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The theory of bifuxcation from equilibria based on center-manifold reduction and Poincare-Birkhoff nor-
mal forms is reviewed at an introductory level. Both differential equations and maps are discussed, and re-
cent results explaining the symmetry of the normal form are derived. The emphasis is on the simplest gen-
eric bifurcations in one-parameter systems. Two applications are developed in detail: a Hopf bifurcation
occurring in a model of thxee-wave xnode coupling and steady-state bifurcations occurring in the real
Landau-Ginzburg equation. The forxner provides an example of the importance of degenerate bifurca-
tions in problexns with more than one parameter and the latter illustxates new effects introduced into a bi-
furcation problexn by a continuous symmetry.
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l. INTRODUCTION

Bifurcation theory is a subject with classical
mathematical origins, for example, in the work of L.
Euler {1744); however, the modern development of the
subject starts with Polncare and the qualltatlve theory of
di8erential equations. In recent years, this theory has
undergone a tremendous development with an infusion of
new ideas and methods from dynamical systems theory,
singularity theory, group theory, and computer-assisted
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992 John David Crawford: Introduction to bifurcation theory

studies of dynamics. As a result, it is difFicult to draw the
boundaries of the theory with any confidence. The char-
acterization offered twenty years ago by Arnold (1972) at
least reAects how broad the subject has become:

The word bifurcation, meaning some sort of branching
process, is widely used to describe any situation in which
the qualitative, topological picture of the object we are
studying alters with a change of the parameters on which
the object depends. The objects in question can be ex-
tremely diverse: for example, real or complex curves or
surfaces, functions or maps, manifolds or 6brations, vec-
tor fields, difFerential or integral equations.

In this review the "objects in question" will be dynami-
cal systems in the form of di6'erential equations and
difference equations. In the sciences such dynamical sys-
tems commonly arise when one formulates equations of
motion to model a physical system. The setting for these
equations is the phase space or state space of the system.
A point x in phase space corresponds to a possible state
for the system, and in the case of a differential equation
the solution with initial condition x defines a curve in
phase space passing through x. The collective represen-
tation of these curves for all points in phase space
comprises the phase portrait. This portrait provides a
global qualitative picture of the dynamics, and this pic-
ture depends on any parameters that enter the equations
of motion or boundary conditions.

If one varies these parameters the phase portrait may
deform slightly without altering its qualitative (i.e., topo-
logical) features, or sometimes the dynamics may be
modified significantly, producing a qualitative change in
the phase portrait. Bifurcation theory studies these qual-
itative changes in the phase portrait, e.g. , the appearance
or disappearance of equilibria, periodic orbits, or more
complicated features such as strange atiractors. The
methods and results of bifurcation theory are fundamen-
tal to an understanding of nonlinear dynamical systems,
and the theory can potentially be applied to any area of
nonlinear physics.

In Secs. II—VIII, we present a set of core results and
methods in local bifurcation theory for systems that de-
pend on a single parameter p. Here local bifurcation
theory refers to bifurcations from equilibria where the
phenomena of interest occur in the neighborhood of a
single point. This restriction overlooks an extensive
literature on global bifurcations where in some sense
qualitative changes in the phase portrait occur that are
not captured by looking near a single point. Wiggins
(1988) provides an introduction to this aspect of the sub-
ject. ' In addition, we shall concentrate on those bifurca-
tions encountered in typical or "generic" systems. Thus

symmetric systems and Hamiltonian systems are not con-
sidered, with the exception of pitchfork bifurcation for
reAection-symmetric systems. A precise mathematical
description of generic -can be given at the expense of in-
troducing a number of technical definitions (Ruelle,
1989). The heuristic idea is simply that, when a
parametrized system of equations exhibits a generic bi-
furcation, if we perturb the system slightly then the bifur-
cation will still occur in the perturbed system. One says
that such a bifurcation is robust. Bifurcations that are
robust in this sense for systems depending on a single pa-
rameter are referred to as codimension-one bifurcations.
More generally, a codimension-n bifurcation can occur
robustly in systems with n parameters but not in systems
with only n —1 parameters.

The aim is to provide an accessible introduction for
physicists who are not expert in dynamical systems
theory, and an effort has been made to minimize the
mathematical prerequisites. Consequently I begin with a
summary of linear theory in Sec. II that includes the
Hartman-Grobman theorem to underscore the link be-
tween linear instability and nonlinear bifurcation; this
summary is supplemented in Sec. IV by an analysis of the
persistence of equilibria using the implicit function
theorem. The center-manifold —normal-form approach is
outlined in Sec. III and developed in Secs. V —VIII.

Two applications of the theory are considered in Sec.
IX. These illustrate the calculations required to reduce a
speci6c bifurcation to normal form. In addition the ex-
amples offer a glimpse of several important and more ad-
vanced topics: new bifurcations that arise when there is
more than one parameter, center-manifold reduction for
infinite-dimensional systems, e.g. , partial differential
equations, and the effect of symmetry on a bifurcation.

Finally in Sec. X a brief survey of some topics omitted
from this review is included for completeness and to pro-
vide some contact with current research areas in bifurca-
tion theory. Our subject is very broad, and there is much
activity by mathematicians, scientists, and engineers; the
literature is enormous and widely scattered. This intro-
duction does not attempt to assemble a comprehensive
bibliography; the material of Secs. II—VIII can be found
in many places, and in most cases the cited references are
chosen simply because I have found them helpful. More
extensive bibliographies can be found in the references.

A. The basic setup

It is advantageous to express different systems in a
standard form so that the theory can be developed in a
uniform way. As an example consider the second-order

It is worth emphasizing that the division between local and
global bifurcations introduced here should not be taken too
seriously. A detailed investigation of a global bifurcation often
uncovers a rich spectrum of accompanying local bifurcations;
similarly a local bifurcation of sufBcient complexity can imply
the occurrence of global bifurcations.

2The geometric connotations of codimension can be made pre-
cise, but we do not require this development here (Arnold,
1988a). Roughly speaking, the set of systems associated with a
codimension-n bifurcation corresponds to a surface of codimen-
sion n.
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osclllatol equation

y'+y+y+y =0; (1.1a)

by defining xI =y and xz —=y, we can rewrite this evolu-
tion equation as a first-order system in two dimensions,

X2

X2 X) X)
(l.lb)

Clearly if higher-order derivatives in t had appeared in
Eq. (l. la), we could still have obtained a first-order sys-
tem by simply cnlaI'g1Ilg the dimension, c.g., dcfin1ng

x3 —=y; similarly, if the equations of motion had involved
dependent variables in addition to y (t), these could also
have been incorporated by enlarging the dimension ap-
propriately. As this example suggests, there is great gen-
erality in considering dynamical processes defined by
first-order systems:

(1.3b)

Note that given a fixed-point solution (po, xo) one can al-

ways move it to the origin by a change of coordinates, so
the representation in Eq. (1.3) is quite general.

The theory we develop for maps (1.2b) is useful in a
var1cty of circumstances. Two particularly 1mportant ap-
plications are to bifurcations from periodic orbits of
di6'crential equations and in the related context of bifur-
cations in systems that are periodically forced. Let x,(t)
denote a periodic solution to Eq. (1.2a) with period ~, i.e.,
x,(t)=x,(t +~); the dynamics near x,(t) can be ana-
lyzed by constIucting the Poincare return map. I.et X
denote an n —I dimensional plane in I"which intersects
x,(t) at the point p (see Fig. 1). To define the return map
f, consider a point o. HX near p, and solve Eq. (1.2a) us-

ing o. as an initial condition. For 0 su%ciently near p,
the trajectory from o. will intersect X at some new point
o'; this intersection defines the action of the map f on o',

x=V(p, x), xCE", p&E, (1.2a)

depending on a parameter p and describing motion in an
n-dimensional phase space R". When formulated in this
way a difFerential equation is identified with a vector field
V(p, x ) on E"; conversely, given a vector field one can al-
ways define an associated differential equation.

We shall also consi. der a second type of dynamics that
represents the evolution of a system at discrete time in-
tervals. In this case, the motion is described by a map, x=V(p, x, t), xEE", @PE (1.5a)

This definition is sensible for all points on X in an ap-
propriate neighborhood of p. Notice that p is a Axed
point for f,f(p) =p, since x is a periodic orbit.

In the second application, a periodic modulation is ap-
plied to the system in Eq. (1.2a) so that V(p, x) is re-
placed by

x.+i=f(p, x ), x&E", p&E, (1.2b) and

where j=0, 1,2, . . . is the index labeling successive
po1nts on thc tI'ajcctoiy. There alc close conncct1OQs be-
tween the dynamical systems defined by maps and vector
fields. For example, in Eq. (1.2a), we may also think of
solutions as trajectories: an initial condition x (0)
uniquely determines a solution x (t), and the correspond-
ing curve in E" (parametrized by t) is the trajectory of
x (0). More abstractly, the association x (0)—&x(t)
defines a mapping

V(p, x, t)= V(p, ,x, t+~), (1.5b)

where r is the period of the modulation. In this cir-
cumstance it is convenient to introduce the "stroboscop-
ic" map f by, in efFect, recording the state of the system
only once during each period of the modulation. Mox'e

precisely, fix a definite time to and then choose any initial
condition xo&E". Let x (t;to) denote the solution with
the initial condition x (to', to) =xo, and define f by

P, :E"—&E" (1.2c) x +,=f(x~ ), j=0, 1,2, . . .

where $,(x(0))=x(t). This mapping is called the fioio
determined by Eq. (1.2a).

In each case, the dynamics is allowed to depend on an
adjustable parameter p, and the origin (p, x ) =(0,0) is as-
sumed to be an equilibrium or fixed point for the motion,

where x =x(to+jr", to). The qualitative properties of
the map f(x) in Eq. (1.6) are independent of the specific
choice to used in the definition. Furthermore, fixed

V(0,0)=0, (1.3a)

3Qne often wishes to consider phase spaces more general than
IR, for example, 6nite-dimensional manifolds such as tori or
spheres. However, in these cases the dynamics on a neighbor-
hood of a 6xed point can be described by the models we consid-
er by introducing a local coordinate system.

t:Z X

&(p) = p

FIG. 1. Poincare return map for a periodic orbit.
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poiiits (1.3a) foi' tile lllliiiodiilated system 'typically peisist,
as fixed points for the map (1.6), at least for weak modu-
lation.

X 0 . 01

0 X2
(2.4)

B. The basic question

According to Eq. (1.2), at p=0 there is an equilibrium
state at x =0. The basic question in local bifurcation
theory is

What can happen in phase space near x =0 when
there are variations in p about p =07

The Hartman-Grobman theorem, described in the next
section, electively reduces this question to an analysis of
a narrowcI' 1ssuc:

As p is varied near p=0, what happens near x=0 if
the stability of the equilibrium changes'

0

if the spectrum of DV(0, 0) includes complex-conjugate
pairs of eigenvalues, then the corresponding new coordi-
nate components x will also be complex (Hirsch and
Smale, 1974). The general solution x'(t) is obviously

P

x', (0)e '

x2(0)e '
(2.5)

If Rek; &0, then as t~ao, the x; component decays to
zero; conversely, Rek, ; &0 implies exponentially rapid
growth of x .

Before addressing this question, which involves the non-
linear terms of Eq. (1.2) in an essential way, it is neces-
sary to develop the theory of linear stability.

ll. LINEAR THEORY

A. Flows

1. Invariant linear subspaces

For each eigenvalue X of DV(0, 0), there is an associat-
ed subspacc of R —thc elgeltspace E~. FoI' simplicity wc
assume DV{0,0) is diagonalizable; then our definition of
Eg dcpcnds only on whether A. 1s real or complex. Thc

A't x =0 the Tayloi' expaiisloil of Eq. (1.2a) begins,

x = V(p, O)+D„V(p,O) x+8(x ),
where D„V(p,O) represents the square matrix with ele-
ments

Im X

(2.2)

and 6(x ) indicates higher-order terms that are at least
quadratic in the components of x. %'hen the context is
clear we shall omit the subscript x and write DV(p, O) or
simply DV. At p=O the constant term in Eq. (2.1) van-
ishes, and near x =0 we study the linearized system,

x =DV(0, 0)*x, (2.3}

ignoring momentarily the CCects of the nonlinear terms.
In the typical situation the eigenvalues of DV(0, 0}are

nondegenerate and this matrix can be diagonalized by a
linear change of coordinates x ~x'. This allows Eq. {2.3)
to bc reexpressed as

4More precisely, this is true for hyperbolic fixed points, as
defined in Sec. II.A.2, and follows from the averaging theorem
(Guckenheimer and Holmes, 1986).

5A degenerate eigenvalue is one for which there are two or
more linearly independent eigenvectors or generalized eigenvec-
tors.

FIG. 2. Example of invariant subspaces and manifolds for a
fixed point. (a) I.inear spectrum showing stable modes, neutral
modes, and unstable modes for an equilibrium x =0 in a Aow;

(b) invariant linear subspaces; for the spectrum in (a) we would
have dim E'=3, E'=4, dim E"=3; (c) invariant nonlinear
manifolds; for the spectrum in (a) we would have dim 8"=3,
dim 8"=4,dim 8'"=3.

Rev. Mod. Phys. „vo).63, No. 4, October 1991
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A, HR, Ei„—= Iu&R")(DV(0, 0)—AI} u=Oj . (2.6a)

If k is nondegenerate, then we have dim E& = 1.
%hcn 1, 18 complex tllcn thc c1gcIlvccto1 8 arc also

complex; furthermore, since DV(0, 0) is assumed to be a

case of a real eigenvalue is most familiar. When A, is real,
E& is simply the subspace spanned by the eigenvectors,

1cal matrix 1f U
~
+EU2 ls thc clgcIlvccto1 fox' A, , the

coIIlplcx"conjugated vector U
&

&U2 an elgenvector foI
Thc cigcnspacc E~ 1n this case 18 spanned by thc I'cal

aIld 1mag1nafy paI'ts of thc clgcQvcctoI'8 for 1,, c.g.,
U I and U p. Noting tjlat both U ) and U 2 satisfy
(DV(0, 0)—AI)(DV(0, 0)—AI).u =0, we replace Eq.
(2.6a) with

A QR, Ei =—
I u HR" i(DV(0, 0)—AI)(DV(0, 0)—XI).u =Oj . (2.6b)

Now if A, is nondegenerate we have dim E& =2.
When DV(0, 0) has eigenvalues that are degenerate,

this construction for Ei is satisfactory provided DV(0, 0)
is diagonalizable. When DV(0, 0) cannot be diagonal-
ized, then the definitions in Eq. (2.6) must be extended to
1Ilcludc Qot only clgcnvcctols but gcncI'allzcd clgcIlvcc-
tors as well (Arnold, 1973;Hirsch and Smale, 1974).

An eigenvalue X corresponds to a IIlodc of thc sys-
tern that is stable, unstable, or neutral, depending on
whether Rek, &O, ReA, )0, or Rei, =O, respectively [Fig.
2(a)]. We divide the eigenvectors (and generalized eigen-
vectors) of DV(0, 0) into three sets according to these
possibilities and form the stable subrace E', unstable

subrace E", and center subrace E':

E'=spanIuiu&E& and Rek&01

E"=spanIu iu &E& and Rek, )0j

E'=spanI u iu &Ei and ReA, =Oj .

Thcsc subspaccs span thc phase space, R =E E E,
and they are inuanant: if x(0)HE, a=s, c,u, then the
trajectory x(t) of Eq. (2.3) with this initial condition
satisfies x(t)HE . For E' and E" the dynamics has a
simple asymptotic description: if x (t) EE', then as
t —++Oc the trajectory converges to the equilibrium; if
x (t) HE", then the trajectory converges to the equilibri-
um as t —+ —Do. These features are illustrated in Fig.
2(b).

An equilibrium at x =0 is asymptotically stable if there
exists a neighborhood of initial conditions, 0 & ~x(0)

~
& s,

slicli tliat foi all x (0) iii tllis ileighboiliood

(i) the trajectory x (t) satisfies ~x(t)
~

& s for t & 0, and
(ii) ~x(t)~~0as t~00.

Re

Re

FIG. 3. A stable linear spectrum for a fixed point of (a) a Aow
and (b) a map.

FIG. 4. Asymptotic stability of x=0. Such stability for the
linear system (a) implies that x =0 is asymptotically stable for
the nonlinear system (b).

Rev. Mod. Phys. , Vol. 63, No. 4, October 1991
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For the linear system (2.3), the equilibrium x =0 is
asymptotically stable if and only if Re(A, ) &0 for each ei-
genvalue A, of DV(0, 0). In other words, the spectrum
must lie within the left half-plane of the complex A, plane
[see Fig. 3(a)].

This crltcrlon ls particularly valuable bccaUsc onc can
prove that if x =0 is asymptotically stable for Eq. (2.3),
then it will also be asymptotically stable for the original
nonlinear system (1.2a) (Hirsch and Smale, 1974). In Fig.
4(b) we show a schematic phase portrait for a two-
dirnensional system with two fixed points on the x

&
axis.

If wc imagine 11ncar1z1Ilg about the stable cqU111brlum Rt
the origin, then the resulting 2X2 matrix wiH have R

complex-conjugate pair of eigenvalues (A, , A, ) satisfying
ReA, =Rek &0. The phase portrait for the linearized sys-
tem ls shown tn Ftg. 4(a); the equlllbrlum x 0 1s obvi-
ously asymptotically stable in Fig. 4(a) for arbitrarily
laI'ge initial conditions. In the nonlinear phase portrait
Fig. 4(b) x =0 is also asymptotically stable, but the
neighborhood, 0 & ~x{0)

~
& s, of stable initial conditions is

not arbitrarily large; it must not intersect the trajectories
which are asymptotically drawn to the unstable Axed
point on thc Ilcgat1vc x i RX1s. Thc 11ncaI' test f01 asymp-
totical stability provides no information regarding the
size of the neighborhood in the nonlinear system where
the conclusion of stability holds.

2. Hartman-Grobrnan theorem

The qualitative relation between (2.3) and (1.2a) pro-
vided by the property of asymptotic stability is only appl-
icable when all the eigenvectors are stable, i.e., when E"
and E' are empty, but this instance does not exhaust ihe
information about the nonlinear pIoblern that is available
fI'OID thc llnca11zcd dyQRm1cs. Even 1f the eqU111bI'1UIIl 1s
not asymptotically stable, there are general theorcms
dcscI'1b1ng 1Q what scnsc thc qualitative fcatUI'cs of Eq.
(2.3) faithfully reflect the full nonlinear flow (1.2a) near
x =O. For example, near a hyperbolic equilibrium, i.c., R

fixed point with no eigenvalues on the imaginary axis,
there exists a change of coordinates that transforms the
nonlinear Aow into the linear How locally. Thus, even
when there arc U11stRblc d1rectlons, thc 1111car1zcd dynam-
ics remains a qualitatively accurate description of the
nonlinear dynamics. The Hartman-CTrobman theorem
provides a precise statement of this idea. There is a gen-
eralization of this theorem due to Shoshitaishvili that
treats the nonhyperbolic case when E' is not empty; this
is discussed in Sec. VII.A.2.

Then there exists a homeomorphism

P, (x)=4 'o P, c %'(x)

for a/1 (x, t) such that x E' U and P, (x) H U.

{2.8)

For a proof see Hartman (1982). Note that %(x) and
its inverse cannot in general be assumed diIterentiable.
In the terminology of dynamical systems, Eq. (2.8) defInes
a topological conj ugacy (locally) between the linear flow
and the nonlinear Now; this is a precise statement that
the nonlinear dynaInics neaI' x =0 is qualitatively the
same as the linear dynamics. In particular, if there are
no unstable directions so that %(x) belongs to E', then
P, && %(x)~0 as t ~ ac for the linear flow and Eq. (2.8) im-
plies that P, (x)~0 as t~ ac as well; i.e., linear asymp-
totic stability implies nonlinear asymptotic stability.

3. Loss of hyperbolicity and local bifurcation

The Hartman-6robman theorem implies that any
quahtative change or bifurcation in the local nonlinear
dynamics must be reAected in the linear dynamics. If
x =O 1s hyperbolic, then thc llncaI'1zcd dynamics ls qua11-
tatively characterized by the expanding and contracting
flows on E" and E', respectively, ' this qualitative struc-
tUI'c remains fixed UQlcss thc equilibrium loses its bypcr-
bohcity. For this loss to occur, the eigenvalues of the sta-
bility matrix D V must shift so as to touch the imaginary

1

In Sec. IV we shaH show that when a Axed point is hy-
perbolic, if p is varied slightly near p=0, then the fixed
po11lt must pcrs1st, although 1ts pI'cc1sc location in thc
phase space Inay shift. In this event the eigenvalues of
the associated linear stability matrix DV depend on p,
ap.d as the parameter value changes, it Inay happen that
an eigenvalue A,(p) approaches the imaginary axis. The
system is said to be critica/ when Re(A, )=0, and the cor-
responding parameter value p=p, belongs to the btfur
cation set. This loss of hyperbolicity occurs in one of two
ways, which we distinguish by the appearance of the
spectrum at criticality:

Theorem II.1 (Hartman-Grobman). Let x=O be a hyper-
bolic equiIibrium for Eq. (1.2a) at some fixed Uoiue of p,
P, denote the fiow of (1.2a), and P, denote the fkoto for the
correspopld/ng lEplear system. '

x =DV(p, 0).x .

6A homeomorphism is a continuous change of coordinates
whose 1nverse 1.s also continuous.
"Here the composition of functions f(x) and g (x) is written

fag(x):—f(g(x) l.
8A loss of hyperbolicity can readily involve more complicated

scenarios if there are multiple parameters or if the problem has
some special structure, e.g., if the equations are Hamiltonian or
have symmetry.
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(1) A simple real eigenvalue at A, =O. We shall refer to
this type of critical spectrum as steady-state bifurcation
[see Fig. 5(a)]. The nonlinear behavior produced by
steady-state bifurcation may take several fox'ms, which
we discuss in Sec. V. Most typical is saddle-node bifurca-
tion, but in applications one also encounters tI'anseritieal
bifurcation and pitchfork bifurcation

(2) A simple conjugate pair of eigenvalues satisfying
RCA, =RCX=O; see Fig. 5(b). This type of instability is
commonly referred to as Hopf bifurcation [although the
name does not reAect eax'lier work of Poincarc and An-
dronov (Arnold, 1988a)].

X1
I

X2

0 01

0 . - O1

0 A,J2

X1

X2

X1

X2

B. Maps

T4c cox'I'cspoIld1Ilg 11Ilcar thcoly fo1 8 IDRp may bc dis-
cussed in a similar fashion. The expansion of Eq. (1.2b)
at x =O.

X
pg

X
pf 0

If iA, i i & 1, tllcn Rs j~~, thc x; coIIlpollcnt decays ex-
ponentially; if ~A, ; ~

) 1, then the x component will grow.

I nvQAant linear subspaces

x-+,=f(p, O)+D~f(p, O) x +8(x ),

x +, =Df(0,0) xj

(2.9) For the ilnearized map (2.10) the eigenspace EI for
Df(0,0) are defined as in Eq. (2.6) for the previous case
by replacing DV(0, 0) with Df (0,0). The invariant linear
subspaces E,a =s, u, c, are defined as in Eq. (2.7), replac-
ing Rel, by ~A, ~

—1 to reAect the appropriate stability cri-
ter18»

at p=O. As before, we diagonalized Df(0, 0) by chang-
ing coordinates x —&x'=(x'I, XI, . . . , x„')and obtain

E'= span[vs U& Eland iA, i &1],
E"=Sp»[UIU &EI »d IA,

~ »],
E'=span[uiueE, and iXi=1] .

(2.13a)

(2.13b)

(2.13c)

As before, we have R"=E'@E'E", and the stable and
UIlstablc subspaccs have slmplc asymptotic dynamics as
J~+ ao Rnd J~ (x)» rCSpCCt1VCly.

Thc dcGIlitlon of RsyIllptotic stab111ty g1vcn ca111cI' ap-
plies to fixed points of maps provided x (t) is replaced by
x .. For the linear dynamics (2.10), the equilibrium x =0
will be asymptotically stable if and only if the spectxum
of Df(0,0) lies within the unit circle in the complex A,

plane, i.e., ~A, ; ~
& 1 for each eigenvalue [see Fig. 3(b)]. It

can be shown that 1fx =0 1s asyxnptot1cally stable for Eq.
(2.10) then the same conclusion holds for the full non-
linear dynamics (1.2b). In addition, for return maps (cf.
Fig. 1), whose fixed points correspond to periodic orbits,
thc stability of 8 Axed po1Ilt rcAccts thc stab111ty of thc
corresponding periodic orbit. [When the di8'erential
equation 1s 11ncarizcd about thc periodic orbit, thc Icsult-
1ng 11Ilcaf cqURtloIl IIlay bc analyzed Us1ng Floquct
theory» thc stab111ty of thc pcx'10dlc orb1t ls dctcx Hllncd
from the spectrum of Floquet multipliers (Jordan and
Slllltll, 1987). Tllc clgcllvalilcs of thc I'ctul'll InRp llllcal'-
izcd Rt t1lc 6xcd po1Ilt corrcspond to the F1oquct IDUlti-

pliers of the periodic orbit. ]

2. Hyperbolicity, Hartman-Grobman,
and local bifurcation

FIG, 5. Bas1c 1nstabllltlcs foI' an eqollibf1QI 1n a Row: (a)
steady-state btfux'catIon and (b) Hopf bIfurcatlon.

As fol' Aows, R fixed poill't ls sRld to bc llypclbolic lf tllc
center subspace (2.13c) is empty, and there is a
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998 John David Crawford: Introduction to bifurcation theory

f(O, x)=4' '(Df (0,0).%(x)} (2.14)

for x such that x E U and f (O, x) H U.
If x =0 is a hyperbolic fixed point for f (p, x ) at p=O,

then as p is varied about zero this equilibrium will shift
its location, but it will persist (see Sec. IV). The eigenval-
ues of Df will be functions of p, and a variation in p will
cause them to move in the complex plane. If an eigenval-
ue reaches the unit circle, then the fixed point is no
longer hyperbolic and a bifurcation can occur.

The possibilities may be classified by the form of the
linear spectrum when the condition

~
A, ; ~

A 1 fails:

Hartman-Grobman theorem relating the linearized dy-
namics to the local nonlinear dynamics: if, at p=O, x =0
is a hyperbolic fixed point, then there exists a homeomor-
phism II and a local neighborhood U of x =O where

(3) A simple real eigenvalue at A, = —1; see Fig. 6(c).
This case is novel, as it does not have an analog in the
earlier discussion of Bows. This instability is generally
termed period do-ubling bifurcation, although the names
Aip bifurcation and subharmonic bifurcation are also
used.

This completes our summary of linear stability theory
and the forms of instability one typically expects to en-
counter when a single parameter is varied. Characteriz-
ing an instability by the form of the linear spectrum at
criticality is more than a convenience; it is very advanta-
geous to organize the theory (and one's understanding) in
this way. The most important reason for this is that the
linear spectrum determines the normal form. Precisely
what this means will be explained in Sec. VIII.

(1) A simple real eigenvalue at A. = 1; see Fig. 6(a). This
type of instability is quite similar to the A, =O case for
Qows and is referred to as a steady state bif-urcation for
maps. As in the case of Aows, we find the saddle-node,
transcritical, and pitchfork bifurcations as examples of
steady-state bifurcation.

(2) A simple conjugate pair of eigenvalues (A, , A, ) where
A.=e' s; see Fig. 6(b). We shall refer to this case as Hopf
bifurcation for maps to emphasize similarities with Hopf
bifurcation in Aows.

III. NONLINEAR THEORY: OVERVIEW

Suppose an asymptotically stable equilibrium is per-
turbed by varying an external parameter IM, and at a criti-
cal value p =@, the equilibrium develops a neutral mode
(ReA, =O for Ilows; ~A,

~

=1 for maps). At p, hyperbolicity
is lost, and we must study what happens to the system as

p is varied about p, .
For all of the basic instabilities described in Sec. II,

this issue can be investigated using the techniques of
center manifold -reduction and normal form theor-y In.
brief outline, this approach has several steps:

(b)

Irn

Re

Re

(1) Reduction: identify the neutral mode (or modes) at
p =p, and restrict the dynamical system to the appropri-
ate center manifold;

(2} Normalization: if possible, put this reduced
dynamical system into a simpler form by applying near-
identity coordinate changes. This yields the normal form
for the bifurcation;

(3} Unfolding: describe the efFects of varying p away
from p, by introducing small linear, and possibly non-
linear, terms into the normal form;

(4) Study the bifurcations described by the unfolded
normal form. In this analysis, one truncates the unfolded
system at some order and considers the resulting system.
Once the truncated system is understood, the e6'ect of re-
storing the higher-order terms can be discussed.

The virtue of step one is that it reduces the dimension
of the problem without any loss of essential information
concerning the bifurcation. The advantages of the
simplification o6'ered in the second step are often decisive
in being able to solve the problem. Furthermore, the re-

FIG. 6. Basic instabilities for an equilibrium in a map: (a)
steady-state bifurcation; (b) Hopf bifurcation; (c) period-
doubling bifurcation.

In suKciently complicated bifurcations, these e8'ects can be
significant and highly nontrivial. However, for most of the bi-

furcations considered in this review, these higher-order terms
do not produce any qualitative changes. The one exception is

Hopf bifurcation in maps, discussed in Sec. V.B.3.
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suiting simplified representation of the dynamics pro-
vides a universal, low-dimensional model for the given bi-
furcation.

This approach allows the general qualitative features
of a bifurcation to be distinguished from specific quanti-
tative aspects that will inevitably vary between different
realizations of the bifurcation. The dimension of the re-
duced system and the structure of the appropriate nor-
mal form may be determined without requiring explicit
evaluation of the coefficients in the normal form. Thus
the variety of phenomena associated with a bifurcation
can be described in a theory that is model independent.
When this general theory is applied to a particular insta-
bility the normal-form coefficients can be calculated from
the specific physical model under consideration. The
possibility of determining the normal form without need-
ing to derive the coefficients is often a considerable ad-
vantage.

In Sec. V, we present the normal forms for the bifurca-
tions enumerated in Sec. II. Then the basic theory un-
derlying the center-manifold reduction is discussed in
Secs. VI and VII. Finally, in Sec. VIII, we develop the
theory of Poincare-Birkhoff normal forms and indicate
how to derive the normal forms previously introduced in
Sec. V.

In the next section, we consider a preliminary issue
that it is useful to discuss before taking up the program
outlined above. The question is basic: can the given equi-
librium solution simply disappear when p is varied? For
both Bows and maps, there are simple conditions on the
linear spectrum that are sufficient to guarantee the per-
sistence of an equilibrium.

IV. PERSISTENCE OF EQUILIBRIA

such that X(0)=0 and

G(p, X(p))=0, pCM . (4.4)

In words the theorem says the following. Given
G(p, x ) we assume that the zero set, i.e., the set of (p, x )
such that G(p, x)=0, contains at least one point (0,0);
see Fig. 7(a). If, in addition, the matrix

BG;
(D„G(0,0));J—: (0,0), i,j =1, . . . , n

Bxj
(4.&)

has a nonzero determinant, then we can solve the equa-
tion G (p, x) =0 uniquely for x as a function of p, at least
for values of p sufBciently near p=O. This means that,
near (p, x)=(0,0), the zero set of G(p, x) consists of a
single arc or branch as shown in Fig. 7(b).

B. Applications to equilibria

1. Flows

For Eqs. (1.2a) and (1.3a), we choose G(p, x )= V(p, x ).
Then

det[D„G(0,0) ]=det[D V(0,0)]; (4.6)

this implies that condition (4.2b) will be satisfied if and
only if A, =O is not an eigenvalue for DV(0, 0). It then
follows that small changes in p will not destroy the equi-
librium solution as long as zero is not an eigenvalue of
the linear stability matrix for the equilibrium. The solu-
tion must persist and lie on a local branch of such solu-
tions, X(p), as required by the implicit function theorem.

Two further conclusions may be drawn. First, Hopf
bifurcation cannot alter the number of equilibrium solu-
tions, since the only eigenvalues of D V on the imaginary

A. Implicit function theorem

The implicit function theorem provides necessary con-
ditions for an equilibrium of a Qow or a map to disappear
as p varies. Equivalently these conditions can be restated
as sufficient conditions for the equilibrium to persist.
The following version of the theorem is adequate for our
discussion; a proof may be found in Spivak (1965).

0—

Theorem IV.1. Let G(p, x) be a C' function on EXE",

G:1RX 1R" R", (4.1)

such that

G(0,0)=O (4.2a)

0—

det[D„G(0,0)]%0 . (4.2b)

(b)

X.M ~1R" (4.3)

Then there exists a unique di+erentiabIe function X(p)
dejined on a neighborhood M C:E ofp =0,

FICx. 7. A unique solution branch from the implicit function
theorem. Cxiven G(0,0)=0 and det[D G(0,0)]%0 at a point
(a), the local structure of the solution set for G (p, x ) =0 is a sin-
gle branch (b).
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1000 John David Crawford: Introduction to bifurcation theory

axis form a conjugate pair [Fig. 5(b)]. Second, the condi-
tion det[D V]%0 fails at a steady-state bifurcation, since
by definition there is always an eigenvalue at zero. Thus
in general we cannot expect a unique branch of equilibria
through (p, x ) =(0,0) if this solution corresponds to a
fixed point at criticality for steady-state bifurcation.

x=V(p, x}, x&E, pCE, (5.1a)

V(0,0)=0, (5.1b)

which will satisfy the following two conditions at critical-
ity:

2. Maps
(0,0)=0 .

X
(5.1c)

For Eqs. (1.2b) and (1.3b), we take G(p, x)=f(p, x )—x, so that G(0,0)=0 and

D„G(0,0)=Df (0,0)—I, (4.7)

V. NORMAL-FORM DYNAMICS

In this section we analyze very simple equations that
describe the local dynamics associated with the linear in-
stabilities of Sec. II. Remarkably, these simple examples
are in fact quite general-; to appreciate this generality re-
quires the material on center manifolds and normal-form
theory developed in later sections. Let us first analyze
the dynamics of these simple models and then establish
their generality. We shall consider the various bifurca-
tions in the same order they were listed in Sec. II. In the
following it is convenient to assume that criticality for an
instability occurs at p =0.

A. Flows

1. Steady-state bifurcation:
simple eigenvalue at zero

For a simple zero eigenvalue as illustrated in Fig. 5(a)
the center-manifold reduction yields a system of the form

where I is the identity matrix on I". With this choice, if
G(p, x }=0 then x is a fixed point for the map at parame-
ter value p. For the solution (p, x)=(0,0), condition
(4.2b) will be met if and only if the linear stability matrix
Df (0,0) does not have an eigenvalue at A, = + 1. Provid-
ed A, = 1 is not an eigenvalue, the implicit function
theorem implies (0,0) lies on an isolated branch of equi-
librium solutions.

For the three basic instabilities illustrated in Fig. 6,
only steady-state bifurcation involves an eigenvalue at
+1. Neither period-doubling nor Hopf bifurcation can
alter the number of equilibrium solutions. In the context
of Poincare return maps for periodic orbits, these results
on persistence of equilibria show that the periodic orbit
can always be followed through a period-doubling or
Hopf bifurcation. The question of following periodic or-
bits through parameter space in a global sense has also
been studied (Mallet-Paret and Yorke, 1982; Yorke and
Alligood, 1983).

Center-manifold theory tells us that Eq. (5.1a) should be
one dimensional. Furthermore, the reduction to one di-
mension will preserve Eq. (1.3a) and the occurrence of a
zero eigenvalue; hence Eqs. (5.1b) and (S.lc), respectively.
Expanding (5.1a) at (p, x) =(0,0), we find

BV BV x BVx = -(0,0)p+ (0,0)- + (0,0)px
~p Qx 2 Bp Bx

+ (0,0) + (0,0) +. . .
()p2

' 2 Bx'

For this instability, the vector field at criticality,

(5.2)

a. Saddle-nodebifurcation: the typicalcase

Equations (5.1a)—(5.1c) define a steady-state bifurca-
tion; without further assumptions we typically ("generi-
cally" ) expect

and

(0,0)%0
p

(5.3a)

—(0,0)%0
Bx

to hold. In this case Eq. (5.2) may be rewritten as

(5.3b)

BV 0 V xx = (0,0)p[1+8(p,x )]+ i (0,0) [1+8(p,x )],
Bp ax2 ' 2

(5.4)

where 8(p, x ) indicates terms at least first order in p or
x. For example,

(0,0) (0,0) x,BV BV
Bp Bx Bp

is one such term in the first bracket in Eq. (5.4). Near
(p, x ) = (0,0) we can neglect these 6(p, x ) terms relative
to unity and then define rescaled variables (p, x ),

x= (0,0) + (0,0) + .
Bx' ' 2 Bx'

cannot be significantly simplified by making coordinate
changes (cf. Sec. VIII); we shall obtain normal forms by
making truncations and rescalings. There are three situ-
ations that arise most often in applications.

An eigenvalue is simple if it is nondegenerate; for a real ei-
genvalue the associated eigenspace (2.6a) is then one dimension-
al.

8 V
(0,0) ~ (0,0)

~p Bx

(5.5a)
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8 V
(0,0)

Bx

(5.5b)

to obtain the normal form"

x=e,p+e2x —= V(p, x),
where

(5.6)
(b)

av
e, =sgn (0,0)

Bp

BV
e2=sgn (0,0)

ax2 (d)

Obviously at p=O, x =0 is an equilibrium in Eq. (5.6),
and this equilibrium has a zero eigenvalue. What hap-
pens near (P,x)=(0,0) depends on (ei, ez); there are four
possibilities. Consider e, =ez=+1 (the other three cases
can be analyzed similarly). Then the equilibria in Eq.
(5.6) satisfy P+x =0. This describes a parabola in the
(x,p) plane as shown in Fig. 8(a). At a fixed value of
P&0, there are two equilibria x+(P)=++—P, , which
coalesce as p increases to criticality. The upper branch
x+ (p) is unstable, and the lower branch x (P, ) is asymp-
totically stable. This is indicated by the arrows in Fig.
8(a) and can be checked by linearizing Eq. (5.6) about
x+(P). Let x =x+(P)+y+. Then (for e2=+1)

BVi+ = (P,x+)X+ = [»+(P)]V~,x
(5.7)

In the terminology of Sec. IV, the normal form is actually

x =e2x, and e&p is an unfolding term. I often overlook this
distinction in the following and simply refer to the unfolded
normal form as the normal form.

More generally, the one-dimensional model (5.6) describes a
much wider class of bifurcations, in which two fixed points are
either created or destroyed. In higher dimensions it is not al-
ways the case that one equilibrium is stable and the other unsta-
ble; both may be unstable. Neither is it necessarily true that the
eigenvalues not involved in the bifurcation must be real.

the eigenvalue [2x+(P)] is positive (unstable) for x+ and
negative (stable) for x

In two dimensions, a Axed paint with one stable and
one unstable eigenvector is referred to as a saddle; if the
fixed point has two real negative eigenvalues it is a stable
node (Arnold, 1973). When a parameter is varied, so that
such fixed points are brought together, then the resulting

merger can be described by the one-dimensional model
(5.6); the bifurcation is named for this prototypical exam-
ple. "

Note that for p &0 there are two equilibria, but for
p) 0 there are none. This is consistent with the fact that
Eq. (4.2b) fails at (p, x)=(0,0) and the implicit function

FIG. 8. Diagrams for saddle-node bifurcation with normal
form (5.6): (a) e&

=e, = 1, (b) e& = e2 = —1, (c) —
e&

= e2 = 1, (d)

e&
= —e&= 1. Solid branches are stable; dashed branches are un-

stable.

theorem cannot guarantee a unique branch of equilibria
passing through (0,0) ~

The results for the remaining three cases, e&
= —@2=1,

e&
= —@2=—1, and e& =@2=—1, are also shown in Fig. 8.

These diagrams in the (p, x) plane are simple examples of
bifurcation diagrams ~

b. Transcri tical bifurcation: exchange
of stability

In applications, it may happen that an asymptotically
stable equilibrium loses stability through a steady-state
bifurcation, but the equilibrium solution itself survives.
In this case saddle-node bifurcation, which characteristj. -

cally destroys (or creates) equilibria, does not occur.
When the equilibrium survives, ™ydenote it by X(p)
such that X(0)=0 and

V(p, O)=0, (5.9)

for an appropriately redefined V(p, x). Since Eq. (5.9)
implies

Qnp
(0,0)=0, n =1,2, ~ ~ ~,

p
(5 ' 10)

if we now make a Taylor expansion around (p, x)=(0,0),
then Eq. (5.2) is replaced by

V(p, X(p))=0, p&R

replaces Eq. (5.1b). Let us make the p-dependent change
of variables x=X(p)+x' and then drop the p™s.
[This amounts to setting X(p) =0.] Then Eq. (5.8) be-
comes
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1002 John David Crawford: Introduction to bifurcation theory

8 Vx = (0,0) x+ (0,0) + (0,0) +
2 2 g 3 3f

Without further assumptions, we shall typically find

8 V
(0,0)%0,

BP BX

(0,0)%0,
BX

(5.12a)

(5.12b)

where Eq. (5.12a) replaces (5.3a). Now, proceeding ex-
actly as in the discussion of saddle-node bifurcation, we
truncate and rescale variables to obtain a normal form,

(5.15)

Thus x =0 and x =x&(P, ) have opposite stabilities; at

p =0 these equilibria collide and their stabilities are "ex-
changed. " The precise form of the resulting bifurcation
diagram depends on e& and e2, the four possibilities are
shown in Fig. 9.

c. Pitchfork bifurcation: reflection symmetry

This version of steady-state bifurcation arises formally
when Eq. (5.9) holds as in transcritical bifurcation but
(5.12b) fails and is replaced by the assumption

x =x ( e,p+ @ax ), (5.13) (0,0)%0 .
BX

(5.16)

A natural context for these assumptions is V(p, x ) having
a reQection symmetry, i.e.,

8 V
e, =sgn (0,0)

BPBX
—V(p, ,x ) = V(p, —x ) . (5.17)

and

0 V
e2=sgn (0,0)

BX

Note that x =0 is an equilibrium for all p, but at p, =0
the eigenvalue e&p, is zero. When sgn(e&p) = —1(+1)the
equilibrium x =0 is stable (unstable). The second factor
on the right-hand side of Eq. (5.13) yields a second
branch of equilibria, x&(P ),

8 Vx = (0,0)px [1+8(p,x )]
BX BP

8 V x+ (0,0), [1+8(p,x)] .
BX

(5.18)

Now truncating higher-order terms and rescaling vari-
ables appropriately leads to the normal form

Obviously, this symmetry implies Eq. (5.9), and forces
Eq. (5.12b) to fail. Replacing (5.12b) by (5.16), we may
rewrite (5.11) as

x =x [e'iP+Epx ] (5.19)

The stability of xb is found by linearizing Eq. (5.13)
x =xp +p to find

where

BV BV
e, =sgn (0&0), e2=sgn (0,0)

BP BX

(b)

(a) (b)

(c)

(d)

FIG. 9. Diagrams for transcritical bifurcation with normal
form (5.13). (a) e&=e&=1, (b) e&=@2=—1, (c) E'&=6'2=1 (d)
e& = —e2= 1. Solid branches are stable; dashed branches are un-
stable.

FIG. 10. Diagrams for pitchfork bifurcation with normal form
(5.19): (a) e, = —e =1, (b) —e, =e =1, (c) e, =e = —1, (d)
6l =62= 1. solid branches are stable; dashed branches are un-
stable.
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(a)

bitrarily in the sense that it need not respect any special
assumptions such as Eqs. (5.17), (5.9), or (5.1b). For tran-
scritical bifurcation, when eAO one expects the bifurca-
tion diagram to be modified in one of two ways [see Fig.
11(a)]. In one case the perturbed diagram contains two
saddle-node bifurcations; in the other case there are no
bifurcations at all. With pitchfork bifurcation there are
four possibilities expected for the perturbed diagram,
Fig. 11(b). There is one important new feature: the pos-
sibility of finding hysteresis in the bifurcations of the per-
turbed pitchfork. This effect can be understood intuitive-
ly by noting that when @=0 the outer branches of the
pitchfork meet the middle branch with an angle of exact-
ly 90'. A small perturbation will split and join the
branches as shown and also perturb this 90' angle slight-
ly. This latter effect leads to the appearance of hys-
teresis.

2. Hopf bifurcation: a single conjugate pair
of imaginary eigenvalues

(b)

The normal form is two dimensional and in polar coor-
dinates (r, 8) may be written as

FIG. 11. Perturbing nongeneric diagrams: (a) transcritical bi-
furcation; (b) pitchfork bifurcation.

8=co(p)+ Q b (p)r i,
i=~

(5.22a)

(5.22b)

The analysis of Eq. (5.19) difFers from transcritical in that
the second factor in (5.19) contributes two branches of
equilibria,

x*(p)=++ (et ~e2—)P (5.20)

x = V(p, x)+eV, (p, x), (5.21)

which only exist for sgn(e, P/ez)= —1. The stability of
the solutions may be. worked out as before, and the four
possibilities are illustrated in Fig. 10. The bifurcation di-
agrams resemble pitchforks in the (p, x ) plane, hence the
name.

We conclude this discussion of steady-state bifurcation
by indicating how perturbations of transcritical or pitch-
fork bifurcation can restore the expected "generic" be-
havior, i.e., saddle-node bifurcation. ' Suppose V(p, x )

describes a transcritical or pitchfork bifurcation at
(p, x)=(0,0). We can perturb V(p, x) by including a
small term V, (p, x ) in the dynamics,

where y(p)+ice(p, ) is the complex-conjugate pair of ei-
genvalues that are assumed to satisfy

y(0) =0, co(0)%0,

(0) &0 .
dp

(5.23a)

(5.23b)

The conditions (5.23) simply mean that the conjugate
pair crosses the imaginary axis at @=0 in a nondegen-
erate way.

A characteristic feature of Eq. (5.22) is the absence of 8
on the right-hand side. This means that the dynamics of
the normal form is invariant with respect to the group of
rotations of the phase 8. In the literature, this invariance
is called the S' phase shift symmetry, -' and it allows the
dynamics of Eq. (5.22a) to be analyzed independently
from (5.22b).

For (5.22a), we assume that at criticality (@=0) the cu-
bic coe%cient does not vanish,

where 0 ~ e && 1. The perturbation V& may be chosen ar- a, (0)WO; (5.24)

In the presence of such perturbations the transcritical or
pitchfork bifurcation is said to be imperfect. A rigorous and
systematic theory of such imperfect bifurcations can be
developed using the techniques of singularity theory (Golubit-
sky and Schaeffer, 1985).

~4The phase shifts in 8 are described mathematically by the ro-
tation group SO(2) or, equivalently, as the action of the circle
group S'. It is conventional to use the latter terminology for
the Hopf normal-form symmetry.
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then the solutions to dr ldt =0 near r =0 are determined
by the sign of a, (0) (see Fig. 12). Consider a, (0) &0 for
example —from Eq. (5.22a) the radial equilibria satisfy

V(0, 0)=0 (5.27b)

r(y(p)+a, (p)r )=0 (5.25) (0,0)=0
Bx

(5.27c)

and there are two branches: r =0 and
rH(p)=Q —y/ai. The latter solution exists only for
y(p) & 0 since rH must be real. When Eq. (5.22b) is taken
into account we see that this new solution in fact de-
scribes a periodic orbit of amplitude rH and frequency

AH =~(p)+g~ =,b~(p)rH. The plot of r' vs r in Fig. 12(a)
makes it clear that the periodic orbit is asymptotically
stable; this can be checked analytically by linearizing
(5.22a) about r =rH and determining the linear eigenval-
ue. The bifurcation diagram is also drawn in Fig. 12(a);
since the new branch of solutions is found in the direc-
tion of increasing p, above the threshold for instability of
the equilibrium, the bifurcation of r& is said to be super-
eri tieal.

The analysis for a, (0) & 0 is similar but the results are
slightly di6'erent. Now the rH solution is found only for
y(p) &0 or @&0. In this case the branch of periodic
solutions is subcritical and unstable'; see Fig. 12(b).

Hopf bifurcation is a richer phenomenon than steady-
state bifurcation in the sense that it leads to time-
dependent nonlinear behavior. In an experiment, a su-
percritical Hopf bifurcation manifests itself in the spon-
taneous onset of oscillatory behavior. Often this oscilla-
tion corresponds to the appearance of a wave in the sys-
tem.

follow from (5.26b) and (5.26c), respectively. This prob-
lem corresponds to finding the branches of equilibria in a
steady-state bifurcation for flows, i.e., Eqs. (5.27) are
equivalent to Eqs. (5.1). Consequently, insofar as the
branches of equilibria are concerned, we have precisely
the cases already studied.

p. &0

B. Maps

1. Steady-state bifurcation:
simple eigenvalue at +1

The normal form is one dimensional,

x +i=f(p, x ), pCR, xER,
for j=0, 1,2, . . . , where

f(0,0)=0,

(0,0)=+1 .

(5.26a)

(5.26b)

(5.26c)

p. & 0

0'

p. )P

Let V(p, x ) =f(p, x ) —x. Then to find fixed points for f
we need to solve ~ 0

V(p, ,x )=0 .

Note that

(5.27a)

~5There is no consensus in the literature as to how the terms
supercritical and subcritical should be defined in general, al-
though all conventions agree with my usage in this context. For
a didactic discussion advocating one sensible set of definitions
see Tuckerman and Barkley (1990).

(b)

FIG. 12. Radial dynamics and diagrams for Hopf bifurcation
with normal form (5.22): (a) supercritical bifurcation a&(0) (0;
(b) subcritical bifurcation a l (0))0.
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a. Saddle-node bifurcation

As before, this occurs if

8 V
(0,0)%0 and (0,0)%0 .

Qp Qx2
(5.28)

From Eq. (5.28) and our previous discussion of saddle-
node bifurcation for Bows, we are led to the normal form

8 V
(0,0)=0

X

8 V 8 V
(0,0)%0, (0,0)%0 .

BP Bx

From Eq. (5.19) we obtain the normal form,

(5.33a)

(5.33b)

x +,=e,p+x +eaux =f(p, x ) (5.29) xj.+i =x( 1 +eip+E, 2x 'J ) (5.34)

for this bifurcation in the rescaled variables (5.5) with

8 8
e, =sgn (0,0), e~ =sgn (0,0)

~p Bx

Since the analysis of branches of fixed points for Eq.
(5.29) is equivalent to finding equilibria for Eq. (5.6), we

need only check the stability of x+(p)=+'t~ —p, . The
linear eigenvalue at x+ is simply

(p, xp ) = 1+2e2x(p)
X

(5.30)

b. Transcritical bifurcation

This bifurcation occurs if Eq. (5.28) is replaced by

and

V
(0,0)=0

Bp

8 V Q2 V
(0,0)eo, (o,o)eo .

X BP

(5.31a)

(5.31b)

From our previous discussion of the normal form (5.13)
for Aows, we obtain

xj+i=x (1+e,p+ezxj. )=f(p, x, ) (5.32)

as the normal form in this case. The bifurcation dia-
grams for the branches of fixed points are shown in Fig.
9, and the stability assignments in Fig. 9 are also correct,
since the linear eigenvalues for x =0 and x =x& in Eq.
(5.32) are (1+e,p, ) and (1 —e,p), respectively. At p=0
the two branches of fixed points merge and exchange sta-
bility.

c. Pitchfork bifurcation

This case occurs if Eq. (5.31a) holds while (5.31b) is re-
placed by

from Eq. (5.29), hence x+ (p ) is stable (unstable) if
ezx+(p) is negative (positive). Thus the stability assign-
ments for the branches of equilibria turn out to be the
same as in the bifurcation diagrams for flows (see Fig. 8).

The interpretation of these diagrams depends on how
we interpret the map. If we imagine that the saddle-node
bifurcation occurs in a Poincare return map for a period-
ic orbit in a How, then the branches of solutions di-
agrammed in Fig. 8 correspond to mergers of periodic or-
bits.

The analysis of the branches of fixed points and their sta-
bilities yield the same bifurcation diagrams as in the
pitchfork bifurcation for Aows (Fig. 10).

2. Period-doubling bifurcation:
a simple eigenvalue at —1

In Sec. IV we proved that this instability does not
change the number of fixed-point solutions, thus any
branches of solutions bifurcating from the equilibrium
will necessarily have different dynamical properties. The
normal form is one dimensional and has a reQection sym-
metry,

xj+, =f(p, xj), p&IR, x EIR,

f(p, o)=0,

(0,0)= —1,
Bx

f(p, x)=f—(p, —x) .

(5.35a)

(5.35b)

(5.35c)

(5.35d)

In writing Eq. (5.35b), we have made use of the fact that
the branch of fixed points X(p) through (p, ,x)=(0,0)
must persist and have assumed a coordinate shift which
places the branch at the origin. With these properties,
the Taylor expansion of f(p, x ) at the fixed point x =0
takes the form

f(p, x)=A(p)x+a, (p)x +a2(p)x +8(x ), (5.36)

(0,0)= (0,0) 1+ (0,0) =0,
Bp Bp Bx

J

(5.37a)

q (0,0)=
2 (0,0) (0,0) 1+ (0,0) =0

Bx Bx Bx

(5.37b)

8 V B B
(0,0)=2 (0,0) (0,0)= —2 (0),

Bp Bx Bx Bp Bx dp

(5.37c)

where A, (0)= —1. The trick is to notice that the twice
iterated map, f (p, x)=f(p, f(p, x)), is undergoing a
steady-state bifurcation, which is a pitchfork because of
the reflection symmetry (5.35d) of the normal form. Fol-
lowi. ng our discussion of pitchfork bifurcation, we take
V(p, x ) =f (p, x )

—x and check the prerequisite condi-
tions (5.31a), (5.33) using (5.35) and (5.36):
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8 V a3
(0,0)= f (0,0) f (0,0) 1+ (0,0)

Bx x Bx Bx

= —12a,(0), (5.37d)

bits with approximately twice the period of the original
orbit (see Fig. 13). This leads to the terminology period-
doubling bifurcation.

respectively. Thus to satisfy Eq. (5.33) we need only as-
sume (dA, /dp)(0)%0 and a, (0)%0 in Eqs. (5.37c) and
(5.37d); each of these two conditions is compatible with
Eqs. (5.35) and will typically be satisfied. The normal
form for the pitchfork in f (p, ,x ) is

xj + i =xi( 1+6'ip+Fpx J )

3. Hopf bifurcation: simple complex-conjugate
pair at

I
~

I

= ~

The normal form in this case is two dimensional; how-
ever, its structure depends on subtleties not evident in the
examples of steady-state bifurcation or period-doubhng
bifurcations. Denote the complex eigenvalue by

where g( ) (1+g( ))ei2n8(1+b(P)) (5.39a)

e, =sgn — (0), @2=sgn( —u, (0)),
8p 0&0&-,', (5.39b)

with the bifurcation diagrams for fixed points of f (p, x )

shown in Fig. 10.
These diagrams for f (p, x ) show three branches of

fixed points x =0 and x =x+(p), and we now consider
the implications for the original map f(p, x ). Obviously,
the x =0 branch is the fixed point for f(p, x ), whose sta-
bility is lost at @=0. The x~(P) branches of the pitch-
fork for f (p, x ) cannot be fixed points for f(p, x ), since
the implicit function theorem guarantees that x =0 is the
unique branch through (p, x ) =(0,0). Therefore
(x+,x ) must represent a new bifurcating branch of
two-cycles for f(p, x). More precisely, denoting x+ as
x+ in the original variables of Eq. (5.35), we must have

x =f(IJ„x+),
x+ =f(p, x ) .

(5.38a)

(5.38b)

The conclusion that f(p, x ) must interchange x+ and
x can be understood as follows. The fixed-point equa-
tion f (p, x+ )=x+ implies that the image of x+,
x'+ =f(p, x+ ), will also be a nonzero fixed point for
f (p, x), i..e, x'+ =f (p, x'+ ). But we know that the
pitchfork bifurcation for f produces only two nonzero
branches of fixed points, so x+ must coincide with x
hence Eq. (5.38a) follows. Moreover, the refiection sym-
metry of f(p, x) requires x = —x+ when the dynamics
is represented by the normal form. ' The stability of the
two-cycle (x+,x ) is determined by the stability of x+
(or x ) as fixed points for f and is correctly indicated in
Fig. 10.

If we consider the bifurcation from the perspective
that Eq. (5.35) describes an instability of a fixed point in
the return map for a periodic orbit, then the bifurcating
two-cycle represents a bifurcating branch of periodic or-

a(0)=b(0)=0 and (0) &0 .QQ
(5.39c)

8p
If the eigenvalue at criticality A,(0)=e' satisfies the
nonresonance conditions,

A(0) %1 and A(0) %1, (5.40)

then in polar variables (r, f) the normal form for the bi-
furcation is

r.+,=(1+a(p))r.[1+ai(p)r -+8(r )]-,

/~+i=tti~+2m8(1+b(p))+b, (p)r +8(r ). .

(5.41a)

(5.41b)

At this order in r, the right-hand side is independent of
f, a feature analogous to the phase-shift symmetry en-
countered in the normal form for Hopf bifurcation in a
fiow. In Sec. VIII, we shall show that this g indepen-
dence depends on the nonresonance conditions (5.40). If
these conditions are relaxed then f-dependent terms will

appear in Eq. (5.41); when Eq. (5.40) holds, the depen-
dence on f will first occur in terms that are indicated as
8(r ) in Eq. (5.41).

For small r, we neglect the higher-order terms in Eq.
(5.41) and then solve the radial dynamics separately from
the phase evolution. For this tactic to succeed, the cubic
term in Eq. (5.41a) must not vanish at criticality, i.e., we
require

~6In fact, the reAection symmetry of the period-doubling nor-
mal form implies that all new branches of two-cycles can be cal-
culated by solving f(p, x)= —x; it is not necessary to consider
explicitly the second iterate of f (cf. Crawford, Knobloch, and
Riecke 1990). FIG. 13. Period-doubling bifurcation in a Poincare return map.
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a )(0)%0; (5.42)

is relevant, since r must be non-negative. In combination
with Eq. (5.41b) the rH branch describes a circle of radius
r~ that is mapped into itself by (5.41), i.e., the circle is in
uariant under iteration of the dynamics (5.41).

This branch of invariant circles may be either super-
critical or subcritical depending on the sign of a/a, in

Eq. (5.43). With the eigenvalue in (5.39a) assumed to be
leaving the unit circle (5.39c), we have

a =sgn
a&

p (0)
dp +g( 2)
a, (0)

=sgn(pa&(0)) (5.44)

near @=0. Therefore, if a&(0) &0, the invariant circle is
found when p )0 ( supercritical), and if a &(0))0, then
the branch bifurcates when p & 0 (subcritical). Using Eq.
(5.41a), one can show that the supercritical branch is
stable and the subcritical branch will be unstable. Fur-
thermore, one can prove that these invariant circles per-
sist and have the properties just described if the 8(r )

terms in Eq. (5.41a) are restored (Ruelle and Takens,
1971; Lanford, 1973). However Eq. (5.41b) is much less
satisfactory as a description of the dynamics on the in-
variant circle. According to (5.41b), the circle dynamics
is simply a fixed rotation by

b /=2~(8+ b(p) )+b, (p)rH +8(r~ ) . (5.45)

In the theory of maps of the circle (Guckenheimer and
Holmes, 1986; Arnold, 1988a), it is well known that such
a uniform rotation is unstable if subjected to small per-
turbations. Indeed, with the inclusion of small
dependent perturbations present in the 8(r ) terms of
Eq. (5.4lb), we expect phenomena such as mode locking
to occur in the dynamics on the circle; see Rasband

then Eq. (5.41a) describes a pitchfork bifurcation at @=0.
Qnly the positive bifurcating branch

1/2

(5.43)

(1990) for an introductory discussion.
Finally, we consider this bifurcation from the perspec-

tive that Eq. (5.41) describes an instability of a periodic
orbit as viewed in the return map to a Poincare section.
In this setting the invariant circle that appears in the sec-
tion corresponds to a two-dimensional invariant torus in
the How; see Fig. 14.

C. Final remarks

If normal forms are to be generally useful, we must
show that the bifurcation analysis of an arbitrary high-
dimensional system can be reduced to a simple normal
form. It is not obvious that we should be able to get as
much information in one or two dimensions as we can in
several, nor is it obvious that we will be able, even in low
dimensions, to find coordinates in which our dynamical
system is so simple.

The reduction in dimensionality is accomplished by
observing that the interesting dynamics near a bifurca-
tion occurs on a low-dimensional subset of phase space
called the center manifold. ' The dimension of this center
manifold determines the dimension of the normal form.
The simple structure of the normal form is established by
the theory of Poincare-Birkhoff'normal forms.

VI. INVARIANT MANIFOLDS FOR EQUILIBRIA

A mathematically precise definition of manifolds and
related geometric ideas may be found in many places, for
example Chillingworth (1976), or Guillemin and Pollack
(1974). Intuitively, a d-dimensional manifold in R"
should be visualized as a smooth surface forming a subset
of IR". For example, a closed loop in I and the surface
of a doughnut in IR are one- and two-dimensional mani-
folds, respectively.

Suppose M denotes a manifold in the phase space IR" of
a dynamical system Eq. (1.2a) or (1.2b). Let IHM be an
arbitrary point on the manifold, and let 8 denote the
trajectory of the dynamical system through m, i.e.,
x(0)=m for Eq. (1.2a) and xi o=m for Eq. (1.2b). If
8~ CM for all m EM, then M is an inuariant manifold
for the dynamical system. More concisely, an invariant
manifold is a surface that is carried into itself by the dy-
namics.

If MCIR" is an invariant manifold, then the full dy-
namics on IR" implies the existence of a distinct auto-
nomous dynamical system defined on M alone, which can

FIG. 14. Hopf bifurcation in a Poincare return map.

Liapunov-Schmidt reduction is an alternative procedure for
reducing the dimension of the problem. An introduction to this
technique may be found in Golubitsky and SchaefFer (1985); the
connection between center-manifold reduction and Liapunov-
Schmidt reduction has been explored by Chossat and Golubit-
sky (1987) and Marsden (1979).
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A. Flows

For a flow (1.2a), (1.3a),

x = V(p, x),
the stable, center, and unstable manifolds for an equilibri-
um are generalizations of the invariant linear subspaces
E', E', and E" that arise in the linearized dynamics

x =DV(0, 0).x . (6.3)

These subspaces were described in Sec. II.A [cf. Eq.
(2.7)]; hereafter we denote their dimensions by n„n„and
n„,respectively.

For the linear system (6.3), the subspaces (2.7) are in
fact invariant manifolds. However, they are atypical,
since these manifolds are also linear vector spaces; this
special additional property reflects the linearity of Eq.
(6.3). When the nonlinear terms in Eq. (6.2) are restored,
the invariant manifolds just constructed for the linear
system are perturbed but they persist. Their qualitative
features also persist, except that the vector-space struc-
ture is lost. Intuitively, the nonlinear e6'ects deform the
invariant linear vector spaces into invariant nonlinear
manifold s.

For an equilibrium x =0, we have the following
definition. A stable manifold is an invariant manifold of
dimension n, that contains x =0 and is tangent to E' at

in principle be studied independently. For example, if a
map (1.2b) admits an invariant circle, then the dynamics
on this circle is described by a one-dimensional map of
the circle to itself, e.g.,

8~+, =f(8 ) mod(2m ),
where the angle 6I labels points on the circle. The invari-
ance of the circle implies that f(8) will not depend on
the other phase-space coordinates. Thus Eq. (6.1) de-
scribes an autonomous one-dimensional dynamical sys-
tem embedded in the dynamics (1.2b) on a larger phase
space.

Individual trajectories provide very simple examples of
invariant manifolds. In a How, an equilibrium and a
periodic orbit are invariant manifolds with zero and one
dimension, respectively. Much less trivial examples are
the stable, center, and unstable manifolds associated with
equilibria. ' We first consider Aows; the manifolds for
maps are quite similar and they are discussed briefly in
subsection VI.B.

x =0. The unstable and center manifolds may be similar-
ly defined by replacing E' with E" and E', respectively.
We shall denote these manifolds by 8 ', S'", and 8", see
Fig. 2(c).

The stable and unstable manifolds are unique. Fur-
thermore, trajectories in these manifolds have some sim-
ple dynamical properties. If x(t)H W', then x (t)~0 as
t~+Do; if x(t)H W", then x(t)~0 as t~ —ao. This
asymptotic behavior is indicated schematically in Fig.
2(c).

The properties of center manifolds are somewhat more
subtle (Lanford, 1973; Carr, 1981; Sijbrand, 1985). In
general, the center manifold is not unique; we give an ex-
ample of this nonuniqueness below. There is no general
characterization of the dynamics on 8",not even asymp-
totically as ~t ~~00. Nevertheless center manifolds play
a distinguished role in bifurcation theory because of two
important properties. We discuss these properties here,
and in Sec. VII we state a generalization of the
Hartman-Grobman theorem that justifies our discussion.

For a center manifold 8", there exists a neighborhood
Uof x =0 such that

(i) if x(0)E U has forward trajectory x(t) in U, i.e.,
x (t)H U for all i ~0, then as r —+ ~ the trajectory x (t)
converges to 8";

(ii) if x(0)H U has a trajectory in U, i.e., x(t)H U for
—ao (r ( oo, then x(0)H W' and by invariance the en-
tire trajectory must lie in 8 '.

One does not know in general how large U will be, only
that such a neighborhood exists; the situation is illustrat-
ed in Fig. 15.

The first property (i) is sometimes referred to as local
attractiUI, ty. Notice that there is no claim here that a typi-

There is an extensive mathematical theory of invariant mani-
folds with application to sets far more complex than the equili-
bria considered here. For a relatively introductory discussion
see Irwin (1980) and Lanford (1983);other standard mathemati-
cal references include Hirsch, Pugh, and Shub (1977) and Shub
(1987).

FIG. 15. Neighborhood U within which 8" is locally attract-
ing.
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cal initial condition will satisfy the required hypothesis;
in particular, if there is an unstable manifold then most
points will be pushed away from 8 '. Local attractivity
holds only for points x (0)H U whose orbits remain
sui5ciently close to x =0 for all future times.

The second property is a special case of the first and
provides sufticient conditions for a trajectory to lie in 8".
In particular, property (ii) implies that invariant sets of
any type, e.g. , equilibria, periodic orbits, invariant 2-tori,
must lie in 8" if they are contained in U. For this reason
one may restrict attention to the jhow on W' when analyz
ing a local bifurcation; this restriction prouides a setting of
lower dimension with no loss of generality. We return to
this point in Sec. VII.

There is an interesting way to reformulate property (ii)
so that it refers only to the forward trajectory. A point
x (0) is recurrent if, for any T & 0 and any E)0, there ex-
ists a time to) T such that ~x(to) —x(0)~ (s. In other
words, the recurrent trajectory returns arbitrarily close
to x(0) over and over again —forever:

(ii)' if x(0)E U is recurrent and the forward trajectory
x(t) is contained in U, then local attractivity [property
(i)] implies x(0) H W'.

Thus one can say that the center manifold captures all lo-
cal recurrence. '

B. Maps

The invariant manifolds for an equilibrium (1.3b) of a
map (1.2b) may be described in very similar terms. We
indicate only the necessary modifications in the discus-
sion for Rows.

The linearized map for Eq. (1.2b),

xi+ i =Df (0,0).xj,
determines invariant linear subspaces E', E', E" that
were described in Sec. II.B. One defines the stable ( W'),
center ( W'), and unstable ( W") manifolds relative to these
subspaces just as for flows. The manifold W (a =s, c, u )

is an invariant manifold of dimension n which is tangent
to E atx =0.

In addition, the discussion of the properties of these
manifolds for Rows applies to the case of maps as well,
with the obvious modification of replacing continuous
time by discrete iteration.

Dynamical systems theory utilizes various notions of re-
current behavior. In addition to the recurrent points, there is
the larger set of nonwandering points. A point x(0) is a
wandering point if there exists some neighborhood V of x (0)
such that for t sufBciently large the trajectory x (t) never
reenters V. A point that is not a wandering point is a
nonwandering point; all recurrent points are nonwandering.
The local nonwandering points in the neighborhood U are in
the center manifold.

Vll. CENTER-MANIFOLD REDUCTION

For the various bifurcations introduced in Sec. II, the
goal is to detect and analyze new branches of solutions,
e.g., fixed points and periodic orbits. This analysis
should determine their existence, their dynamics, and
their stability. It is important to note that these branches
emerge from the given equilibrium in a continuous
fashion as p varies near zero. For p su%ciently small, the
distance from the original equilibrium to the new solu-
tion can be made arbitrarily small. Therefore these
small-amplitude (recurrent) solutions will fall within the
neighborhood of local attractivity for 8 ', hence they are
contained in the center manifold. This conclusion is
correct, but the argument just given ignores a subtlety:
the bifurcation analysis requires that we work on an in-
terval in parameter space about p=0, but our locally at-
tracting center manifold is defined at only a single point
p=O when the system is critical. (Indeed, for saddle-
node bifurcation one does not even have an equilibrium
when p is slightly supercritical. ) This awkward
discrepancy can be finessed by formally applying center-
manifold reduction to the "suspended system" for Eqs.
(1.2a) and (1.2b). This extension is described in Sec.
VII.C below, and it establishes the existence of a locally
attracting submanifold on a full neighborhood of p =0.

For the moment we shall accept the conclusion that all
continuously bifurcating branches of solutions will lie in
an appropriately defined center manifold. Since the
center manifold is invariant, the dynamics on the mani-
fold is autonomous. That is, one has an independent
dynamical system of dimension dime"=n„which de-
scribes exactly the trajectories of points on 8". In par-
ticular, this reduced dynamical system describes all local
bifurcations in 8". Our goal is to derive the equations
for this reduced dynamical system, at least approximate-
ly.

A. Flo~s

dx =DV(0 0) x+N(x)
dt

(7.1)

for p =0, where N (x ) denotes the nonlinear terms.

In general, the nonlinearity of a center manifold
prevents us from obtaining an exact analytic description
of its dynamics. However, near the equilibrium x =0, it
is possible to accomplish this task with sufficient accura-
cy to obtain useful results.

At criticality (@=0) for an instability, the spectrum of
DV(0, 0) is contained in the left half-plane (Rek, (0) ex-
cept for the critical modes whose eigenvalues satisfy
ReA, =O. Our method of deriving the center-manifold dy-
namics does not require the absence of unstable modes,
however, and we shall describe the procedure without as-
suming E" is empty. Thus consider DV(0, 0) with a spec-
trum like that illustrated in Fig. 2(a), and write Eq. (1.2a)
as
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Without loss of generality we can choose variables

x, HE', xz&Z'E", such that x =(x„xz)and Eq. (7.1)

becomes
Re

x& = A.x&+N&(x„x2),
dt

(7.2a)

x~ =8.x2+N2(x], x2), (7.2b)

where 2 is an n, Xn, matrix with all eigenvalues on the
imaginary axis, 8 is an (n, +n„)X(n, +n„)matrix with

all eigenvalues ofF' the imaginary axis, and X&,Xz are the
resulting nonlinear terms in (x„x2) variables

X).R"~E', X:R"~E'@E"
(x,))

1. Local representation of W'

h:E' E, "~Z', h(x, )=x, , (7.3a)

where for x, sufliciently small the point x =(x„h(x,))
belongs to 8"'. Since x =0 is in the center manifold, we
require

A center manifold associated with E' will pass through
x =0, and at x =0 the manifold will be tangent to E'.
This tangency Ineans that near x =0 one can describe 8"
as the graph of a function h (x, ),

(b)

FIG. 16. Geometry of the graph representation. %'hen there
are no unstable modes, a center manifold 8"may be represent-
ed as the graph of a map h(x& ) from E' to E'. For the linear
spectrum shown in (a) we have the situation illustrated in (b)
where dim E'=2 and dim E'= 1.

h (0)=0, (7.3b)

and the tangency condition at x =0 implies

D h(0)=0 . (7.3c)

The geometric interpretation of this representation is il-

lustrated in Fig. 16 for the particular three-dimensional
example n, =1, n, =2, and E"empty.

The invariance of 8' implies an equation for h (x, ).
Let x'(t)=(x&(t),xz(t)) denote a trajectory of Eq. (7.1)

that belongs to 8" and has suKciently small amplitude
that we may write

second expression for x 2,

dX2 =8 h(x', )+N~(xi, h(xi)),
dt

(7.6)

=8 h(x, )+N2(x„h(x,)) . (7.7)

which must be the same as Eq. (7.5) if the trajectory
remains on W'. Combining Eqs. (7.5) and (7.6) yields the
desired equation for h (x

&
):

Dh(x, ) [A.x, +N, ( )x, h( )x)}]

x', (t)=h(x', (t)) .

This implies immediately that

dx2 dx )=Dh(x ((t)).
dl,

(7.4)
A solution to this equation that also satisfies Eqs. (7.3b)
and (7.3c) determines a center manifold near x =0.

The dynamics on the center manifold h (x& ) follows
from Eqs. (7.2a) and (7.4):

=Dh( (xt)).[A x;+Ni(x i, h(x', ))] (7.5)
d x, =A.x, +N, (x„h(x,)) . (7.8)

from Eqs. (7.2a) and (7.4). However, (7.2b) provides a

0This follows from the observation that tangent vectors to 8"
at (0,0) must have the form (x&,0). Let s(e)=(xl(e), x~(&))
denote an arc lying in the center manifold and

passing through (0,0) when @=0. Then for small e, x2(e)
=h(x&(e)), and the tangent vector s(0) can be written

s(0)=(x&(0),D„h(0)x, (0)); hence D h(0) x&(0)=0. Since

x &(0) is arbitrary, we must require Eq. (7.3c).

By replacing x2 with h (x& ) in Eq. (7.2a) we have decou-
pled (7.2a} from (7.2b); thus Eq. (7.8) describes an auto-
nomous flow in n, dimensions. These two results, (7.7)
and (7.8), are the crucial (exact) equations required to
reduce a bifurcation problem to the center mariifold.

The "invariance equation" (7.7) is in general a non-
linear partial differential equation for h (x, ) and cannot
be solved in closed form except in special cases. Howev-
er, we can solve Eq. (7.7) approximately by representing
h (x, ) as a formal power series,
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n

Q(x, )= Q P; (x, );(x, ).

+ X 0''Jk(xi )i(xi )j(xi )k+
i j,k =1

(7.9)

where (xi); denotes the ith component of xi and the
coefFicients p;l, p;Jk, etc. are (n, +n„)-dimensional
column vectors. It can be shown that if P(xi) satisfies
P(0)=0, D„P(0)=0and solves Eq. (7.7) to 8(xf ), i.e.,

1

DQ(xi ) [A.xi+Ni(xi, g(x, ))]
=B P(xi)+N2(xi, g(xi))+8(xf), (7.10)

then

FIG. 17. Geometric illustration of Shoshitaishvili s theorem.
The local change of coordinates 4 in Shoshitaishvili's theorem
maps the flow P, of the original system onto a simpler flow P,
for which nonlinear efFects are confined to the dynamics on the
center manifold.

h(x, ) =P(x, )+8(x", ) as x, ~0 (7.11)

(Carr, 1981). It is a straightforward calculation to insert
P(x i ) from Eq. (7.9) into (7.7) and solve for the
coefBcients to any desired order. Examples of this calcu-
lation are provided in Sec. VII.A.3 and Sec. IX.

2. The Shoshitaishvili theorem

dx2 =B x
dt

(7.12)

on a neighborhood of x2 =0.
For a nonhyperbolic equilibrium, the theorem was gen-

eralized by Shoshita'ishvili to allow for the effect of the
critical modes (7.2a); in effect, Eq. (7.12) must be supple-
mented by the center-manifold dynamics (7.8).

Theorem VII.1. Let P, (x) denote the flow of Eq. (7.1)
and P, (xi,x2) denote the flow for the decoupled system

dX 1 dX2
1 1 1 1 dt 2

=A.x&+Ni(x, h(xi)), =B x

Then there exists a homeomo~phism

(7.13)

(7.14)

and a neighborhood Uof x =0 where

In Sec. II, the Hartman-Grobman theorem for hyper-
bolic equilibria demonstrated that local bifurcations re-
quired a loss of hyperbolicity. En the present notation,
the theorem applies when there are no eigenvalues on the
imaginary axis and Eq. (7.2a) is absent; then the flow of
Eq. (7.2b) can be mapped onto the flow of

eters. This theorem is also discussed in Arnold (1988a)
and Vanderbauwhede (1989).

Heuristically, the change of coordinates %' "straightens
out" the nonlinear manifolds of Eq. (7.1) locally; note
that for Eq. (7.13) the invariant manifolds coincide with
the linear invariant subspaces (see Fig. 17). In addition,
the flow P, transverse to the center manifold is linear.

A useful featuxe of this theorem is the information it
provides on the stability of solutions in the center mani-
fold. The first equation in (7.13) describes stability rela-
tive to perturbations within the center manifold, and the
second equation characterizes stability relative to pertur-
bations transverse to the center manifold. Thus for the
original nonlinear problem (7.1) the stability to transverse
perturbations can be inferred from the eigenvalues of the
matrix B in Eq. (7.13).

The properties (i) and (ii) of center manifolds discussed
in Sec. VI.A follow from the equivalence in Eq. (7.15).
Consider the decoupled system (7.13) and suppose
x (0)E U is an initial condition whose forward trajectory
x(t) remains in U. Since x(0)=[x&(0),xz(0)], there are
two cases: if xz(0)%0 then x(0) must lie in the stable
manifold, otherwise the component in the unstable mani-
fold would grow without bound, forcing x (t) to leave U;
if x2(0) =0 then x(0) H W'. In either case, the forward
trajectory will coriverge to 8"as t —+ ao. For the second
property, we assume that the entire trajectory x (t)
remains in U for —ae (t ( ae. Now if x2(0)%0 there
must be components of x(0) in either W' or W'" (or
both), which grow without bound as ~t~~~. Therefore
the assumption x(t) H U for all t requires x2(0) =0, which
implies x(0)H W' for Eq. (7.13). Because of qj, these
properties for (7.13) will also hold for the center manifold
of (7.15) described locally by h (x

&
).

p, (x)=qI op, o q (x)

for all (x, t) such that x H U and P, ( )ExU.

(7.15)

3. Example

This result was proved by Pliss (1964) in the cir-
cumstance that there are no unstable modes (n„=0).
Shoshitaishvili (1972, 1975) generalized Pliss's result to
allow for both unstable modes and dependence on param-

0 0 x
0 —1 y

+
X 3

X

Consider the two-dimensional Aow

(7.16)
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1012 John David Crawford: Introduction to bifurcation theory

whose equilibrium (x,y) = (0,0) determines E' and E' as

E'=
I (x,y) ~x =0],

E'=I(x,y)~y=O] .

(7.17a)

Note that in this example the stable manifold 8" coin-
cides with E' because x does not depend on y. The
center manifold has a graph representation y =h (x) near
(x,y) = (0,0), and the invariance equation (7.7) for this ex-
ample is the ordinary differential equation

there is no dependence on h (x) because x in Eq. (7.12) is
independent of y.

B. Maps; Local representation of PV'

The reduction procedure for a map is wholly analo-
gous to that just described for Bows. With the splitting
of x =(y, z) where y E:E' and z EE'SE", the dynamics
(1.2b) becomes

dh
[ —x ]=—h(x)+x 2

dX
(7.18)

y~+ I
= A .yj + F(yj,zj ),

zj+, =B.z +Z(y, z )

(7.24a)

(7.24b)
We first calculate the asymptotic description P(x) as in
Eqs. (7.9) and (7.10),

P{x)=$2x +$3x +$4x +
and obtain $2=1, $3=0, /~=2, so that

h (x)=x +2x +6(x ) .

It turns out that in this example Eq. (7.18) can be
solved exactly by the method of variation of parameters.
Dropping x in (7.18), we obtain the solution to the
homogeneous problem

ho(x) =c,e
2

Then setting h (x)= A (x)ho(x) in (7.18) yields

by the same reasoning used before. Combining the solu-
tloll to Eq. (7.25) wltll (7.24a) yields

yj+, =3 y + I'(y, h(y. )), (7.26)

which describes the dynamics on 8"near y =0. In prac-
tice, the solution to Eq. (7.25) is obtained approximately
using power series (7.9) as before.

in a manner equivalent to Eq. (7.2).
A center manifold for (y, z)=(0,0) may be locally

represented by a graph z =h(y) as in Eqs. (7.3a), (7.3b),
and (7.3c). The invariance of W' implies that h (y) must
satisfy

h(A y+Y(y h(y)))=B h(y)+Z(y h(y)) (7.25)

~ 1/2x

CiX

with the solution

(7.21)
C. Working on intervals in parameter space:
suspended systems

2 &y/2
c, A(x}=c+—,

' J (7.22)

Hence the solution to Eq. (7.18) is

/x2 ~y/2
h (x)=e ' " c+—'

2 (7.23)

The prefactor e '~ enforces h (x)—+0 as x~0 and
h'(x) ~0 as x —&0. Note that Eq. (7.23}contains an arbi-
trary constant. Hence the solution is not unique, and in
fact the equilibrium (x,y)=(0, 0) has an uncountably
infinite number of distinct center manifolds. However,
the term ce ' causing the lack of uniqueness vanishes
to all orders at the origin, so these manifolds all have the
same power-series representation (7.19). One can show
that this circumstance is generally the case (Sijbrand,
1985): when the center manifold is not unique the
differences are too small to be detected in the asymptotic
description (7.9). Thus in practice one does not worry
about possible non-uniqueness, since it will not affect
practical calculations based on the power-series represen-
tation of the center manifold.

Finally, for this example the center-manifold dynamics
{7.8) is

X= X 3 .

Let p=0 be the critical parameter value for an equilib-
rium undergoing either steady-state or Hopf bifurcation.
At p=0, there is a locally attracting center manifold 8"
that contains all small-amplitude equilibria and periodic
orbits; these solutions can be detected by analyzing a
low-dimensional system on 8". Unfortunately, the
small-amplitude solutions of interest do not usually exist
at p=O; or rather, they have "zero amplitude" at criti-
cality. These new bifurcating solutions become distinct
from the original equilibrium only for nonzero p, and
when pAO we have no center subspace E' and thus no
center manifold to justify studying the reduced dynarni-
cal system Eq. (7.8) or Eq. (7.26) [see Fig. 18(a)].

Ruelle and Takens (1971) pointed out that the reduc-
tion was justified not only at p=0, but in fact on a neigh-
borhood of criticality pE( —po, po), in parameter space.
Indeed, the notion of locally attractivity defined in Sec. V
implies the existence of such a neighborhood; the pro-
cedure of Ruelle and Takens is to apply center-manifold
reduction to the "suspended system. " This trick works
equally well for Aows and maps; we consider only the ar-
gument for Aows.

It is convenient to split the variables in Eq. (1.2a) as
was done in subsection VII.A above. Let R"=E'X
where E' is the center subspace associated with the bifur-
cation at p=O and X is the subspace spanned by the
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dXy = V;(p, x ),xz )
dt

dX2 = Vz(p, x„xz).
dt

(7.27a)

(7.27b)

At criticality, this splitting coincides with Eq. (7.2):

Vi(0, 0,0)= Vz(0, 0,0)=0,
D Vi (0,0,0)=D„Vz(0,0,0)=0,

D„V,(0,0,0)= A,

D~ Vz(0, 0,0)=8 .

(7.28a)

(7.28b)

(7.28c)

(7.28d)

Instead of applying center-manifold reduction to Eq.
(7.27) at p=0, we form the suspended system for (7.27):

dX ) = V, (p, x„xz),dt
(7.27a')

remaining eigenvectors. We choose variables x =(x&,xz )
such that x

&

HE' and xz EX; then Eq. (1.2a) becomes
(7.27c')

D h(p, x, ) V, (p, x„h)= Vz(p, x„h) (7.29a)

subject to

and formally apply center-manifold theory to the equilib-
rium (p,x„xz)=(0,0,0) of Eq. (7.27'). Since Eqs. (7.27)
and (7.27') are obviously equivalent, the only virtue of
this exercise is that certain features of Eqs. (7.27) are
made explicit. Note that when Eq. (7.27c') is appended,
the linear spectrum of Eqs. (7.27') at p =0 now includes a
zero eigenvalue not found in the spectrum of Eqs. (7.27)
at p=O; hence the center subspace E' for (7.27') at
(p, x&,xz) =(0,0,0) is larger than E' for Eqs. (7.27), and
similarly the center manifold W' for Eqs. (7.27') is larger
than the center manifold W' in (7.27) for (x „xz) = (0,0)
at p =0. More precisely, we have W 'D W' and
dimW'=dimW'+1. Since (p, x&) provide coordinates
on E', we can describe W' as a graph: xz=h(p, x, ),
where h satisfies

dX2 = Vz(p, x),xz), (p, x),xz) HEXE",
dt

(7.27b') A(0, 0)=0,
D„h(0,0)=0,

(7.29b)

(7.29c)

(0,0)=0 .
Bp

(7.29d)

E
(b)

W =Wo

(c)

FIG. 18. Illustration of the suspended system: {a) the center
manifold for the original syste~; (b) the en1arged center sub-
space E' and a neighborhood of local attractivity U for 8"
(W' is not shown); (c) schematic appearance of 8"when the
fixed point is not destroyed by the bifurcation. The origina1
center manifold 8"is recovered by slicing W' at p=O.

The crucial observation is that local recurrent points
belong to W ' for p near 0 (rather than simply at
p=O). Let ULEXE" denote a neighborhood of
(p, x„xz)=(0,0,0) within which W'is locally attracting;
the intersection of U with the p axis defines an open set
containing p=O. Within this open set we can find a
value of p, denoted po, such that the interval (

—po, po) on
the p axis is contained in U [see Fig. 18(b)]. When
p E ( pQ, po ), it follows that a given point (p', x '„xz ) be-
longs to U provided x& and x2 are su%ciently small. If
such a point is recurrent, then (p', x'&,xz)E W'. Fur-
thermore, since p=O, the point (p', x', ,xz) is recurrent
for Eqs. (7.27') if and only if (x I,x z ) is recurrent for Eqs.
(7.27). Hence, if p'E( —po, po), all local recurrent points
for Eqs. (7.27) belong to W'.

In addition, since p=0, the center manifold W' is foli-
ated by invariant submanifolds W„,obtained by taking a
slice of W' at a fixed value of p. When p=0, the sub-
manlfold W p-0 coincides with the original center mani-
fold W' of Eqs. (7.27), and each of these slices is of the
same dimension, dime'„'=dim W'. The geometry of the
suspended system is most easily illustrated when the
equilibrium at (x „xz) =(0,0) happens to persist as p
varies near p=0 (as in Hopf bifurcation). In this case we
can modify the definition of x, in Eqs. (7.27) so that
x& HE~ where E& is the eigenspace associated with the
critical eigenvalue A, , i.e., E&=E' when p=0. Now Eq.
(7.29b) becomes h(p, O)=0, and the manifold W' is
tangent to the subspace de6ned by E& and the p axis as
shown in Fig. 18(c).
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1014 John David Crawford: Introduction to bifurcation theory

Finally, the dynamics on 8'„'is given by

dXi
=Vi(p»1 "(IJ xl )) p+( po pD) .

dt
(7.30)

Thus on a neighborhood of criticality center-manifold
reduction gives us the autonomous low-dimensional
dynamical system (7.30); to rewrite (7.30) in normal form
requires the methods of the next section.

x =N(x') =x'+P(")(x')

with inverse

(8.3a)

x'~x that remove as many nonlinear terms as possible.
This task is accomplished in an iterative fashion. First
we remove V' )()M, x'), then V' )(p,x'), and so forth. The
entire procedure can be understood by attempting to con-
struct, if possible, the coordinate change to remove
V( )((tt, x'), k ~ 2. Consider then the coordinate change

Vill. POINCARE-BIRKHOFF NORMAL FORMS x'=@ '(x) =x —P(")(x)+6(x " '), (8.3b)

At the conclusion of Sec. II, we remarked that the
linear spectrum determines the normal form. More pre-
cisely, we shall show that the type of spectrum at critical-
ity determines which nonlinear terms are essential and
remain after inessential nonlinearities have been removed
by a smooth near-identity change of coordinates. %'e as-
sume that the problem has already been reduced to the
appropriate center manifold, and accordingly the specific
dynamical systems we consider are one or two dimen-
sional.

For the bifurcations analyzed in Sec. V, normal-form
theory is most interesting for Hopf bifurcation and
period-doubling bifurcation. For steady-state bifurca-
tion, the lowest-order nonlinear terms are in fact essen-
tial, and no particular simplification results from per-
forming normal-form transformations of the type con-
sidered here. For this reason, after developing the nor-
mal form procedure we work out the application to Hopf
bifurcation and period-doubling as examples. Finally we
describe some recent theoretical work that explains why
normal forms often have greater symmetry than the orig-
inal dynamical system.

A. Flows

1. Generalities

where

y(k)(gx) —g ky(k)(x) (8.4)

Aside from Eq. (8.4), we regard (I)'"' as unknown and try
to determine the choice of P(") that removes V'"' in (8.1).
From Eqs. (8.1) and (8.3a) one has (suppressing the
dependence on p)

=DC (x') =DC (C' '(x)) V(@ '(x))
dt dt

(8.5)

Now using ihe expansions

V(4& '(x))= V(x —it(")(x)+6(x " '))
= V(x) DV'"(x—) (t)'"'(x)+.6(x"+'),

(8.6a)

=I+Dy(k')(x)+0(x2k '), -
(8.6b)

we rewrite Eq. (8.5) keeping terms involving (I)(") up to
8(x"),

y(k). R"c R"c

is a homogeneous polynomial map of degree k; i.e., for
aER,

Center-manifold reduction yields a Bow

dX

dt
= V()M, x')= V("(p,x')+ V' )(p,x')

+ + V' )()M,x')+ . , x'FR ',
(8.1)

where n, =dimE' and V( )()t(,,x') represents all terms in
the Taylor expansion of V(p, ,x') of order k in x'. For ex-
ample, at a Hopf bifurcation n, =2 and

T

y(p ) n)()tt)V'"(,x )= —c)()M ) y()M )
(8.2)

is the appropriate first-order term. For simplicity we
have assumed there is no constant term on the right in
Eq. (8.1); this need not be true for steady-state bifurca-
tion, but as already mentioned the application to steady-
state bifurcation is not of great interest.

Given Eq. (8.1) our goal is to simplify V()M, x') by per-
forming near-identity nonlinear coordinate changes

= V(x) L(P' ')+8(x—"+'),
dt

(8.7a)

where

L($(k))( )xDV(1)(x) P(k)(x) DP(k)(x). V(1)(x) (8 7b)

Our notation is chosen to emphasize that the new terms
of D(x") in Eq. (8.7a) are linear in P(") and have the form
of a linear operator L acting on (t'"). Note that L,
defined by Eq. (8.7b), depends only on the linear term
V"'(x) of the original fiow. '

In connection with Eqs. (8.7b) and (8.8) there are a variety of
characterizations in the literature. The linear operator is sim-

ply related to the usual Lie bracket of the two vector fields P(")

and V"', i.e., L((()("))=—[V"),P(")]. Arnold (1988a) refers to
Eq. (8.8) as the homological equation associated with the linear
operator DV'"(x). Guckenheimer and Holmes (1986) write the
Lie bracket as adV("(P(")), since this vector field is induced
when V"' acts on vector fields through the adjoint representa-
tion (cf. Diver, 1986).
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Sohn David Crawford: Introduction to bifurcation theory 1015

To remove all terms of 8(x") in Eq. (8.7a) we must
solve

To make this interpretation precise, we go back to Eq.
(8.4) and define ~(k)(E"),

V(k)(x) L(y(k)) —() (8.8)

for P(k)(x). Formally, this is easy,

P("'(x)=L '( V' '(x)) (8.9)

but our solution is only sensible if L ' is well defined.
The task of finding L, if it exists, is a problem in
finite-dimensional linear algebra. That is, L in Eq. (8.7b)
may be viewed as a finite-dimensional matrix, and L is
well defined if and only if detLWO

&'"'(E")= {P:E"~E"~P(ax) =a "P(x) for all a HE],
(8.10)

the space of all homogeneous polynomial maps on I"of
degree k. For fixed k and n, &'"'(IR") is a finite-
dimensional linear vector space. The vector-space struc-
ture is obvious, and an example serves to make the finite
dimensionality clear. Consider &' '(E ) with coordinates
(x,y) C E; then any P(x,y) H&( '(E ) may be written

aX +bxy+Cy
dx +exy+fyd(x, y) =

T

X Xy
=Q 0 +6 0 +c

2

+d
0

+e
X

0 0
xy +f 2 (8.11)

Obviously, &' '(E ) is six dimensional, and one possible
choice of basis is given in Eq. (8.11).

In terms of the spaces &("', Eq. (8.4) asserts
P' '&&'"'(E ') and (8.7) implies

L:&'"'(E ')—+&'"'(E ') '

n

L(P(")(x))=(r P' '(x) — pa, o, P(")(x)
1=1

n

OJ CLIO) X
1=1

(8.12)

thus L is a linear transformation acting on a finite-

dimensional vector space. Once a basis for &( '(E ') is
chosen, then L can be written down in matrix form.

Any convenient basis may be selected, since det L is in-
dependent of this choice. Recall that detLAO means
that P( ' in Eq. (8.9) is well defined and the resulting
change of variables (8.3a) will remove all terms of order k
in Eq. (8.7a). More generally, however, one finds that
detL depends on k and on whether or not the system is
critical; at criticality there will be values of k such that
detL =0 because L has at least one zero eigenvalue.

Since L is given in terms of DV"'(0), it is reasonable to
investigate what the condition detL =0 implies about the
eigenvalues of D V"'(0); this is most easily done if we as-
sume that DV"'(0) can be diagonalized with eigenvalues

(at, (T2, . . . , o„).Once Eq. (8.7a) has been written in
C

coordinates that diagonalize DV"'(0), then the eigenvec-
tors of L are easily found. Let P(")(x) have only a single
nonzero component [cf. Eq. (8.11)], (P'"'(x))(=5(JQJ"'(x),
which we take to be a k-degree monomial: PJ '(x)=x
where j=1, . . . , n, labels the component and the multi-
index a is arbitrary except

~
a

~

=k. Then applying L to
P(")(x) gives

hence vectors P("'(x) of this form are eigenvectors, and
n

the eigenvalues have the form [a —g&' )a&o&]. If we
can satisfy the condition

n

0j= 0!10(
T=1

(8.13)

~(k)(E c
) L ((k)(E c

) ) +c(k) (8.14)

Once C' ' is chosen (and the choice is not unique) then
the kth order terms V'"' in Eq. (8.7a) may be split ac-
cordingly' V(k) V(k)+ V with V &L(~(k)(E"c))
and V,' 'HC'"'. The component in the range can be re-
moved,

for any choice of j and a then L has a zero eigenvalue.
One can see by inspection that when critical eigenvalues
(Reo =0) occur there are always choices of a which satis-
fy the "resonance condition" Eq. (8.13). We analyze the
case of imaginary eigenvalues in Sec. VIII.A.3 below.

In the presence of such zero eigenvalues, the range of
n

L, denoted L (&(")(E '
) ), is a proper subspace of

n&(")(IR '), and we can specify a complementing subspace
C' 'so that

In this notation, u—= (cx„a2,. . . , o.„)denotes an n-tuple of
a& a2 a

non-negative integers and x:—x
&
'x2 x„".In addition, we

define notation ~a~:—a, +a&+ . +a„and, for future refer-
ence, a!=a&!a2! . .a„!.

y(k) L —i( V(k) ) (8.15)

leaving behind the "essential" nonlinear terms at order k
namely V,'"'. In this way P( ' is first specified, then P' ',
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1016 John David Crawford: Introduction to bifurcation theory

and so forth so that one generates a power series
representing the desired normal-form transformation to
all orders:

x =(I)(x')=x'+P' '(x')+P' '(x')+ (8.16)

The normal form resulting from this procedure has the
structure

L(y(k))—

gy(k)

BX

gy(k)

BX

'y(k)(x y)
'

y(k)(x y)

gy(k)

By yx +coy

yx —(Oy

By

(8.18)

dX = v"'(x)+ v'"(x)+ v"'(x)+
dt C C (8.17)

if at order k, detL %0, then of course V,'"' —=0.
There is an important subtlety in this procedure. The

series Eq. (8.16), representing the transformation (I)(x')
required to put the original flow Eq. (8.1) into normal
form to all orders, typically diverges. Thus, while we can
describe which terms can be removed at any given order,
the change of variables required to remove them to all or-
ders does not generally exist. In practical applications
one implements the transformation to normal form only
up to some finite order, and this finite-order approxima-
tion to the original Row Eq. (8.1) is studied. The possible
effects of the neglected higher-order terms can then be
considered in reaching final conclusions.

2. Steady-state bifurcation on R

3. Hopf bifurcation on R2

Generically for Hopf bifurcation, n, =2 in Eq. (8.1),
and we take V" )()Lt, x') as given by Eq. (8.2). Let
(x,y)ER denote the coordinates, then P(")E&( '(R2)
has the form

For steady-state bifurcation with a simple zero eigen-
value, n, =1 in Eq. (8.1), and V()tt, x') has the form de-
scribed in Eq. (5.2). If we try to simplify Eq. (5.4) by ap-
plying the coordinate change Eq. (8.35) to remove the x~
term, then the required change of variables is singular at
criticality ((tt =0). For this reason, the method of
Poincare-BirkhoF normal forms is not particularly useful
in this case. A similar limitation holds for steady-state
bifurcation in maps.

As noted in Sec. VIII.A. 1, to determine the eigenvalues
of L it is more convenient to use the complex coordinates
(z, z) that diagonalize DV'"(0), i.e.,

1 i x X
=—S-

1 —i y
=

y
(8.19)

so that

1 1

2 —
g g

L (y(k) ) 0

y(k)

y+ia)
Z

'
gy(k)

Bz

gy(k)
Z

j3z

gy(k)

gy(k)
Z

az

(y i a))z—
(@+i'))z (8.20)

By inspection from Eq. (8.20) we see that the eigenvec-
tors have the form ((t,„0)or (0,$, ), so we introduce the
vectors

0
P+LCO

In terms of (z,z), the same vector P(")H&(")(R ) is reex-
pressed

'y( )(z z)
Y' y(k)( —

)

P'"'(x (z, z ),y (z,z ) )

P» '(x (z, z ),y (z,z ) )

and the action of L on (I)" is

'y(k)(x y)
'

(k)(x~y) =
~(k)( )X,y

and in these variables L(P(")) is expressed as

I—k —1

g'" "(z,z) =

0
"(z,z)=

z z

(8.21)

which are eigenvectors of I. and also provide a basis for
A'")(R ). From Eq. (8.20) we calculate the eigenvalues

~3Because of the iterative process used to construct N, the full
series in Eq. (8.16) is not of the form x'+ g„&((t)(")(x'). L (g(k, l)

) g(k, l)( g(k, l) (8.22a)
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where

A,(~'"(p)=—(1—k )y(p) —iso(p)(k —2l+1) . (8.22b)

Since det L =0 implies at least one zero eigenvalue,
and a zero eigenvalue in Eq. (8.22b) requires that real and
imaginary parts vanish separately, we must satisfy

(1—k)y((((, ) =0

(k 2l—+1)co(p)=0
(8.23a)

(8.23b)

to obtain A,(+' '=0. Because k ~ 2, Eq. (8.23a) fails unless
y(p)=0, which requires that we are at criticality p=O
[recall Eq. (5.23)]. At p, =O, co(0)%0, so Eq. (8.23b) re-
quires k —2l+1=0. Since 2l+1 is odd, for k even we
will never satisfy Eq. (8.22b), and for k odd there are ex-
actly two null eigenvectors at criticality,

g(k, (k +1)/2)5+

g
( k, ( k —i )/2 )— 0

ik
—i

'k=3, 5, 7, . . . . (8.24)

These two vectors are a natural basis for the complement
C'"' to the range of I.,

C(k) s [g(k, (k+))/2) g(k, (k —))/2)]k 3 5 7

The implication for Eq. (8.1), written in complex coor-
dinates Eq. (8.19), is a normal form with all even non-
linear terms removed,

ance of Eq. (8.26) under 8—+8+/, illustrates this point.
Note that this symmetry was not assumed to hold for the
original vector field Eq. (8.1); rather, it is introduced by
the normal-form transformation Eq. (8.16). As already
discussed, the normal-form procedure is formal in the
sense that Eq. (8.16) may not converge if carried to all or-
ders. When the series diverges, then a symmetry intro-
duced by Eq. (8.16) describes only an approximate prop-
erty of Eq. (8.1), even though it is exact for the normal
form.

In the case of Hopf bifurcation we constructed the nor-
mal form Eq. (8.16) first and then noted the phase-shift
symmetry. This order can be reversed; the theory of nor-
mal forms can be formulated by identifying the relevant
symmetry first and defining the normal form by its sym-
metry. The advantages of this second approach were
noted by Belitskii (1978, 1981), Cushman and Sanders
(1986), and Elphick et al. . (1987). The results of Elphick
et al (1987) are clearly discussed in Cxolubitsky, Stewart,
and Schaeffer (1988), whose presentation is summarized
here.

The key result is that the complementing subspace C' '

in Eq. (8.14) may be defined by a symmetry I that is
determined by the linearization at criticality; i.e.,
DV(0, 0). More precisely, let M=DV(0, 0) and M
(transpose of M). Then M generates a one-parameter
group of transformations with the obvious multiplication
rule

exp(s)M )exp(szM )=exp[(s)+sz)M ] .

ltd

0
()

'z' „a,zfz/''
y+toi z, i a z/z/ J+T (8.25)

I = [exp(sM ) ~s E E] . (8.27)

The closure of this one-parameter group defines the
normal-form symmetry

Rewriting Eq. (8.25) in polar variables, z =re ', yields

r' = r y ((((, ) + g a r 2J

j=1
(8.26a)

Let &(r")(E")denote the subspace of &(")(E")compris-
ing those maps with I symmetry, i.e., those
V'"'(x ) E&'"'(E") such that

8=co(p)+ g b r J,
j=1

(8.26b)

where a =Re(aj) and b = —Im(aj). T.his is precisely
the normal form introduced in Eq. (5.22).

V'"'(exp(sM ) x)=exp(sM ) V'"'(x) (8.28)

for all s ER.
We shall prove that &r"' may be taken as the comple-

ment C'"' to the range of L so that Eq. (8.14) becomes

4. Normal-form symmetry
yf'"'(E ') =L(&("'(E

'))&JAN'"'(E

') . (8.29)

Although normal forms may have fewer nonlinear
terms, the discussion above does not explain why this
should simplify the nonlinear analysis. For example, the
one-dimensional logistic map has only one nonlinear
term and the Lorenz equations have only two nonlinear
terms, yet the immense dynamical complexity of these
two systems is well known.

There is a more intrinsic explanation for the practical
utility of normal-form theory: normal forms can have
greater symmetry than the original system, and this
makes them simpler and therefore useful. The phase-
shift symmetry of the Hopf normal form, i.e., the covari-

In words, this splitting implies that the normal-form
transformation Eq. (8.3a) can remove all kth-order terms
except those with I symmetry.

The argument relies on a clever definition of inner
product on &'"'(E"). This definition is based on the fol-
lowing product for monomials: for x HIR", let x and x~
denote two monomials in multi-index notation and define

[x,x~] =5 t)a!,

By defining I as a closed group of matrices we ensure that it
is a Lie group.
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1018 John David Crawford: Introduction to bifurcation theory

which can be conveniently rewritten as

gl~lx p[x,x~]=
BX

(8.30)

This bracket extends to polynomials in the obvious way:
let p(x) =+~ x and q (x)=y~pxi. Then

(~T )p]
8 (A x)p

BX

xpa
BX

= [( A x ),x~]; (8.40)
[S (x»e(x)) =gu. ep[x, x~)

a, p

BX
(8.31)

Finally, given P, gH&'"~(R"), we define their inner prod-
uct by

in the second step the change of variables y = A .x and
the chain rule,

gyp (y~),
BX By

were used to justify the substitution

(8.32)
Bi i(A x)~

BX

a p
By

where L~ has been written with a subscript to emphasize
the dependence on M. Given the inner product (8.32), we
de6ne the adjoint of LM as that operator satisfying

&L P, g& = &P,L yl&

for all P and f in &'"~(R"). We shall determine L~~ as

LM(P)(x) =M P(x) DP(x) M —x

(8.34)

=L T(p)(x)

by applying two identities,

&y(x), &'q(x)&=&& y(x), y( )&,

&y(x), q(& x)&=&/(& x),q(x)&,

(8.35)

(8.36)

(8.37)

that hold for any linear transformation 3:R"~R'. The
first identity follows immediately from Eqs. (8.31) and
(8.32):

where P~. and P~ are the jth components of P and g, re-
spectively.

At criticality, the operator L in Eq. (8.7b) becomes

LM(P)(x) =M P(x) Dy(x).M—x,

With Eqs. (8.39) and (8.40), the second identity (8.37) fol-
lows directly.

These identities are applied by choosing
A =exp( —sM) in Eq. (8.36) and A =exp(sM) in Eq.
(8.37) to obtain

&y(x), L (y)(x)&=&L gy)( ), y(x)&, (8.42)

which establishes Eq. (8.35).
The argument leading to Eq. (8.29) can now be summa-

rized. The vector space &'"'(R") is first written as the
direct sum of the kernel of L~ and the orthogonal corn-
plement of the kernel:

gf'"'(R") =(kerL ) e (kerL ); (8.43)

then the Fredholm alternative for LM implies
(kerLt ) =L(&'"'(R")) and Eq. (8.35) implies
kerLM =kerL r. Thus Eq. (8.43) may be reexpressed as

JV'"'(IR")=L(JV'"'(R"))e(kerL ) . (8.44)

&y(x), e ' y(e' x)&=&e ' y(e' x), y(x)& .

(8.41)

By differentiating Eq. (8.41) with respect to s at s =0, we
Anally arrive at

&P(x), A g(x) &
= g [(5 (x), ( A ));P;(x)]

i j =1
n= g [A;.P (x),P;(x)]

i j =1

(8.38)

Finally, with the aid of the identity

we can identify kerL r with &z"'(I"). If Pe~~P'(R"),

&P(x), g(A x)&= g gP g, &[x,(A .x)~] .
j =1a,p

Then with Eq. (8.31) we have

(8.39)

For the second identity, we express the jth component of
P as P,.(x)=g P ~ [and similarly for g, (x)], so that
the left-hand side of Eq. (8.37) becomes

25Here

a
1 a 2

A2)
2 ayI

(summation on repeated indices).
6See Stakgold (1979),pp. 321—323.

n

n
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then the left-hand side of Eq. (8.45) vanishes, which im-
plies L +=0; hence P&kerL z; Conversely, if
P&kerL r, then the right-hand side is zero and the left-

hand side must be independent of s. This implies

e' .(I)(e ' x ) =P(x), (8.46)

since P(x) is the value at s =0; hence (t H&'z")(IR"). Thus
kerL~&=&i- '(E"), and Eq. (8.29) is established.

Note that when M can be diagonalized then we may
assume M = —M and consequently kerI. T=kerL~. In
this case, the definition of I can be based directly on M;
it is not necessary to use the transpose.

In our example of Hopf bifurcation, the linearization
at criticality gives

0 co(0)
—co(0) 0 (8.47)

so that an element of I has the form

cos(sea(0) ) —sin(sco(0) )

sin(st(0) ) cos(see(0) )
(8.48)

As expected, this identifies the normal-form symmetry
for Hopf bifurcation as rotations in 0 or I =S'. Note
that for steady-state bifurcations DV(0, 0)=0, so the as-
sociated I in Eq. (8.27) is trivial, consisting only of the
identity matrix. This explains why Poincare-Birkhoff
normal-form methods do not significantly simplify the
analysis of a steady-state bifurcation.

f '"'(x) —L(P'"))(x)=0, (8.51)

= [cr —o ](t (")(x) (8.52)

from Eq. (8.50b), where cr —=o, 'o.2'. o.„';hence for
C

maps the resonance condition required for a zero eigen-
value is

(8.53)

for some choice of j and a.
When zero eigenvalues occur, then the nonlinear terms

that cannot be removed may be characterized by their
symmetry. Let M=Df'"(0) denote the linear map at
criticality [cf. Eq. (2.10)] and define the group generated
by M,

I = I(M )"~n =integer), (8.54)

so that &(r )(E") now denotes elements of &(")(E")with
symmetry (8.54); i.e., P(x) H&(r")(E") requires
M .P(x)=P(M .x). With I and &r"' redefined in this

n
way the proof that &(")(E ') may be expressed as

by constructing L '. When detL =0, there are zero ei-
genvalues, and some nonlinear terms cannot be eliminat-
ed. As for vector-field normal forms, if we assume coor-
dinates can be found which diagonalize Df'"(0), then
the vectors P "'(x) having a single monomial compo-
nent P'")(x)=x will be eigenvectors for L. Let
(cr „cr2,. . . , o„)denote the eigenvalues of Df"'(0).

C

Then we find

L(y(k))(x) y(k)(x) ay(k)(x)
J

B. Maps &'"'(IR ') =L(&'"'(E '))e&'i"'(E ') (8.55)

1. Generalities

x'FIR ' (8.49)

in a notation modeled on Eq. (8.1). We suppress explicit
parameter dependence and ignore constant terms as be-
fore. The goal remains the same: remove f'"'(x'), if pos-
sible, using the change of coordinates Eq. (8.3). In the
new variables (unprimed) we find

x +, =f(N '(x ))+P(")(f(N '(x )))

=f(x, )—L(P'"')(x, )+6(x"+'),
where now L is defined by

L ((t '"')(x ) =Df"'(0).(t '"'(x) —P'"'(f"'(x) )

(8.50a)

(8.50b)

Note that Eq. (8.50b) difFers crucially from (8.7b) in the
second term, ' nevertheless we are again seeking to solve
an equation of the same form,

On the center manifold we find a map that may be
written

xj+, =f(x') =f"'(x')+f ' '(x,')+

is quite similar to the argument leading to Eq. (8.29).
With

L (y'"')(x) =M y'"'(x) y'"'(M x )— (8.56)

denoting the operator L [cf. Eq. (8.50b)] at criticality, the
identities (8.36) and (8.37) imply L~=L r. Therefore

(kerLM) =L~(&' ') and kerLM =kerL r hold as be-

fore, and we obtain

&( '(E ')=LM(&("'(E '))ekerL (8.57)

by the same reasoning that led to Eq. (8.44). It is only

necessary to check that kerL r=&i-"'(E ') still holds.

This follows by noting that P H kerL & if and only if

M P(x)=P(MT x ), (8.58)

which in turn is also necessary and sufhcient for

(t em(,")(E" ).
The splitting (8.55) has the same significance here as in

the vector-field case: only when T' defines a nontrivial
symmetry should we expect the Poincare-BirkhofI' nor-
mal form to be simpler than the original map. In addi-
tion, the normal form for the original map (8.49) will be
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1020 John David Crawford: Introduction to bifurcation theory

f(x)=f"'(x)+f' '(x)+f' '(x)+

where f '"'(x) E&z"'(R ')

2. Period-doubling bifurcation on R'

(8.59) Since A,(0)= —1, eigenvalue A, ( 1 —A,
" '

) will vanish at
criticality when k is odd; thus terms of even degree can
be removed, and only odd terms,

—g(x) =g( —x ),

Typically n, = 1 for a period-doubling bifurcation, and
Eq. (8.49) is a map in one dimension with

f '"(p,x ) =A,(p)x,
where

(8.60)

A,(0)= —1, (0) &0 .dk
dp

The space &(")(R) is one dimensional for all k, and the
single basis vector,

g(k)(x ) —=x"

x +, =A(p)x [1+a,x +a2xl~+8(x )], (8.62)

for Eq. (8.49) will have a re6ection symmetry as claimed
in Eqs. (5.34) and (5.35).

will remain in the normal form. If we consider the ex-
pected symmetry I in Eq. (8.54), then
M=D f'"(0,0)= I s—o 1 =Z2( I), t—he two-element
group on I generated by —I. Thus we are again led to
the conclusion that for period-doubling the normal form,

3. Hopf bifurcation on R'
is ' an eigenvector for L:&(")(R)~H'"'( R ); from Eq.
(8.50b) we find

L(g' '(x))=&(p)(1—~(p)" ')g(")(x) .
As for Rows, one expects n, =2 for Hopf bifurcation,

(8.61) and with coordinates (x,y) on IR we have for 0 & 8 & —,
'

[1+a(p)]cos2n8(1+b(p)) —[1+a(p)]sin2m8(l+b(p)) x
[1+a(p)]sin2m8(1+b(p)) [1+a(p)]cos2+8(1+b(p)) y

(8.63)

in Eq. (8.32), where a (p), b(p) satisfy the assumptions in Eq. (5.39). At criticality, a (0)=b(0) =0, so the expected sym-
metry (8.54) will be generated by

cos2m. O —sin2m. 8M=
sin 2~0 cos2m8 (8.64)

the rotation matrix for the angle 0 determined by the critical eigenvalues.
As before it is convenient to introduce complex coordinates (8.19) so that (8.63) becomes

A,(p)
SDf"'S

0 A,(p)
(8.65)

where A(p)=[1+a(p)]e' ('+ '"'j. From Eq. (8.50b) we obtain

L(y(k))
X 0 y.()(~2) y.(k)(»»)
0 X y,'")(z,z) y,'"'(», Xz)

(8.66)

The eigenvectors of L are again given by Eq. (8.21), and (8.65) yields

L(g(k, l)) g(k, l)( )g(k, l)

where

g(k, l)( ) [1+a( )] +(2m()(1+b(P))[1 (1+a )k —1 i2m8(1+b)(k —2—i+1)]

(8.67a)

(8.67b)

By inspection detLWO unless p=O, in which case
A, (+' '(0) =0 if and only if

(a) 8 irrational.
To satisfy Eq. (8.68) requires

exp[ —i2mO(k —2l+1)]=1 . (8.68) g(k —2l+1)=m, (8.69)

The solutions (k, l) to Eq. (8.68) vary depending on
whether 0 is irrational or rational.

with m an integer, and when I9 is irrational we must have
k —Zl+1=0. This leads back to the null eigenvectors
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z +)=zj A, ()((,)+ ga;~z~~ '

i=1

In polar variables, z =re'~, we have

(8.70)

r +)=[I+a(p)]r 1+ ga, r '

i=1
(8.71a)

(8.24) found for the Hopf normal form for Ilows. The re-
sulting normal form in this case is

When 0 is rational, the symmetry I of the normal
form is reduced to I =Z, the discrete subgroup of S'
generated by rotation through 2m. /q. For the cases of
"strong resonance, "

q =3 and q=4, we are thus led to
study maps that are covariant under rotations by 2m/3
and m. /2, respectively, ar(d the structure of the bifurca-
tion is much richer (Arnold, 1988a). [In particular, for
q =4, there are at least 48 different local phase portraits
possible (Arnold, 1989).]

QJ+) =f~ +2m. g[1+b(p)]+ g b, r ',
i=1

(8 71b) IX. APPLICATIONS

where a;=Rem; and b;=Ima;. This agrees with Eq.
(5.41) in Sec. V.

The fact that the dynamics of the amplitude (8.71a)
decouples from the phase (8.71b) retlects the symmetry
I . For 0 irrational, the matrices,

T

cos2mn 8 —sin2mn 0
sin2mn 8 cos2m n 0 (8.72)

(b) 8 rational.
Let H=p/q with 0 &p/q & —,

' where the integers p and

q are relatively prime. Now in addition to the solutions
k —2l+1=0 for Eq. (8.69) we have another set of solu-
tions represented by

k —2$+1=nq, n =+1,+2, . . . (8.73)

so that pn =m. We are primarily concerned with solu-
tions to Eq. (8.73) that introduce new low-order terms
into the normal form (8.71). Examination of different
cases for (8.73) shows that if q=3 or q =4 then we get
new terms at quadratic and cubic orders, respectively.
For q ~ 5 the new terms in the normal form are at least
fourth order and can be shown to have negligible effect
on the analysis of Sec. V. The low-order "resonant"
terms are as follows: for q =3,

r—2 0
g(2, 0)(z z )

— g(2, 2)(z z )— Z'

are null eigenvectors, and for q =4,

g(3, 0)( —)— z—3

g(' 3)(z,z ) = Z3

are the null eigenvectors. Provided q W3, 4 [or,
equivalently, assuming the nonresonance condition
(5.40)], the normal form up to third order is given
correctly by Eq. (5.42).

Two integers are relatively prime if they have no common
divisor besides 1.

for all integers n, provide a dense subset of the group of
rotations in the phase. Thus I =S' is precisely this rota-
tion group and corresponds to the phase-shift symmetry
of the normal form (8.71).

The normal-form equations provide the most elemen-
tary examples of the bifurcations we have considered.
However, in practice lengthy calculations may be neces-
sary to extract the relevant normal-form coefficients from
the initial equations expressed in physical variables. In
this section we analyze bifurcations in two equations that
illustrate both the power of center-manifold reduction
and the computations required to obtain detailed predic-
tions for specific problems. In addition, each of these ap-
plications illustrates new features of the theory that can
arise when one encounters equations that have symmetry
or that depend on more than one parameter.

The first problem considers a simplified model in plas-
ma physics for the three-wave interaction between an un-
stable plasma wave and two damped waves. The ampli-
tude equations for the waves lead us to a Hopf bifurca-
tion in a three-dimensional How that depends on two pa-
rameters. The calculations required to obtain the Hopf
normal form (5.22) are carried out in detail. Because this
model contains two free parameters, the cubic coefficient
a, evaluated at criticality [cf. Eq. (5.24)] is a function of
the remaining parameter. By varying this additional pa-
rameter we are able to locate a degenerate bifurcation in
which the nondegeneracy condition (5.24) fails, and
higher-order terms in the normal form must be con-
sidered. This degeneracy allows us to detect and analyze
a secondary saddle-node bifurcation for the Hopf limit
cycle.

In the second application, we study steady-state bifur-
cations in the (real) Ginzburg-Landau equation. This
analysis illustrates center-manifold reduction for bifurca-
tions in infinite dimensions, i.e., for a partial differential
equation. Because the Ginzburg-Landau equation is rela-
tively simple we are able to calculate not only the initial
bifurcation from the "trivial" equilibrium but also the
secondary bifurcations from the resulting "pure-mode"'
solutions. These secondary bifurcations are the mecha-
nism for the Eckhaus instability, which plays an impor-
tant role in the theory of spatially extended pattern-
forming systems (Eckhaus, 1965). The center-manifold
reductions in this case are complicated by the fact that
the Ginzburg-Landau equation is highly symmetric. In
the simplest case —one dimension and periodic boundary
conditions —the symmetry group is O(2)XO(2). Al-
though one typically expects one-dimensional center
manifolds at a steady-state bifurcation, in this example
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1022 John David Crawford: Introduction to bifurcation theory

the initial bifurcation has a four-dimensional center man-
ifold, and the secondary bifurcations lead to two-
dimensional center manifolds. In each case the symme-
try forces the zero eigenvalue to have multiple eigenvec-
tors (four and two, respectively), and this multiplicity
leads to larger center manifolds.

A. Hopf bifurcation in a three-wave interaction

dence on (0,I ) implicit. The divergence of this family is

divV=2(1 —I ) . (9.2)

For I ( 1 the Aow expands volumes in R and there are
no stable bounded solutions; for I & 1 the How contracts
volumes (Verhulst, 1990). Since the equations are un-
changed by the shift (Q,y )~( —0, —y ), we may assume
0 to be non-negative.

Nonlinear plasma theory involves, in part, an analysis
of the interactions between the various waves supported
by the plasma. In this example we examine the satura-
tion of a linearly unstable plasma wave via a "three-wave
interaction" in a simplified model considered originally
by Vyshkind and Rabinovich (1976), Wersinger et al.
(1980), and others. Physically, an unstable high-
frequency wave is coupled to two damped waves of lower
frequency. Under suitable conditions an overall balance
results between high-frequency growth and low-
frequency decay. This produces a stable equilibrium in
the dynamics of the three waves, and the wave ampli-
tudes are time independent. If, however, the parameters
of the interaction are varied to produce less damping or
less efFective coupling, then this stable balance is des-
troyed and some form of time-dependent state emerges.
For the model considered here, this transition occurs via
a Hopf bifurcation. In addition, if the damping of the
stable modes is decreased sufficiently, one expects on
physical grounds that they may fail to arrest the growth
of the unstable mode. In the Inodel, this failure is
marked by a shift from supercritical Hopf bifurcation
(a, &0) to subcritical Hopf bifurcation (a, &0). The cal-
culation of a& allows the location of this transition to be
predicted, and the normal-form analysis yields a detailed
understanding of the dynamics near this critical region.

For simplicity we assume the two stable waves have
equal damping rates I and equal amplitudes a2=03.
The dynamical variables are then (a„az,P), where a, is
the amplitude of the unstable wave and p=pI —

$2
—

p3 is
the phase difFerence between the waves. Following Wers-
inger et al. (1980), we introduce the coordinates
(x,y, z)=(aIcosp, aIsinp, a2), so that the wave interac-
tion is described by

1. Linear analysis

V has two fixed points. There is a trivial fixed point at
(x,y, z) =(0,0,0) corresponding to no waves; this solution
is unstable, since the high-frequency wave is unstable.
There is a nontrivial fixed point at

—QI A
(xo,yo, zo) = —I, , I 1+

(2I —1)

(9 3)

whose stability depends on 0 and I . If we shift the ori-
gin to (xo,yo, zo), x =x'+xo, y=y'+yo, z=z'+zo and
drop the primes, then

d
P

—p(1+p )

(1+p)p 1 x
1 —p 0 y +2

0 0 z

y
xy

(9.4)

For p~2, all coefficients are non-negative and the con-

32

= —O. l

where p—=21 and p—:0 j(p —1). The eigenvalues A, of
the linearization at (x,y, z) =(0,0,0) satisfy

A, +(p —2)k +[1+(1+2p)p ]k+p(p —1)(1+p )=0 .

(9.5)

x

y 0 1

0 0 —2I z

y
0 y +2 xy, (9.1)

20- 0.0
O. l

0.2

0.5
0.4

where A=co& —
cu2

—
m3 measures the detuning from the

resonance cu, =~2+~3. Both parameters Q and I are
non-negative. For additional background on the plasma
physics ancestry of Eq. (9.1) see Wersinger et al. (1980).
The chaotic dynamics of the model in the regime of large
damping (I ~ca and 0/I fixed) has been analyzed by
Hughes and Proctor (1990). The analysis of the Hopf bi-
furcation in these equations follows Crawford (1983).

Let V(x,y, z) denote the two-parameter family of vec-
tor fields defined by the model (9.1), leaving the depen-

0—
I I I

2

0.5-
I I I I I I I I

4 6 8 10

FIG. 19. Surfaces of constant y in the (0,I ) parameter space.
The Hopf bifurcation surface is y=0; for y (0 the fixed point
(9.3) is stable.
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3y —~ +2(p —2)y+1+p (1+2p)=0, (9.6)

stant term is positive. This implies that any real root
must be negative; in particular, A, =0 cannot occur in this
region of parameter space. If eigenvalues with Rei. =O
occur, they must form a conjugate pair +i'. Thus, in
the regions of parameter space where the stability of the
fixed point changes, there will be a negative real eigenval-
ue and a conjugate pair. From the characteristic polyno-
mial, a complex root, @+ico, satisfies

y(y —3~')+(p —2)(y' —co )

+[1+p (1+2p)]y+p(p —1)(1+p )=0 . (9.7)

Although (Q,p) are the physical parameters, y and p
are more convenient, as y directly measures the distance
in parameter space from criticality for a Hopf bifurca-
tion, i.e., y =0. We may express the dependence of 0 on
(y, p) by solving Eq. (9.6) for co, eliminating co2 from Eq.
(9.7), and solving for p:

(1—2y)p —2[1+4y(y —1)]p+2[1—y(4y —8y+5)]p'=
p —2(1 —2y )p —2(1 —y )

(9.8)

—A,;p(1+p)
—A(A, , )

pp(1+ p')(1+p)

l =1,2, 3 (9.9)

where A (A, )=A, —
A, +p(1+p ). For the real eigenvalue

A, &, the eigenvector is real; for the conjugate pair A,2=1,3
we have

Now given parameters (y, p) we can determine p and
hence Q from Q=p(p —1). The (Q,p) parameter space
for Q~O, p~O corresponds to y ~0.5 and p+0, as
shown in Fig. 19. The curve y=O determines the Hopf
bifurcation surface where a complex-conjugate pair of ei-
genvalues reaches the imaginary axis.

The center-manifold reduction for this bifurcation re-
quires that we determine the two-dimensional center sub-
space. For the eigenvalues Q, &, A,2, A, 3) we have eigenvec-
tors (u„u2,u3):

where

U;
—

CO

—yp(1+p)
co —A(y)

pp(1+p )(1+p) .
—p(1+p)

1 2Q)

0

span E' at y =0. The linear transformation

S:—(u„u; u& )

puts the linear problem in block-diagonal form:

(9.11)

co 0
co p 0

0 0
=S 'LS, (9.12)

where L is the matrix in Eq. (9.4}and S is given by

U2 3
=Vr —lUi (9.10)

S
detS

ace(1 —2y ) aPco co[A(A, , )+A, i(1—2y)]
—a[co +A(A, , )

—A(p)] aP(A, ,
—y) A)A(y) —yA(A, , ) —A, ,co

ace(2y —1) —aPco co[co —A (y )—y(1 —2y ) ]

(9.13)

with dZ =A, ,z'+R3(x', y', z') (9.16)
a—=p(1+p ), P—:p(1+p),
detS=ap co[A(A&) —A(y)+co +(A& —y)(1 —2y)] .

Next we implement the linear change of variables

where

R, (x',y', z')

R2(x', y', z') Xy (9.17)
X X

y' =S '
y (9.14)

Z' Z

in Eq. (9.4), to express the vector field in the standard
form of Eq. (7.2):

XZR3(x',y', z')

with (x,y, z) expressed in terms of (x',y', z') using Eq.
(9.14). For convenience in our discussion below, the re-
sult of fully expanding the right-hand side of Eq. (9.17)
will be denoted

r

d X

dt 3'

67 X
I +

69

R, (x',y', z')

R2(x', y', z') (9.15)
R,.(x',y', z') =R;&x' +R;2y' +R;3x'y'

+Ri4x'z'+R; ~'z'+R;6z' (9.18}
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1024 John David Crawford: Introduction to bifurcation theory

+p y(ro —A(y))

+P y( A (A, i )+ l(, i(1—2y ) ) ) . (9.19)

2. Approximating the center manifold

Near (x',y', z') =(0,0,0) we represent the center mani-
fold by a function h:R ~R describing the z' coordinate
of the manifold, i.e., z'=h(x', y'). This function satisfies
[cf. Eq. (7.7))

, [yx'+coy'+R i(x', y', h )]

for each component i =1,2, 3. The coe%cients R; are
readily worked out, but we shall not require the detailed
expressions, which tend to be unwieldy, e.g.,

Ri, = [(1—2y)(oi —A(y))
—2aPco

detS

where terms of fourth degree and higher have been omit-
ted.

3. Determining the normal form

(9.26)

where I.(P( ') is defined in Eq. (8.16). Following the dis-
cussion in VII.A.2, we solve Eq. (9.26) by rewriting it rel-
ative to the basis [ g(+'") defined in Eq. (8.19). Thus

R „x'+R„y'+R„xy

The quadratic terms in Eq. (9.25) may be removed by a
near-identity normal-form transformation to new vari-
ables (x,y ) = (x ',y

' )+P' '(x ',y
'

) with inverse
(x',y')=(x, y) —P' '(x,y)+0(3) [cf. Eq. (8.3)]. From
Eqs. (9.25) and (8.8), the equation for P( ' is

R ]]x +R ]2y +R ]3xy

R2]x +R22y +R23xy

with

+, [ —cox'+yy'+R2(x', y', h )]
By

=A, ,h(x', y')+R3(x', y', h) (9.20)

h(0, 0)=0, , (0,0)=, (0,0)=0 .Bh Bh

Bx By

An asymptotic solution for h(x', y') near (x',y')=(0, 0)
has the form

with

l
R (+2' ' =—„'(R„—R,2

—R23)+ —(R,3+R2, —R22)

R (2,2)

lR'+'" = ,'(R ii+R, 2—)+—(R2, +R22)=R' '",
2

(9.27)

(9.28a)

(9.28b)

h(x', y') =hix' +h2y' +h3x'y'+ (9.21) l
R '+' ' =

—,'(R ii —R (2+R23)+ —(R2i R,3
——R22)

where terms in (x',y') of third degree or higher have
been dropped. A straightforward evaluation of the quad-
ratic coe%cients yields

and

R (2,0) (9.28c)

2'(R 32
—R 3, ) + (2y —A, , )R 33

(2') +(2y —A.()
(9.22) 2

y(2) —y [y(2, l)g(2, l)+y(2, l)g(2, l)) .
1=0

(9.29)

coh3+R3]
Ai =

2j

cOh3+R 32

2y-~, (9.24)

R (2, l)
~(2, l)++ g(2, l)+

(9.23) hence from Eqs. (8.22) and (9.26)

(9.30)

Given h(x', y'), the two-dimensional vector field on the
center manifold follows directly from Eqs. (9.15), (9.18),
and (9.21),

for I =0, 1,2. This change of coordinates must now be
carried out in Eq. (9.25) to obtain the transformed vector
6eld up to terms of fourth degree:

X R, (x',y', h )

—co y y' R2(x', y', h )

y ~ x R ]]x +R }2y +R }3xy
&2 I2

R2}x' +R22y' +R23x'y'

R }4x'+R}5y'
+(hix +h2y +h3x y ) R +R +

24X 25y

(9.25)

y.
CO X

CO

R }4x+R }5y
+(h, x +h2y +h3xy) R +RR24x +R25y

R ]]x +R ]2y +R }3xy—DP")(x,y). 2, +6(4) .
21x 22y 23Xy

(9.31)
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2(((I(2,2)R (2, 1) +(tI(2,0)R (2, 2)
) (9.32)

where R'+' ' is the component of the "original" cubic
terms in Eq. (9.25) along the basis vector g(+

R'+' ' =
—,'[3(hIR «+h2R25)+h2R )4

+ h 3R 13+h)R 2~+ h 3R24 ]

l+—[3(h 1R24 —h 2R,4)+h2R24+ h3R25
8

—h, R„—h3R, 4] . (9.33)

We now have the normal form for this bifurcation to
leading nonlinear order [cf. Eq. (8.26)]:

i =yr+Re(ai)r +8(r ),
61=(o—Im(a))r +6(r ) .

(9.34a)

(9.34b)

The dependence of a& on parameters is complicated, and
the behavior of the cubic coefficient Rem& along the criti-
cal curve y=0 in parameter space is best examined nu-
merically. The graph of a, =Rem, vs p for y=0 in Fig.
20 indicates a region of supercritical bifurcation a& &0
and a region of subcritical bifurcation a, )0, with the
transition a& =0 occurring at p, -3.29. Thus for damp-
ing rates greater than p, the instability will saturate at
r =rH in a small stable oscillation of the wave amplitudes
[cf. Eq. (5.25)]. For )M (p„the analysis implies that there

f(a, )

f(az)

Here we see the additional terms of third degree generat-
ed by the nonlinear coordinate change removing the
quadratic terms. The final task is to consider the terms
of third degree in Eq. (9.31) relative to the basis Ig+'"]
and determine the coefficient a) of g(+' ' [cf. Eq. (8.25)].
This calculation yields

R (3,2) A(2, ))(R (2, 2) +R (2, 1) )+ ~+' +'

is no stable solution in the neighborhood of r =0 when y
is positive; in fact, numerical studies indicate that the
wave amplitudes grow without bound.

These conclusions indicate that the stable Hopf period-
ic orbit must be destroyed in a separate bifurcation in the
parameter neighborhood of ()M=I{4„y=0), since there is
no periodic orbit in the neighborhood of the fixed point
for p ~p„0(y&(1. Thus in parameter space the curve
or bifurcation surface at y=0 corresponding to Hopf bi-
furcation must intersect at least one additional such
curve at (){4=p„@=0).The instability of r =0 at this
point is termed a degenerate Hopf bifurcation because the
nondegeneracy condition (5.24) fails, and the discovery of
additional bifurcations at this point illustrates the value
of analyzing such degenerate cases. This particular de-
generacy is one of the simplest examples of a
cadimension-two bifurcation, meaning that to locate it we
must simultaneously adjust two independent parameters
p and f.

The comprehensive analysis of degenerate Hopf bifur-
cation by Crolubitsky and Langford (1981) shows that in
this case there is only one additional bifurcation surface
that intersects the Hopf surface. This second surface
marks parameters values at which the stable Hopf
periodic orbit merges with an unstable periodic orbit and
both disappear. In the return map for the Hopf orbit,
this merger is a saddle-node bifurcation which annihi-
lates two fixed points. For this reason, this second sur-
face may be referred to as the saddle-node (SN) surface; it
was discovered numerically by Meunier et al. (1982).

To determine how the SX surface approaches the Hopf
surface requires an analysis that includes both periodic
orbits. Since the SN surface intersects the Hopf surface
at y =0, the saddle-node bifurcation occurs for arbitrari-
ly small positive values of y. This means that the two or-
bits can merge while the Hopf orbit is still in a very small
neighborhood of r =0. Under these circumstances the
local attractivity of 8" near r =0 will not permit a
periodic orbit that is not in fact contained in 8". Hence
both periodic orbits must lie in W' and their merger is a
feature of the center-manifold dynamics (9.34). Since the
phase-shift symmetry decouples 0 from r, the radia1 equa-
tion (9.34a) is adequate to describe the saddle-node bifur-
cation provided the fifth-order term a2r is included.

At criticality for the saddle-node bifurcation the linear
stability of the Hopf orbit is lost, but the orbit still exists.
Near y=0, the SX surface is determined by these two
facts. The existence of the Hopf orbit at criticality means
that r =r~ is still a solution to dr/dt =0, which implies

y+a
& rII+a2rH =0 .2 4 (9.35)

I I I I I I I I I I I I I I I I I I I I I I I

3 4

FIG. 20. At critically (y =0) the norInal-form coefficients
a& =Re(a&) and a2 =Re(a2) in Eq. (9.34a) are plotted against p
using the function f(x):—sgn(x)log(1 o+ Ixl).

In addition, linearizing Eq. (9.34a) about the Hopf orbit
determines the orbit's linear stability within 8", setting
g=r —rH we find

d'g =(y+3a) rH+5a2rH )ri+6(2) ) .
dt

Linear stability of g =0 changes when
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1026 John David Crawford: Introduction to bifurcation theory

y+3a, r~+Sa2r~=0 .2 4

Equations (9.35) and (9.36) suffice to determine the SN
surface at small y. Subtracting (9.35) from (9.36) yields
rH(2a2r~+a& )=0, hence rH )0 requires

Qi
&0 (9.37)

for a valid solution rH= —a, /2az to exist. Substituting
this solution into Eq. (9.35) or (9.36) yields

4y =
Q2

Taken together relations (9.37) and (9.38) locate the SN
bifurcation surface for O~y ((1. There are two cases,
depending on the sign of a2 at (p, =p„y=0).From the
point of degeneracy the saddle-node surface branches to
the right (a

&
(0) if a2 )0 and to the left (a

&
)0) if a2 (0.

These cases are indicated in Fig. 21.
The actual calculation of a 2 is a straightforward exten-

sion of the calculation of a, . The calculation of h(x, y)
must be carried to fourth order so that Eq. (9.25) can be
extended to include fifth-order terms. Then second-,
third-, and fourth-degree terms need to be removed to

B. Steady-state bifurcation
in the Ginzburg-Landau equation

For the complex-valued function A (x, r) we consider
the Ginzburg-Landau (GL) equation in one space dimen-
sion~

20.0

i 5.0

10.0

5.0

y ——1.0
p, =-6.0

obtain the normal form through fifth order. The details
of this are not of interest here; the resulting expression
for a2 as a function of p for y =0 is also plotted in Fig.
20. At the degenerate Hopf point (a, =0) we find a2 &0
and conclude that the saddle-node surface branches to
the right.

The results of this bifurcation analysis may be tested
numerically. Figure 22 shows the Hopf bifurcation to a
stable oscillation for p )p, . As p decreases at fixed
y=0.01, the stable periodic orbit loses stability near
p-3. 55. This transition appears in Fig. 23 and reveals
the dramatic effect of the saddle-node bifurcation.

X 0.0

—5.0

SN surface

—10,0

—15,0

Hopf surface

—20.0
0.0 5.0 10.0 15.0

1 5.0

az &0

N surface

5.0

X 0.0

—5.0

Hopf surface
a,

—15.0

—20.0
0.0 5.0 10.0 15.0 20.0 25.0

FIG. 21. For the degenerate Hopf bifurcation corresponding to
a& =0 and a2%0 there are two possibilities, depending on the
sign of a2 at criticality. For a2 & 0, the saddle-node (SN) surface
branches toward negative values of a, . For a& (0, the SX sur-
face branches toward positive values of a &. The unstable
perio ceriodic orbit which collides with the stable Hopf orbit is not
shown.

FIG. 22. Evolution of x (t}vs t for Eq. (9.1) from an initial con-
dition ( —1.0,0.0,0.5): (a) With y = —0. 1 and p=6;0 when the
fixed point (9.3) is stable; note that the trajectory is initially re-
pelled from the unstable fixed point at the origin. (b) With
y=0. 1 and p=6.0 when the fixed point is unstable and the
solution is attracted to the stable Hopf periodic orbit. The final
point on this trajectory segment was ( —4.486, —2.886,4.499).
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=@A+ —AjAj
a~ " ax 2

(9.39)

20.0

15.0

10,0

y=0.01
p, =3.7

with real coefFicients and with boundary conditions that
ensure finite-dimensional center manifolds (Tuckerman
and Barkley, 1990). This equation arises in a wide
variety of settings; in particular, Eq. (9.39) models the be-
havior of a spatially extended system near criticality for a
steady-state bifurcation (Collet and Eckmann, 1990;
Manneville, 1990). In fiuid dynamics, a well-studied ex-
ample of such a bifurcation is the appearance of Taylor
vortex fiow in a Taylor-Couette apparatus (Ahlers et al. ,
1986; Ahlers, 1989), where one observes the motion of a
Quid confined in the gap between two concentric
cylinders. Taylor s original investigation (1923), in which
he rotated the inner cylinder with frequency 0 and fixed
the outer cylinder, established a critical frequency 0,
above which the steady and (nearly) featureless fiow de-
velops a pattern of vortices characterized by a well-
defined axial wave number q. The Quid mechanisms that

determine the wavelength 2m/q of the vortex fiow have
been carefully investigated as a particularly simple para-
digm for nonequilibrium pattern formation (Langer,
1986; Ahlers, 1989).

Analytic theoiy often assumes either cylinders of
in6nite length or periodic axial boundary conditions.
Then in linear approximation one finds an eigenfunction
with axial wave number q, whose (real) eigenvalue ap-
proaches zero as 0 tends to 0, from below. Slightly
above this threshold all wave numbers within a band of
width v p about q, are linearly unstable, where

p = (0—0, )/0, defines the bifurcation parameter.
However, only those wave numbers within a subband of
width p are actually realized experimentally because of a
secondary instability that arises for q values outside the
subband. This latter instability is known as the Eckhaus
instability and it modifies q by adding or subtracting vor-
tex pairs.

The competition between difFerent linearly unstable
wavelengths can be studied near criticality (0&@« 1) by
developing the Quid equations in an expansion in p. How
this expansion leads to the GL equation can be brieQy
sketched by avoiding the complexity of a realistic model
and assuming that the system is described by a single
field u (z, t) such that u —=0 corresponds to the featureless
equilibrium. For small p, one defines rescaled space and
time variables by x =1/pz and r =pt and seeks solutions
of the form

'II ) WWWWW
Q(z, r) pQO(z~x, r )+p 1l )(z,x, r )+ (9.40)

—10.0

—1 5.0

which are independent of the fast time scale t and de-
scribe the slow evolution of the pattern about the basic
length scale q, '. The leading-order balance determines
the form of u o,

—20.0
0.0 10.0

I I I . J l

20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 iq z
uo(z, x, r)= A(x, r)e ' +c.c. , (9.41)

30.0

25.0

20.0

1 5.0

y=O. 01
p.=3.5

5.0

u u'u'u'u'u'u'u''u'"uljuIIu"uugm

—1 0.0 Ag(x;P) =+@—Q e'~e'~ (9.42)

in terms of a complex amplitude function; at higher order
the GL equation (9.39) for A arises as a "solvability"
condition, which must be satisfied to avoid secular behav-
ior. The basic equilibrium A =0 for GL corresponds,
therefore, to the spatially uniform state one observes if
p&0; in addition, for p&0 there are spatially periodic
equilibria ("pure modes")

—1 5.0

—20.0

—25.0

—30.0
0.0 10.0 20.0 30.0

that describe patterns with wave number q =q, +v'pg.
As p varies there are bifurcations from A =0 and 2&

that can be studied using center-manifold theory; howev-
er, this analysis is more subtle for two reasons. First, the
GL equation (9.39) is highly symmetric. The group of
symmetries is generated by reQections and translations in

FIG. 23. Evolution of x (t) vs t for Eq. (9.1) with the final point
given for Fig. 22(b) used as the initial condition: (a) for y =0.01
and p=3.7 when the Hopf periodic orbit is stable; (b) for the
same initial condition with y =0.01 and p =3.5, after the Hopf
periodic orbit has been destroyed. No stable orbit remains and
the solution grows without bound. Notice the difference in the
vertical scale.

There has also beeri interesting recent work on the necessity
of allowing for finite end effects in order to describe some
features of the experiments in long cylinders {Edwards, 1990).
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1028 John David Crawford: tntroduction to bifurcation theory

x, complex conjugatiori, and phase shifts; these opera-
tions we denote by ~, Td, C, and R , respectively:

that the eigenvalue spectrum becomes discrete. The
periodic boundary condition

(~ A)(x)=A( —x), (9.43a)
A( —m)= A(~) (9.46)

( T„A)(x)= A (x +d), (9.43b)

(C A)(x)=A(x) (9.43c)

(Rti A )(x)=e' A(x) . (9.43d)

Thus if 3 (x, t) is a solution then (y 2 )(x, t ) is also a
solution for y =~, Td, C, B&, or any combination of these
operations. For bifurcation problems with symmetry
there exists a generalization of theory presented in Secs.
II—VIII that incorporates a variety of group-theoretic
techniques. We do not require this generalization for this
example, but we will indicate how the symmetry (9.43)
affects the bifurcation analysis. Cxolubitsky, Stewart, and
Schaeffer (1988) provide a comprehensive introduction to
equivariant bifurcation theory, and there are also the
more concise reviews by Stewart (1988), Gaeta (1990),
and Crawford and Knobloch (1991). A second novelty
arises because Eq. (9.39) describes an infinite-dimensional
dynamical system; i.e., it defines a How on an infinite-
dimensional phase space —the space of functions A (x).
Center-manifold theory can be rigorously extended to
partial differential equations, but this generalization is
rather technical for the present discussion (see the recent
review by Vanderbauwhede and Iooss, 1991). However,
if we assume there are center manifolds associated with
the bifurcations in Eq. (9.39), then the corresponding
reduction and bifurcation analysis can be carried through
just as for an ordinary differential equation.

The assumption of a finite-dimensional center manifold
requires a consideration of boundary conditions for Eq.
(9.39). This necessity is clear if we analyze the linear sta-
bility of A =0. Linearizing Eq. (9.39) defines the opera-
tor I.,

is a simple choice that enforces the discretization

Q =integer in (9.45) and also respects the full set of sym-
metries (9.43), allowing us to observe their eff'ects on the
bifurcations. With periodic boundary conditions the
translations Td act as rotations on the periodic coordi-
nate x. Consequently Td and ~ generate the symmetries
of the circle; i.e., the group O(2). In addition, Rs and C
generate a second O(2) action on the phase of A(x),
since these two O(2) actions commute the full symmetry
of Eq. (9.39) and Eq. (9.46) is 0 (2) XO(2).

1. Bifurcation from A =0

r

Q

p + (9.47)

and for fixed QXO there are four linearly independent
real-valued eigenfunctions with eigenvalue A, =p, —Q:

1

g, (x)= 0 cosgx,

0
Pz(x)=R zz g, (x)=

1
cosgx,

1
$3(x)= T /2Q ill(x) 0 si gx

(9.48)

As p increases through p=g, g =0, 1,4, 9, . . . , the
eigenvalue A, =p —Q crosses zero and the linear mode gi
becomes unstable. Because of the symmetry there is in
fact a four dirnen-sional center manifold associated with
this instability. If we rewrite Eq. (9.44) in terms of real
and imaginary parts, gi =u(x)+iu(x), then I.gi=lgi
becomes

p~+ ~ =L,
Bx

with eigenvectors and eigenvalues given by

fi(x) =e'Q", k=p —Q

(9.44)

(9.45)

0
$4(x)=T ~&zQR~&2 f,(x)=

1
siilgx

The three "extra" eigenvectors gi, $3, and g4 are forced
by symmetry; thus the steady-state bifurcation at p =Q
involves a four-dimensional center subspace. The bifur-

where —ao &Q ( ~. For @&0 all eigenvalues satisfy
A. (0, and the uniform state is asymptotically stable; for
p )0 there is a continuous band of wave numbers
0(g & p whose eigenvectors $3 describe linearly unsta-
ble perturbations of 2 =0. This continuum prevents us
from isolating a Pnite number of critical modes that
determine the time-asymptotic behavior and represents a
serious technical obstacle to center-manifold reduction
(Coullet and Spiegel, 1987). This difhculty does not arise
when boundary conditions are imposed on A (x) such

2 The contrast between a finite set of critical modes and a con-
tinuum of critical modes is not merely a matter of technical
difticulty. In spatially extended systems one finds a rich variety
of new phenomena (Brand, 1989; Collet and Eckmann, 1990;
Manneville, 1990).

Other boundary conditions have been considered in the
literature; see for example Hall, 1980; Cxraham and
Domaradzki, 1982; Ahlers et aI., 1986; Tuckerman and Bark-
ley, 1990.
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A(x, t)=a(t)e'~ +P(t)e '~ +S(x,t),
where $(x, t) is orthogonal to the critical modes

f dx e+'~"S(x, t ) =0 .

(9.49)

(9.50)

Note that the decomposition in Eq. (9.49) corresponds to
the choice of variables in Eq. (7.2), with (a,P) corre-
sponding to x, and S corresponding to xz. Near A =0,
the center manifold for Eq. (9.49) may be represented as
the graph of a function h:E'—+E'eE"; i.e.,

cation at p=O when Q=0 is an exception, with only a
two-dimensional center subspace: E'= span [ g„$2I since

Q3 and (( 2
=P4. Returning to complex notation and

introducing two complex amplitudes (a,P) for the critical
modes (9.48), we have

As p varies near @=0, this equation describes the bifur-
cation of the pure modes with zero wave number (9.42),

Ag =o=&pe'& . (9.56)

Since the unstable subspace is empty at this bifurcation,
these solutions are stable in the directions transverse to
the center manifold. In addition, linearizing Eq. (9.55)
around a =&pe'~ shows that these solutions are stable to
perturbations in the amplitude I A& ol but that perturba-
tions in the phase P correspond to a zero eigenvalue or
neutral linear stability. This zero eigenvalue rejects the
fact that Eq. (9..56) describes a continuous family of
equilibria parametrized by the phase P; such eigenvalues
are a general feature of bifurcations that break a continu-
ous symmetry. In this case, the 0 (2) symmetry generat-
ed by R z and C has been broken.

S(x, t) =h(x, a, P, a,P)

such that

(9.51)

6. QAO

and

h (x,0,0)=0

h =0, =0,Bh

(ap) =o B (ap) =o

(9.52)

(9.53)

This bifurcation is only slightly more complicated,
since the nonlinearity of the center manifold does not
affect the lowest-order nonlinear terms in a and P. By in-
serting Eq. (9.50) into the CxL equation and projecting
with f dx e '~" we obtain a system of equations analo-

gous to (7.2):

aI aa

(a, p) =o BP (a, y) =o

a=(p —Q )a —f e '~"AIAI (9.57a)

(9.57b)
This exactly parallels the representation for 8" intro-
duced in Eq. (7.3), modified only by the fact that E'SE"
is now infinite dimensional, i.e., the function h depends
on the continuous index x.

The reduced equations for the center-manifold dynam-
ics depend on whether Q =0 or QAO because the mani-
fold dimension changes from four to two when Q =0.

a. Q=O

In this case the decomposition in Eq. (9.49) can be
simplified to

8 S=(@+8 )S—A IA I

+e'~"f e '~"AIAI
—~ 277

—lQX EQX g g 2
—~ 2'

' (9.57c)

On the center manifold near A =0, S is expressible in
terms of h [Eq. (9.51)], which is at least second order in
the critical amplitudes as Ial, I@I~0 [cf. Eqs. (9.52) and
(9.53)]. Hence, on the center manifold,

A
I
A I'=(ae'&"+Pe '&")

x [ I
& I'+

I
PI'+ &Pe+"~"+p~e "~"]+&(4),

A(x, t)=a(t) S+(x, t) (9.54a) (9.58)

where

f dx S(x, t)=0 . (9.54b)

In addition one finds from Eq. (9.39) that if BA /Bx =0 at
t =0, then the solution of (9.39) is independent of x for all
t; hence the center subspace is invariant under the full
nonlinear dynamics, which implies that E' and 8"coin-
cide. Consequently S(x, t) =0 for solutions in the ce'nter
manifold, and the dynamics on 8" follows immediately
by setting S=0 and inserting Eq. (9.54a) into (9.39):

a=(p —Q )a —(2IPI +Ial )a+6(5),

i=(~-Q'W —(2l~l'+ lel'W+(» .

(9.59a)

(9.59b)

where 0 (4) denotes terms. of fourth degree or higher in
(a,P). Since the cubic terms (9.58) do not involve h it
will not be necessary to calculate the leading coel.cients
in its Taylor expansion. combining Eq. (9.58) with
(9.57a) and (9.57b) yields the center-manifold equations
to third order:

d
di

a=pa —lal'a . (9.55)

In this four-dimensional system there is no longer any
coupling to S (x, t), and the neglected terms on the right-
hand side are at least fifth order in (a,P) because the first
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Pi (P Q )Pi (2P2+P2i)Pi+O(5)

P'2=(P Q—)P2
—(2pi+Pi)P2+O(5),

Pi, z=O

(9.60a)

(9.60b)

(9.60c)

nonzero terms in the expansion of h would appear at
third order in this case rather than second order. Intro-

it) i/2
ducing polar variables a=p, e ' and P=P2e ', we find
that Eq. (9.59) reduces to a two-dimensional system,

Value of p

@~0
0(p&1

Q &p, &(Q+1), Q=1,2, 3, . . .

dim E"

0
2

2+4Q

TABLE I. Dimension of the unstable subspace for A =0 as a
function of p.

2. A digression on phase dynamics

It is instructive to analyze the stability of these equili-
bria by introducing the phase and amplitude of A and
defining a local time-dependent wave number k (x, r),

A(x, r)=p(x, r)e'~' ' ' (9.62)

k(x, r)==a
BXPl[(P —Q') (2P2 Pl)] =o

P2[(iM
—Q') —(2pi+P2) ]=0

(9.61)
In these variables, Eq. (9.39) becomes

since the amplitudes p, 2 decouple from the phases P, 2.
One can show that this decoupling is a feature of the
symmetry and extends to all orders; this, however, re-
quires an analysis of the full normal form for this bifurca-
tion; see Golubitsky, Stewart, and Schaeff'er (1988),
Chapter XVII, Sec. 2 for a relevant discussion.

The bifurcating solutions are obtained by setting

p, =p2=0 and neglecting higher-order terms:

There are two types of new solutions in addition to the
trivial equilibrium at (0,0). The pure-mode solutions,
(p, =p Q, p2=—0) and (p, =O, pz=p —

Q ), correspond
to the bifurcation of the states A& and A &, respective-
ly, for p —Q )0. In addition there is a "mixed"-mode
solution given by p, =pz=p and p2= —,'(p —Q ).

From Eq. (9.60) the linear stabilities ioithin the center
manifold of each of these states may be calculated. With
respect to perturbations in the amplitudes (p„p2), the
pure modes are stable but the mixed mode is unstable; in
each case there are also two zero eigenvalues correspond-
ing to perturbations in the phases (9.60c). The phase por-
trait Fig. 24 for (p„pz)summarizes this analysis.

In addition, for all of these solutions (pure and mixed
modes) there can be unstable directions transuerse to the
center manifold because of the unstable directions for
A =0. The number of these unstable directions is equal
to the dimension of E" at criticality (see Table I). We
shall see that these initially unstable pure modes A re-
gain their stability as p increases further above p =Q .

8P
( k2) + P 3

O'T BX

a 2k ap
Bx p Bx Bx

(9.63a)

(9.63b)

p(x, r)=+@—k (x,r), (9.64)

since the i) p/Bx term in Eq. (9.63a) can be neglected
and k(x, r) evolves on a time scale set by the slowly vary-
ing x dependence. When p is given by Eq. (9.64), the
equation (9.63b) for the wave number reduces to a non-
linear diffusion equation,

D(k) k(x)
07 BX aX

(9.65a)

with diff'usivity D (k) given by

If we restrict our attention to solutions that are slowly
varying in x, then for p) k we expect p(x, r) to ap-
proach a quasistatic equilibrium

—3kD(k)="
p —k

(9.65b)

For a pure mode with p=+p —Q and k =Q, consider
the dynamics of a small fluctuation in phase,
k(x, r)=Q+5Q(x, r) [relaxing the periodic boundary
condition (9.46)]. Inserting this ansatz into Eq. (9.65a)
and linearizing in 5Q yields a linear difFusion equation for
the Auctuation

0'
a = a'

5Q=D(Q) 5Q .
BX

(9.66)

FICz. 24. Phase diagram for the Aow on the center manifold as-
sociated with bifurcation from A =0. The pure modes are the
stable fixed points on the p& axis and the p2 axis. The unstable
mixed mode lies on the diagonal.

If the wavelength of the pure mode q =q, +Q satisfies

Q &p/3, (9.67)

then D ( Q ) )0 and 5Q decays, the pure mode is stable.
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The loss of phase stability when Q )p/3 is known as the
Eckhaus instability; its physical interpretation as nega-
tive phase diffusion was suggested by Pomeau and
Manneville (1979). Subsequently more general theories
of phase dynamics have been developed (Cross and
Newell, 1984; Brand; 1988; Newell et al. , 1990).

3. Bifurcation from the pure modes

b. Linear stability fora =0

The linear operator (9.71b) is self-adjoint,

(Xa„a2)=(a„za2),
with respect to the inner product

dX(a„a2&
=

—,
' [a i(x)a2(x)+a i(x)a2(x)],—~ 2m'

(9.73)

(9.74)

We now develop the bifurcation theory of this instabil-
ity with the periodic boundary condition (9.46).

so we expect real eigenvalues A, in the spectrum deter-
mined by

Xv=Av . (9.75)
a. Symmetry

T~(g) =Rgd T—d,
R(P) =R~C,R

(9.68a)

(9.68b)

These transformations generate a representation of 0 (2),
which we denote by O(2), and the A&(x;P) state is in-
variant with respect to this O(2) action:

The O(2) X O(2) symmetry of the A =0 equilibrium is
partially broken in the pure-mode state; to describe the
remaining symmetry define composite "translation" and
"reQection" transformations Td and k by

By inspection the eigenfunctions U are of the form

v(x) =z, (A. )e'""+z2(A, )e '", k =0, 1,2, 3, . . . ,

with complex coefficients (z„z2) that satisfy

[I,+k +2kg+(p —Q )]z, = —(p —Q )z2 .

[A, +k —2kg+(p —
Q )]z2= —(p —Q )z, .

(9.76)

(9.77)

The real and imaginary parts of z;, i =1,2, satisfy Eq.
(9.77) separately, since A, is real; this decoupling is due to
the symmetry and forces the eigenvalues to have double
multiplicity when k%0. More precisely, let (ri, r2) HR
be a real solution to Eq. (9.77) for eigenvector

y. A~(x;P)=A~(x;P), y=T, (g), Z(P) . (9.69)
v(x)=ri(A, )e'" +r2(A, )e (9.78a)

In addition, the discrete group Z& generated by 2m. /Q
spatial translations (T2 && ) is a symmetry of A&(x;p).

Let a(x, r) be defined by

Then the translated eigenvector

iv(x)=(T &2kv)(x)=iri(A)e'"" —ir2(A)e (9.78b)

A(x, r)= A&(x;P)(1+a(x, r)) .

Then Eq. (9.39) implies

a 2a =Ma —(p —Q )%(a,a ),
a~

where

(9.70)

(9.71a)

v(x)=1, A, = —2(p —Q ) . (9.79)

has imaginary coefficients and is linearly independent of
v (x); thus A, has multiplicity two. [The other symmetry
Ca leaves v(x) invariant. ] When k =0 then Eqs. (9.76)
and (9.77) yield only one (linearly independent) solution:

a2
Xa =— +2ig —(p —Q )a —(p —Q )a,

BX
(9.7 lb)

For a pure mode A& to exist requires

I
Agl2=p —g') 0, (9.80)

X(a,a)=[a +2lal +alai ] . (9.71c)

From Eqs. (9.46) and (9.70) we find that a(x, r) also
satisfies periodic boundary conditions on [ rr, n], and- .
with (9.71) we can calculate the induced O(2) action on
a(x, 2.)

so the k =0 mode (9.79) is always stable. The possibili-
ties for instability arise from Eq. (9.77) for k 1.
Without loss of generality let (z„z2) be real. Then a non-
trivial solution (r, AO, r2%0) requires A, =A, + or A, =A,
where

k+= —(k +p —Q )++(p —Q ) +(2kg) . (9.81)
( Td ~ A )(x,r) = A&(x;P)(1+(Td.a )(x, r))

(K(P). A )(x,r) = A&(x;P)(1+(Cl~"a )(x,r));
(9.72) The A, eigenvalue is always negative [cf. Eq. (9.80)], but

A, + satisfies A. + ~ 0 if and only if

thus the O(2) action on a(x, r) is generated by Td and
C~. Note that the Z& action requires only symmetry
with respect to T2 &&, and this is contained in Eq. (9.72).
The covariance of Eq. (9.71a) with respect to Td and Ca.
is easily checked; this remaining O(2) symmetry will in-
troduce nongeneric features into the secondary bifurca-
tions.

Q2)2Q2 lk2 (9.82)

I Agl') 2Q' —1 . (9.83)

Stated slightly differently, as p increases above p=0, all

With periodic boundary conditions, k;„=1 so the pure
mode A& will be linearly stable provided
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pure modes with wave numbers in the band

Q2( 1(p+ 1
) (9.84)

a(x, t) =a(t)u+ (x)+P(t)co+(x)+S(x, t), (9.86a)

are stable. Coinparing Eqs. (9.67) and (9.84) we see that
the finite-length periodic boundary condition is stabiliz-
ing in the sense that at fixed p there is a wider band of al-
lowed Q values (Tuckerman and Barkley, 1990). With
periodic boundary conditions, the Eckhaus instability
corresponds to the k = 1 instability that sets in when con-
dition (9.83) fails. As p decreases further below the Eck-
haus boundary (9.84) there are additional instabilities of
higher k values, as shown by Eq. (9.82).

(u+, S)= ( w+, S & =0 . (9.86b)

and rewriting Eq. (9.86)

[Recall that X is self-adjoint; otherwise the projection in
Eq. (9.86b) would require the appropriate adjoint eigen-
functions. ] The center-manifold dynamics for (a,P) is
more conveniently expressed by defining the complex am-

pHtude

(9.87)

c. Center-manifold reduction for A, + =0

For fixed k and Q, as p decreases below 3Q —
—,'k, the

A, + eigenvalue (9.81) crosses through zero moving from
the left half-plane into the right half-plane. At A, +=0
there are two critical modes corresponding to this eigen-
value,

a(x, t) =z(t)u, (x)+z(t)v (x)+S,
v, (x)= —,'[u+ (x)—iw+(x)],

u, (x)= —,
' [v+ (x)+ iw+ (x) ] .

(9.88a)

(9.88b)

(9.88c)

With this notation z(t) is analogous to x, in Eq. (7.2a)
and S(x, t) is analogous to xz in Eq. (7.2b); the equation
for z follows from Eq. (9.87), which can be written as

u+ (x)=r, (A+ )e'""+r2(A+ )e

w+ (x)= ir, (A, + )e'""—ir2(A, + )e

( v+, a ) + i(w+, a &

r, (A~) +r2(A+)
(9.89)

so that the expansion of a(x, t) [cf. Eq. (7.2)] requires two
real amplitudes (a,P) HE',

u»ng (v+, u+ & =(w+, w+ ) =r', +r', . Differentiating
Eq. (9.89) and using Eq. (9.71) yields

z =A+z — [(v+, N(a, a ) ) +i ( w+, N(a, a ) ) ]
(p —Q')
(r, +r2)

=A.+z — f e '""[r,N(a, a )+rzN(a, a )] .(p — ) ~ dx
(rzi+ re� ) —~ 2m

Then from Eqs. (9.88) and (9.71) we obtain

(9.90a)

BS p (p — ) ~ dx=AS —(p Q)N(a, a—)+ - u, (x)f e '" [r,N(a, a )+r2N(a, a )]

+u, (x)f e'""[r,N(a, a )+r2N(a, a )] .—~2&

The center manifold near a =0 is described by

S(x, r) =h(x, z(r), z(r)),
where the function h satisfies [cf. Eqs. (7.4) and (7.7)]

(9.90b)

(9.91)

. Bh . Bh BS
Z +Z

aZ ~' S=h

The Taylor expansion of h beings at second order in (zzQ,

h(x, z,z)=h, (x)z +h2(x)~zi +h3(x)z +6(3),

(9.92)

(9.93)

with coefficients h;(x), i = 1,2, 3, that are determined by applying Eq. (9.93) to (9.92) and requiring that the second-order
terms balance. This procedure yields the following equations:

+2iQ —(p —Q ) —2k~ hi(x) —(p, —Q )h3(x)=(p —Q )(ri+2r, r2)e' "",
Bx X

(9.94a)
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B2

2 +2ig —(p —Q )—2A+ h2(x) —(p —Q )h2(x)=2(p —Q2)(r1r2+r21+rz), (9.94b)

2

2 +2iQ —(p —Q )
—2k+ h3(x) (—p, Q—)h 1( x)=(p —Q )(rz+2r1r2)e (9.94c)

which in turn yield solutions

h1(x) =g,e' "

(p —Q )(r, r2+r, +r2)h2=-
p Q +A+

—i 2kx

(9.95a)

(9.95b)

(9.95c)

where (i), , il2) satisfy

(2k) +4gk+(p —Q )+2k, + Q2

p —Q' (2k) —4gk + (p —Q )+2A+ 'g2 r z +2r, r2
(9.95d)

This approximation for h (x,z, z) is adequate to determine the leading nonlinear terms in Eq. (9.90a). On the center
manifold,

a =zv, +zv, +g,e"""z'+h2 fzf'+2), e """z'+
so the nonlinearity in Eq. (9.90a) yields

I e '" [r,N(a, a)+r2N(a, a)]1=crzfzf +8(zfzf ),—~2&

where

(9.96)

o'=4h2(r, +r1r2+rz )+4r1r2(i)1+F12)+2(rI1r1+ri3r2 )+r, (r, +2rz )+rz(rz+2r, ) . (9.97)

—ll 2
z. =Z z —",", z fz f'+ e(z fz f')

(r1+r2)
(9.98)

and there are new branches of equilibria (z =0) satisfying

Thus the steady-state bifurcation from the pure-mode
branch is described by

h2 (&1+&1&2+&2)
2

~ +"

(9.101b)

(9.101c)

With these formulas at criticality, the expression for o.

(9.97) simplifies considerably,

(r, +r2)A. +Izl'=
(p —Q')iT

(9.99)
0= —3(r1+i2) (r1+rz), (A+=0),

so that Eq. (9.98) may be rewritten

(9.102)

with an arbitrary phase reflecting the translation symme-

try Td that has been broken.
The sign of o determines whether these new equilibria

occur for A, + (0 (subcritical) or A, + )0 (supercritical). It
is enough to determine this sign at A, + =0, in which case
the expressions for r, and r2 from Eq. (9.77) simplify:

z=A+z+3(p —Q )(r, +r2) zfzf

+8(A.,zjzf2, zfzf ). (9.103)

Since (p —Q )(r1+r2) )0, the new equilibria (9.99) are
subcritical and unstable.

r, = —(2Q —k), r2=2Q+k (9.100)
X. OMITTED TOPICS

(up to an overall normalization). In addition, at A, + =0

p —Q = —2r1r2

2
T (I'2

/1 (9.101a)

from Eq. (9.82) and the center-manifold coefficients (9.95)
reduce to

The ideas of center-manifold theory and Poincare-
BirkhofT' normal forms are discussed by Inany authors.
An introductory account is provided by Rasband (1990);
for the reader seeking a more sophisticated treatment,
both Guckenheimer and Holmes (1986), Chapter 3, and
Arnold (1988a), Chapter 6, are suggested. The recent re-
view by Vanderbauwhede (1989) provides very detailed
proofs for the 6nite-dimensional theory, and a careful re-
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view of center manifolds in Banach spaces is provided by
Vanderbauwhede and Iooss (1991). Additional material
on the infinite-dimensional case in particular can be
found in Marsden and McCracken (1976), Hassard et al.
(1978), Ruelle (1989), and the encyclopedic volume by
Chow and Hale (1982). Finally, there is the monograph
by Iooss and Joseph (1989), which develops local bifurca-
tion theory without using center manifolds.

In one-parameter systems, the Feigenbaum bifurcation
and global bifurcations involving homoclinic and hetero-
clinic phenomena are important topics outside the scope
of this review. References for the former topic include
Cvitanovic (1984), Collett and Eckmann (1980), Lanford
(1980), Vul et al. (1984), as well as the original papers by
Feigenbaum (1978, 1979, 1980). Global bifurcations,
especially Silnikov-type bifurcations and Melnikov
theory, are discussed by Guckenheimer and Holmes
(1986) and Wiggins (1988, 1990). In addition, the paper
by Glendinning and Sparrow (1984) provides an accessi-
ble introduction to the Silnikov bifurcation.

The recent lecture by Arnold (1989) touches on many
current research topics, in particular, multiparameter bi-
furcation problems and bifurcations in symmetric sys-
tems. The examples. in Sec. IX were selected in part to il-
lustrate the importance of these subjects. An introduc-
tion to codimension-two bifurcations (i.e., bifurcations
typical for two-parameter systems) is provided by Guck-
enheimer and Holmes (1986), Chapter 7, and Arnold
(1988a), Chapter 6, but much of the work in this area is
scattered in the research literature; Golubitsky and
Guckenheimer (1986) and Roberts and Stewart (1991)are
two recent conference proceedings. Bifurcation theory
for symmetric systems is likewise an actively developing
subject. In addition to the recent reviews by Stewart
(1988), Gaeta (1990), and Crawford and Knobloch (1991),
there are the more extensive treatments in Vander-
bauwhede (1982), Sattinger (1983), and Golubitsky,
Stewart, and Schaeffer (1988).

Hamiltonian bifurcation theory is an important subject
that is neglected here altogether. Unfortunately, there
does not appear to be a systematic discussion of this
theory for nonmathematicians at a level comparable to
this review, and the literature is extensive. For bifurca-
tion from equilibria of Aows, Chapter 8 in Abraham and
Marsden (1978) is a possible starting point, in addition to
the brief overviews by Meyer (1975, 1986). Up-to-date
discussions of Hamiltonian normal-form theory cari be
found in Bryuno (1988) and van der Meer (1985). This
1atter monograph treats the so-called Hamiltonian Hopf
bifurcation in detail. Howard and MacKay (1987) give a
nice discussion of the linear instabilities encountered in
symplectic maps; Golubitsky and Stewart (1987) describe
a generic setting for bifurcation in symmetric Hamiltoni-
an systems. The closely related subject of bifurcation
theory for reversible systems is showing a rapid develop-
ment. Recent reviews have been given by Arnold and
Sevryuh (1986) and Roberts and Quispel (1991).

Finally, we mention the authoritative volumes emerg-
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