
Abstract

We consider a popular model of Random Games for n players.

Each player is given a �nite number of strategies and the payo�s associated

to di�erent strategy pro�les are assumed to be independent and identically

distributed random variables.

We review some of the properties of such games with emphasis on the notion

of Pure Nash Equilibrium (PNE).

We give a detailed proof of the familiar fact that the number of PNE con-

verges to a Poisson random variable.

As in previous works on this matter, the latter convergence is obtained by

means of the Chen�Stein method for Poisson convergence which is reviewed

here in some detail.



Summary

Game theory is a branch of applied mathematics which is used in the social

sciences like biology, computer science, philosophy and economy.

Game theory attempts to mathematically capture behavior in strategic sit-

uations, in which an individual's success in making choices depends on the

choices of others.

While initially developed to analyze competitions in which one individual

does better at another's expense, it has been expanded to treat a wide class

of interactions, which are classi�ed according to several criteria [6].

Traditional applications of game theory attempt to �nd equilibria in these

games sets of strategies in which individuals are unlikely to change their be-

havior [9].

Many equilibrium concepts have been developed, most famously is the Nash

equilibrium, in fact the idea of Nash equilibrium is one of the most powerful

concepts in game theory.

Nash is an American mathematician who worked in game theory, di�erential

geometry, serving as a Senior Research Mathematician at Princeton Univer-

sity [5]. He shared the 1994 Nobel Memorial Prize in Economic Sciences with

game theorists Reinhard Selten and John Harsanyi.
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A game consists of a number of players, say n, and each player can play

one strategy out of a set of �nite strategy.

Loosely speaking a Nash Equilibria (N.E.) is a set of strategy (strategy pro-

�le) if each represents a best response to the other strategies. So, if all the

players are playing the strategies in a Nash equilibrium, they have no uni-

lateral incentive to deviate, since their strategy is the best they can do given

what others are doing [3].

Nash equilibria are usually divided into two types: Pure strategy Nash equi-

libria (P.N.E.) and Mixed strategy Nash equilibria (M.N.E.).

MNE refer to situations where a single player chooses its strategy according

to some prescribed probability law.

We shall focus on the conceptually simpler notion of PNE. To describe this

notion in detail let σ = (σ1, ..., σn) denote the strategy pro�le where each σi

belongs to a �nite set Ω1 and let {ui(σ)}σ∈Ω, i=1,...,n. denote the payo� tables

in our game (ui(σ) represents the pasyo� of the i-th player in the strategy

pro�le σ).

We say that σ ∈ (Ω1)n = Ωn is a PNE if

ui(σ) ≥ max
σ(i)

ui(σ
(i))

where the max is over all σ′ ∈ Ωn such that σ′j = σj for every j 6= i.

John Nash won a Nobel prize proving that there is mixed equilibrium for

every �nite game. While Nash proved that every �nite game has a Nash

mixed equilibrium, but not all have pure strategy Nash equilibria.

For an example of a game that does not have a Nash equilibrium in pure

strategies see Matching pennies in Chapter(3).
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However, many games have pure strategy Nash equilibria, we can see the

example of Prisoner's Dilemma in Chapter(3).

Further, games can have both pure strategy and mixed strategy equilibria.

We have discussed the setting of a �nite games. A Random Game is a game

where the payo� functions are random variables.

Here we consider in detail the Indipendent Model, i.e. the case where the

payo� of the di�erent players are indipendent random variables [10].

The indipendent model is de�ned as follows. Let Σ = {1, ..., n} be a set of

players and σ = (σ1, ..., σn) ∈ Ωn is the strategy pro�le, where σi ∈ Ω1 is

the strategy of the i-th player. For simplicity (and without serius loss of

generality) we shall only consider the case Ω1 = {±1}, therefore |Ωn| = 2n.

The payo� table is speci�ed by functions ui : Ωn → <, i ∈ N .

In our model the {ui(σ)}σ∈Ω, i=1,...,n. will be chosen as i.i.d. random variables

with common low µ on <. We shall assume that µ has no atom.

De�nition 0.1. Let N = {1, ..., n} be the set of players, and ui(σ1, ..., σn) ∈

< the vector of the payo� for the i-th player.

A pro�le σ = (σ1, ..., σn) is a P.N.E. when for every player i ∈ N :

ui(σ) ≥ ui(σ
(i)),

where σ(i) denotes the pro�le σ "�ipped" at i, more precisely

(σ(i))j =

 σj if j 6= i

−σj if j = i

As an example consider a game with three players.
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Here σi ∈ {−1,+1}, so we have |Ω| = 23 strategy pro�les.

Therefore there are, for every strategy pro�le σ = (σ1, σ2, σ3), three di�erent

variables: ui(σ1, σ2, σ3) with i = 1, 2, 3.

Now we write all the three di�erent payo� tables:

First player. Second player. Third player.

u1(−1;−1;−1) = X1 u2(−1;−1;−1) = Y1 u3(−1;−1;−1) = Z1

u1(−1; +1;−1) = X2 u2(−1; +1;−1) = Y2 u3(−1; +1;−1) = Z2

u1(−1;−1; +1) = X3 u2(−1;−1; +1) = Y3 u3(−1;−1; +1) = Z3

u1(+1;−1;−1) = X4 u2(+1;−1;−1) = Y4 u3(+1;−1;−1) = Z4

u1(−1; +1; +1) = X5 u2(−1; +1; +1) = Y5 u3(−1; +1; +1) = Z5

u1(+1;−1; +1) = X6 u2(+1;−1; +1) = Y6 u3(+1;−1; +1) = Z6

u1(+1; +1;−1) = X7 u2(+1; +1;−1) = Y7 u3(+1; +1;−1) = Z7

u1(+1; +1; +1) = X8 u2(+1; +1; +1) = Y8 u3(+1; +1; +1) = Z8

Analize, for example, the case with:

• First player chooses: +1

• Second player chooses: −1

• Third player chooses: +1

Therefore the vector is σ = (+1,−1,+1) and the pay-o�s are u1(σ) = X6,

u2(σ) = Y6 and u3(σ) = Z6.

Now the question is: what is the probability that σ = (+1,−1,+1) is a

P.N.E.?
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σ = (+1,−1,+1) is a P.N.E. ⇔ (X6 ≥ X3, Y6 ≥ Y8, Z6 ≥ Z4), because

every player can change only his strategy without touch the other players's

game.

Passing to the probability and using the indipendence condition we can �nd:

P (σ is a P.N.E.) = P ({X6 ≥ X3} ∩ {Y6 ≥ Y8} ∩ {Z6 ≥ Z4})

= P (X6 ≥ X3)P (Y6 ≥ Y8)P (Z6 ≥ Z4)

=
1

2

1

2

1

2
=

1

23

If the law µ of the payo� has density on < gives by ϕ, we have

P (Xi ≥ Yi) =

∫
<

∫
<
ϕ(x)ϕ(y)1{x≥y}dxdy

=

∫
<

∫
<
ϕ(x)ϕ(y)1{x<y}dxdy

=
1

2

because the integrals are symmetrical and from the beginning we suppose µ

without atoms.

Proposition 0.1. In the indipendent model we have, for every n, and for

every σ ∈ Ωn

P (σ is a P.N.E.) =
1

2n
.

In particular if W =
∑

σ∈Ωn
1{σ is a P.N.E.} then

E [W ] = 1.
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Proof. As in the case with n = 3 above we have

P (σ is a P.N.E.) =
n∏
i=1

P (Xi ≥ Yi)

=
n∏
i=1

{∫
<

∫
<
ϕ(x)ϕ(y)1{x≥y}dxdy

}
=

n∏
i=1

1

2
=

1

2n
.

Now we can prove that E [W ] = 1, infact

E [W ] = E

[∑
σ∈Ωn

1{σ is a P.N.E.}

]
=

∑
σ∈Ωn

E
[
1{σ is a P.N.E.}

]
=

∑
σ∈Ωn

P (σ is a P.N.E)

= 2nP (σ is a P.N.E.) = 2n
1

2n
= 1

De�nition 0.2. Let f, h: ℵ → <, and write ||h|| := supk>0|h(k)|. We denote

the total variation distance between the distributions of two random variables

W and Z by

‖`(W )− `(Z)‖ := sup||h||=1 |E [h(W )]− E [h(Z)]| .

The goal of this work is to prove that the distribution of the number

of PNE is approximately Poisson for n large, in the sense of total variation

norm de�nited above.

This result will be obtained by the so-called Chen Stein Method for Poisson

convergence [2]. A convenient form of this method can be found in the work

of Arratia et al. [1].
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In Chapther(2) we prove the following theorem.

Theorem 0.1. In the independent model let W =
∑

σ∈Ωn
Xσ be the number

of PNE, and let Z be a Poisson random variable with E [Z] = E [W ] = 1.

Then:

‖`(W )− `(Z)‖ n→∞−→ 0.

7



Bibliography

[1] Richard Arratia, Larry Goldstein, Louis Gordon. Two moments Su�ce

for Poisson Approximations: The Chen-Stein method. Institute of Math-

ematical Statistics, 1989.

[2] Richard Arratia, Larry Goldstein, Louis Gordon. Poisson approximation

and the Chen-Stein method. Statistical Science, 1990.

[3] Drew Fundenberg, Jean Tirole. Game Theory. The MIT press, 1996.

[4] A. Goldman. The Probability of a Saddlepoint. American Mathematic

stat., 1957.

[5] Giorgio Israel, Ana Millan Gasca. Il mondo come gioco matematico. La

Nuova Italia Scienti�ca, 1995.

[6] Marc Lieberman, Robert Hall. Pricipi di economia. Apogeo, 2005.

[7] Elchanan Mossel, Constantinos Daskalakis, Alexandros Dimakis. Connec-

tivity and Equilibrium in Random Games. math.PR, 2008.

8



[8] John von Neumann, Oskar Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

[9] Martin J. Osborne. A course in Game Theory. The MIT press, 1994.

[10] Yosef Rinott, Marco Scarsini. On the Number of Pure Strategy Nash

Equilibria in Random Games. Academic Press, 2000.

9


