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IMU Awards and Prizes

NEW: The International Union has awarded its 2006 prizes on August 22, 2006 during the Opening
Ceremony of the International Congress of Mathematicians in Madrid, Spain. Information about the
winners can be found here.

The International Mathematical Union grants three Prizes:

Fields Medal Rolf Nevanlinna Prize Carl Friedrich Gauss Prize
for Applications of Mathematics

IMU Prizes are awarded every four years at the Opening Ceremony of the International Congress of
Mathematicians (ICM). The Fields Medal recognizes outstanding mathematical achievement. The Rolf
Nevanlinna Prize honors distinguished achievements in mathematical aspects of information science.
The Carl Friedrich Gauss Prize is awarded for outstanding mathematical contributions that have found
significant applications outside of mathematics.

The Fields Medal was first awarded in 1936, the Rolf Nevanlinna Prize in 1982. The Carl Friedrich Gauss
Prize will be awarded for the first time in 2006.

About two years in advance of an award the IMU Executive Committee appoints a Selection Committee
along the lines of the Prize Statutes and the IMU By-Laws.

N o m i n a t i o n

Nomination Procedures for all IMU prizes are described under "Nomination Guidelines" .

Fields Medal

Fields Medal Details
List of Fields Medallists

Rolf Nevanlinna Prize

Rolf Nevanlinna Prize Details
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List of winners of the Rolf Nevanlinna Prize

Carl Friedrich Gauss Prize

Carl Friedrich Gauss Prize Details
List of winners of the Carl Friedrich Gauss Prize

Prize Committee Chairs for the International Congress of Mathematicians 2006

Former Prize Committees

The Abel Prize

The Abel Prize is awarded by the Norwegian Academy of Science and Letters.

IMU nominates members of The Abel Committee:

The Abel Prize Details
List of winners of the Abel Prize

The Ramanujan Prize

A new Prize for young mathematicians from developing countries has been created in the name of
Srinivasa Ramanujan by the International Centre for Theoretical Physics (ICTP), in cooperation with
IMU, who nominate members of the Prize Committee. The Prize money is donated by the Niels Henrik
Abel Memorial Fund

The Prize will be awarded annually to a researcher from a developing country less than 45 years of age at
the time of the award, who has conducted outstanding research in a developing country.

The Ramanujan Prize details
Announcement of the Ramanujan Prize 2006
List of winners of the Ramanujan Prize

 last update: 2006-08-22 © IMU http://www.mathunion.org
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Fields Medals 2006

Andrei Okounkov Grigori Perelman

Terence Tao Wendelin Werner

The Fields medals were given to the recipients by king Juan Carlos of Spain. 
IMU President John Ball, chair of the Fields Medal Committee, announced the winners with a
Power Point presentation.

Press Releases

Fields Prize 2006 Overview
Fields Prize 2006 for Andrei Okounkov
Fields Prize 2006 for Grigori Perelman
Fields Prize 2006 for Terence Tao
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Fields Prize 2006 for Wendelin Werner

Rolf Nevanlinna Prize 2006

Jon Kleinberg

The Nevanlinna Prize was given to the recipient by king Juan Carlos of Spain. 
Margaret Wright, chair of the Rolf Nevanlinna Prize Committee, announced the winner with a
Power Point presentation.

Press Releases

Nevalinna Prize 2006 for Jon Kleinberg

Carl Friedrich Gauss Prize for Applications of Mathematics 2006

Kiyoshi Itô

The Gauss Prize was presented to Junko Itô, the youngest daughter of the recipient, by king
Juan Carlos of Spain. Kiyoshi Itô could not attend the award ceremony for health reasons.
Martin Grötschel, chair of the Gauss Prize Committee, announced the winner with a Power 
Point presentation [also available in PDF].

Press Releases

Gauss Prize 2006 for Kiyoshi Itô
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Gauss Prize 2006 for Kiyoshi Itô (long version)

 last update: 2006-08-22 © IMU http://www.mathunion.org



Fields Medals awarded at the ICM2006:
Okounkov, Perelman, Tao and Werner

• The winners of the Fields Medals awarded today, 22nd of August, in
Madrid, during the opening ceremony of the International Congress of
Mathematicians ICM2006, are: Andrei Okounkov; Grigori Perelman;
Terence Tao; and Wendelin Werner.

• The Nevanlinna Prize is awarded to Jon Kleinberg. The Gauss Prize goes
to Kiyoshi Itô (Please see separate press release for the Gauss Prize.)

The Fields Medals are the most important international prize in the world of
mathematics. They are awarded by the International Mathematical Union (IMU)
every four years at the ICM (International Congress of Mathematicians). They
are accompanied by strict conditions. For example, the identity of the winners
must remain confidential until the presentation ceremony. The awardees are
chosen by a committee whose members must also remain anonymous, and
who are sworn to secrecy until the official public announcement of their
decisions. The award-winners are notified separately a few weeks before the
official presentation, although they too are unaware of which of their colleagues
have been chosen to receive the prizes.

Between two and four Fields Medals can be awarded at each ICM, and only
those mathematicians below the age of 40 (on January 1st of the year in which
the Congress is held) are eligible to receive them. This is because they are
meant to encourage future endeavour. They are typically awarded for a body of
work, rather than a single isolated achievement.

The medals, gold-minted, are named after the Canadian mathematician John
Charles Fields (1863-1932) and were first awarded at the International
Congress held in Oslo in 1936.

The obverse of the medals shows Archimedes facing right and the motto
“Transire Suum Pectus Mundoque Potir”: “To transcend one's spirit and to take
hold of (to master) the world”. On the reverse side, also in Latin, the inscription
"The mathematicians having congregated from the whole world awarded (this
medal) because of outstanding writings”. The name of the Medallist is engraved
on the rim of the medal.

Fields Medals ICM2006

Andrei Okounkov: "for his contributions bridging probability, representation
theory and algebraic geometry"

The work of Andrei Okounkov has revealed profound new connections between
different areas of mathematics and has brought new insights into problems
arising in physics. Although his work is difficult to classify because it touches
on such a variety of areas, two clear themes are the use of notions of



randomness and of classical ideas from representation theory. This
combination has proven powerful in attacking problems from algebraic
geometry and statistical mechanics. (Further information at www.icm2006.org)

Andrei Okounkov was born in 1969 in Moscow. He received his doctorate in
mathematics from Moscow State University in 1995. He is a professor of
mathematics at Princeton University. He has also held positions at the Russian
Academy of Sciences, the Institute for Advanced Study in Princeton, the
University of Chicago, and the University of California, Berkeley. His
distinctions include a Sloan Research Fellowship (2000), a Packard Fellowship
(2001), and the European Mathematical Society Prize (2004).

Contact: Enrico Arbarello, ea@mat.uniroma1.it, +39 3386397112

Grigori Perelman: "for his contributions to geometry and his revolutionary
insights into the analytical and geometric structure of the Ricci flow"

The name of Grigori Perelman is practically a household word among the
scientifically interested public. His work from 2002-2003 brought ground-
breaking insights into the study of evolution equations and their singularities.
Most significantly, his results provide a way of resolving two outstanding
problems in topology: the Poincare Conjecture and the Thurston
Geometrization Conjecture. As of the summer of 2006, the mathematical
community is still in the process of checking his work to ensure that it is
entirely correct and that the conjectures have been proved. After more than
three years of intense scrutiny, top experts have encountered no serious
problems in the work (Further information at www.icm2006.org)

Grigori Perelman was born in 1966 in what was then the Soviet Union. He
received his doctorate from St. Petersburg State University. During the 1990s
he spent time in the United States, including as a Miller Fellow at the
University of California, Berkeley. He was for some years a researcher in the St.
Petersburg Department of the Steklov Institute of Mathematics. In 1994, he
was an invited speaker at the International Congress of Mathematicians in
Zurich.

Terence Tao: "for his contributions to partial differential equations,
combinatorics, harmonic analysis and additive number theory".

Terence Tao is a supreme problem-solver whose spectacular work has had an
impact across several mathematical areas. He combines sheer technical power,
an other-worldly ingenuity for hitting upon new ideas, and a startlingly natural
point of view that leaves other mathematicians wondering, "Why didn't anyone
see that before?". His interests range over a wide swath of mathematics,
including harmonic analysis, nonlinear partial differential equations, and
combinatorics. (Further information at www.icm2006.org)



Terence Tao was born in Adelaide, Australia, in 1975. He received his PhD in
mathematics in 1996 from Princeton University. He is a professor of
mathematics at the University of California, Los Angeles. Among his
distinctions are a Sloan Foundation Fellowship, a Packard Foundation
Fellowship, and a Clay Mathematics Institute Prize Fellowship. He was awarded
the Salem Prize (2000), the American Mathematical Society (AMS) Bocher Prize
(2002), and the AMS Conant Prize (2005, jointly with Allen Knutson). At 31
years of age, Tao has written over 80 research papers, with over 30
collaborators.

Contact: Charles Fefferman, cf@Math.Princeton.EDU

Wendelin Werner: “for his contributions to the development of stochastic
Loewner evolution, the geometry of two-dimensional Brownian motion, and
conformal field theory".

The work of Wendelin Werner and his collaborators represents one of the most
exciting and fruitful interactions between mathematics and physics in recent
times. Werner's research has developed a new conceptual framework for
understanding critical phenomena arising in physical systems and has brought
new geometric insights that were missing before. The theoretical ideas arising
in this work, which combines probability theory and ideas from classical
complex analysis, have had an important impact in both mathematics and
physics and have potential connections to a wide variety of applications.
(Further information at www.icm2006.org)

Born in 1968 in Germany, Wendelin Werner is of French nationality. He
received his PhD at the University of Paris VI in 1993. He has been professor of
mathematics at the University of Paris-Sud in Orsay since 1997. From 2001 to
2006, he was also a member of the Institut Universitaire de France, and since
2005 he has been seconded part-time to the Ecole Normale Supèrieure in Paris.
Among his distinctions are the Rollo Davidson Prize (1998), the European
Mathematical Society Prize (2000), the Fermat Prize (2001), the Jacques
Herbrand Prize (2003), the Loève Prize (2005) and the Pólya Prize (2006).

Contact: Charles Newman, newman@courant.nyu.edu

Nevanlinna Prize to Jon Kleinberg
The Nevanlinna Prize has been awarded every four years since 1982 in
recognition of the most notable advances made in mathematics in the
Information Society (e.g. computational science, programming languages,
algorithm analysis, etc.). This prize consists of a gold medal bearing the profile
of Rolf Nevanlinna (1895-1980), rector of the University of Helsinki and
president of the IMU (International Mathematical Union). Nevanlinna was the
first mathematician to introduce computation into Finnish universities in
1950.



Jon Kleinberg's work has brought theoretical insights to bear on important
practical questions that have become central to understanding and managing
our increasingly networked world. He has worked in a wide range of areas,
from network analysis and routing, to data mining, to comparative genomics
and protein structure analysis. In addition to making fundamental
contributions to research, Kleinberg has thought deeply about the impact of
technology, in social, economic, and political spheres. (Further information at
www.icm2006.org)

Jon Kleinberg was born in 1971 in Boston, Massachusetts, USA. He received
his Ph.D. in 1996 from the Massachusetts Institute of Technology. He is a
professor of computer science at Cornell University. Among his distinctions are
a Sloan Foundation Fellowship (1997), a Packard Foundation Fellowship
(1999), and the Initiatives in Research Award of the U.S. National Academy of
Sciences (2001). In 2005, Kleinberg received a MacArthur "genius" Fellowship
from the John D. and Catherine T. MacArthur Foundation.

Contact: John Hopcroft, jeh@cs.cornell.edu

============



Fields Medal

Andrei Okounkov

CITATION:
"For  his  contributions  bridging  probability,  representation  theory  and 
algebraic geometry"

The  work  of  Andrei  Okounkov  has  revealed  profound  new  connections 
between different areas of mathematics and has brought new insights into 
problems arising in physics. Although his work is difficult to classify because 
it touches on such a variety of areas, two clear themes are the use of notions 
of  randomness  and  of  classical  ideas  from  representation  theory.  This 
combination  has  proven  powerful  in  attacking  problems  from  algebraic 
geometry and statistical mechanics.

One of the basic objects of study in representation theory is the "symmetric 
group",  whose elements  are  permutations  of  objects.  For  example,  if  the 
objects are the letters {C, G, J,  M, N, O, Q, Z}, then a permutation is an 
ordering of the letters, such as GOQZMNJC or JZOQCGNM. The number of 
possible permutations grows quickly as the number of objects grows; for 8 
objects, there are already 40,320 different permutations. If we consider an 
abstract  set of  n objects,  then the "symmetric  group on n letters" is  the 
collection of all the different permutations of those n objects, together with 
rules  for  combining  the  permutations.

Representation  theory  allows  one  to  study  the  symmetric  group  by 
representing it by other mathematical objects that provide insights into the 
group's salient features. The representation theory of the symmetric group is 
a well developed subfield that has important uses within mathematics itself 
and also in other scientific areas, such as quantum mechanics. It turns out 
that, for the symmetric group on n letters, the building blocks for all of its 
representations are indexed by the "partitions" of n. A partition of a number 
n is just a sequence of positive numbers that add up to n; for example 2 + 3 
+ 3 +4 + 12 is a partition of 24.

Through  the  language  of  partitions,  representation  theory  connects  to 
another branch of mathematics called "combinatorics", which is the study of 
objects that have discrete, distinct  parts.  Many continuous phenomena in 
mathematics  are  related  by  virtue  of  having  a  common  discrete 
substructure,  which  then  raises  combinatorial  questions.  Continuous 
phenomena can also be discretized, making them amenable to the methods 
of combinatorics. Partitions are among the most basic combinatorial objects, 
and their study goes back at least to the 18th century.

Randomness  enters  into  combinatorics  when  one  considers  very  large 
combinatorial objects, such as the set of all partitions of a very large number. 
If one thinks of partitioning a number as randomly cutting it up into smaller 



numbers,  one  can  ask,  What  is  the  probability  of  obtaining  a  particular 
partition? Questions of a similar nature arise in representation theory of large 
symmetric groups. Such links between probability and representation theory 
were considered by mathematicians in Russia during the 1970s and 1980s. 
The key to finding just the right tool from probability theory suited to this 
question derives from viewing partitions as representations of the symmetric 
group. A Russian who studied at Moscow State University, Andrei Okounkov 
absorbed this  viewpoint  and  has  deployed it  with  spectacular  success  to 
attack a wide range of problems.

One of his early outstanding results concerns "random matrices", which have 
been extensively studied in physics. A random matrix is a square array of 
numbers in which each number is chosen at random. Each random matrix 
has  associated  with  it  a  set  of  characteristic  numbers  called  the 
"eigenvalues" of  the matrix.  Starting in  the 1950s,  physicists  studied the 
statistical properties of eigenvalues of random matrices to gain insight into 
the problem of the prediction and distribution of energy levels of nuclei. In 
recent  years,  random  matrices  have  received  renewed  attention  by 
mathematicians  and  physicists.

Okounkov has used ideas from quantum field theory to prove a surprising 
connection  between  random  matrices  and  increasing  subsequences  in 
permutations of numbers. An increasing subsequence is just what it sounds 
like:  For  example,  in  a  permutation of  the numbers  from 1 up to  8,  say 
71452638, two increasing subsequences are 14568 and 1238. There is a way 
to  arrange  these  increasing  subsequences  into  a  hierarchy:  the  longest 
subsequence, followed by the second-longest, the third-longest, and so forth, 
down to the shortest. Okounkov proved that, for very large n, the sequence 
of  largest  eigenvalues  of  an  n-by-n  random  matrix  behaves,  from  the 
probabilistic point of view, in the same way as the lengths of the longest 
increasing subsequences in permutations of the numbers from 1 to n. In his 
proof,  Okounkov  took  a  strikingly  original  approach  by  reformulating  the 
question in a completely different context, namely, as a comparison of two 
different  descriptions  of  a  random  surface.  This  work  established  a 
connection to algebraic  geometry,  providing a seed for  some of  his  later 
work in that subject.

Random surfaces also arise in Okounkov's work in statistical mechanics. If 
one heats, say, a cubical crystal from a low temperature, one finds that the 
corners of the cube are eaten away as the crystal "melts". The geometry of 
this melting process can be visualized by imagining a corner to consist of a 
bunch of  tiny blocks.  The melting of  the crystal  corresponds to removing 
blocks at random. Thinking of the partitioning of the crystal into tiny blocks 
as  analogous  to  partitioning  integers,  Okounkov  brought  his  signature 
methods to bear on the analysis of the random surfaces that arise. In joint 
work with Richard Kenyon, Okounkov proved the surprising result that the 
melted part of the crystal, when projected onto two dimensions, has a very 
distinctive shape and is always encircled by an algebraic curve---that is, a 
curve that can be defined by polynomial equations. This is illustrated in the 



accompanying  figure;  here  the  curve  is  a  heart-shaped  curve  called  a 
cardioid. The connection with real algebraic geometry is quite unexpected.

Over  the  past  several  years,  Okounkov  has,  together  with  Rahul 
Pandharipande and other collaborators, written a long series of papers on 
questions in enumerative algebraic geometry, an area with a long history 
that in recent years has been enriched by the exchange of ideas between 
mathematicians and physicists. A standard way of studying algebraic curves 
is to vary the coefficients in the polynomial equations that define the curves 
and then impose conditions---for example, that the curves pass through a 
specific collection of points. With too few conditions, the collection of curves 
remains infinite; with too many, the collection is empty. But with the right 
balance of conditions, one obtains a finite collection of curves. The problem 
of  "counting  curves"  in  this  way---a  longstanding  problem  in  algebraic 
geometry  that  also  arose  in  string  theory---is  the  main  concern  of 
enumerative  geometry.  Okounkov  and  his  collaborators  have  made 
substantial  contributions to enumerative geometry,  bringing in ideas from 
physics and deploying a wide range of tools from algebra, combinatorics, and 
geometry. Okounkov's ongoing research in this area represents a marvelous 
interplay of ideas from mathematics and physics.

1150 words

BIOGRAPHICAL SKETCH:

Andrei Okounkov was born in 1969 in Moscow. He received his doctorate in 
mathematics  from Moscow State University  in  1995.  He is  a  professor  of 
mathematics  at  Princeton  University.  He  has  also  held  positions  at  the 
Russian Academy of Sciences, the Institute for Advanced Study in Princeton, 
the  University  of  Chicago,  and  the  University  of  California,  Berkeley.  His 
distinctions include a Sloan Research Fellowship (2000), a Packard Fellowship 
(2001), and the European Mathematical Society Prize (2004).

PICTURE CAPTION:

This picture shows a random surface that can be thought of as the "melting" 
of a crystal. The heart-shaped curve forming the border between the melted 
and frozen regions is called a cardioid. Image courtesy of Richard Kenyon and 
Andrei Okounkov.

Picture: heart.ps 



Portrait of Anrei Okounkov: courtesy of Andrei Okounkov.



INFORMATION  EMBARGOED  UNTIL  TUESDAY  AUGUST  22ND,  12:00 
AM, CENTRAL EUROPEAN TIME)

Fields Medal

Grigory Perelman

CITATION: "For his contributions to geometry and his revolutionary insights 
into  the  analytical  and  geometric  structure  of  the  Ricci  flow"

The name of Grigory Perelman is practically a household word among the 
scientifically  interested public.  His  work  from 2002-2003 brought  ground-
breaking insights into the study of evolution equations and their singularities. 
Most  significantly,  his  results  provide a  way of  resolving two outstanding 
problems  in  topology:  the  Poincare  Conjecture  and  the  Thurston 
Geometrization Conjecture.  As  of  the  summer of  2006,  the mathematical 
community is still  in the process of checking his work to ensure that it is 
entirely correct and that the conjectures have been proved. After more than 
three years of  intense scrutiny,  top experts  have encountered no serious 
problems in the work.

For decades the Poincaré Conjecture has been considered one of the most 
important  problems  in  mathematics.  The  conjecture  received  increased 
attention from the general public when it was named as one of the seven 
Millennium Prize Problems established by the Clay Mathematics Institute in 
2000. The institute has pledged to award a prize of one-million US dollars for 
the  solution  of  each  problem.  The  work  of  Perelman  on  the  Poincaré 
Conjecture is the first serious contender for one of these prizes.

The  Poincaré  Conjecture  arises  in  topology,  which  studies  fundamental 
properties  of  shapes  that  remain  unchanged  when  the  shapes  are 
deformed---that  is,  stretched,  warped,  or  molded,  but  not  torn.  A  simple 
example of such a shape is the 2-sphere, which is the 2-dimensional surface 
of a ball in 3-dimensional space. Another way to visualize the 2-sphere is to 
take a disk lying in the 2-dimensional plane and identify the disk's boundary 
points to a single point; this point can be thought of as the north pole of the 
2-sphere. Although globally the 2-sphere looks very different from the plane, 
every point  on the sphere sits in a region that  looks like the plane.  This 
property  of  looking locally  like the plane is  the defining property  of  a  2-
dimensional manifold, or 2-manifold. Another example of a 2-manifold is the 
"torus", which is the surface of a doughnut.

Although locally the 2-sphere and the torus look the same,  globally their 
topologies are distinct: Without tearing a hole in the 2-sphere, there is no 
way to deform it into the torus. Here is another way of seeing this distinction. 
Consider a loop lying on the 2-sphere. No matter where it is situated on the 
2-sphere, the loop can be shrunk down to a point, with the shrinking done 
entirely within the sphere. Now imagine a loop lying on the torus: If the loop 



goes around the hole, the loop cannot be shrunk to a point. If loops can be 
shrunk to a point in a manifold, the manifold is called "simply connected". 
The 2-sphere is simply connected, while the torus is not. The analogue of the 
Poincar\'e Conjecture in 2 dimensions would be the assertion that any simply 
connected 2-manifold of finite size can be deformed into the 2-sphere, and 
this assertion is correct. It is natural then to ask, What can be said about 
non-simply-connected 2-manifolds? It turns out that they can all be classified 
according to the number of holes: They are all deformations of the torus, or 
of the double-torus (with 2 holes),  or of the triple torus (the surface of a 
pretzel),  etc.  (One actually needs two other technical  assumptions in this 
discussion, compactness and orientability.) 

Geometry  offers  another  way of  classifying 2-manifolds.  When one views 
manifolds topologically, there is no notion of measured distance. Endowing a 
manifold with a metric provides a way of measuring distance between points 
in the manifold and leads to the geometric notion of curvature. 2-manifolds 
can be classified by their geometry: A 2-manifold with positive curvature can 
be deformed into a 2-sphere; one with zero curvature can be deformed into a 
torus; and one with negative curvature can be deformed into a torus with 
more than one hole.

The Poincaré Conjecture,  which originated with the French mathematician 
Henri Poincaré in 1904, concerns 3-dimensional manifolds, or 3-manifolds. A 
basic example of a 3-manifold is the 3-sphere: In analogy with the 2-sphere, 
one obtains the 3-sphere by taking a ball in 3-dimensions and identifying its 
boundary points to a single point. (Just as 3-dimensional space is the most 
natural home for the 2-sphere, the most natural home for the 3-sphere is 4-
dimensional space---which of course is harder to visualize.) Can every simply 
connected  3-manifold  be  deformed  into  the  3-sphere?  The  Poincaré 
Conjecture asserts that the answer to this question is yes. Just as with 2-
manifolds,  one could  also  hope for  a  classification  of  3-manifolds.  In  the 
1970s, Fields Medalist William Thurston made a new conjecture, which came 
to be called the Thurston Geometrization Conjecture and which gives a way 
to classify all 3-manifolds. The Thurston Geometrization Conjecture provides 
a  sweeping  vision  of  3-manifolds  and  actually  includes  the  Poincaré 
Conjecture as a special case. Thurston proposed that, in a way analogous to 
the case of 2-manifolds, 3-manifolds can be classified using geometry. But 
the analogy does not extend very far: 3-manifolds are much more diverse 
and complex than 2-manifolds.

Thurston  identified  and  analyzed  8  geometric  structures  and  conjectured 
that  they  provide  a  means  for  classifying  3-manifolds.  His  work 
revolutionized  the  study  of  geometry  and  topology.  The  8  geometric 
structures were intensively investigated, and the Geometrization Conjecture 
was verified in many cases; Thurston himself proved it for a large class of 
manifolds. But hopes for a proof of the conjecture in full generality remained 
unfulfilled.

In 1982, Richard Hamilton identified a particular evolution equation, which he 
called  the  Ricci  flow,  as  the  key  to  resolving  the  Poincaré  and  Thurston 



Geometrization Conjectures. The Ricci flow is similar to the heat equation, 
which describes how heat flows from the hot part of an object to the cold 
part, eventually homogenizing the temperature to be uniform throughout the 
object.  Hamilton's  idea  was  to  use  the  Ricci  flow  to  homogenize  the 
geometry  of  3-manifolds  to  show that  their  geometry  fits  into  Thurston's 
classification. Over more than twenty years, Hamilton and other geometric 
analysts made great progress in understanding the Ricci flow. But they were 
stymied  in  figuring  out  how  to  handle  "singularities",  which  are  regions 
where  the  geometry,  instead  of  getting  homogenized,  suddenly  exhibits 
uncontrolled changes.

That was where things stood when Perelman's work burst onto the scene. In 
a  series  of  papers  posted  on  a  preprint  archive  starting  in  late  2002, 
Perelman established ground-breaking results about the Ricci  flow and its 
singularities.  He  provided  new  ways  of  analyzing  the  structure  of  the 
singularities and showed how they relate to the topology of the manifolds. 
Perelman broke the impasse in the program that Hamilton had established 
and validated the vision of using the Ricci flow to prove the Poincar\'e and 
Thurston Geometrization Conjectures. Although Perelman's work appears to 
provide a definitive endpoint in proving the conjectures, his contributions do 
not stop there. The techniques Perelman introduced for handling singularities 
in the Ricci flow have generated great excitement in geometric analysis and 
are beginning to be deployed to solve other problems in that area.

Perelman's combination of deep insights and technical brilliance mark him as 
an outstanding mathematician. In illuminating a path towards answering two 
fundamental  questions in  3-dimensional  topology,  he has had a profound 
impact on mathematics.

1238 words

BIOGRAPHICAL SKETCH

Grigory Perelman was born in 1966 in what was then the Soviet Union. He 
received his doctorate from St. Petersburg State University. During the 1990s 
he  spent  time  in  the  United  States,  including  as  a  Miller  Fellow  at  the 
University of California, Berkeley. He was for some years a researcher in the 
St. Petersburg Department of the Steklov Institute of Mathematics. In 1994, 
he was an invited speaker at the International Congress of Mathematicians in 
Zurich.



Fields Medal 

Terence Tao 

CITATION: 
"For his contributions to partial differential equations, combinatorics, 
harmonic analysis and additive number theory" 

Terence Tao is a supreme problem-solver whose spectacular work has had an 
impact across several mathematical areas. He combines sheer technical power, 
an other-worldly ingenuity for hitting upon new ideas, and a startlingly natural 
point of view that leaves other mathematicians wondering, "Why didn't anyone 
see that before?" 

At 31 years of age, Tao has written over 80 research papers, with over 30 
collaborators, and his interests range over a wide swath of mathematics, 
including harmonic analysis, nonlinear partial differential equations, and 
combinatorics. "I work in a number of areas, but I don't view them as being 
disconnected," he said in an interview published in the Clay Mathematics 
Institute Annual Report. "I tend to view mathematics as a unified subject and 
am particularly happy when I get the opportunity to work on a project that 
involves several fields at once." 

Because of the wide range of his accomplishments, it is difficult to give a brief 
summary of Tao's oeuvre. A few highlights can give an inkling of the breadth 
and depth of the work of this extraordinary mathematician. 

The first highlight is Tao's work with Ben Green, a dramatic new result about 
the fundamental building blocks of mathematics, the prime numbers. Green 
and Tao tackled a classical question that was probably first asked a couple of 
centuries ago: Does the set of prime numbers contain arithmetic progressions 
of any length? An "arithmetic progression" is a sequence of whole numbers that 
differ by a fixed amount: 3, 5, 7 is an arithmetic progression of length 3, where 
the numbers differ by 2; 109, 219, 329, 439, 549 is a progression of length 5, 
where the numbers differ by 110. A big advance in understanding arithmetic 
progressions came in 1974, when the Hungarian mathematician Emre 
Szemeredi proved that any infinite set of numbers that has "positive density" 
contains arithmetic progressions of any length. A set has positive density if, for 
a sufficiently large number n, there is always a fixed percentage of elements of 
{1, 2, 3, ... n} in the set. Szemeredi's theorem can be seen from different points 
of view, and there are now at least three different proofs of it, including 
Szemeredi's original proof and one by 1998 Fields Medalist Timothy Gowers. 
The primes do not have positive density, so Szemeredi's theorem does not apply 
to them; in fact, the primes get sparser and sparser as the integers stretch out 
towards infinity. Remarkably, Green and Tao proved that, despite this 
sparseness, the primes do contain arithmetic progressions of any length. Any 
result that sheds new light on properties of prime numbers marks a significant 
advance. This work shows great originality and insight and provides a solution 
to a deep, fundamental, and difficult problem. 



Another highlight of Tao's research is his work on the Kakeya Problem, which 
in its original form can be described in the following way. Suppose you have a 
needle lying flat on a plane. Imagine the different possible shapes swept out 
when you rotate the needle 180 degrees. One possible shape is a half-disk; with 
a bit more care, you can perform the rotation within a quarter-disk. The 
Kakeya problem asks, What is the minimum area of the shape swept out in 
rotating the needle 180 degrees? The surprising answer is that the area can be 
made as small as you like, so in some sense the minimum area is zero. 
The fractal dimension of the shape swept out provides a finer kind of 
information about the size of the shape than you obtain in measuring its area. 
A fundamental result about the Kakeya problem says that the fractal 
dimension of the shape swept out by the needle is always 2. 
 
Imagine now that the needle is not in a flat plane, but in n-dimensional space, 
where n is bigger than 2. The n-dimensional Kakeya problem asks, What is the 
minimum volume of an n-dimensional shape in which the needle can be turned 
in any direction? Analogously with the 2-dimensional case, this volume can be 
made as small as you like. But a more crucial question is, What can be said 
about the fractal dimension of this n-dimensional shape? No one knows the 
answer to that question. The technique of the proof that, in the 2-dimensional 
plane the fractal dimension is always 2, does not work in higher dimensions. 
The n-dimensional Kakeya problem is interesting in its own right and also has 
fundamental connections to other problems in mathematics in, for example, 
Fourier analysis and nonlinear waves. Terence Tao has been a major force in 
recent years in investigating the Kakeya problem in n dimensions and in 
elucidating its connections to other problems in the field. 
 
Another problem Tao has worked on is understanding wave maps. This topic 
arises naturally in the study of Einstein's theory of general relativity, according 
to which gravity is a nonlinear wave. No one knows how to solve completely the 
equations of general relativity that describe gravity; they are simply beyond 
current understanding. However, the equations become far simpler if one 
considers a special case, in which the equations have cylindrical symmetry. 
One aspect of this simpler case is called the "wave maps" problem, and Tao has 
developed a program that would allow one to understand its solution. 
While this work has not reached a definitive endpoint, Tao's ideas have 
removed a major psychological obstacle by demonstrating that the equations 
are not intractable, thereby causing a resurgence of interest in this problem. 
 
A fourth highlight of Tao's work centers on the nonlinear Schroedinger 
equations. One use of these equations is to describe the behavior of light in a 
fiber optic cable. Tao's work has brought new insights into the behavior of one 
particular Schroedinger equation and has produced definitive existence results 
for solutions. He did this work in collaboration with four other mathematicians, 
James Colliander, Markus Keel, Gigliola Staffilani, and Hideo Takaoka. 
Together they have become known as the "I-team", where "I" denotes many 
different things, including "interaction". The word refers to the way that light 
can interact with itself in a medium such as a fiber optic cable; this self-
interaction is reflected in the nonlinear term in the Schroedinger equation that 



the team studied. The word "interaction" also refers to interactions among the 
team members, and indeed collaboration is a hallmark of Tao's work. 
"Collaboration is very important for me, as it allows me to learn about other 
fields, and, conversely, to share what I have learnt about my own fields with 
others," he said in the Clay Institute interview. "It broadens my experience, not 
just in a technical mathematical sense, but also in being exposed to other 
philosophies of research and exposition." 

These highlights of Tao's work do not tell the whole story. For example, many 
mathematicians were startled when Tao and co-author Allen Knutson produced 
beautiful work on a problem known as Horn's conjecture, which arises in an 
area that one would expect to be very far from Tao's expertise. This is akin to a 
leading English-language novelist suddenly producing the definitive Russian 
novel. Tao's versatility, depth, and technical prowess ensure that he will 
remain a powerful force in mathematics in the decades to come. 

BIOGRAPHICAL SKETCH 
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mathematics in 1996 from Princeton University. He is a professor of 
mathematics at the University of California, Los Angeles. Among his 
distinctions are a Sloan Foundation Fellowship, a Packard Foundation 
Fellowship, and a Clay Mathematics Institute Prize Fellowship. He was awarded 
the Salem Prize (2000), the American Mathematical Society (AMS) Bocher Prize 
(2002), and the AMS Conant Prize (2005, jointly with Allen Knutson). 
 
  



Fields Medal
Wendelin Werner

CITATION:
"For his contributions to the development of stochastic Loewner evolution, 
the  geometry  of  two-dimensional  Brownian  motion,  and  conformal  field 
theory"

The work of Wendelin Werner and his collaborators represents one of the 
most exciting and fruitful interactions between mathematics and physics in 
recent times. Werner's research has developed a new conceptual framework 
for understanding critical phenomena arising in physical  systems and has 
brought new geometric insights that were missing before.  The theoretical 
ideas arising in this work, which combines probability theory and ideas from 
classical  complex  analysis,  have  had  an  important  impact  in  both 
mathematics and physics and have potential connections to a wide variety of 
applications.

A motivation for Wendelin Werner's work is found in statistical physics, where 
probability theory is used to analyze the large-scale behavior of complex, 
many-particle systems. A standard example of such a system is that of a gas: 
Although it would be impossible to know the position of every molecule of air 
in the room you are sitting in, statistical  physics tells you it  is  extremely 
unlikely that all the air molecules will end up in one corner of the room. Such 
systems can exhibit phase transitions that mark a sudden change in their 
macroscopic behavior.  For  example,  when water  is  boiled,  it  undergoes a 
phase  transition  from  being  a  liquid  to  being  a  gas.  Another  classical 
example  of  a  phase  transition  is  the  spontaneous  magnetization  of  iron, 
which depends on temperature. At such phase transition points, the systems 
can exhibit so-called critical phenomena. They can appear to be random at 
any scale (and in particular at the macroscopic level) and become "scale-
invariant",  meaning  that  their  general  behavior  appears  statistically  the 
same at all scales. Such critical phenomena are remarkably complicated and 
are  far  from  completely  understood.

In 1982 physicist Kenneth G. Wilson received the Nobel Prize for his study of 
critical  phenomena,  which  helped  explain  "universality":  Many  different 
physical systems behave in the same way as they get near critical points. 
This behavior is described by functions in which a quantity (for instance the 
difference between the actual temperature and the critical one) is raised to 
an  exponent,  called  a  "critical  exponent"  of  the  system.  Physicists  have 
conjectured  that  these  exponents  are  universal  in  the  sense  that  they 
depend  only  on  some  qualitative  features  of  the  system and  not  on  its 
microscopic details. Although the systems that Wilson was interested in were 
mainly three- and four-dimensional, the same phenomena also arise in two-
dimensional
systems.  During  the  1980s  and  1990s,  physicists  made  big  strides  in 
developing conformal field theory, which provides an approach to studying 



two-dimensional critical phenomena. However, this approach was difficult to 
understand in a rigorous mathematical way, and it provided no geometric 
picture of how the systems behaved. One great accomplishment of Wendelin 
Werner, together with his collaborators Gregory Lawler and Oded Schramm, 
has  been  to  develop  a  new  approach  to  critical  phenomena  in  two 
dimensions  that  is  mathematically  rigorous  and  that  provides  a  direct 
geometric picture of systems at and near their critical points.

Percolation is a model that captures the basic behaviour of, for example, a 
gas  percolating  through  a  random  medium.  This  medium  could  be  a 
horizontal network of pipes where, with a certain probability, each pipe is 
open  or  blocked.  Another  example  is  the  behaviour  of  pollutants  in  an 
aquifer. One would like to answer questions such as, What does the set of 
polluted  sites  look  like?  Physicists  and  mathematicians  study  schematic 
models of percolation such as the following. First, imagine a plane tiled with 
hexagons. A toss of a (possibly biased) coin decides whether a hexagon is 
colored white or black, so that for any given hexagon the probability that it 
gets colored black is p and the probability that it gets colored white is then 1 
- p. If we designate one point in the plane as the origin, we can ask, Which 
parts  of  the  plane  are  connected  to  the  origin  via  monochromatic  black 
paths? This set is called the "cluster" containing the origin. If p is smaller 
than 1/2, there will be fewer black hexagons than white ones, and the cluster 
containing the origin will be finite. Conversely, if p is larger than 1/2, there is 
a positive chance that the cluster containing the origin is infinite. The system 
undergoes a phase transition at the critical value p = 1/2.

This critical value corresponds to the case where one tosses a fair coin to 
choose  the  color  for  each  hexagon.  In  this  case,  one can  prove that  all 
clusters are finite and that whatever large portion of the lattice one chooses 
to look at, one will find (with high probability) clusters of size comparable to 
that portion. The accompanying picture represents a sample of a fairly large 
cluster.

The percolation model has drawn the interest of theoretical physicists, who 
used  various  non-rigorous  techniques  to  predict  aspects  of  its  critical 
behavior. In particular, about fifteen years ago, the physicist John Cardy used 
conformal field theory to predict some large-scale properties of percolation at 
its critical point. Werner and his collaborators Lawler and Schramm studied 
the continuous object that appears when one takes the large-scale limit---
that is, when one allows the hexagon size to get smaller and smaller. They 
derived  many  of  the  properties  of  this  object,  such as,  for  instance,  the 
fractal dimension of the boundaries of the clusters. Combined with Stanislav 
Smirnov's 2001 results on the percolation model and earlier results by Harry 
Kesten, this work led to a complete derivation of the critical exponents for 
this particular model.

Another  two-dimensional  model  is  planar  Brownian motion,  which can be 
viewed as the large-scale limit  of  the discrete random walk.  The discrete 
random walk describes the trajectory of a particle that chooses at random a 
new direction at every unit of time. The geometry of planar Brownian paths 



is quite complicated. In 1982, Benoit Mandelbrot conjectured that the fractal 
dimension of the outer boundary of the trajectory of a Brownian path (the 
outer boundary of the blue set in the accompanying picture) is 4/3. Resolving 
this  conjecture  seemed  out  of  reach  of  classical  probabilistic  techniques. 
Lawler, Schramm, and Werner proved this conjecture first by showing that 
the  outer  frontier  of  Brownian  paths  and  the  outer  boundaries  of  the 
continuous  percolation  clusters  are  similar,  and  then  by  computing  their 
common  dimension  using  a  dynamical  construction  of  the  continuous 
percolation clusters. Using the same strategy, they also derived the values of 
the closely related "intersection exponents" for Brownian motion and simple 
random walks that had been conjectured by physicists B. Duplantier and K.-
H. Kwon (one of these intersection exponents describes the probability that 
the paths of two long walkers remain disjoint up to some very large time). 
Further  work  of  Werner  exhibited  additional  symmetries  of  these  outer 
boundaries  of  Brownian  loops.

Another result of  Wendelin Werner and his co-workers is  the proof of  the 
"conformal  invariance"  of  some  two-  dimensional  models.  Conformal 
invariance is a property similar to, but more subtle and more general than, 
scale  invariance  and lies  at  the  roots  of  the definition  of  the continuous 
objects that Werner has been studying. Roughly speaking, one says that a 
random two-dimensional object is conformally invariant if  its distortion by 
angle-preserving transformations (these are called conformal maps and are 
basic objects in complex analysis) have the same law as the object itself. The 
assumption  that  many  critical  two-dimensional  systems  are  conformally 
invariant is one of the starting points of conformal field theory. Smirnov's 
above-mentioned result proved conformal invariance for percolation. Werner 
and  his  collaborators  proved  conformal  invariance  for  two  classical  two-
dimensional models, the loop-erased random walk and the closely related 
uniform spanning tree, and described their scaling limits. A big challenge in 
this  area  now  is  to  prove  conformal  invariance  results  for  other  two-
dimensional  systems.

Mathematicians and physicists had developed very different approaches to 
understanding two-dimensional  critical  phenomena.  The work of  Wendelin 
Werner  has  helped  to  bridge  the  chasm  between  these  approaches, 
enriching  both  fields  and  opening  up  fruitful  new  areas  of  inquiry.  His 
spectacular work will continue to influence both mathematics and physics in 
the  decades  to  come.

1357 words
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Born  in  1968  in  Germany,  Wendelin  Werner  is  of  French  nationality.  He 
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in  Paris.  Among his  distinctions  are  the  Rollo  Davidson  Prize  (1998),  the 
European Mathematical  Society Prize (2000), the Fermat Prize (2001), the 
Jacques Herbrand Prize (2003), the Loève Prize (2005) and the Pólya Prize 
(2006).
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Caption: A percolation cluster. Image courtesy of Wendelin Werner.

Caption: The path of Brownian motion. Image courtesy of Wendelin Werner.

Wendelin Werner portrait, courtesy of Wendelin Werner.

 



Interview with Terence Tao

“At age two I tried teaching other kinds to count
using number blocks”

Terence Tao (Adelaide, 1975) was just 13 years old when he won the gold 
medal  at  the International  Mathematical  Olympiad.  In  the two previous 
editions  he  had  won  the  bronze  and  silver  medal.  He  is  currently  full 
professor at the University of California in Los Angeles. He has received 
prestigious  prizes,  such  as  the  Salem  prize  in  2000  and  the  Clay 
Foundation award in 2003. In this interview he encourages the reader “to 
play  with  mathematics”,  and  comments  on  the  ‘public  image’  of 
mathematics;  the  way  they  are  portrayed  in  the  movies,  for  instance: 
“Very few of them give anything close to an accurate perception of what 
mathematics is, and what it is like to do it”, says Tao.

You were a very young winner of the International Mathematical 
Olympiads.  How did  you get  interested in  Mathematics?  Would 
you say it was something innate or did it also have to do with a 
particularly good teacher, for instance?

My parents tell me I was fascinated by numbers even at age two, when I 
tried teaching other kinds to count using number blocks. I remember as a 
child  being  fascinated  with  the  patterns  and  puzzles  of  mathematical 
symbol manipulation. It wasn’t until somewhat later, in college, that I also 
began to appreciate the meaning and purpose behind mathematics, and 
how it connects with the real world and with one's own intuition. Actually, I 
enjoy this deeper level of mathematics now much more than the problem-
solving or symbolic aspects.

I think the most important thing for developing an interest in mathematics 
is to have the ability and the freedom to play with mathematics – to set 
little challenges for oneself, to devise little games, and so on. Having good 
mentors was very important for me, because it gave me the chance to 
discuss  these  sorts  of  mathematical  recreations;  the  formal  classroom 
environment is of course best for learning theory and applications, and for 
appreciating the subject as a whole, but it isn’t a good place to learn how 
to experiment. Perhaps one character trait which does help is the ability to 
focus, and perhaps to be a little stubborn. If I learned something in class 
that I only partly understood, I wasn't satisfied until I was able to work the 
whole thing out; it would bother me that the explanation wasn't clicking 
together like it  should. So I’d often spend a lot of time on very simple 
things until I could understand them backwards and forwards, which really 
helps when one then moves on to more advanced parts of the subject.



How do you look for new problems to work with? And how do you 
know a particular problem will be really interesting?

I  pick  up  a  lot  of  problems  (and  collaborators)  by  talking  to  other 
mathematicians.  I  was  perhaps  lucky  that  my  original  field,  harmonic 
analysis,  has  so  many  connections  and  applications  to  other  areas  of 
mathematics (PDE, applied mathematics, number theory, combinatorics, 
ergodic theory, etc.), so there was never any shortage of problems to work 
on.  Sometimes  I  can  stumble  across  an  interesting  problem  by 
systematically surveying a certain field and then discovering a gap in the 
literature; for instance, by taking an analogy between two different objects 
(e.g. two different PDE) and comparing the known positive and negative 
results for both.
There are some vague and general questions which I would like to pursue 
(e.g.  "How to  control  the  long-time dynamics  of  evolution  equations?"; 
"What  is  the  best  way  to  separate  structure  from  randomness  in 
combinatorial  problems?").  I’m drawn to problems which,  while offering 
some promise of progress in one of these questions, preferably by forcing 
one to develop a new technique, is also placed in as simple a setting as 
possible (a "toy model"),  where all  but one of  the difficulties has been 
"turned off". Of course, it is often not obvious a priori what the difficulties 
will be, although this seems to be easier to work out with experience. I’m 
also a great fan of interdisciplinary research - taking ideas and insights 
from one field and applying them to another. For instance, my work with 
Ben Green on progressions in the primes came in part from my trying to 
understand  the  ideas  behind  Furstenberg's  ergodic  theory  proof  of 
Szemeredi's  theorem, which turned out to be very compatible with the 
number-theoretic and Fourier-analytic arguments that Ben had in mind for 
this problem.

Are there such things as 'hot topics' in Mathematics? If so, which 
would you say are the hot topics now?

I  am only  really  familiar  with the  areas of  mathematics  that  I  actively
work on,  so  I  cannot  say what are the 'hot'  things in other  fields.  But
in  my own fields,  it  seems  that  nonlinear  geometric  PDE  is  taking  off
right now (most dramatically in Perelman's use of the Ricci flow to solve
the  Poincaré  conjecture)  -  there  is  an  increasingly  exciting  synthesis 
between  geometric,  analytic,  topological,  dynamical,  and  algebraic 
methods here. The combinatorial approach to number theory, in which one 
develops  results  on  specific  sets  (such  as  primes)  by  first  establishing 
results involving much more arbitrary sets (e.g. sets of integers of positive 
density), also is rather active right now, and promises to offer a rather 
different set of tools (including ergodic theory!) to the other methods we 
currently have in analytic number theory.



What would you say the relationship is between Mathematics and 
the general public? How should it be ideally?

It probably varies quite a bit from country to country. In the United States, 
there seems to be a vague consensus among the public that mathematics 
is somehow "important" for various high-technology industries, but is also 
"hard",  and  best  left  to  experts.  So  there  is  support  for  funding 
mathematical research, but not much interest in finding out exactly what it 
is that mathematicians do. (There have been a recent spate of films and 
other media involving mathematicians, but unfortunately very few of them 
give anything close to an accurate perception of what mathematics is, and 
what it is like to do it). I’d like to see mathematics demystified more, and 
to  be  made  more
accessible to the public, though I am not really sure how to try to achieve 
these goals.
 



Interview with Wendelin Werner

“I wonder if it will change the way students will listen in my lectures”

This 38 year-old German is professor of mathematics at the University of Paris
and at the École Normale Supérieur, also in Paris. His work on the calculation of 
probabilities and biodimensional structures has been particularly important in 
the  field  of  physics.  So  far  in  his  career  he  has  been  awarded  the  Rollo 
Davidson  Prize  (1998),  the  European  Mathematical  Society  Prize  for  young 
researchers (2000), and the Fermat (2001), Jacques Herbrand (2003), Loève 
(2005) and Pòlya (2006) Prizes.

How do you feel, being the winner of a Fields Medal? How were you 
told and what did you do at that moment?

On a sunny day in May, I did get an email from John Ball, the president of the 
IMU, asking me to call him back concerning a “confidential matter” (he tried to 
call me while I was on my way to my office – that day it was the office at the 
École Normale in Paris). I sort of guessed what it was about, even if I was really 
not expecting this to happen. I called him but his secretary told me that he was 
just fetching a cup of  coffee and that I  should try again five minutes later. 
When I  called  again,  John Ball  told  me that  he  has  “good news” for  me.  I 
remember his phrase “you’ve won a Fields medal”. 

My first thought after hanging up the phone was that this prize was for my 
work, and since a lot of this work was done in collaboration with Greg Lawler 
and Oded Schramm, that this medal was also theirs (even if I am the only one 
under  the  age  limit).   Then,  I  went  for  a  short  walk  in  the  “Jardin  du 
Luxembourg” and called my wife, who was the only one that I was allowed to 
share the news with. One of the strange things was to keep this secret (this had 
been requested by John Ball) and to discuss with colleagues and friends in the 
corridor as if nothing had happened.

You are the first probabilist to receive a Field medal. How do you feel 
about this?

Well, I am very happy that probability theory gets this recognition. Maybe this 
is a symptom of a change of the perception and influence of probabilistic ideas 
in  mathematics  in  general.  Of  course,  I  feel  rather  strange  to  be  the  first 
probabilist  to  receive  this  medal,  given  all  the  history  and  past 
accomplishments in the field. 
But  I  should  add  that  this  division  and  classification  of  mathematics  into 
subfields should not be taken too seriously. New insight often occurs precisely 
when ideas from different fields are combined. This is in fact to a certain extent 
what has happened in problems that I have been working on, where complex 
analysis turned out to be instrumental.  



Can you explain in simple terms a problem you work on?

Take scissors and cut completely at random a shape in a piece of paper. What 
can you say about this shape? Part of the question is to make sense of notion 
“completely at random” because there are infinitely many possibilities.
One  motivation  to  study  this  type  of  question  comes  from physics:  If  you 
consider a physical system and raise its temperature, then at certain values of 
the temperature, there occurs sudden change of its macroscopic behaviour: 
Liquid becomes vapour, iron looses its spontaneous magnetisation etc. It has 
been observed empirically that when a system is exactly at such a “critical” 
temperature, it can exhibit random macroscopic features. For instance, if the 
system is planar, then the two phases may coexist and the lines separating the 
regions corresponding to each of the phases are then random loops, just as 
those cut out by scissors.

So, physicists had been working on the same questions?

Physicists  had  been  successful  in  inventing  techniques  and  theories  that 
allowed  them  to  describe  many  aspects  of  such  two-dimensional  critical 
systems. Key-words can be Conformal Field Theory, Quantum Gravity, Coulomb 
Gas… But in the eyes of a mathematician, it was very unclear how to relate 
these tools and formulas to the actual models that were studied. One aspect of 
our  work  has  been  to  develop  new mathematical  concepts  and  ideas  that 
allowed to get some new insight and to prove the physicists’ predictions. 

Will this prize influence your future work in any sense?

It is hard to predict. I understand that the prize is for past work but also an 
encouragement for the future. So, it looks like a big responsibility for me and 
maybe a little bit of pressure to deliver nice things. I may want to tackle too 
difficult problems and end up being stuck... I also wonder if it will change the 
way students will listen in my lectures. Well, we’ll see. For now, I will first enjoy 
this moment with colleagues, friends and family.




