I ESONERO CP3: 8-4-2002

E. Scoppola

Esercizio 1

Sia X_n una famiglia di variabili indipendenti identicamente distribuite con

$$P(X = 1) = p$$
 $P(X = -1) = q$ $P(X = 0) = 1 - (p + q)$ (1)

con p+q<1. Sia $\mathcal{F}_n=\sigma(X_1,...,X_n)$, e fissiamo $a,b\in\mathbf{N}$ con 0< a< b. Definiamo $S_n:=a+X_1+...+X_n$, e $T:=\inf\{n:S_n\in\{0,b\}\}$, il primo tempo di uscita dall'intervallo [0,b].

a) Dimostrare che esistono N e ϵ positivi tali che per ogni n

$$P(T \le n + N | \mathcal{F}_n) > 0 \quad q.s. \tag{2}$$

- b) Nel caso $p \neq q$:
 - 1) Dimostrare che $M_n := \left(\frac{q}{p}\right)^{S_n}$ è una martingala .
 - 2) Dimostrare che $N_n := S_n n(p-q)$ è una martingala .
 - 3) Calcolare $P(S_T = 0)$.
 - 4) Calcolare E(T).
- c) Nel caso p = q:
 - 1) Dimostrare che S_n è una martingala.
 - 2) Dimostrare che $R_n := S_n^2 2pn$ è una martingala.
 - 3) Calcolare $P(S_T = 0)$.
 - 4) Calcolare E(T).
- d) (facoltativo) Verificare che nel caso b), se (p-q) tende a zero, si trovano i risultati del caso c).

Esercizio 2

Siano Y_n variabili indipendenti a media nulla con

$$\sum_{n} E \frac{Y_n^2}{1 + |Y_n|} < \infty \tag{3}$$

1) Dimostare che

$$\sum_{n} E[Y_n^2 \mathbf{1}_{|Y_n| \le 1} + |Y_n| \mathbf{1}_{|Y_n| > 1}] < \infty$$
 (4)

- 2) Usando che $EY_n=0,$ dimostrare che $EY_n^1=-E[Y_n\mathbf{1}_{|Y_n|>1}],$ con Y_n^1 variabili troncate a 1.
- 3) Dimostrare che $\sum_n EY^1_n$ e $\sum_n Var(Y^1_n)$ convergono.
- 4) Usando la disuguaglianza di Chebyshev dimostrare che $\sum_n P(|Y_n|>1)<\infty$
- 5) Dimostrare che $\sum_n Y_n$ converge quasi sicuramente.