here have the property that they are bimeromorphically
equivalent to complex tori or Kummer manifolds, which have small projective deforma-
tions (see [V02, II, Ch. 5, page 153]). Thus, a natural generalization of Question 3 is
the following:

Question 4 (The birational Kodaira problem). Is any compact Kähler manifold X
bimeromorphic to a smooth compact complex manifold which deforms to a projective
complex manifold?

We shall also exhibit examples of manifold contradicting also this question. However,
the compact Kähler manifolds constructed there have negative Kodaira dimension, as
they are bimeromorphic to P1 × P1-bundles on a product of Kummer manifolds. Thus
the following remains open:

Conjecture (Campana). Is any compact Kähler manifold X of nonnegative Kodaira
dimension bimeromorphic to a smooth compact complex manifold which deforms to a
projective complex manifold?
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Chapter 2

The Kodaira problem

The the so-called Kodaira problem asks:

Question. Let X be a compact Kähler manifold. Is it always possible to find a defor-
mation of X which is a complex projective manifold?

It is a natural higher dimensional analogue of the 2-dimensional case which was solved
affermatively by Kodaira in 1960 as stated in the Introduction. We shall always refer to
the above question as the Kodaira problem.
Voisin showed in [V03] that it is possible to construct Kähler compact manifold X for
which the answer to the Kodaira problem is negative.
In this chapter we examine in full detail these manifolds: more precisely, we show that

Theorem. Given n ≥ 4, it is always possible to find n-dimensional compact Kähler
manifolds which have never the homotopy type of complex projective manifolds.

In Section 2.1, we illustrate the basic construction of such counterexamples. These are
particular blow-ups of tori along smooth submanifolds. We also prove the above theorem.
In Section 2.2, we show an important lemma due to Deligne, which allows us to modify
the examples given to obtain new examples, even simply connected ones.

2.1 Construction of a counterexample

Let Γ ∼= Z2n be a lattice and let φ : Γ → Γ be an endomorphism. Let ΓC := Γ ⊗ C
be the complex vector space obtained by extending scalar multiplication and let φC be
the C-linear extension of φ. Throughout the chapter, we will assume that φ satisfies the
following property:

(∗) The eigenvalues of φ all have multiplicity 1 and none of them is real.

Since the eigenvalues are all distinct, φC can be diagonalized. We shall choose among
the 2n eigenvalues of φ a subset of n of them, namely {λ1, . . . , λn}, such that λi 6=
λj , for i, j ∈ {1, . . . n}.
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The direct sum of the eigenspaces associated to the λi is a stable subspace for the action
of φC: it will be denoted by Γ′. As an immediate consequence, we have

ΓC = Γ′ ⊕ Γ′

and we can define a complex torus

T = ΓC/(Γ′ ⊕ Γ). (2.1)

As φC leaves both Γ and Γ′ invariant, it induces and endomorphism of T , which we will
denote φT .
First of all, we study the endomorphism φT∗ for the first homology group of T .
Recall, that we can identify canonically H1(T,Z) with Γ, through its projection on Γ′.
It is immediate that the action of φT∗ on H1(T,Z) is the same as that of φ on Γ.

Remark 2.1.1. Conversely, given an n-dimensional complex torus T and an endomor-
phism φT , whose induced morphism φT∗ : H1(T,Z) → H1(T,Z) is the same as the one
just described, we can identify T with one of the tori constructed above.
In fact, T ∼= Cn/Γ, where Γ is a lattice of dimension 2n; on Cn we have the antilinear
map j, induced by componentwise conjugation. Consider the torus T̃ = Cn/Γ⊕Cn/j(Γ):
given a basis for Γ, namely {α1, . . . , α2n}, {j(α1), . . . , j(α2n)} is a basis for j(Γ) and
{α1 + j(α1), . . . , α2n + j(α2n)} is a complex basis for Cn ⊕ Cn; indeed, if there were
ci ∈ C, i = 1, . . . , 2n such that

∑
i ci[αi + j(αi)] = 0 then∑

i

ciαi =
∑
i

cij(αi) =
∑
i

j(ciαi),

so that ∑
i

ciαi = 0 =
∑
i

j(ciαi)

and ∑
i

(ci + ci)αi = 0,

but since ci + ci ∈ R,∀i and the {αi} are linearly indipendent over R that would imply
that the real part of the ci’s is equal to 0, ∀i. Since the same is true also for ci − ci, the
immaginary part of the ci’s is zero, hence ci = 0, ∀i.
Projecting on Cn/Γ, we can identify the lattice generated by the vectors {α1+j(α1), . . . , α2n+
j(α2n)} with a basis of H1(T,Z). We obtain an endomorphism acting on the lattice ex-
actly as φ already described and we can reproduce the arguments above.

2.1.1 A first criterion of non-projectivity

The characteristic polynomial of φ is monic with integral coefficients and it is subject
to the condition (∗). Moreover we shall assume that its Galois group is the greatest
possilbe, namely S2n

1, where 2n is the degree of the polynomial. A direct consequence
1We shall denote by S2n the group of permutations of 2n objects.
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of property (∗) and this assumption is the fact that T is not an abelian variety, as we
will show below.

Remark 2.1.2. We want to show that it is always possible to find a polynomial satisfy-
ing these two assumptions (for any even degree).
Let us fix n ∈ N. Choose now three different prime numbers p1, p2, p3 ∈ N. Let
f1, f2, f3 ∈ Z[X] be polynomials of degree 2n such that

• f1 is irreducible modulo p1;

• f2 is the product of a linear factor and an irreducible polynomial of degree 2n− 1
modulo p2;

• f3 is the product of an irreducible quadratic polynomial and of 2n−2 linear factors
modulo p3.

Let g(X) ∈ Z[X] be given by the equality

g(X) = p2p3f1 + p1p3f2 + p1p2f3.

It can be easily proved that GalQ(g(X)) = S2n.
Now take a polynomial h(X) ∈ Q[X] with no real roots (e.g. (x2 + 1)n). Replacing
the coefficients of h by close rationals will not create any real roots. So replace the Xk

coefficient of h by a sufficient close rational ak/bk where ak and bk are congruent modulo
p1p2p3 to the Xk coefficient of g and to 1, respectively. Then the new polynomial has
rational coefficients, no real roots and Galois group S2n. Clearing denominators, we
obtain a intergal polynomial h̃(X) ∈ Z[X]. Let c2n be its leading coefficient. Then it is
not hard to show that

s(X) = c2n−1
2n h(

X

c2n
)

is an intergal monic polynomial satisfying condition (∗).

Lemma 2.1.3. If n ≥ 2 and the characteristic polynomial of φ is Galois, i.e. the Galois
group of its splitting fiels acts as the symmetric group on its roots, the torus T is not an
abelian variety.

Proof. Consider the subgroup of H2(T,Q) generated over Q by Chern classes of holo-
morphic line bundles on T, NSQ(T ). By a classical result in Hodge theory (see [V02, I,
Ch. 11, Prop. 11.27]), NSQ is contained in the subspace H1,1(T ) ⊂ H2(T,C) and it is
stable under the action of φ∗T on H2(T,Q): in fact, given a line bundle L on T and its
Chern class c1(L) ∈ H2(T,Q), the naturality of Chern classes gives

c1(φ∗T (L)) = φ∗T (c1(L)).

In the case of the torus, we have the following identifications (direct consequences of the
universal coefficient theorem):

Hm(T,C) = (Hm(T,C))∗ (2.2)
φ∗T = (φT∗)∗ = φt (2.3)
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2.1 Construction of a counterexample

so that the eigenvalues of φ∗T on H1,0(T ) ∼= (Γ′)∗ are the λi and the eigenvalues of φ∗T
on H0,1(T ) ∼= (Γ′)∗ are the λi.
We deduce that H2(T,C) ∼=

∧2 Γ∗⊗C completely decomposes into the direct sum of the
eigenspaces relative to the action of φ∗T , because this is true for its Hodge decomposition
(φ∗T being a morphism of Hodge structure)

H2(T,C) = H2,0(T )⊕H1,1(T )⊕H0,2(T ) ∼=

∼=
2∧

(Γ′)∗ ⊕ ((Γ′)∗ ⊗ (Γ′)∗) ⊕
2∧

(Γ′)∗.

and the eigenvalues of φ∗T acting on H1,1(T ) ∼= Γ′∗ ⊗ Γ′∗ are the λiλj ’s, forall i, j ∈
{1, . . . , n}.
As NSQ(T ) ⊗ C ⊂ H1,1(T ) is stable under φ∗T , we find couples (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} such that NSQ(T )⊗C is the direct sum of eigenspaces relative to eigenvalues
of the form λiλj .
For NSQ(T ) ⊗ C is defined over Q, the action of the Galois group of the splitting field
of the characteristic polynomial of φ leaves stable the eigenvalues relative to the couples
(i, j). By (∗), the Galois group acts transitively on the roots of f, {λ1, . . . , λn, λ1, . . . , λn}.
But dimC T ≥ 2 and we can find a permutation σ ∈ S2n = Gal(Q[λ1, . . . , λn, λ1, . . . , λn]/Q)
such that σ(λi, λj) = (λk, λl), k, l ∈ {1, . . . , n}. This is not possible, because eigenvalues
of the form λkλl are relative to eigenvectors in H0,2(T ), hence NSQ(T ) = ∅.
As a consequence, T cannot be an abelian varieties, otherwise NSQ(T ) ⊗ C would be
non-zero, containing the pullback of the Hodge class of the Fubini-Study metric of the
projective space in which it would be immersed.

Remark 2.1.4. Exactly the same reasoning shows us a deeper fact: there are no closed
analytic subvarieties in T .
In fact, a closed analytic subvariety, T1, of codimension r in T , would give rise to a non-
zero cohomology class [T1] ∈ Hr,r(T,C) ∩H2r(T,Q). Considering the rational subspace
generated by classes associated to codimension r analytic subsets (which is stable for the
action of φ∗T ), and again noting that the action of S2n does not fix any set of eigenvalues
of φ∗T , we see that such classes can not exist. Moreover, the same proof wuold work
if instead we took the dual of φ (since the dual of a diagonal operator is the operator
itself).
It is a consequence of this fact that T is also a simple torus.

Consider the complex manifold T × T . We are interested in considering the following
complex subtori:

• the diagonal Tdiag = {(x, y) ∈ T × T |x = y},

• the graph of φT , Tgraph = {(x, φT (x)), x ∈ T},

• T × {0} = {(x, 0), x ∈ T},

• {0} × T = {(0, x), x ∈ T}.
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2.1 Construction of a counterexample

Proposition 2.1.5. Given any two of the preceding submanifolds, they meet transver-
sally at finitely many points.

Proof. Clearly, (T × {0}) ∩ ({0} × T ) = ({0} × T ) ∩ (Tgraph) = (T × {0}) ∩ (Tdiag) =
({0} × T ) ∩ (Tdiag) = {0}.
There are two more cases to analyze:

• T × {0} ∩ Tgraph = kerφ
Since the lifting of φ to Cn is invertible, we conclude that φ is an isogeny. More-
over, by the group law and the fact that the translation by a fixed point is a
biholomorphism (since it is induced by the translation on the universal covering
of the torus) we can reduce ourselves to the case of the intersection of the subtori
at the point 0. Then, looking at the situation in Cn ⊕ Cn where n is the com-
plex dimension of the torus T (here we are simply considering again the lifting
Cn ⊕ Cn → T × T ), T × {0} is lifted to the complex n-subspace Cn × {0} and
Tgraph is lifted to the n-subspace Graph = {(x, φ(x)), x ∈ Cn}. In order to prove
the assertion, we have to verify that these two subspaces meet transversally at the
origin, which is equivalent to verify that their sum (as complex vector subspaces)
is Cn ⊕Cn. This is exactly our case: given a basis of Cn × {0}, {e1, . . . , en}, then
{(ei, φ(ei)), i = 1, . . . , n} is a basis for Graph, hence Cn × {0} + Graph includes
the subspace {0} × Im(φ) = {0} × Cn and the claim is proved.

• Tdiag ∩ Tgraph = ker(φ− IdT )
Exactly as above, we have that the cardinality of Tdiag ∩ Tgraph is finite (since
also φ− IdT is an isogeny on T , being an invertible operator on the lifting of the
torus, since φ has complex non-real eigenvalues) and we can reduce ourselves to
the case of the intersection of the subtori in 0. In Cn ⊕ Cn, Tdiag is lifted to the
n-dimensional subspace Diag given by the diagonal immersion

Cn → Cn ⊕ Cn, t 7→ (t, t)

Thus at the origin we must see that Diag and Graph meet transversally. Indeed, we
show that Diag + Graph = Cn⊕Cn. Now, {(ei, ei), i = 1, . . . n} is a complex basis
for Diag, hence Diag + Graph includes the subspace {0}× Im(φ− Id) = {0}×Cn

and consequently the subspace Cn × {0}. From this we deduce that also {0} ×Cn

is in Diag + Graph and this ends the proof.

For each of these subtori, we consider the inclusion maps

jT×{0} : T × {0} ↪→ T × T,
j{0}×T : {0} × T ↪→ T × T,
jTdiag

: Tdiag ↪→ T × T,
jTgraph

: Tgraph ↪→ T × T.
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2.1 Construction of a counterexample

Clearly, each of these maps gives homomorphism in cohomology

j∗T×{0} : H∗(T × T,Z)→ H∗(T × {0},Z),
j∗{0}×T : H∗(T × T,Z)→ H∗({0} × T,Z), (2.4)

j∗Tdiag
: H∗(T × T,Z)→ H∗(Tdiag,Z),

j∗Tgraph
: H∗(T × T,Z)→ H∗(Tgraph,Z).

Particularly, we will focus on the first cohomology groups.
Recall that we have the Künneth decomposition

H1(T × T,Z) ∼= H1(T,Z)⊕H1(T,Z) (2.5)

where the isomorphism is given by the pull-back maps of the projections

T × T
π2

##FF
FF

FF
FF

F
π1

||xx
xx

xx
xx

x

T T

Hence by (2.5) there are maps

H1(T × T,Z)
pr2

''OOOOOOOOOOO
pr1

wwooooooooooo

H1(T,Z) H1(T,Z)

We want to study the kernel of maps in (2.4), in terms of the cohomology maps pr1, pr2.
The result is the following

Lemma 2.1.6.

Ker
{
j∗T×{0} : H∗(T × T,Z)→ H∗(T × {0},Z)

}
= Ker pr1,

Ker
{
j∗{0}×T : H∗(T × T,Z)→ H∗({0} × T,Z)

}
= Ker pr2,

Ker
{
j∗Tdiag

: H∗(T × T,Z)→ H∗(Tdiag,Z)
}

= Ker pr1 + pr2,

Ker
{
j∗Tgraph

: H∗(T × T,Z)→ H∗(Tgraph,Z)
}

= Kerpr1 + φ∗T ◦ pr2.

Proof. All the above assertions are consenquences of the universal property of product,
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2.1 Construction of a counterexample

that induces the following commutative diagrams:

T × {0}
Id

##GGGGGGGGG
0

{{wwwwwwwww

jT×{0}

��

{0} × T
Id

##GGGGGGGGG
0

{{wwwwwwwww

j{0}×T

��

T T T T

T × T
π1

ddHHHHHHHHH π2

::vvvvvvvvv
T × T

π1

ddHHHHHHHHH π2

::vvvvvvvvv

Tdiag

Id

##GGGGGGGGG
Id

{{wwwwwwwww

jTdiag

��

Tgraph

φ

##GGGGGGGGG
Id

{{wwwwwwwww

jTgraph

��

T T T T

T × T
π1

ddHHHHHHHHH π2

::vvvvvvvvv
T × T

π1

ddHHHHHHHHH π2

::vvvvvvvvv

2.1.2 The fundamental Theorem

Blowing up the points at which the four submanifolds meet, we obtain a new Kähler
complex manifold (see Theorem (1.4.8)), T̃ × T , in which the proper tranforms of the
four subtori are disjoint. Blowing up their union, we finally get a compact manifold, X,
once again Kähler.
The following fundamental theorem on X will be the main result of this chapter.

Theorem 2.1.7. Assume n ≥ 2 and that the characteristic polynomial of φ is Galois.
Let X ′ be a compact Kähler manifold and assume that there is a ring isomorphism

γ : H∗(X ′,Z)
∼= //H∗(X,Z)

Then X ′ is not projective.

The idea of the proof is to derive, from γ and the structure of the cohomology of X, the
impossibility to realize over H1(X ′,C) a polarization induced by a rational 2-cohology
class. By Kodaira Theorem (1.5.9), the existence of such a class is equivalent to the
projectivity of the manifold and consequently, it forces any cohomology group to be
endoved with a rational polarization.
To show that, we will study the Albanese torus of both X and X ′. We shall use γ, to
relate the cohomological structures of the manifolds and the cohomological constraints
imposed by the construction of X, via blow-up of subtori.
The key fact is given by the categorical equivalence between Hodge structure of weight
1 and complex tori. Roughly speaking, there is a 1-1 corrispondence between Hodge
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2.1 Construction of a counterexample

structure of weight 1 and complex tori; moreover this is true even for (integrally) po-
larized Hodge structures of weight 1 and abelian varieties (see [V02, I, Ch. 7, § 7.2.2]).
Such an equivalence has already been highlightened in Remark (2.1.1).
All this is classically realized via the Picard torus associated to weight 1 Hodge structure
M , defined over Z, MC = M1,0 ⊕M0,1,

Pic0(M) = MC/(M1,0 ⊕M).

In the case of a Kähler manifold T

Pic0(T ) := Pic0(H1(T,Z)) = H1(T,C)/(H1,0(T )⊕H1(T,Z)).

Recall also the definition of the Albanese torus of a Kähler complex variety T as

Alb T = H0(X,ΩT )∗/H1(T,Z).

In addition, we will need the following classical

Proposition 2.1.8. Let T be a projective manifold, then Pic0(T ) is an abelian variety.

Proof. [V02, I, Ch. 7, Prop. 7.16]

Proof of Theorem (2.1.7). We immediately note that X and X ′ are both 2n-dimensional.
This is a consequence of the isomorphism γ and of the assumption that X ′ is a com-
pact complex manifold (hence orientable), which implies that, if dimCX

′ = k, then
H2k(X ′,Z) ∼= Z and for all h > 2k, Hh(X ′) = 0.
Consider now the Albanese tori of X and X ′:

Alb X, Alb X ′.

Since H1(X,Z) ∼= H1(X ′,Z), they have the same complex dimension

dimC Alb X = dimC Alb X ′ = rank H1(X,Z)/2,

and there are associated Albanese maps

albX : X → Alb X, albX′ : X ′ → Alb X ′,

defined by integrating holomorphic forms along paths:

X 3 x 7→
∫ x

x0

∈ H0(X,ΩX)∗,

x0 being a choosen base point in X and the same for X ′.
Now, albX and albX′ give pull-back maps in cohomology:

alb∗X : H∗(Alb X,Z)→ H∗(X,Z), alb∗X′ : H∗(Alb X ′,Z)→ H∗(X ′,Z)
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2.1 Construction of a counterexample

which induce isomorphisms

alb∗X : H1(Alb X,Z)→ H1(X,Z), alb1X′ : H∗(Alb X ′,Z)→ H1(X ′,Z)

because, by the definition of Alb X, H1(Alb X,Z) ∼= H1(X,Z)∗ = H1(X,Z).
Since H∗(Alb X,Z) ∼=

∧∗H1(Alb X,Z) and pull-back maps are compatible with cup-
product, we identify

alb∗X : H∗(Alb X,Z)→ H∗(X,Z) (2.6)

with the natural map induced by cup-product
∗∧
H1(X,Z)→ H∗(X,Z),

and similarly for X ′.
From that, we deduce that both albX and albX′ are birational maps. This follows from
the commutative diagram

H4n(Alb X,Z)

γ

��

alb∗X // H4n(X,Z)

γ

��
H4n(Alb X ′,Z)

alb∗
X′ // H4n(X ′,Z)

(2.7)

and the fact that the map albX is simply (up to translation) the blow-down map
X

π //T . By the universal property of the Albanese torus of X (see [V02, I, Ch.
12, Thm. 12.15]), there is a map φ : Alb X → T such that the diagram

X
albX//

π

��

Alb X

φ{{wwwwwwwww

T

commutes. The blow-down map π is generically 1-1 and onto, while φ is a morphism of
complex tori (hence the composition of a homomorphism of Lie groups and a transla-
tion for the group law), so that we deduce that φ is an isomorphism. This means that
the map alb∗X in (2.7) is an isomorphism and the same is true for γ ◦ alb∗X . Now, γ :
H4n(Alb X,Z) → H4n(Alb X,Z) is an isomorphism, forcing alb∗X′ : H4n(Alb X ′,Z) →
H4n(X ′,Z) to be an isomorphism (for the commutativity of (2.7)), hence albX′ is bira-
tional.
As albX′ is birational, it induces an isomorphism

alb∗X′ : H0(Alb X ′,Ω2
Alb X′) ∼= H0(X ′,Ω2

X′) (2.8)

since birational maps between complex manifolds give isomorphisms on the global holo-
morphic sections of exterior powers of cotangent bundle.
From (2.8), we deduce that

alb∗X′ : H2(Alb X ′,Z)→ H2(X ′,Z)
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is an isomorphism on H2,0 and Ker albX′∗ has no (2, 0)-part, i.e. it is composed only of
(1, 1)-type classes.
We claim that Ker albX′∗ is the image under γ−1 of the subgroup ker albX∗. Indeed,
Poincaré duality is given by cup-product, under the identification given by the choice of
an orientation

H4n(·,Z) ∼= Z

for all the considered manifolds. As γ is compatible with the cup-product, it is compat-
ible up to sign with Poincaré duality. Moreover, γ identifies the images of the pull-back
maps (2.6) for X and X ′, exactly as in (2.7). Since ker albX′∗ in degree 2 is the orthog-
onal complement with respect to Poincaré duality of the image of the pull-back maps in
degree 4n− 2, and similarly for X, the assertion follows.
Because of the previous claim, we have that ker albX′∗ is given by a set of integral Hodge
classes of degree 2, γ−1(α), α ∈ ker albX∗. As X is obtained from T × T by a sequence
of blow-ups, the generators of this free subgroup are the classes of exceptional divisors

∆xi , ∆yj , ∆T×{0}, ∆{0}×T , ∆diag, ∆graph,

over the corresponding center of blow-up xi, yj , T × {0}, {0} × T, Tdiag, Tgraph.
Let us denote δ· := γ−1([∆·]).
To each of these classes we can associate the cup-product action on the cohomology of X ′;
since these are Hodge classes, their action is via morphism of Hodge structure of bidegree
(1, 1), hence the kernel is a sub-Hodge structure of the cohomology ring. In particular,
we will consider the action on H1(X ′,Z). As γ is compatible with cup-product, these
subgroups are the images under γ−1 of the subgroups

Ker
{
∪ [∆·] : H1(X,Z)→ H3(X,Z)

}
. (2.9)

We are interested in finding out these kernels.
First of all, notice that the blow-up over the points xi, yj may not be considered since it
does not affect H1, or even H3. Hence, we can reduce to the case where X is obtained
by blowing-up in T × T the subtorus whose proper transform has cohomology class [∆·]
in (2.9). From the proof of Theorem (1.4.8) and Remark (1.4.10), we know that the
kernel of

∪[∆·] : H1(X,Z)→ H3(X,Z)

is equal to the kernel of the pull-back map i∗· induced by the inclusion of the center of
the exceptional divisor in T × T .
In Lemma (2.1.6), we described explicitly these subspaces. These are:

1. ker pr1 = {(0, α) | α ∈ H1(T,Z)};

2. ker pr2 = {(α, 0) | α ∈ H1(T,Z)};

3. ker pr1 + pr2 = {(α,−α) | α ∈ H1(T,Z)};

4. ker pr1 + φ∗T ◦ pr2 = {(−φ∗T (α), α) | α ∈ H1(T,Z)}.
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Going back to X ′, we see, by what we have just established, that H1(X ′,Z) contains
four integral sub-Hodge structures Li, i = 1, . . . , 4 which are images via γ−1 of the
soubgroups

Ker pr1, Ker pr2, Ker pr1 + pr2, Kerpr1 + φ∗T ◦ pr2. (2.10)

Now, let us consider the Picard variety of X ′ (which is the dual torus of the Albanese
variety): Pic0(X ′). Given an integral sub-Hodge structure of H1(X ′,Z), this immedi-
ately gives a subtorus of Pic0(X ′): namely, if L ⊂ H1(X ′,Z) is a primitive sublattice2

such that
LC = L1,0 ⊕ L0,1

where LC = L⊗ C and Li,1−i = LC ∩H i,1−i, i = 0, 1. Then, we define

TL = LC/(L1,0 ⊕ L),

which is clearly a complex subtorus of Pic0(X ′).
We get four subtori TLi , i = 1, . . . , 4 of Pic0(X ′), corresponding to the image via γ−1 of
the sub-Hodge structures in (2.10). The TLi ’s satisfy the following conditions, induced
by the mutual position of the structures (2.10) in H1(X,Z):

1. TL1 ⊕ TL2 = Pic0(X ′);

2. TL3 is isomorphic to TL1 and TL2 ; hence Pic0(X ′) ∼= T ′ ⊕ T ′, for a given T ′

isomorphic to TLi , i = 1, 2;

3. TL4 is isomorphic to T ′. Hence it is the transpose of the graph of an endomorphism
of φ′T ′ of T ′, i.e. a subset of the form {(−φ′T ′(α), α), α ∈ T ′}.

We observe that the action of φ′T ′ on the homology of H1(T ′,Z) is determined by the
positions of the four sublattices Li. By (2.10), via γ we can identify φ′T ′∗ to φ∗T , i.e. to
the dual of our initial endomorphism φ.
Finally, we proved that the Picard torus of X ′ is a product T ′×T ′, where T ′ is a complex
torus admitting an endomorphism which acts on H1(T ′,Z) as φ∗. Hence we can apply
Lemma (2.1.3) and Remark (2.1.4) and deduce that T ′ cannot be projective. But if X ′

were projective, the same would be true for its Picard torus as stated in Proposition
(2.1.8). So X ′ is not projective.

Remark 2.1.9. The hypothesis that the isomorphism γ was defined on the integral coho-
mology was necessary to prove that the sub-Hodge structure Ker albX′∗ was composed
exclusively by cohomology classes of type (1, 1).
If we had supposed thet the isomorphism γ was defined on the rational (resp. com-
plex) cohomolgy algebra, we could not have proved that the map albX′ was bira-
tional (i.e. of degree 1), which implied the existence of the isomorphism H0(X ′,Ω2) ∼=
H0(Alb X ′,Ω2

Alb X′).
2Given a lattice M and a sublattice L ⊂ M , L is a primitive sublattice of M if M/L is a free Z-

module.
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The manifold X, given above, may have any even dimensione n, for n ≥ 4. To complete
the proof of the theorem stated in the introduction we have to deal with odd values of
n. But this follows from what we have just seen.

Proposition 2.1.10. Let X be as above, and let F be an elliptic curve. Let X ′ be a
compact Kähler manifold and assume that there is a ring isomorphism

γ : H∗(X ′,Z)
∼= //H∗(X × F,Z) .

Then X ′ is not projective.

Proof. Reproducing the arguments in the previous proof, we see immediately that the
Albanese map

albX′ : X ′ → Alb(X ′)

is birational and that the kernel of the map

albX′∗ : H2(X ′,Z)→ H2(AlbX ′,Z)

is made of Hodge classes and is equal to

γ−1(Ker(albX×F∗ : H2(X × F,Z)→ H2(Alb(X × F ),Z))).

The group Ker(albX×F∗ : H2(X × F,Z) → H2(Alb(X × F ),Z)) is generated by the
classes of the exceptional divisors of the blowing down map

τ : X × F → T × T × F.

This time, the centers of the exceptional divisors are either of the form point×F or are
proper transform of subtori isomoprhic to T × F . For any exceptional divisor ∆ of the
form point× F , its cohomology class [∆] ∈ H2(X,×F,Z) induces a morphism of Hodge
structure

∪[∆] : H1(X × F,Z)→ H3(X × F,Z)

whose kernel, see equation (1.10), is

H1(T × T,Z) ⊂ H1(T × T × F,Z)

which we can also identify with

Ker
{
i∗ : H1(T × T × F,Z)→ H1(point× F,Z)

}
,

where i∗ is the pull back of the inclusion map i : point× F → T × T × F .
Let L ⊂ H1(X ′,Z), L := γ−1(Ker(i∗ : H1(T × T × F,Z) → H1(point × F,Z))), then
L = Ker(∪δ), where δ = γ−1([∆]), since γ is compatible with cup-product. Being δ a
Hodge class, L is a sub-Hodge structure of H1(X ′,Z) to it which corresponds a complex
subtorus TL of Pic0(X ′). It is clear that this construction is independent from the
point considered, i.e. from the class [∆] of exceptional divisor over a center of the form
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point× F chosen.
Now we consider the four exceptional divisor ∆i over the proper transforms of

0× T × F, T × 0× F, Tdiag × F, Tgraph × F.

There are 4 corresponding sub-Hodge structures Li ⊂ H1(X ′,Z) which are the kernels
of the maps

∪δi : H1(X ′,Z)→ H3(X ′,Z), δi = γ−1(∆i).

Each of these sub-Hodge structures, Li, provides a subtorus TLi ⊂ TL. As above, the
following relations hold:

1. TL1 ⊕ TL2 = TL;

2. TL3 is isomorphic to TL1 and TL2 ; hence Pic0(X ′) ∼= T ′ ⊕ T ′, for a given T ′

isomorphic to TLi , i = 1, 2;

3. TL4 is isomorphic to T ′. Hence it is the transpose of the graph of an endomorphism
of φ′T ′ of T ′.

Since the action of the endomorphism φ′T ′ on its homology groups H1 is determined by
the positions of the four sublattices Li, we see that it has to be identified to the dual of
φ.
Finally, TL is a product T ′ × T ′, where T ′ admits an endomorphism which acts on its
homology as the dual of φ. Hence the subtorus TL of Pic0(X ′) cannot be projective, so
Pic0(X ′) is not projective (otherwise any subtorus would be an abelian variety) and X ′

is not projective.
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2.2 How to change the field of definition of γ

In Theorem (2.1.7), as noticed in Remark 2.1.9, the hypothesis that γ was defined on
the integer was necessary to prove the theorem, through the analysis of the Albanese
varieties of X and X ′. What we want to do now is trying to understand if we can change
the coefficients, in order to establish different techniques.
By developing a very useful tool (Deligne’s Lemma (2.2.2)), we will succed in our at-
tempt, providing examples both in the case of rational and complex coefficients.
We first start with the case of rational coefficients.

Theorem 2.2.1. Let X be as in Theorem (2.1.7). If X ′ is a Kähler manifold such that
there exists a graded isomorphism of rational cohomology rings

γ : H∗(X ′,Q)
∼= //H∗(X,Q)

then X ′ is not a complex projective manifold.

2.2.1 Deligne’s Lemma and appplications

Let A∗ = ⊕jAj be the rational cohomology ring of a Kähler compact manifold and let
A∗C := A∗ ⊗ C be its complexification. Let Z ⊂ AkC, here k ∈ N is fixed, be an algebraic
subset which is defined by homogenous equations expressed only using the ring structure
of A∗ (i.e. addition and cup-product).
The examples we shall consider here and in the next chapter have form:

1. Z = {α ∈ AkC|αl = 0 ∈ AklC }, where l is a given integer.

2. Z = {α ∈ AkC| ∪ α : AlC → Ak+l
C is not injective}, where l is a given integer.

We want to find conditions assuring us that the vector subspace generated by sets of
this form are sub-Hodge structures of the relative cohomology group.

Lemma 2.2.2 (Deligne). Let Z be as above, and let Z1 be an irreducible component of
Z.
Assume the C-vector space < Z1 > generated by Z1 is defined over Q, i.e. < Z1 >=
Bk

Q ⊗ C, for some Bk
Q ⊂ AkQ. Then Bk

Q is a rational sub-Hodge structure of AkQ.

Proof. We will show that Bk
C =< Z1 > is stable under the Hodge decomposition of AkC,

i.e. that Bk
C ∩ (AkC)p,k−p = Bk

C ∩ (AkC)k−p,p, ∀p ∈ {0, . . . , k}.
Recall, that we can think the Hodge decomposition as the continous action of C∗ on A∗C
given by

z · α = zpz̄qα, α ∈ Ap,q.

So it suffices to show that < Z1 > is stable under this C∗-action.
Notice that the action is compatible with the cup-product:

∀α, β ∈ A∗, z · (α ∪ β) = z · α ∪ z · β,
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2.2 How to change the field of definition of γ

hence Z, being defined only in terms of the ring structure given by the addition and the
cup-product, is stable.
Now, since Z1 is an irreducible component of Z, it must be stable for this action, too.
Indeed, the C∗-action is C∞ for the standard euclidean structure on AkC (considered
as a vector space) and C∗ is a connected group (for both the Zariski topology and the
euclidean one). In addition, we have that, restricting to the smooth locus of Z, this is
the disjoint union of the smooth loci of its irreducible components. In particular, the
smooth locus of Z1 (which is dense in Z1) is a connected component of this set, and can
be considered as a complex manifold (hence also as a real C∞ manifold); since C∗ is
connected and the action is C∞, it must be stable and the same is true (by a density
argument) for Z1.

Proof of Theorem (2.2.1). We will follow the proof of theorem (2.1.7).
Let P be the subspace of H2(X ′,Q) defined as the orthogonal complement with respect
to Poincaré duality of

∧4n−2H1(X ′,Q) ⊂ H4n−2(X ′,Q). In the preceding proof we used
the integral coefficients to show that P was generated by Hodge classes. Let now P0 ⊂ P
be defined as

P0 = {α ∈ P | ∪ α : H1(X ′,Q)→ H3(X ′,Q) is zero}.

By Lemma (2.2.2), this is a sub-Hodge structure of P . Via γ−1, we can identify it with
the subspace generated by the classes of exceptional divisors over points.
For P0 is a sub-Hodge structure, we can consider the quotient P/P0 which naturally
comes with a Hodge structure induced by that of P . Let α ∈ P/P0 and consider the
induced cup-product

∪α : H1(X ′,Q)→ H3(X ′,Q).

By extending scalar multiplication, we now introduce the algebraic subset of P/P0 ⊗C:

Z = {α ∈ (P/P0)⊗ C | ∪ α : H1(X ′,Q)→ H3(X ′,Q) is not injective}.

The description made of the subgroups listed in (2.10) shows that Z is the image via γ−1

of the union of four 1-dimensional C-vector spaces, actually defined over Q, generated by
the classes of the four exceptional divisors over the blown-up complex subtori of T × T .
Applying Delgine’s Lemma (2.2.2), we conclude that the four classes δ· in the proof of
Theorem (2.1.7), projected in P/P0 are Hodge classes.
Thus, considering the kernel of the maps

∪δ· : H1(X ′,Q)→ H3(X ′,Q)

we find four sub-Hodge structures of H1(X ′,Q) whose relative positions are the same as
those indicated in the proof of Theorem (2.1.7), thus we conclude analogously.
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2.2 How to change the field of definition of γ

We now want to give another example, using complex coefficients. For this purpose, we
will slightly modify the construction of X.
Start with the previous X. The four exceptional divisors ∆· dominating the four complex
subtori T × {0}, {0} × T, Tdiag, Tgraph are of the form T̃ × Pn−1, where T̃ is obtained
by blowing-up finitely many points on T 3. Indeed, the normal bundle N of each of
these subtori is the trivial bundle, since its dual, the conormal bundle, is trivial, being
generated by the restriction of those global holomorphic 1-form whose pull-back vanishes.
Moreover, the restriction of the normal bundle to the exceptional part of T̃· is trivial.
Let us blow-up one subvariety of the form T̃{0}×T×{α1} ⊂ ∆{0}×T , then two subvarieties
of the form T̃diag×{β1}, T̃diag×{β2} ⊂ ∆diag and three subvarieties of the form T̃graph×
{γ1}, T̃graph × {γ2}, T̃graph × {γ3} ⊂ ∆graph.
We have now a new smooth compact Kähler manifold, X1, which allows us to weaken
the hypothesis on the field of definition for γ.

Theorem 2.2.3. If X ′1 is a Kähler manifold such that there exists a graded isomorphism
of complex cohomology algebras

γ : H∗(X ′1,C)
∼= //H∗(X1,C) ,

then X ′1 is not a complex projective manifold.

Proof. We use the same notations as before.
Consider the cup-product multiplication map

∪α : H1(X ′1,Q)→ H3(X ′1,Q)

for α ∈ P/P0 (P0 is again a sub-Hodge structure, by Deligne’s lemma, since it is a
subspace of P defined over Q).
We introduce the algebraic subset Z ⊂ P/P0⊗C of those α for which ∪α is not injective.
This algebraic subset is defined over Q (since, if we think of ∪α as linear operator, it is
defined by the vanishing of the determinant) and using γ we see that it consists of the
union of four complex subspaces (which intersect mutually transversally) of respective
dimensions 1, 2, 3, 4. This can be viewed as follows: by the construction of X1 we have
that γ−1(P/P0) is the subspace of H2(X1,C) given by the class of exceptional divisors
whose center is not over points, i.e. by the classes

∆T×{0}, ∆{0}×T , ∆diag, ∆graph, ∆ eT{0}×T×{α1},

∆ eTdiag×{β1}, ∆ eTdiag×{β2}, ∆ eTgraph×{γ1}, ∆ eTgraph×{γ2}, ∆ eTgraph×{γ3}.

Using formula (1.10), it can be shown that the algebraic subset of classes inducing
morphisms of Hodge strucutres whose kernels are non trivial is given by the following
linear subspaces

< [∆T×{0}] >, < [∆{0}×T ], [∆ eT{0}×T×{α1}] >, < [∆diag], [∆ eTdiag×{βi}], i = 1, 2 >,

< [∆graph], [∆ eTgraph×{γj}], j = 1, 2, 3 > .

3Clearly, the number of points blown-up depends on which torus we are considering.
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2.2 How to change the field of definition of γ

Since Z is defined over Q and is the union of vector subspaces of different dimensions,
it follows that each of the subspaces is defined itself over the rationals. This is a conse-
quence of the following principle, which is not difficult to prove:

Let Cn be the n-dimensional affine space over the complex numbers. Then a subspace
V ⊂ Cn is stable for the action of Gal(C/Q) if and only if it is defined over Q, that is,
there is a base of V of vectors whose coordinates are rationals (which is equivalent to the
fact that V is of the form BQ ⊗ C for a suitable subspace BC ⊂ Qn).

In view of these facts, we can apply Deligne’s Lemma, establishing that these sub-
spaces are sub-Hodge structures of P/P0. For each of this subspaces V , there is only one
common kernel for the map ∪α, α ∈ V , which is a sub-Hodge strucutre of H1(X ′1,Q).
Again, these are exactly four sub-Hodge structure of H1(X ′1,Q) whose mutual positions
are the same as in previous proofs, via γ. In summary, H1(X ′1,Q) splits into the sum of
two copies of a rational Hodge structure admitting an automorphism which is conjugate
to φt. Hence we can conclude as in the proof of Theorem (2.1.7).

2.2.2 Simply connected examples

The aim of this section is to provide a simply connected esampe of compact Kähler
manifold not having the omotopy type of a projective complex manifold.
Notice that the preceding examples made a systematic use of the Albanese variety of the
complex torus T , hence we could not consider the case of simply connected manifolds.
Start again with a torus T as in section (2.1), endowed with an endomorphism φT . We
will make a further assumption, namely that dimC T ≥ 3. We introduce the so-called
generalized Kummer variety

K := ˜T/± Id,

i.e. the desingularization of the quotient of T by the −IdT involution; this is obtained
in the following way: obviously, the locus where the action is free (i.e. T \ {2-torsion
points}) becomes a smooth manifold; thus, we have only to study what happens in a
neighbourhood of the 2-torsion points. By the group law of the torus, we can just study
the case of the point 0. In a neighbourhood Ũ of the image of 0 in T/± Id we can give
analytic coordinates by taking germs of holomorphic functions defined at 0 on T and
invariant for the involution: given linear coordinates z1, . . . , zn in U ⊂ T , this is simply
the subalgebra generated by the functions

z2
1 , z

2
2 , . . . , z

2
n, z1z2, z1z3, . . . , z1zn, z2z3, . . . , z2zn, . . . , zizi+1, . . . , zizn, . . . zn−1zn.

Hence we can take Ũ to be a neighbourhood of the origin in the cone given by the image
of the morphism

j2 : Cn → CN , N =
(
n+3
n+1

)
,

(z1, . . . , zn) 7→ (z2
1 , . . . , z

2
n, z1z2, . . . , z1zn, . . . , zizi+1, . . . , zizn, . . . , zn−1zn).
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Blowing up this cone at 0, we obtain the tautological bundle over the so-called 2-uple
embedding of Pn−1 in PN−1, which is clearly smooth. Hence we have desingularized
T/± Id.
The cohomology of T/± Id is given, by a well known theorem, by those classes (in Betti
cohomology) invariant for the automorphism acting on T . By the description of the
cohomology of the torus given in Remark (1.1.5), we see immediately that

H i(T/± Id,C) = 0, for i odd
H i(T/± Id,C) = H i(T,C), for i even.

The desingularization map φ : K → T ± Id, from a topological point of view, is the
contraction of the exceptional divisors over 2-torsion points. Thus, we have long exact
sequence in (reduced) cohomology,

. . . // ⊕jH̃ i−1(Pn−1,C) // H̃ i(T/± Id,C) // H̃ i(K,C)

��
. . . H̃ i+1(T/± Id,C)oo ⊕jH̃ i(Pn−1,C)oo

(2.11)

Since for odd j, H̃j(T/±Id,C) = H̃j(Pn−1,C) = 0, we have the following full description
of the coholomology of K

H0(K,C) = C
H2i+1(K,C) = 0, n ∈ N
H2i(K,C) = H2i(T,C)⊕ (⊕jH2i(Pn−1,C)), n ∈ N.

Remark 2.2.4. All we have just stated is independent by the choice of the coefficients
in the cohomology groups.

Furthermore, it can be shown that K is also Kähler and simply connected (see [Vln, §
3.1.2]).
The existence of φ on T provides a meromorphic map φK : K 99K K but it is not
sufficient to guarantee that it is holomorphic: just consider the case of the image of a
point t ∈ T , not of order 2 for the group law, such that φ(t) is a 2- torsion point; in
that case, φK would have an indeterminacy point on K, corrisponding to the image of t
under the quotient map. Since φ is given by a homomorphism of groups, blowing up the
image of t in K, we see that φK becomes a holomorphic map. We conclude that φK has
a well defined graph in K × K isomorphic to the blow-up of K at those points whose
images are 2-torsion points.
Now, let us blow-up in K ×K the diagonal and then the proper transform of the graph
of φK . This will be our variety X2. We shall denote by τ : X2 → K ×K the blowing-
down map. By theorem (1.4.8) we can describe the cohomology of X2 in terms of the
cohomology groups of K×K, of the diagonal (which is simply a copy of K) and those of
the proper trasform of the graph φK under the first blow-up. Since we will particularly
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focus on the 2-dimensional and 4-dimensional cohomology we will describe this two case
explicitly:

H2(X2,Q) ∼= H2(T/± Id,Q)⊕H2(T/± Id,Q)⊕i [∆xi ×K] ·Q
⊕i [K ×∆xi ] ·Q⊕ [∆diag] ·Q⊕ [∆graph] ·Q

where [∆xi ×K] (resp. [K ×∆xi]) are the class of exceptional divisors over 2−torsion
points in each copy of K and [∆diag] (resp. [∆graph]) is the class of the exceptional divisor
over the diagonal (resp. over the proper transform of the graph of φK);

H4(X2,Q) ∼= H4(K ×K,Q)⊕ (H2(K,Q)⊕ [∆diag]|K̃diag
∪Q)⊕

⊕ (H2(Kgraph,Q)⊕ [∆diag]|K̃diag
·Q)

The simply connectedness of X2 is a consequence of the simple connectedness of K and
the fact that we are blowing up K along simply connected smooth submanifolds4.
With partially different tecniques from those used in the previous paragraphs, we will
be able to prove the following theorem, very similar to those already proved:

Theorem 2.2.5. If X ′2 is such that there exists a graded isomorphism of rational coho-
moloty rings

γ : H∗(X ′2,Q)
∼= //H∗(X2,Q)

then X ′2 is not a complex projective manifold.

Proof. The proof will be divided into several lemmas.

Lemma 2.2.6. Consider the subspaces

A2
i := γ−1(τ∗ ◦ pr∗i (

∧
H1(T,Q))), i = 1, 2

of H2(X ′2,Q). Then A2
i are rational sub-Hodge structures of H2(X ′2,Q).

Proof. Let Z ′ ⊂ H2(X ′2,C) be the algebraic subset defined as

Z ′ := {α ∈ H2(X ′2,C) | α2 = 0}.

Via γ, we can identify Z ′ with the algebraic subset Z ⊂ H2(X2,C) defined analogously.
We observe that in H2(X2,C)

Z = Z1 ∪ Z2 (2.12)

where

Zi := {τ∗ ◦ pr∗i | α ∈
2∧
H1(T,C), α2 = 0 ∈

4∧
H4(T,C)}, i = 1, 2.

4It follows from Van Kampen’s theorem
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This is a consequence of the fact that X2 has been deduced from (T/± Id)× (T/± Id)
by a sequence of blow-ups with centers of codimension ≥ 3, hence the square of classes
of exceptional divisors never vanishes in H4(X2,C).
We derive that < Zi >= τ∗ ◦ pr∗i (∧2H1(T,C)), since the latter space is generated by
those classes whose square vanishes in H4(T,C).
Applying Deligne’s Lemma (2.2.2) to Z ′i := γ−1(Zi) we end the proof - since γ is defined
over Q.

Let now A∗ be the subalgebra of H∗(X ′2,Q) generated by A2
1⊕A2

2 and let P ⊂ H2(X ′2,Q)
be the orthogonal complement with respect to Poincaré duality of A4n−2. We claim that

P = γ−1(E),

where E is the subspace of H2(X2,Q) generated by the classes of exceptional divisors
over (T/± Id)× (T/± Id). Once again, this is a consequence of formula (1.10) and the
fact that the centers of exceptional divisors have codimension > 2, which implies that
the restriction of A4n−2 to the centers is zero.
As in the previous section, consider the algebraic subset

S′ := {α ∈ P | ∪ α : A2 → H4(X ′2,C) is not injective}.

S′ is the image under γ−1 of the corresponding S ⊂ E. S is the union of four vector
spaces defined over Q, namely

< [∆diag] >, < [∆graph] >, < [∆xi×K], i = 1, . . . , 22n >, < [K×∆xi ], i = 1, . . . , 22n > .

By Deligne’s lemma, we conclude that the classes

δdiag := γ−1([∆diag]), δgraph := γ−1([∆graph])

are Hodge classes in H2(X ′2,Q). Hence the kernels of the cup-product maps

∪δ· : A2 → H4(X ′2,Q)

are rational sub-Hodge structures of A2
1 ⊕A2

2.
Using γ to examine their relative positions, we determine that A2

1 and A2
2 are isomo-

prhic as rational̊a Hodge structures and that such a rational Hodge structure carries an
automorphism which acts as φ∗T on A2

i , i = 1, 2.
We can restate the content of Lemma (2.1.3) in the following form:

Assume the Q-vector space
∧2H1(T,Q) is endowed with a Hodge structure which is

preserved by ∧2φt. Then either this Hodge structure is trivial (i.e. it contains only
Hodge classes) or it has no non-zero Hodge class.

It is readily seen that, if we want X ′2 to be projective, only the second case can oc-
cur.
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Lemma 2.2.7. If the Hodge structures on A2
i is trivial, then X ′2 cannot be projective.

Proof. Recall that A2
i = γ−1(τ∗ ◦ pr∗i (

∧
H1(T,Q))). We claim that there is a subspace

V ⊂ A2
i , dimC V ≥ 2 such that for any α ∈ V, α2 = 0 ∈ H4(X ′2,Q): just consider those

classes in A2
i that are of the form θ = γ−1(τ∗ ◦ pr∗i (α ∧ β)), β ∈ H1(T,Q) for a fixed

α ∈ H1(T,Q). It is clear now that the square of such classes will vanish.
If the Hodge structure of A2

i were trivial and X ′2 projective, by the Hodge index theorem
we would reach a contradiction: in fact, given a (1, 1) ample class c ∈ H2(X ′2,Q) (this
is a consequence of the assumption of projectivity for X ′2) the quadratic form qc(β) :=
c2n−2β2, β ∈ H2(X ′2,Q), when restricted to the space of (1, 1) rational classes, will have
only one positive sign. But for any α ∈ V, qc(α) = 0 and dimV ≥ 2, as noted above,
which is impossible, since in this kind of situation the maximal dimension of a subspace
isotropic for qc is one.

The last lemma implies that the sub-Hodge A2 does not contain any Hodge class if X ′2
is projective (i.e. if there is a rational polarization on the second rational cohomology
group - given by an ample class). Then any degree 2 Hodge class has to be contained in
P .

Lemma 2.2.8. For any class c ∈ P , the intersection form qc(α) = c2n−2α2 on H2(X ′2,Q)
vanishes on A2.

Proof. Since P is the image, via γ, of the subspace generated by classes of exceptional
divisors in X2 and γ preserves the cup-product, it suffices to show the analogous result
for X2.This is a consequence of the following fact: the map

H2(T/± Id,Q)⊗2 → H4(T/± Id,Q)
α⊗ β 7→ αβ

contains in its image a basis of H4(T/ ± Id). Hence, via γ, qc induces a morphism of
Hodge structure

H4(T/± Id,Q) → H4n(T/± Id,Q) ∼= Q,
θ 7→ γ(c)2n−2θ.

Such a morphism would give rise to a Hodge class in H4n−4(T/± Id,Q), but this is not
possible as we have already noticed that such class can not exist.

The proof of Theorem (2.2.5) can now be concluded by contradiction. If X ′2 were pro-
jective, by Lemma (2.2.7) any degree 2 Hodge class on X ′2 should be contained in P ,
and P should contain at least an ample class c. But then, again by the Hodge index
theorem, the form qc would not vanish on A2, contradicting the last Lemma: in fact,
A2 ⊗ C decomposes into a direct sum

A2 ⊗ C = H2,0(X ′2)⊕H0,2(X ′2)⊕G⊗ C,
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where G is a trivial (i.e. containing only (1, 1) classes) sub-Hodge structure of both A2

and H2. By the Hodge index Theorem, every polarization given by an ample class c is
positive definite on H2,0 and H0,2 (these two being part of the primitive cohomology)
and negative definite on G. This implies that qc could not vanish on A2 contradicting
Lemma (2.2.8).
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Chapter 3

The birational Kodaira problem

There is a natural birational version of the original Kodaira problem which asks:

Question. Let X be a compact Kähler manifold. Does there exist a bimeromorphic
model X ′ of X (i.e. a compact complex manifold X ′ and a bimeromorphic map ψ :
X ′ 99K X) which deforms to a complex projective manifold?

We shall always refer to that question with the expression birational Kodaira problem.
Counterexamples to the classical Kodaira problem given in the previous chapter natu-
rally fullfill the hypotheses of the birational Kodaira problem. In fact they are bimero-
morphic to products either of tori or of generalized Kummer manifolds and these are
well known to deform to projective manifolds.
Voisin showed in [V05] that it is possible to construct Kähler compact manifolds X for
which the answer to the above question is negative.
In this chapter we examine in full details these manifolds: more precisely, we show that

Theorem. In any even dimension, greater than 10, there are Kähler compact manifolds
providing counterexamples to the birational Kodaira problem, i.e. such that any of their
bimeromorphic model has not the homotopy type of a projective complex manifold.

In Section 3.1, we illustrate the basic construction of such counterexamples, starting
from the manifolds considered in Chapter 2.
In Section 3.2, we analyze the geometric structures of these manifolds and we show some
results on the Hodge strucutres of certain cohomology algebras.
Finally, Section 3.3 is devoted to the proof of the main theorem of the chapter. This
theorem shows the impossibility for the manifolds constructed to provide bimeromorphic
models having projective deformations, due to a Hodge-theoretic argument very similar
to that illustrated in Section 2.2.2 of Chapter 2.

3.1 Construction of a counterexample

We start as in Chapter 1, considering an n-dimensional complex torus T admitting an
endomorphism

φT : T → T
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that satisfies property (∗).
We make a further assumption, namely

dimCT ≥ 4.

Consider now the dual torus of T , T̂ . Using the same notations as in Chapter 2, T̂ is
defined in the following way:

T̂ := Γ∗C/Γ
∗ ⊕ Γ

′⊥,

where ∗ indicates the dual space and Γ
′⊥ indicates the space ortogonal to Γ′ in Γ∗C

1.
From a geometrical point of view, by the exponential sequence

0 // Z // O
exp(2πi·)// O∗ // 0

and the associated long exact sequence in cohomology

. . . // H1(T,Z) // H1(T,O) // H1(T,O∗) c1 // H2(T,Z) // . . . ,

we see that T̂ is the torus

Pic0 := H1(T,C)/(H1,0(T )⊕H1(T,Z)),

i.e. the group of line bundles whose first Chern class vanishes (these are exactly the
topologically trivial line bundles).
On the product T × T̂ there is a natural line bundle P. P is called the Poincaré line
bundle and it is characterized by the following properties:

• for any t ∈ T̂ parameterizing a line bundle Lt on T we have

P|T×{t} ∼= Lt;

• P|{0}×T̂ ∼= OT̂ .

The fundemental result on P is the following:

Theorem 3.1.1. There exists a unique Poincaré line bundle P on T × T̂ defined up to
isomorphism.

Proof. See [BL92, II, Ch. 2, Thm. 2.5.1].

Let us also note that the Chern class of P, c1(P) ∈ H2(T × T̂ ,Q) is nothing but IdT ∈
H1(T,Q)⊗H1(T̂ ,Q) ∼= EndQ(H1(T,Q)).
Recall that, on T , we have the endomorphism φT , so we shall also consider the line
bundle

Pφ := (φ, Id)∗P.
1Given a vector space V and a subspace M ⊂ V , let V ∗ be the dual of V . The space orthogonal to

M in V ∗, indicated by M⊥, is the set M⊥ := {v ∈ V ∗ | v(m) = 0, ∀m ∈M}
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Thus, on T × T̂ there are the following rank 2 vector bundles

E = P ⊕ P−1, Eφ = Pφ ⊕ P−1
φ

and their associated projective bundles P(E), P(Eφ).
We note that the commuting involutions (−Id, Id), (Id,−Id) of T × T̂ lift to commuting
involutions i, î (resp. iφ, îφ) on E (resp. Eφ). In fact, there are isomorphisms

(−Id, Id)∗P ∼= P−1 , (Id,−Id)∗P ∼= P−1

(−Id, Id)∗Pφ ∼= P−1
φ , (Id,−Id)∗Pφ ∼= P−1

φ

which can be made canonical by a choiche of trivialization

P|(0,0)
∼= C,

(0, 0) being a fixed point of both (Id,−Id) and (−Id, Id).
The compact Kähler manifold we shall consider is the following:
let us start with the fibered product

P(E)×T×T̂ P(Eφ),

which is clearly a Kähler compact manifold. P(E)×T×T̂ P(Eφ) admits commuting invo-
lutions

(i, iφ), (̂i, îφ)

lifting (−Id, Id), (Id,−Id) respectively. The quotient Q of P(E) ×T×T̂ P(Eφ) by the
group Z/2Z×Z/2Z, generated by the liftings of the involutions, is singular along the non-
free locus of the action. Anyway, this quotient admits a Kähler compact desingularization
(see [V05, § 1]), i.e. a compact Kähler manifold K of dimension 2n + 2 and a map
µ : K → P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) > which is 1-1 over the smooth locus of the
quotient.
Clearly, in general, there are different possible choiches of a desingularization. For our
purpose, we will suppose that we have fixed a Kähler desingularization of the quotient
P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) > (in the rest of the chapter it will not be important
which one we have fixed). We shall denote such a Kähler desingularization with X.
Note that, if K is the Kummer variety of T , as described in Chapter 2, and similarly K̂
is the Kummer variety of T̂ , then over K0 × K̂0, X is a P1 × P1-bundle. Here K0 is the
Zarisky open set T0/± Id of K, where

T0 := T \ {2− torsion points}

and similarly for K̂0.
We want to deal with a weaker version of the Kodaira problem. More precisely, we want
to show that for any compact complex manifold X ′ bimeromorphic to X (and to any
desingularization of the quotient of P(E) ×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >), X ′ can not
deform to a complex projective manifold.
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The idea is roughly the same as that explained in the previous chapter: through a
detailed analysis of the rational cohomology algebra ofX ′ and of its analytic structure, we
will show that any cohomology algebra isomorphic to H∗(X ′,Q) is not the cohomology
algebra of a projective manifold. The exact statement is the following:

Theorem 3.1.2. Let X ′ be any compact complex manifold bimeromorphically equivalent
to X, and let Y be a Kähler compact manifold. Assume that there is an isomorphism of
graded algebras:

γ : H∗(Y,Q)
∼= //H∗(X ′,Q).

Then Y is not projective.

The proof of the theorem will be given in the last section of the chapter.
Note that in Theorem (3.1.2) we do not assume that X ′ is a Kähler manifold. Indeed, this
is not necessary since, in order to complete the analysis of the cohomology algebra of X ′,
we only need to know that we have a Hodge decomposition onH∗(X ′,C) ∼= H∗(X ′,Q)⊗C
which is functorial for pull-back maps in cohomology.
In order to do this we have to introduce the following

Definition 3.1.3. Let S be a compact complex manifold. We say that Hk(S,C) admits
a Hodge decomposition in the strong sense if

1. for all p and q with p + q = k the Hodge (p, q)-subspace Hp,q(X) already defined
can be identified with the subspace of Hk(X;C) consisting of classes representable
by closed forms of type (p, q). The resulting map Hp,q(S)→ Hp,q

∂ (S) ∼= Hq(Ωp, S)
is required to be an isomorphism.

2. there is a direct decomposition

Hk(S,C) =
⊕
p+q=k

Hp,q(S).

3. the natural morphism from Bott-Chern cohomology to De Rham cohomology

Hp,q
BC(X) =

d− closed forms of type (p, q)
∂∂̄H0(Ep−1,q−1, s)

→ Hp+q
DR (S,C)

which sends the class of a d-closed (p, q)-form to its De Rham class is injective
with image Hp,q(S).

The existence of such a decomposition is guaranteed by the following

Theorem 3.1.4. Let S1, S2 compact complex manifolds. Suppose S1 is Kähler and that
there is a map f : S1 → S2 holomorphic and surjective map. Then H∗(S2,Q) admits
a Hodge decomposition in the strong sense: in fact, f∗ : H∗(S2,Q) → H∗(S1,Q) is
injective and f∗(H∗(S2,Q)) is a rational sub-Hodge structure of H∗(S1,Q).

Proof. [PS08, Ch. 2, Thm. 2.29]
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This is not exactly our case since we are dealing with a meromorphic map from a compact
Kähler manifold, X, to a compact complex manifold, X ′. But, by Hironaka’s Theorem,
we can resolve the indeterminacy locus of the meromorphic map on a Kähler manifold
by a sequence of blow-ups on smooth compact submanifolds; since Kähler property is
stable for blow-up of compact submanifolds, we can reduce ourselves to the case in which
X ′ is dominated by a Kähler compact manifold Y (i.e. there is a surjective holomorphic
morphism τ : Y → X ′ which is generically 1-1 outside an analytic closed subset of Y )
and apply Theorem (3.1.4).
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3.2 The structure of the rational cohomology algebra of X ′

Recall that in the previous section we choosed the compact Kähler manifold X to be a
desingularization of the quotient P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >. Let us note, that
we have a natural map

P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >→ T × T̂ / < (−Id, Id), (Id,−Id) >,

simply as the involutions (i, iφ), (̂i, îφ) are liftings of the involutions (−Id, Id), (Id,−Id)
respectively. Moreover, T × T̂ / < (−Id, Id), (Id,−Id) >= (T/± Id)× (T̂ /± Id), thus,
composing, we have a map

q : X → (T/± Id)× (T̂ /± Id).

Recall also that we have a bimeromorphic holomorphic map

π : K × K̂ → (T/± Id)× (T̂ /± Id)

hence we have a meromorphic map

q̄ : X 99K K × K̂.

By Hironaka’s Theorem, up to a bimeromorphic morphism, we can take X to be Kähler
and such that q̄ is actually holomorphic. This will be our assumption. Hence we will
suppose that X is a Kähler desingularization of P(E) ×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >
and that the map q̄ : X → K × K̂ is holomorphic.
Here is a first consequence of such an assumption.

Lemma 3.2.1. Let ψ : X ′ 99K X be any meromorphic map. Then q ◦ψ is holomorphic.

Proof. The complex manifold T × T̂ does not contain any closed complex curve: suppose
by contradiction that there were a curve C in T × T̂ . Then, by projecting on T and T̂ ,
there would be a curve C ′ on either T or T̂ . Such a curve would give a Hodge class [C ′]
in the degree 2 rational cohomology of either T or T̂ , but this is not possible, since we
have already seen that Hodge classes do not exist in degree 2 cohomology on both T and
T̂ .
It follows that the quotient (T/ ± Id) × (T̂ / ± Id) can not contain any rational curve
(otherwise its counterimage would be a curve). Hence by a well known criterion for
meromorphic maps with value in a smooth manifold, q ◦ ψ has to be holomorphic (see
[KM98, Ch.1, Cor. 1.4]).

Since q ◦ ψ is holomorphic, it follows that H∗(X ′,Q) contains a subalgebra

A∗ := (q ◦ ψ)∗H∗((T/± Id)× (T̂ /± Id),Q)
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3.2 The structure of the rational cohomology algebra of X ′

isomorphic to H∗((T/± Id)× (T̂ /± Id),Q).
This is possible in view of the following commutative diagram

X ′′

$$HHHHHHHHH

vvmmmmmmmmmmmmmmmm

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

X ′

q◦ψ
��

X

q̄

��qtthhhhhhhhhhhhhhhhhhhhhh

(T/± Id)× (T̂ /± Id) K × K̂π
oo

(3.1)

where X ′′ is Kähler, bimeromorphic to X ′ and the map X ′′ → X ′ is a holomorphic
morphism, as already explained at the end of Section 3.1.
By the Künneth formula, there is an isomorphism

H∗((T/± Id)× (T̂ /± Id),Q) ∼= H∗(T/± Id,Q)⊗H∗(T̂ /± Id,Q).

Recall that H∗(T/± Id,Q) = Heven(T,Q) and the same is true for T̂ .
We shall denote by A∗1 (resp. A∗2), the subalgebra (q ◦ψ)∗H∗((T/± Id)×{0})(resp.(q ◦
ψ)∗H∗({0} × (T̂ /± Id))).
Now, we claim that the degree 2 cohomology of X ′ is generated over Q by the degree 2
cohomology of A∗ and by degree 2 Hodge classes.
First of all, we note that this is true for X. By construction, X is a Kähler manifold
bimeromorphic to P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >. We can summarize this fact by
saying that X is a smooth model of P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >. Now we note
the following

Proposition 3.2.2. Let V be a complex manifold of dimension n and let G be a finite
group of analytic automorphisms of V . Let Ṽ a smooth model of V/G, then we have

dimCH
0(Ṽ ,Ωk) = dimCH

0(V,Ωk)G, k = 1, . . . , n,

where H0(V,Ωk)G is the vector space of holomorphic k-forms invariant under the action
of G.

Proof. [U75, Ch. 4, Prop. 9.24]

Holomorphic 2-forms on P(E)×T×T̂ P(Eφ) are given by pulling-back holomorphic 2-forms
on T × T̂ under the map

P(E)×T×T̂ P(Eφ)→ T × T̂

induced by the fibre product. As a consequence of that and of the fact that the involu-
tions (i, iφ), (̂i, îφ) are liftings on P(E)×T×T̂ P(Eφ) of the involutions (−Id, Id), (Id,−Id)
on T × T̂ , we see that

dimCH
0(P(E)×T×T̂ P(Eφ),Ω2)<(i,iφ),(̂i,̂iφ)> = dimC(T × T̂ ,Ω2)<(−Id,Id),(Id,−Id)>.
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Following the cohomological description of the generalized Kummer variety given in
Section 2.2.2 of Chapter 2, it follows that

dimC(T × T̂ ,Ω2)<(−Id,Id),(Id,−Id)> = dimCH
0(K × K̂,Ω2).

Since q̄ induces an injective homomorphism

q̄∗ : H0(K × K̂,Ω2)→ H0(X,Ω2),

we conlcude that q̄∗ is actually an isomorphism.
As this property is invariant under bimeromorphic transformations, if it is true for X,
thus it is true also for X ′.

3.2.1 Some Lemmas on the Hodge structures of the A∗iQ’s

This technical subsection is used to establish some results on the cohomological structure
of the subalgebras A∗iQ ⊂ H∗(X ′,Q), i = 1, 2. All these facts will be recalled constantly
in the following paragraphs: anyway, they have their own interest as they show how
complicated a rational Hodge structure can be. Moreover, they also underline the im-
portance of studying the position of the rational cohomology in terms of the Hodge
decomposition.
In this particular case, difficulties arise from the existence on the A∗iQ’s of endomor-
phisms of Hodge structure having no stable subspace (namely ∧∗φ and ∧∗φt). Such
endomorphisms not only prevent the A∗iQ’s from having rational Hodge classes, but also
cause many other interesting phenomena.
First of all, let us introduce the following definition, that allows us to understand how
large a given Hodge structure is.

Definition 3.2.3. Given a rational vector space H, provided with a Hodge structure of
weight k, HC = H ⊗ C =

⊕
p+q=kH

p,q, the level of H is

max
Hp,q 6=0

(p− q).

Remark 3.2.4. Clearly, by virtue of the Hodge symmetry Hp,q = Hq,p, the level of a
Hodge structure is always non-negative.
Given a Hodge structure of weight 4, H, e.g. H4(X ′,Q), such that

HC =
⊕

p+q=4,
p≥0,q≥0

Hp,q

it is a consequence of the preceding definition that H is of level 4 if and only if H4,0 6= 0,
otherwise the level of H will be ≤ 2.
Let us underline the fact that the level of a sum of Hodge structures is the supremum
of the levels; hence, fixed a Hodge structure K of level k and a number m ∈ N, we can
talk of the maximal sub-Hodge structure of K of level m.
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In the case of A4
iQ, i = 1, 2 the endomorphisms ∧2φt and ∧2φ cause Hodge structures to

be rather chaotic, in the following sense:

Lemma 3.2.5. A4
1Q and A4

2Q do not contain non trivial sub-Hodge structure of level 2

Proof. Since dimC T ≥ 4, then A4
iQ, i = 1, 2 are of Hodge level 4: consider a complex

basis {e1, . . . , e4, . . . , e4+j}, j ≥ 0 for the universal covering of T , then the 4-form de1 ∧
de2 ∧ de3 ∧ de4 will give a closed 4-form on T , whose cohomology class will be non-zero
and of (4, 0)-type.
By the assumption made on T (namely, the existence of φT ), we know that φ∗T acts in
an irreducible way on ∧4H1(T,Q) = A4

1Q: in fact, let S ⊂ A4
1Q be a stable subspace for

∧4φ∗T , then S⊗C is also stable, hence it is generated by a certain set of eigenvectors for
φ∗T . Reasoning as in Lemma (2.1.3) of Chapter 2, we see that S = 0 or S = A4

1Q.
Let us indicate with N2A

4
1Q the maximal sub-Hodge strucutre of level 2 of A4

1Q. As φ∗T
acts via a morphism of Hodge structure, N2A

4
1Q will be stable for that action. By the

irreducibility of φ, we have only two possibilities:

• N2A
4
1Q = A4

1Q;

• N2A
4
1Q = 0.

As A4
1Q is of Hodge level 4, we see that N2A

4
1Q = 0. The same proof will work for

A4
2Q.

Given two rational Hodge structures L,M both of even weight, consider the tensor
product L⊗M with the induced Hodge structure (as explained in Section 1.2 of Chapter
1). Suppose that M has a rational Hodge class, m, and L has a rational Hodge class, l.
Then we have natural morphisms of Hodge strucutres

Id⊗m : L→ L⊗M , t 7→ t⊗m,
l ⊗ Id : M → L⊗M , s 7→ l ⊗ s.

We know that both A2
1Q and A2

2Q have no rational Hodge classes. Hence it is a natural
question to ask whether there might be anyway morphisms of Hodge structure

A2
iQ → A2

1Q ⊗A2
2Q, i = 1, 2.

Lemma 3.2.6. There are no non-zero morphism of Hodge structure (of bidigree (1, 1))
from A2

1Q or A2
1Q to A2

1Q ⊗A2
Q.

Proof. By the isomorphisms A∗1Q
∼= H∗(T/ ± Id,Q) ∼= Heven(T,Q) (and similarly for

A∗2Q with T̂ instead of T ), and the fact that T̂ is the dual torus of T , we can identify

A2
1Q = H2(T,Q) =

2∧
H1(T,Q) ∼=

2∧
Γ∗Q, (3.2)

A2
2Q = H2(T̂ ,Q) =

2∧
H1(T̂ ,Q) ∼=

2∧
ΓQ. (3.3)
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3.2 The structure of the rational cohomology algebra of X ′

On T, T̂ we have automorphisms φT , φT̂ , and the induced cohomology automorphisms
φ∗T , φ

∗
T̂

on H2(T,Q), H2(T̂ ,Q) acting on these vector spaces like ∧2φt,∧2φ respectively.
Consider now the eigenvalues of φ on ΓC, {λ1, . . . , λ2n} and let {e1, . . . , e2n} be a corre-
sponding basis of eigenvectors. Let {e∗i } be the dual basis of {ei} in Γ∗C. Unless changing
the ordering, {e1, . . . , en} is a complex basis for Γ′: in other words, ei ∈ H1(T̂ ,C), i ≤ n
has Hodge type (1, 0), while e∗j ∈ H1(T,C), j > n has Hodge type (1, 0).
We want to study morphisms of Hodge structure from A2

iQ, i = 1, 2 to A2
1Q ⊗ A2

2Q. We
have an isomorphism of vector spaces

HomC(A2
iQ, A

2
1Q ⊗A2

2Q) ∼= A2∗
iQ ⊗A2

1Q ⊗A2
2Q,

but in view of (3.2)

A2∗
1Q ⊗A2

1Q ⊗A2
2Q (3.4)

∼=
2∧

ΓQ ⊗
2∧

Γ∗Q ⊗
2∧

ΓQ,

which is naturally equipped by a weight 6 Hodge structure, that is the tensor product
structure of the weight 2 structures on ΓQ and Γ∗Q. The case of A2∗

1Q ⊗ A2
1Q ⊗ A2

2Q may
be treated as well.
The following statement reduces our problem to the pursue of Hodge classes in A2∗

1Q ⊗
A2

1Q ⊗A2
2Q.

Lemma 3.2.7. Let α be a class in

A2∗
1Q ⊗A2

1Q ⊗A2
2Q

representing a morphism
α̃ : A2

1Q → A2
1Q ⊗A2

2Q.

Then α is a Hodge class if and only if α̃ is a morphism of Hodge structure.

Proof. [V02, I, Ch. 11, Lemma 11.41]

Hence, consider the space

S := Hdg(
2∧

ΓQ ⊗
2∧

Γ∗Q ⊗
2∧

ΓQ),

which is stable under the action of the three commuting morphisms of Hodge structure

∧2φ⊗ Id⊗ Id, Id⊗ ∧2φt ⊗ Id, Id⊗ Id⊗ ∧2φ.

By the descritpion of the action of ∧2φ and ∧2φt, we conclude that SC = S ⊗ C is
generated by eigenvectors of these actions, i.e. element of the form

ei ∧ ej ⊗ e∗k ∧ e∗l ⊗ er ∧ es. (3.5)
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Now, for a, b, c ∈ Z, consider the endomorphism

Φabc := (∧2φ)a ⊗ (∧2φt)b ⊗ (∧2φ)c.

In the basis given by elements of the form (3.5), Φ is diagonal, with corresponding
eigenvalues

(λiλj)a(λkλl)b(λrλs)c.

Exactly as in Lemma (2.1.3) the Galois group of the field K = Q[λ1, . . . , λ2n] over Q
acts on the λi and shall leave stable the set Eabc of eigenvalues of Φabc on S, since S is
defined over Q. Remember that Gal(K/Q) is the simmetric group on 2n elements S2n,
so that if

(λiλj)a(λkλl)b(λrλs)c ∈ Eabc
then also

(λσ(i)λσ(j))
a(λσ(k)λσ(j))

b(λσ(r)λσ(s))
c ∈ Eabc, for σ ∈ S2n.

If the map

({i, j}, {k, l}, {r, s}) 7→ (λiλj)a(λkλl)b(λrλs)c (3.6)

is injective, then we can deduce that if

ei ∧ ej ⊗ e∗k ∧ e∗l ⊗ er ∧ es ∈ SC

so does

eσ(i) ∧ eσ(j) ⊗ e∗σ(k) ∧ e
∗
σ(l) ⊗ eσ(r) ∧ eσ(s), ∀σ ∈ S2n. (3.7)

It is not difficult to prove that for an adequate choice of a, b, c ∈ Z, (3.6) is injective.
Hence, since SC is contained in the (3, 3)-part of

A2∗
1C ⊗A2

1C ⊗A2
2C,

then (3.7) has to be of Hodge type (3, 3), for any σ ∈ S2n.
As n ≥ 4, it is immediate that we can always find σ ∈ S2n so that an element of the
form (3.7) has Hodge type (4, 2).
Thus, an element as in (3.5) does not exist in SC, which implies that S = {0}.

Remark 3.2.8. The proof shows also that there are not rational Hodge classes in A2
1Q⊗

A2
1Q
∼= HomQ(A2

1Q, A
2
2Q). Hence, there are not morphisms of Hodge structure between

these two spaces and they can not be isomorphic.

Another consequence of the transitivity of φ∗T is the simplicity of the Hodge structure of
the A2

iQ’s.

Proposition 3.2.9. The Hodge structures on A2
1Q and A2

2Q are simple, i.e. do not
contain any non-trivial sub-Hodge structure.
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Proof. By contradiction, suppose that there is a proper non-zero simple sub-Hodge struc-
ture

K ⊂ H2(T,Q).

Since φ∗T is transitive on H2(T,Q), we have that

∃l > 1 s.t. H2(T,Q) ∼= K l.

But then H2(T,Q) admits a projector which is an endomorphism of Hodge structure.
This contradicts the fact, shown in the proof of Lemma (3.2.11), that the algebra of
endomorphisms of Hodge structure of H2(T,Q) is generated by φ∗T and thus does not
contain projectors by property (∗).

From the proof of Proposition (3.2.9) we can readily deduce the following

Corollary 3.2.10. Given a morphism of Hodge structure τ : A2
1Q → H, where H is a

rational Hodge structure, then either τ is injective or τ is the zero morphism.
Moreover, if τ is injective and there is sub-Hodge structure H ′ ⊂ H such that H ′ ∩
τ(A2

1Q) 6= {0} then τ(A2
1Q) ⊂ H ′.

The same conclusions are true with A2
1Q replaced by A2

2Q.

We know that there are morphisms of Hodge structure in HomQ(A2
iQ, A

2
iQ), e.g. Id and

the one induced by φ. We want to know how wide this space is. With the next lemma,
we will be able to provide a complete description of the structure of such space.

Lemma 3.2.11. Up to a coefficient, there are only finitely many elements

β ∈ Hdg(A2
1Q ⊗A2

2Q)⊗ C

of rank 1, i.e. of the form α1α2, αi ∈ A2
iQ ⊗ C.

Proof. Following the same notations as in Lemma (3.2.6), we identify Hodge structure
on A2

1Q ⊗A2
2Q to the one on

2∧
Γ∗Q ⊗

2∧
ΓQ.

Vectors e∗i ∈ Γ∗C, i > n, have Hodge type (1, 0), while vectors ei ∈ ΓC, i ≤ n, have Hodge
type (1, 0).
Again, the space SC := Hdg(A2

1Q ⊗ A2
2Q) ⊗ C is stable under the action of commuting

operators ∧2φt⊗ Id and Id⊗∧2φ, hence it is generated by certain eigenvectors for both
of these endomoprhisms:

e∗i ∧ e∗j ⊗ ek ∧ el.

Since this space is defined over Q, it has to be stable for the action of S2n. For any
permutation σ ∈ S2n of {1, . . . , 2n}, if e∗i ∧ e∗j ⊗ ek ∧ el ∈ SC, i.e. has Hodge type (2, 2),
then also

e∗σ(i) ∧ e
∗
σ(j) ⊗ eσ(k) ∧ eσ(l)
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has to be of type (2, 2). Then, we immediately conclude that this can happen if and
only if i = k and j = l. Indeed, if the four indices were distinct, by changing them
by some σ ∈ S2n, we may arrange that e∗σ(i) ∧ e

∗
σ(j) ⊗ eσ(k) ∧ eσ(l) has Hodge type

(4, 0). If e.g. i = k, j 6= l, by changing by some σ′ ∈ S2n, we may arrange that
e∗σ′(i) ∧ e

∗
σ′(j) ⊗ eσ′(k) ∧ eσ′(l) has Hodge type (3, 1).

Thus, we have proved that S is generated by the elements e∗i ∧e∗j⊗ei∧ej , 1 ≤ i < j ≤ 2n.
It is clear now that S can contain (up to scalar multiplication) only finitely many elements
of rank 1 , namely the elements above.

Remark 3.2.12. We have seen that SC is generated by elements of the form e∗i∧e∗j⊗ei∧ej .
These are nothing but the projectors on the eigenspaces of φ∗

T̂
. Clearly,

IdA2
2C

=
∑
i,j

e∗i ∧ e∗j ⊗ ei ∧ ej ∈ SC,

in fact the identity is also a morphism of Hodge structure, indipendently by the field of
definition.
Hence SC is the algebra generated over C by Id and φ∗

T̂
and S is the algebra generated

by the same elements, this time over Q.

3.2.2 Algebraic subsets of H∗(X ′,Q)

Let D ⊂ H2(X ′,Q) be the subspace generated by degree 2 Hodge classes. At the be-
ginning of Section 3.2, we saw that the following decomposition in sub-Hodge structures
holds:

H2(X ′,Q) = D ⊕A2. (3.8)

Furthermore, since Hodd(T/± Id,Q) = Hodd(T̂ /± Id,Q) = 0, by definition

A2 = A2
1 ⊕A2

2. (3.9)

In view of (3.8), (3.9), any α ∈ H2(X ′,C) can be decomposed in the form

α = αD + α′, α′ = α1 + α2. (3.10)

We are interested in examining certain algebraic subsets of the cohomology ring of X ′

that will naturally arise, later on, in this chapter. Recall that, thanks to Deligne’s Lemma
(2.2.2), we have an easy criterion to recognize sub-Hodge structures of H∗(X ′,Q) whose
generators lie in algebraic subsets of H∗(X ′,C). This is the main reason for investigating
the existence and the form of algebraic subsets.
Let Z ⊂ H2(X ′,C) be the algebraic set of the form

Z := {α ∈ H2(X ′,C) | α2 = 0 ∈ H4(X ′,C)}.
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Z contains the algebraic subsets

Z1 = {α ∈ H2(X ′,C) | α2 = 0, α2
1 = α1αD = α2

D = 0 ∈ H4(X ′,C)}
Z2 = {α ∈ H2(X ′,C) | α1 = 0, α2

2 = α2αD = α2
D = 0 ∈ H4(X ′,C)}

The following proposition shows what are the irreducible component of the Zi in A2 and
will play a fundamental role in the prosecution of the chapter

Proposition 3.2.13. Any irreducible component of Z1 (resp. Z2) containing

Z1,0 := Z1 ∩ {α = α′ + αD | αD = 0} (resp. Z2,0 := Z2 ∩ {α = α′ + αD | αD = 0})

is an irreducible component if Z. The decomposition α = α′ + αD is the same as in
(3.10)

Proof. Given α ∈ H2(X ′,C), α ∈ Z if and only if α2 = 0 ∈ H4(X ′,C) which is equivalent
to

α′2 + 2αDα′ + α2
D = 0. (3.11)

Since all the classes in D are of Hodge type (1, 1), αDα′ belongs to N2H
4(X ′)⊗C, where

N2H
4(X ′) is the maximal sub-Hodge structure of H4(X ′,Q) of level 2.

As a conqequence of equation (3.11), we claim that α′2 belongs to N2A
4
Q, where again

N2 indicates the maximal sub-Hodge structure of level 2: indeed, α′2 = −(2αDα′ + α2
D)

and α2
D ∈ H2,2(X ′) ⊂ N2A

4
Q, while

2αDα′ = 2
∑
i=1,2

αDαi = 2
∑
i=1,2

∑
(p,q)=(2,0),(1,1),(0,2)

αDα
(p,q)
i .

Here ∑
(p,q)=(2,0),(1,1),(0,2)

α
(p,q)
i , i = 1, 2

is the Hodge decomposition of αi in H2(X ′,C). But if α(p,q)
i ∈ H(p,q)(X ′) then αDα

(p,q)
i ∈

H(p+1,q+1)(X ′). Hence 2αDα′ ∈ N2H
4(X ′), which proves the claim.

By the Künneth formula, we can decompose A4
Q into the direct sum of sub-Hodge struc-

tures of weight 4

A4
Q = A4

1Q ⊕ (A2
1Q ⊗A2

2Q)⊕A4
2Q. (3.12)

Now, remember that

α
′2 = α2

1 + 2α1α2 + α2
2 ∈ N2A

4
Q ⊗ C. (3.13)

From the decomposition (3.12) into sub-Hodge structures, it follows that any term of
(3.13) has to be in the maximal level 2 structure of the corresponding summand. Since
by Lemma (3.2.5), A4

iQ, i = 1, 2 have no level 2 sub-Hodge structure,

α2
1 = 0, α2

2 = 0.
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In view of this, we can write (3.11) in the new form

2α1α2 + 2αDα′ + α2
D = 0. (3.14)

As already noticed, α1α2 belongs to N2(A2
1Q ⊗ A2

2Q). Actually, we can say more: con-
sidering

D ·A2
Q +D2 ⊂ H4(X ′,Q),

it can be thought as given by the following surjective map

A2
1Q ⊗D ⊕D ⊗D ⊕A2

2Q ⊗D → D ·A2
Q +D2 (3.15)

which is given on a basis by

(α1 ⊗ β1, γ ⊗ δ, α2 ⊗ β2) 7→ α1β1 + α2β2 + γδ .

Thus, D ·A2
Q +D2 is a quotient of direct sum of level 2 Hodge structures isomorphic to

A2
iQ, i = 1, 2 and a trivial Hodge structure of weight 4.

Summarizing, we have that α1α2 has to belong to the space

N ′2(A2
1Q ⊗A2

2Q)⊗ C,

where now N ′2 means the maximal sub-Hodge structure of level 2 which is a subquotient
of a sum of copies of A2

1Q or A2
2Q or a trivial Hodge structure2.

By the results of the previous subsection, we see that N ′2(A2
1Q ⊗ A2

2Q) is actually equal
to the maximal sub-Hodge structure of level 2 of A2

1Q ⊗A2
2Q which is a sum of copies of

A2
1Q or A2

2Q or a trivial Hodge structure.
But now by Lemma (3.2.6), we deduce that finally α1α2 belongs to the maximal trivial
sub-Hodge structure of A2

1Q ⊗A2
2Q, that is

Hdg(A2
1Q ⊗A2

2Q)⊗ C,

the space of rational Hodge classes of A2
1Q ⊗ A2

2Q. Lemma (3.2.11) tells us that (up
to scalar multiplication) there are only finitely many elements of the form α1α2 in
Hdg(A2

1Q ⊗A2
2Q)⊗ C.

From the above analysis, we have two different possibilities for α ∈ Z:

• α1 6= 0, α2 6= 0 and then α1α2 has to be proportional to one of the finitely many
elements of Lemma (3.2.11);

• at least one between α1 and α2 has to be 0.

In this last case, we claim that α belongs either to Z2 or to Z1, respectively. Indeed, we
know that

α2
1 = 0 = α2

2.

2Given a vector space V , a subquotient of V is a vector space W such that there exist two non-empty
subspaces R ⊂ S ⊂ V and an isomorphism W ∼= S/R.
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Assume α2 = 0. Then, equation (3.14) becomes:

2αDα1 + α2
D = 0.

For Hodge type reasons, this implies that

αDα1 = 0 = α2
D.

in fact, α2
D belongs to Hdg4(X ′)C, while αDα1 belongs to the space

N ′′2H
4(X ′,Q)⊗ C,

defined as the maximal sub-Hodge structure of H4(X ′,Q) of level 2 isomoprhic to a sub-
quotient of some power of A2

1Q. But again, by an easy simplicity argument (see propo-
sition (3.2.9)), N ′′2H

4(X ′,Q) has to be the maximal sub-Hodge structure of H4(X ′,Q)
isomorphic to some power of A2

1Q. But the intersection

Hdg4(X ′) ∩N ′′2H4(X ′,Q)

has to be zero, since there is no non-zero Hodge class in A2
1Q. Thus, also

Hdg4(X ′)⊗ C ∩N ′′2H4(X ′,Q)⊗ C

has to be 0. Hence we proved that 2αDα1 + α2
D = 0 implies that αDα1 = 0 = α2

D.
In conclusion we proved that Z is the set theoretic union of Z1, Z2 and of a set which
projects to a finite set of lines in A2

1C and A2
2C.

Let now Z ′1 be an irreducible component of Z1 which contains Z1,0. Suppose Z ′1 is not
an irreducible component of Z. Thus, there should be an irreducible component Z ′

of Z, not in Z1, which contains Z ′1. But now, Z ′ \ Z ′1 would be dense in Z ′. Hence,
the projection on A2

1C of Z ′1 would contain Z1,0 (which at least contain more than one
line), while the projection of Z ′1 \ (Z ′1 ∩ Z1) which is open and irreducible in Z ′1 should
be contained in the projection of Z2 (which is 0) and a finite set of lines. But this is
impossible for a straightforward connectedness argument.

We introduce the last two technical lemmas.

Lemma 3.2.14. Let

D1 := {αD ∈ D | αDα1 = 0 ∈ H4(X ′,Q),∀α1 ∈ A2
1Q} ⊂ D.

If αD ∈ D ⊗ C satisfies αDα1 = 0 for some 0 6= α1 ∈ A2
1C, then αD ∈ D1 ⊗ C.

Proof. First of all, we make a reduction: suppose there is a compact Kähler manifold X ′′

and a map ψ′ : X ′′ → X ′ which is surjective, holomoprhic and of finite degree, and the
result of the lemma is true for X ′′, with D replaced by Hdg2(X ′′) and A2

1Q replaced by
ψ′∗(A2

1Q). Then, we claim that the result of the lemma holds for X ′, too. In fact, since
the map has finite degree and X ′′ is Kähler ψ∗ is injective and sends D in Hdg2(X ′′).
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Recall now, that X ′ is bimeromorphic to a quotient of the P1 × P1-bundle P(E) ×T×T̂
P(Eφ) over T × T̂ . Hence, we have a dominant meromoprhic map from P(E)×T×T̂ P(Eφ)
to X ′.
Using Hironaka’s desingularization theorem and the observation above, we can reduce to
the case where X ′ is obtained from W := P(E)×T×T̂ P(Eφ) by a sequence of blow-ups.
We first prove that the result is true for W .
The cohomology of degree 2 of

W
π //T × T̂

is a free module, generated by H∗(P1× P1,Q), over the cohomology of T × T̂ . Thus the
space of degree 2 Hodge classes D on W is the sum of two spaces: D0, which has rank
2 and is isomorphic to H2(P1 × P1,Q), and D1, which is isomorphic via π∗ to the set of
degree 2 Hodge classes in H2(T × T̂ ,Q).
Recall that

H2(T × T̂ ,Q) = H2(K × K̂,Q)⊕H1(T,Q)⊗H1(T̂ ,Q).

We conclude that D1 is contained in H1(T,Q)⊗H1(T̂ ,Q). Hence, by the proof of Lemma
(3.2.11), D1 is generated over Q by p := c1(P) and its pull-backs under (φlT )∗⊗Id, l ∈ N.
This implies that the cup-product map

D1 ⊗ π∗(H2(T,Q)) → H4(W,Q)
(d1, α) 7→ d1 ∪ α

is injective. A straightforward calculation shows that also the cup-product map

D0 ⊗ π∗(H2(T,Q)) → H4(W,Q)
(d0, α) 7→ d0 ∪ α

is injective. Thus, the proof for W is concluded.
We now want to prove the result by induction on the number i of blow-ups of W along
smooth centers.
Assume the result of the lemma holds for Wi and let τi+1 : Wi+1 → Wi be the blow-up
of a smooth irreducible submanifold Z ⊂Wi. The set of degree 2 Hodge classes Di+1 on
Wi+1 is generated by τ∗i+1(Di) and the class of [∆Z ] of the exceptional divisor EZ over
Z. Theorem (1.4.8) shows that if there is an equality

[∆Z ] ∪ τ∗i+1(α) = 0, modulo τ∗i+1(H∗(Wi,C))

then in fact, [∆Z ] ∪ τ∗(α) = 0 ∈ H∗(Wi+1,C).
Suppose there is a relation αDα = 0 ∈ H∗(Wi+1,C), αD ∈ Di+1⊗C and α ∈ π∗(H2(T ×
{0},C)). Writing

αD = µ[∆Z ] + α′D, µ ∈ C, α′D ∈ τ∗i+1(Di)⊗ C,
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3.2 The structure of the rational cohomology algebra of X ′

we conclude, as above, that µ[∆Z ]∪α = 0 ∈ H∗(Wi+1,C). This means that either µ = 0,
hence we can apply the inductive step to α′D, or

[∆Z ] ∪ α = 0 ∈ H∗(Wi+1,C).

Since multiplication by the Hodge class [∆Z ] is a morphism of Hodge structure from
H2(T,Q) to H4(Wi+1,Q), its kernel is a sub-Hodge structure of H2(T,Q). So this map
is either injective or 0, as noted in Corollary (3.2.10).
Finally, if there is one non-zero α satisfying αDα = 0 ∈ H∗(Wi+1,C) and the coefficient
µ is non-zero, then [∆Z ] ∪ α′ = 0 ∈ H∗(Wi+1,C), ∀α′ ∈ π∗(H2(T × {0},Q)). Then, the
equality αDα = 0 reduces to α′Dα = 0, which already holds in H∗(Wi,C).

Lemma 3.2.15. 1. For any d ∈ D⊗C and any β ∈ A4n−2
C ⊂ H4n−2(X ′,C) we have

d3β = 0 ∈ H4n+4(X ′,C).

2. The complex subspace D ⊗ C ⊂ H2(X ′,C) is an irreducible component of the
algebraic set

Z ′ := {d ∈ H2(X ′,C) | d3β = 0, ∀β ∈ A4n−2
C }.

Proof. 1. D has a trivial Hodge structure. Thus, for any d ∈ D the map

α 7→ d3α ∈ H4n+4(X ′,Q) ∼= Q

is a morphism of Hodge structure, hence it can be identified, for Poincaré duality
to a Hodge class in (A4n−2

Q )∗ = A2
Q. We already know that A2

Q has no non-zero
Hodge classes and the proof ends.

2. See [V05, §2, Lemma 6].

3.2.3 The regular locus of ψ

We conclude this section with a Proposition concerning the geometry of the bimeromor-
phic map

ψ : X ′ 99K X.

This will be essential in the sequel.
At the beginning of this section, we proved that the map

q ◦ ψ : X ′ 99K (T/± Id)× (T̂ /± Id)

is holomorphic.
Let us denote X ′0 := (q ◦ ψ)−1(K0 × K̂0).
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Proposition 3.2.16. There exists a dense Zariski open set U ⊂ K0 × K̂0 such that, if
we denote

X ′U := (q ◦ ψ)−1(U), XU := q−1(U),

the induced meromorphic map
ψ : X ′U 99K XU

is holomorphic.

Lemma 3.2.17. The only closed irreducible positive dimensional proper analytic subsets
of T × T̂ are of the form {x} × T̂ , x ∈ T or T × {y}, y ∈ T̂ .

Proof. Firts of all, recall that T and T̂ do not contain positive dimensional proper
analytic subsets as noted in Remark (2.1.4).
It follows that if Z ⊂ T × T̂ is positive dimensional proper and irreducible, not of the
above form, then it must be étale over both T and T̂ . Indeed, this is a consequence of
what we have just noted and of the following

Theorem 3.2.18. Let B a proper irreducible analytic subset of a complex torus A. Then
there exist a complex subtorus A1 of A and a projective variety L, which is a subvariety
of an abelian variety, such that there is an analytic surjective morphism µ : B → L
whose generic fibre is A1.

Proof. [U75, Ch. 4, Thm. 10.9]

But if Z were étale over T and T̂ , its cohomology class [Z] ∈ H2n(T × T̂ ,Q) ∼=⊕
p+q=2nH

p(T,Q)⊗Hq(T̂ ,Q) (more precisely its projection on H2n−1(T,Q)⊗H1(T̂ ,Q))
would give an isomorphism between H1(T,Q) and H1(T̂ ,Q). We have already seen that
this is not the possible (see Remark 3.2.8).

Lemma 3.2.19. The only irreducible proper closed analytic subsets of P(E) (resp.
P(Eφ)) which dominate T × T̂ are the images Σ1,Σ2 (resp. Σφ

1 ,Σ
φ
2 ) of the two nat-

ural sections σ1, σ2 (resp. σφ1 , σ
φ
2 ) of P(E) (resp. P(Eφ)) corresponding to the splitting

E = P ⊕ P−1 (resp. Eφ = Pφ ⊕ P−1
φ ).

Proof. Let Z ⊂ P(E) be an hypersurface dominating T × T̂ . We will denote by e : Z →
T × T̂ the generically finite map. By the previous lemma, Z has to contain a dense
Zariski open set Z0 which is an étale cover of a Zariski open set U ⊂ T × T̂ .On the
contrary, U1 := T × T̂ \ U is an union of analytic proper subsets of the form

{x} × T̂ , x ∈ T, or T × {y}, y ∈ T̂ .

Let us note that Z induces a section of the induced P1-bundle

P(E)Z := e∗P(E).
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Such a section is given by a line bundle over Z, L, and a surjective map

E∗ := e∗P ⊕ e∗P−1 → L. (3.16)

Indeed, a section of P(E)Z is given by a 1-dimensional subspace of E∗ varying regularly.
Hence, the map in (3.16) is simply given by the quotient of E∗ for that subspace.
If one of the two induced maps

e∗P → L, or e∗P−1 → L

is zero, then Z is contained in Σ1 or Σ2 (actually it has to be equal). Otherwise, both
e∗P−1 ⊗ L = Hom(e∗P,L) and e∗P ⊗ L = Hom(e∗P−1,L) have non-zero sections.
As the codimension of U1 is ≥ 2, we find that there is some k ∈ N such that L⊗k is
isomorphic to e∗(K) on Z0, for some line bundle K on U , hence also on T × T̂ .
Thus,

e∗P−k ⊗ L⊗k = e∗(P−k ⊗K)

and
e∗Pk ⊗ L⊗k = e∗(Pk ⊗K)

have non-zero sections on Z0. It follows that for some m ∈ N, there are non-zero sections
of

P−km ⊗K⊗m and Pkm ⊗K⊗m

on U , hence also on T × T̂ .
Since T × T̂ does not contain hypersurfaces, these sections do not vanish anywhere. It
is a consequence that P−km ∼= Pkm, which is not possible since their Chern classes are
different.
Hence the lemma is proved for P(E) and the result for P(Eφ) follows, as

P(E) ∼= P((φ−1, Id)∗Eφ).

Corollary 3.2.20. 1. The only irreducible codimension 1 analytic subsets of

P(E)×T×T̂ P(Eφ)

dominating T × T̂ are of the form pr−1
1 (Σi), i = 1, 2 or pr−1

2 (Σφ
i ), i = 1, 2.

2. The only irreducible codimension 2 analytic subsets of

P(E)×T×T̂ P(Eφ)

dominating T × T̂ are complete intersections

pr−1
1 (Σi) ∩ pr−1

2 (Σφ
j ), i = 1, 2, j = 1, 2.
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Proof. Recall that by definition of fibre product we have a commutative diagram of the
form

P(E)×T×T̂ P(Eφ)

��

pr2

''PPPPPPPPPPPP
pr1

wwoooooooooooo

P(E)

π1 ''OOOOOOOOOOOO P(Eφ)

π2wwnnnnnnnnnnnn

T × T̂

1. Let Z be an irreducible hypersurface of P(E)×T×T̂ P(Eφ). Let us consider pr1(Z),
then there are two possibilities:

• pr1(Z) = P(E);

• pr1(Z) dominates T × T̂ and has codimension 1 in P(E), hence it is exactly
one of the Σi, i = 1, 2 of the previous lemma.

If pr1(Z) = Σi, then Z = pr−1
1 (Σi).

If pr1(Z) = P(E), let us consider on P(E)×T×T̂ P(Eφ) the line bundle L := O(Z)
and let H = pr∗1(OP(E)(1)). By the Leray-Hirsch Theorem, since P(E)×T×T̂ P(Eφ)
is a P1 × P1-bundle over T × T̂ ,

L = H⊗α ⊗ pr∗2(K),

for some line bundle K on P(Eφ). Thus, we have that

R0pr2∗L = Symα(π∗2E)⊗K = Symα(π∗2P ⊕ π∗2P−1)⊗K.

Here α will be non-negative, as L has non-zero sections.
The non-zero section of L defining Z gives rise to sections σγγ′ of π∗2P⊗γ⊗π∗2Pγ

′⊗K,
for γ, γ′ ≥ 0, γ + γ′ = α.
Note that only one σγγ′ can be non-zero. Indeed, by Lemma (3.2.19), the divisors
of σγγ′ are combinations of Σφ

1 and Σφ
2 and the two line bundles differ by a multiple

of π∗2Pφ. Thus, if there were non-zero sections σγγ′ for at least two distinct couples
(γ = a, γ′ = b), (γ = c, γ′ = d), a+ b = α = c+d, then we would get a proportion-
ality relation between π∗2Pφ and π∗2P on P(Eφ), which is clearly impossible. Thus
there is only one non-zero section.
Let σγγ′ be such section. There are now two possibilities:

• the divisor Dγγ′ of σγγ′ is non-empty;

• the divisor Dγγ′ of σγγ′ is empty.

In the first case, as Z is irreducible and contains pr−1
2 (Dγγ′), then Z must be the

pull-back of a divisor on P(Eφ) and Lemma (3.2.19) gives the result.
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Otherwise, if the divisor Dγγ′ of σγγ′ is empty, one concludes that the line bundle
K is a pull-back

K = π∗2K′,

for some line bundle K′ on T × T̂ . In this case, L is also a pull-back

L = pr∗1L′,

for some line bundle L′ on P(E) and thus Z is equal to pr−1
1 (Z ′), for some Z ′ ⊂

P(E). Again, Lemma (3.2.19) gives the result.

2. The proof is obtained by projecting codimension 2 subsets of P(E)×T×T̂ P(Eφ) to
P(E) and P(Eφ).

The results above allow us to describe the codimension 1 and codimension 2 proper
analytic subsets of Q := P(E)×T×T̂ P(Eφ)/ < (i, iφ), (̂i, îφ) >, which dominate K × K̂.
These are the images in Q of the subvarieties described above.
Let us note that the two hypersurfaces pr−1

1 (Σ1), pr−1
1 (Σ2) descend to only one irre-

ducible hypersurface
Σ ⊂ Q.

In fact, the two factors of the splitting E = P ⊕ P−1 are exchanged under i and
î, so pr−1

1 (Σ1), pr−1
1 (Σ2) are permuted by < (i, iφ), (̂i, îφ) >. For the same reason

pr−1
1 (Σφ

1 ), pr−1
1 (Σφ

2 ) give rise to only one hypersurface

Σφ ⊂ Q.

Thus, Q contains only two hypersurfaces

Σ,Σφ (3.17)

and one codimension 2 analytic subvariety

W = Σ ∩ Σφ, (3.18)

dominating K × K̂.
Sketch of the proof of Proposition (3.2.16). The proof is now immediate from the anal-
ysis above. Starting from X, the only modification, which we can do, whose center
dominates K × K̂, is to blow-up W . In the blown-up variety, we have as divisors the
exceptional divisors, the proper transforms of the divisors Σ,Σφ and they are the only
one. Furthermore, the only codimension 2 closed analytic subset dominating K × K̂
is the union of two copies of W , indexed by the choice of one of the divisors Σ,Σφ,
since W = Σ ∩ Σφ. The same situation happens each time we blow-up one copy of W
appearing in the previous step.
The key point is now the following:
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If the map ψ : X ′ 99K X is not defined over the generic point of K × K̂, we can see it as
a birational map between surface bundles over the generic point of K× K̂. Then after a
finite sequence of blow-ups of X along codimension 2 subsets dominating K × K̂, some
divisor D ⊂ X in the blown-up variety must be generically contractible over K × K̂,
i.e. be made of a disjoint union of rational curves of self-intersection −1 in the generic
surface Xt. D has to project to a divisor in X. This follows from the factorization of
birational map between surfaces (see [Bea96]). As this divisor dominates K×K̂, it must
be one of those described above, that is a proper transform of Σ,Σφ.
The contradiction comes from the fact that after the blow-up of W, the proper trans-
forms of Σ and Σφ are families of rational curves of self-intersection −2, and the value
of the self-intersection can only decrease after further blow-ups. One the other hand, if
we do not blow-up anything, these divisors are families of curves of self-intersection 0,
which do not contract.
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3.3 Proof of Theorem (3.1.2)

In this section, we assume the hypotheses of Theorem (3.1.2), namely, X ′ is bimero-
morphically equivalent to X and Y is a compact Kähler manifold such that there is an
isomorphism

γ : H∗(Y )
∼= //H∗(X ′,Q)

of cohomology algebras. Our goal is proving that Y is not a projective manifold.
The argumentation will be based on the analysis of the algebra H∗(X ′,Q) realized in
the previous section and on Deligne’s Lemma (2.2.2).
Notations are as in the previous sections.
Our first step is the following:

Proposition 3.3.1. Let X ′, Y, γ be as in Theorem (3.1.2). Then γ−1(A2
iQ), i = 1, 2 are

rational sub-Hodge structures of H2(Y,Q).

Proof. We just have to show how to recover the space A2
1C = A2

1Q⊗C (resp. A2
2C = A2

2Q⊗
C) as generated by an algebraic subset of H2(X ′,C) defined using the ring structure of
the cohomology ring of Y . Via γ, we shall recover analogously γ−1(A2

1C) (resp. γ−1(A2
1C)) ⊂

H2(Y,C) through the image of the algebraic subset previously determined. At that point,
the proof will be concluded by means of Deligne’s Lemma.
We give the proof only for γ−1(A2

1Q), the other case being identical.
By Proposition (3.2.13), the irreducible components of the algebraic subset

Z1 = {α1 + d, d ∈ DC | α1 ∈ A2
1C, α

2
1 = 0, d2 = 0, α1d = 0}

which contains the algebraic subsets

Z1,0 := {α ∈ A2
1C | α2 = 0}

are irreducible components of

Z = {α ∈ H2(X ′,C) | α2 = 0}.

Now, Lemma (3.2.14) implies that if we denote byD1 the Q-vector subspace ofH2(X ′,Q)
defined as D1 := {d ∈ D | dα = 0, ∀α ∈ A2

1Q}, the condition

α1d = 0 ∈ H4(X ′,C), d ∈ D ⊗ C

for some non-zero
α1 ∈ A2

1C,

implies that d ∈ D1C := D1 ⊗ C.
As a consequence of this Lemma, considering now the algebraic subset of H2(X ′,C),

Z ′1 := {α1 + d, d ∈ D1 ⊗ C | α1 ∈ A2
1C, α

2
1 = 0, d2 = 0}, (3.19)
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it is clear that the irreducible components of Z ′1 containing Z1,0 are irreducible compo-
nents of Z. Since A2

1C is defined over Q and it is generated by its algebraic subset Z1,0,
it remains only to show how to recover Z1,0 from Z ′1.
Let

D′1C ⊂ D1C

be the complex vector space generated by the algebraic subset

ZD1 := {d ∈ D1C | d2 = 0}.

It is clear that D′1C is defined over Q, i.e.

D′1C = D′1 ⊗ C

for some rational subspace D′1 ⊂ H2(X ′,Q), since D1C itself is generated over Q and the
equations cutting out ZD1 have rational coefficients.
If D′1 = 0, thus Z ′1 = Z1,0. In general, (3.19) shows that Z ′1 is the product of ZD1 and
Z1,0 in D′1 ⊕A2

1C.
Now, there are two possibilities:

1. ZD1 6= D′1C;

2. ZD1 = D′1C.

In 1. we can easily recover Z1,0 as a subvariety of the singular locus of the product
ZD1×Z1,0 ⊂ D′1⊕A2

C. Indeed, in this case, 0 ∈ ZD1 is a singular point, hence Z1,0×{0}
is a subvariety of the singular locus of the product (note that we have used exclusively
the algebra structure of H∗(X ′,C)).
We have only to exclude the possibility that

D′1 6= 0, ZD1 = D′1C. (3.20)

Assume (3.20) holds. As D′1 is a Q-vector space, there would be a non-zero real element
d ∈ D ⊂ H1,1

R (X ′) such that

d2 = 0, dα = 0, ∀α ∈ A2
1R.

But there exists also a non-zero

α ∈ A1,1
R := H1,1

R (X ′) ∩A2
1R

such that α2 = 0. Then, the rank 2 real vector space

B :=< d, α >⊂ H1,1
R (X ′)

satisfies the property
∀θ ∈ B, θ2 = 0.
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But this contradicts the Hodge index theorem. Indeed, X ′ is dominated by a Kähler
compact manifold (since it is bimeromorphic to X), i.e. there is a Kähler compact
manifold K and a holomorphic 1-1 surjective map

τ : K → X

such that pull-back maps τ∗ : H∗(X,R) → H∗(K,R) are injective and preserve the
strong Hodge decomposition. Choosen a Kähler class ω ∈ H1,1

R (K), this gives an inter-
section form on H1,1

R (K), qω(c) =
∫
K ω

2n ∧ c ∧ c, ∀c ∈ H1,1
R (K) that admits only one

positive sign. Hence the contradiction is realized by the existence of the rank 2 vector
subspace of H1,1

R (K) τ∗(B), which is isotropic for the intersection qω.

Corollary 3.3.2. With the same assunmptions and notations, the subspace

γ−1(D) ⊂ H2(Y,Q)

is a rational sub-Hodge structure.

Proof. By Lemma (3.2.15), 2., D ⊗ C is an irreducible component of the set

Z ′′ = {d ∈ H2(X ′,C) | d3β = 0, ∀β ∈ A4n−2
C }.

It follows that γ−1(D)⊗ C is an irreducible component of the set

γ−1(Z ′′) = {d ∈ H2(Y,C) | d3β = 0, ∀β ∈ γ−1(A4n−2
C )}.

By the previous proposition γ−1(A4n−2) is a rational sub-Hodge structure of H4n−2,
being the degree 4n− 2 piece of the subalgebra generated by γ−1(A2).
Hence its annihilator

γ−1(A4n−2)0 = {δ ∈ H6(Y,Q) | δβ = 0, ∀β ∈ γ−1(A4n−2)C}

is also a rational sub-Hodge structure of H4n−2(Y,Q), since it is naturally defined alge-
brically.
There is an induced rational Hodge structure on the quotient

H6(Y,Q)/γ−1(A4n−2)0

and we can apply once again Deligne’s Lemma once again to the product map

H2(Y,Q)⊗3 → H6(Y,Q)/γ−1(A4n−2)0 :

after composing with the algebraic map

H2(Y,Q)→ H2(Y,Q)⊗3, α 7→ α3,

we deduce that γ−1(D)⊗ C is an irreducible component of the set

Z ′′′ := {δ ∈ H2(Y,C) | δ3 = 0 ∈ H6(Y,C)/(γ−1(A4n−2)0 ⊗ C)}

As γ−1(D) is a rational subspace of H2(Y,Q), we deduce that it is a rational sub-Hodge
structure of H2(Y,Q).
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Proof of Theorem (3.1.2). Recall that by its definition

γ : H∗(Y,Q) ∼= H∗(X ′,Q)

is compatible up to a coefficients with Poincaré duality, given by cup-products and by
the isomorphisms

H4n+4(X ′,Q) ∼= Q, H4n+4(Y,Q) ∼= Q.

We have already noted that γ−1(A4n−4) ⊂ H4n−4(Y,Q) is a sub-Hodge structure.
Let us consider the inclusion

A4n−4 ↪→ H4n−4(X ′,Q);

its Poincaré dual is the map

(q ◦ ψ)∗ : H8(X ′,Q)→ H4((T/± Id)× (T̂ /± Id),Q).

Recall also that by the Künneth theorem, there is an isomorphism in cohomology

H4((T/± Id)× (T̂ /± Id),Q) ∼= A4
1Q ⊕A2

1Q ⊗A2
2Q ⊕A4

2Q.

Projecting onto the middle summand of the previous decomposition, we obtain a map

κ : H4((T/± Id)× (T̂ /± Id),Q)→ A2
1Q ⊗A2

2Q;

via γ and composition of maps, we get a morphism of Hodge structure

H8(Y,Q)→ γ−1(A2
1Q)⊗ γ−1(A2

2Q),

since γ−1(A2
iQ), i = 1, 2 are sub-Hodge structures.

Let us restrict this morphism to the sub-Hodge structure

γ−1(D)4 = γ−1(D4) ⊂ H8(Y,Q)

generated by γ−1(D); we will denote it πγ . Clearly πγ is conjugate via γ to the restriction
of κ ◦ (q ◦ ψ)∗ to D4.
We need now the following two lemmas:

Lemma 3.3.3. The image of

κ ◦ (q ◦ ψ)∗ : D4 → A2
1Q ⊗A2

2Q

contains
Id ∈ Hom(A2

1Q, A
2
1Q) ∼= A2

1Q ⊗A2
2Q

and
φ∗ = ∧2φt ∈ Hom(A2

1Q, A
2
1Q) ∼= A2

1Q ⊗A2
2Q.
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We will denote

Πγ = (γ−1 ⊗ γ−1) ◦ (Im κ ◦ (q ◦ ψ)∗) ⊂ γ−1(A2
1C)⊗ γ−1(A2

2C)

the image of πγ .

Lemma 3.3.4. 1. Consider u ∈ γ−1(A2
1Q)⊗ γ−1(A2

2Q) as an element of

Hom(γ−1(A2
2Q)∗, γ−1(A2

1Q)).

By the word non degenerate, we shall mean that u represents an isomorphism.
Now, the assertion is that the generic element of Πγ is non-degenerate.

2. The Q-vector subspace Π′γ of End(γ−1(A2∗
2Q)) generated by elements u−1⊗v, u, v ∈

Π′γ , u non-degenerate, consists of those Hodge classes in End(γ−1(A2∗
2Q)).

We shall assume these two Lemmas, whose proof we postpone.
A consequence of the two Lemma is that the Hodge structure of γ−1(A2∗

2Q) admits an en-
domorphism conjugate to φ∗T = ∧2φt, hence, for duality, the Hodge structure of γ−1(A2

2Q)
admits a morphism conjugate to ∧2φ.
We conclude now as in Section 2.2.2 of Chapter 2. By the above observations, either
γ−1(A2

2Q) has a trivial Hodge structure or it does not contain any Hodge class. By a
Hodge index argument we can exclude the first case.
Working symmetrically with A2

1Q, we conclude similarly that the Hodge structure on
γ−1(A2

1Q) does not contain any Hodge class. Thus it follows from Corollary (3.3.2)
that the only degree 2 Hodge classes on Y are contained in γ−1(D). Looking at the
intersection form

qd =
∫
Y
d4nαβ, α, β ∈ γ−1(A2

1Q), d ∈ γ−1(D),

we conclude that it is zero on γ−1(A2
1Q) since tha same is true for D and A2

1Q on X ′.
For no degree 2 Hodge class d on Y , the sub-Hodge structure γ−1(A2

1Q) ⊂ H2(Y,Q) can
be polarized by qd. Thus, Y is not projective.

Proof of Lemma (3.3.3). We use the same notations as in Proposition (3.2.16).
We first reduce to the case X ′ = X.
Using Lemma (3.2.17) we have that for any Zariski open set U ⊂ K0×K̂0, the restriction
map

restU : H4(K0 × K̂0,Q) = H4((T/± Id)× (T̂ /± Id),Q)→ H4(U,Q)

is an isomorphism. Moreover, we have the following commutative diagram:

restU : D4 ⊂ H8(X ′,Q) //

(q◦ψ)∗
��

H8(X ′U ,Q)

(q◦ψ)|U∗
��

restU : H4((T/± Id)× (T̂ /± Id),Q) // H4(U,Q).

(3.21)
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Now, Proposition (3.2.16) says that the meromorphic map ψ is well defined on a Zariski
open set X ′U as above. We thus have anoter commutative diagram

Hdg2(X)4
|XU

ψ∗U //

q|U∗

��

D4
|X′U

(q◦ψ)|U∗
��

H4(U,Q)
∼= // H4(U,Q),

where qU , (q ◦ ψ)|U denote the restrictions of q, q ◦ ψ to XU , X
′
U respectively. We are

using the fact that degree 2 Hodge classes on X, restricted to XU , pull-back via ψU to
degree 2 Hodge classes on X ′, restricted to X ′U , which follows from the fact that ψ is
meromorphic and the considerations at the end of Section 3.1.
Writing for X the same diagram as (3.21), we conclude that, indeed, if we can prove it
for X, the result for X ′ readily follows.
Let us look now at the following diagram:

q̄ : P(E)0 ×T0×T̂0
P(Eφ)0 //

e

��

T0 × T̂0

e

��
q : X0

// K0 × K̂0

where the lower indices 0 denote the restrictions of the projective bundle over T0 × T̂0

and the vertical maps denoted by e are the quotient maps and X0 is the smooth part of
the quotient Q.
Arguing as above, we can replace X by X0 and then X0 by its étale cover P(E)0×T0×T̂0

P(Eφ)0.
Thus the result will follow from the following facts.
let Σ,Σφ be the two divisors of (3.17) and let σ, σφ be their cohomology classes. We
have relations

q̄∗(e∗(s3sφ)) = −16Id ∈ Hom(H2(T0,Q), H2(T0,Q)) = H2(T0,Q)⊗H2(T̂0,Q), (3.22)

q̄∗(e∗(s3
φs)) = −16φ∗ ∈ Hom(H2(T0,Q), H2(T0,Q)) = H2(T0,Q)⊗H2(T̂0,Q).

The formula is deduced as follows.
Let s1, s2 be the classes of divisors Σ1,Σ2 of P(E)0 ×T0×T̂0

P(Eφ)0 given by the de-

composition E = P ⊕ P−1 and similarly let sφ1 , s
φ
2 be the classes of divisors Σφ

1 ,Σ
φ
2 of

P(E)0 ×T0×T̂0
P(Eφ)0 given by the decomposition Eφ = Pφ ⊕ P−1

φ . We have

e∗(s) = s1 + s2, e
∗(sφ) = sφ1 + sφ2 .

Let h, hφ be respectively c1(OP(E)(1)), C1(OP(Eφ)) or rather their pull-backs to P(E)0×T0×T̂0

P(Eφ)0. Let p, pφ be the classes c1(P), c1(Pφ). We have the following relations

s1 = −q̄∗(p) + h, s2 = q̄∗(p) + h

sφ1 = −q̄∗(pφ) + h, s2 = q̄∗(pφ) + h
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Thus
e∗(s) = 2h, e∗(sφ) = 2hφ,

and
e∗(s3sφ) = 16h3hφ, e

∗(s3
φs) = 16h3

φh.

Applying q̄∗, we conclude that

q̄∗(e∗(s3sφ)) = −16c2(E), q̄∗(e∗(s3
φs)) = −16c2(Eφ).

As E = P ⊕ P−1 and Eφ = Pφ ⊕ P−1
φ , it follows that

c2(E) = −p2, c2(Eφ) = −p2
φ.

We have that p identifies to

Id ∈ Hom(H1(T,Q), H1(T,Q)) = H1(T,Q)⊗H1(T̂ ,Q) ⊂ H2(T × T̂ ,Q)

hence p2 identifies to

Id ∈ Hom(H2(T,Q), H2(T,Q)) = H2(T,Q)⊗H2(T̂ ,Q) ⊂ H4(T × T̂ ,Q).

Similarly p2
φ identifies to

∧2φ ∈ Hom(H2(T,Q), H2(T,Q)) = H2(T,Q)⊗H2(T̂ ,Q) ⊂ H4(T × T̂ ,Q).

Thus formula (3.22) is proved.

Proof of Lemma (3.3.4).

1. It is a consequence of Lemma (3.3.3), since Πγ contains at least an invertible
element.

2. Since Πγ is a sub-Hodge structure of

γ−1(A2
1Q)⊗ γ−1(A2

2Q),

it follows that the space Π′γ is a sub-Hodge structure of EndQ(γ−1A2∗
2Q). Thus, the

same is true for the subalgebra of EndQ(γ−1(A2∗
2Q)) generated by Π′γ .

On the other hand, Π′γ is conjugate via γt to the corresponding subspace of
EndQ(A2∗

2Q), defined similarly starting from Im κ ◦ (q ◦ ψ)∗|D4 . This last subspace
is contained in the space of endomorphisms of Hodge structure of A2∗

2Q, which has
been computed to be equal to the algebra generated by ∧2φ (see the proof of
Lemma (3.2.11)).
As ∧2φ is diagonalizable, this algebra tensored with C has no nilpotent element.
It follows that Π′γ has no nilpotent element. But as Π′γ is a sub-Hodge structure of
End(γ−1(A2∗

2Q)), it follows that it is pure of type (0, 0), i.e. is made only of Hodge
classes, since elements of type (−k, k), k > 0 are nilpotent.
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