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REMARKS ABOUT UNIFORM BOUNDEDNESS
OF RATIONAL POINTS OVER FUNCTION FIELDS

LUCIA CAPORASO

Abstract. We prove certain uniform versions of the Mordell Conjecture and
of the Shafarevich Conjecture for curves over function fields and their rational
points.

1. Introduction and preliminaries

A curve X of genus at least 2 defined over a function field L has only finitely
many L rational points, unless it is isotrivial. Similarly, a curve of genus at least 2
defined over a number field F has a finite set of F -rational points. These well-known
facts are celebrated theorems of Y. Manin and G. Faltings, originally conjectured
by L. J. Mordell and S. Lang.

We study here questions of uniformity for the cardinality of such sets of rational
points, in the function field case. For number fields, there are a number of open
conjectures, such as the following (Uniform Mordell Conjecture for number fields):
Fix g ≥ 2 and a number field F ; there exists a number Bg(F ) such that any curve
of genus g defined over F has at most Bg(F ) rational points over F . Interest in
such problems was revived after it was proved in [CHM] that the conjecture above
is a consequence of a famous, open, conjecture (usually attributed to S. Lang and
E. Bombieri) on the non-density of rational points in varieties of general type (see
also [Ab], [AV] and [Pa]).

In this paper we investigate similar issues for curves over function fields. Some
partial results were obtained in [Mi] and in [C] were the existence of uniform bounds
for the sets of rational points is established. Such bounds depend on suitable
numerical invariants of the function field, on the genus g of the curves and on the
degree of the locus of bad reduction (that is, the locus of singular fibers).

We shall also study here the strictly related “uniform Shafarevich problem”; a
famous theorem of A. N. Parshin and S. Ju. Arakelov ([Ar] and [P]) states that if B
is a smooth complex curve and S ⊂ B a finite subset, then there exists only a finite
number of non-isotrivial families of smooth curves of fixed genus g ≥ 2 over B−S.
Parshin first proved it under the assumption that S = ∅; Arakelov generalized it a
few years later. In [P] Parshin shows also that the above theorem implies finiteness
of rational points for non-isotrivial curves of genus at least 2, providing the above
mentioned link between the Shafarevich problem and the Mordell problem. Recall
that his argument, known as the “Parshin trick”, is valid for both number fields
and function fields.
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A first uniform version of the theorem of Parshin and Arakelov above is obtained
in [C]. We here generalize it by a stronger uniform result valid for families of curves
over bases of any dimension. This is done in Section 2, where we obtain bounds
(for the sets of curves with fixed degeneracy locus as well as for the sets of rational
points) that only depend on the degree of a polarization on the base variety, and
on the degree of the locus of bad reduction. A stronger result can be obtained
for curves having good reduction in codimension 1 (Theorem 3). In Section 3 we
will consider families with maximal variation of moduli, using the geometry of the
moduli space of curves to approach our problems.

We work over C; by V we shall denote a smooth, irreducible, projective variety
over C, whose field of rational functions will be L := C(V ). Special interest will be
given to varieties of dimension 1, for which we shall use the following notation: B
is a smooth irreducible curve and K its field of rational functions. We fix integers
q ≥ 0, g ≥ 2 and s ≥ 0 throughout. The genus of B will be denoted by q.

We shall consider smooth curves of genus g over the function field L (or K), which
can also be viewed as families of curves over V , such that there is a nonempty open
subset of V over which the fibers are all smooth. We shall always assume that such
a family (or curve) is not isotrivial, i.e., the smooth fibers are not all isomorphic.

To be more precise, we introduce the following sets: let B be a fixed curve and
let S ⊂ B be a finite set of points.

Definition. Fg(B,S) shall denote the set of equivalence classes of non-isotrivial
families f : X −→ B such that X is a smooth relatively minimal surface and
the fiber Xb over every b 6∈ S is a smooth curve of genus g. Two such families
fi : Xi −→ B for i = 1, 2 are equivalent if there is a commutative diagram

X1
α′−→ X2

f1

y yf2

B
α−→ B

where the two horizontal arrows are birational maps.

Using a different terminology, Fg(B,S) is the set of K-isomorphism classes of
non-isotrivial curves of genus g over K, having good reduction outside of S. The
theorem of Parshin and Arakelov says that Fg(B,S) is finite. Theorem 3.1 of [C]
states that there exists a number P (g, q, s) such that |Fg(B,S)| ≤ P (g, q, s) for
every curve B of genus q and for every subset S having at most s points. We show
here (in the end of Section 2) that this result is sharp in the sense that such a
bound must depend on s.

We are interested in function fields of higher transcendence degree. We can
generalize the definition of Fg(B,S) as follows. Let T ⊂ V be a closed subscheme.

Definition. Fg(V, T ) shall be the set of equivalence classes of non-isotrivial families
of smooth curves of genus g over V − T (the equivalence relation is the same as
above, with B replaced by V − T ).

By the existence and unicity of minimal models for smooth surfaces, this defini-
tion coincides with the previous one if dimV = 1. It follows from the results in [C]
(3.4) that Fg(V, T ) is finite. Our best result on Fg(V, T ) is Theorem 1.

If X is a curve defined over a field L, we shall denote by X(L) the set of its
L-rational points. If X has genus at least 2 and it is not isotrivial, the theorem
of Manin says that X(L) is finite. Consider now the Uniformity Conjecture for
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rational points over function fields, which can be stated as its arithmetic analogue:
Let L be a function field over C and let g ≥ 2 be an integer. There exists a number
Ng(L) such that for every non-isotrivial curve X of genus g defined over L we
have |X(L)| ≤ Ng(L). For results relating it to the Lang Conjectures about the
distributions of rational points on varieties of general type, see the work of D.
Abramovich and J. F. Voloch [AV].

Such a conjecture remains open; our results in that direction are Theorems 2
and 3 and Proposition 4.

A final piece of notation. Mg denotes the moduli variety of smooth curves of
genus g and Mg its compactification via Deligne-Mumford stable curves. They are
both integral, normal varieties of dimension 3g−3. A universal curve exists only on
a proper open subset of Mg (and of Mg). In particular, a morphism φ : Z −→Mg

does not necessarily come from a family of curves over Z. If this is the case, that is,
if there exists a family of smooth curves X −→ Z such that for every z ∈ Z, φ(z)
is the isomorphism class of the fiber of X over z, we shall say that φ is a moduli
map.

2. Uniformity results for function fields

of high transcendence degree

We start by a uniform generalization of the theorem of Parshin and Arakelov.
The result below is a strenghtening of 3.4 and 3.5 in [C]; in fact, the bound H here
is independent of the dimension of V and of r. Such an improvement is obtained
by a small technical modification of the methods in [C].

Notice that the statement below remains true if V is replaced by an integral,
possibly singular, projective variety. The proof is essentially the same.

Theorem 1. Let g ≥ 2, d ≥ 1, s ≥ 0 be fixed integers. There exists a number
H(g, d, s) such that for any smooth, irreducible variety V ⊂ Pr of degree d, for any
closed subscheme T ⊂ V of degree s, we have |Fg(V, T )| ≤ H(g, d, s). Moreover, if
T has codimension at least 2 in V , then the bound H does not depend on s.

Proof. Step 1: Slicing V into curves of bounded genus. Considering one-dimensional
hyperplane sections of V , we see that V can be covered by smooth curves of degree
d passing through any of its points; it is a well-known fact that the genus of a curve

of degree d in projective space is at most equal to
( d− 1

2
)
: just project the curve

birationally onto a curve of degree d in P2. Let

q = q(d) =
(
d− 1

2

)
so that V is covered by curves of geometric genus at most q.

Step 2: Uniform boundedness of moduli maps. By Theorem 3.1 in [C], for any
fixed g, q′, and s′ there exists a number P (g, q′, s′) such that for any smooth curve
B of genus q′, for any subset S ⊂ B of at most s′ points, we have that |Fg(B,S)| ≤
P (g, q′, s′).

Define
H ′ = max

q′≤q,s′≤s
P (g, q′, s′)

so that H ′ only depends on g, d, s; let U = V − T .
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We claim that U has at most H ′ moduli maps to Mg; that is, we claim that
there exist at most H ′ non-constant, (regular) morphisms φ : U −→Mg such that
there exists a (not necessarily unique, see below) family of smooth curves over U
whose moduli map is φ. By contradiction, let n > H ′ and let us assume that there
exist φ1, ...., φn distinct such moduli maps φi : U −→ Mg. Let Xi −→ U be a
non-isotrivial family of smooth curves corresponding to φi (since φi is a moduli
map, such a family exists, but it is not necessarily unique). Let U ′ ⊂ U be the
nonempty open subset where φi(u) 6= φj(u) for every u ∈ U ′ and for every pair of
distinct i, j. Let p ∈ U ′ and let Fi = φ−1

i φi(p); since φi is not constant, its fiber Fi
through p is a proper closed subset of U ′. Therefore, there exists a curve B ⊂ V
of genus at q′ ≤ q such that p ∈ B and such that B 6⊂ Fi for every i = 1, ...., n;
thus the restriction of Xi to B is not isotrivial for every i. Let S = (B ∩T )red. Let
Yi −→ B be the smooth relatively minimal completion over B of the restriction of
Xi to B. By construction, Y1, ...., Yn are different elements of Fg(B,S), which is
a contradiction, since Fg(B,S) has at most P (g, q′, s′) ≤ H ′ < n elements. This
proves the claim. Notice that if T has codimension at least 2 in V we can always
choose our B so that it does not intersect T at all, and hence S can be taken to be
the empty set and H ′ does not depend on s.

Conclusion. Given a moduli map φ : U −→ Mg the set of families that have φ
as moduli map is uniformly bounded; in fact, it is bounded above by a function of
g only (see [C], Lemma 3.3); hence we are done. �

A similar argument yields the following uniformity statement for rational points,
stronger than 4.3 and 4.4 in [C]:

Theorem 2. Let g ≥ 2, d ≥ 1, s ≥ 0 be fixed integers. There exists a number
N(g, d, s) such that for any smooth, irreducible variety V ⊂ Pr of degree d, for
any closed subscheme T ⊂ V of degree s and for any non-isotrivial curve X of
genus g defined over L = C(V ) and having good reduction outside of T , we have
|X(L)| ≤ N(g, d, s). Moreover, if T has codimension at least 2 in V , then the bound
N does not depend on s.

Proof. Step 1: Repeat word for word Step 1 in the proof of the previous theorem.
Step 2: Theorem 4.2 in [C] says that if g, q′, and s′ are fixed nonnegative integers,

there exists a number M(g, q′, s′) such that for any curve B of genus q′, for any
subset S of at most s′ points in B, and for any curve XB ∈ Fg(B,S) we have that

|XB(C(B))| ≤M(g, q′, s′).

Arguing as in the proof of 4.4 of [C] one gets that defining

N(g, d, s) := max
q′≤q,s′≤s

M(g, q′, s′)

will suffice for our statement. �
To conclude, we show that for curves having good reduction in codimension 1,

stronger finiteness results hold. Let L be a function field over C and let V be a
smooth, projective, complex variety of positive dimension such that L = C(V ).

Definition. Let C2
g (L) be the set of L-isomorphism classes of non-isotrivial curves

of genus g over L having good reduction in codimension 1.

In other words, C2
g (L) is the set of equivalence classes of non-isotrivial families

X −→ V of curves of genus g over V such that there exists a closed subscheme
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T ⊂ V of codimension at least 2 with the property that Xv is smooth for every
v 6∈ T .

Theorem 3.
a) C2

g (L) is finite.
b) There exists a number N2

g (L) such that for every curve X ∈ C2
g (L) we have

|X(L)| ≤ N2
g (L).

Proof. We shall use moduli maps. Denote by M2
g (L) the set of equivalence classes

of non-constant rational maps φ : V −→Mg such that there exists an open subset
Uφ ⊂ V with the following properties:

1. The complement of Uφ has codimension at least 2 in V .
2. φ is regular on Uφ.
3. There exists a (non-isotrivial) family of smooth curves of genus g over Uφ

such that φ is its moduli map.
4. Two such maps φ and ψ are equivalent iff they coincide on some (nonempty)

open subset of V .
There is a natural surjective map of sets:

µ : C2
g (L) −→M2

g (L)

sending a curve over L to its moduli map (it is easy to see that µ is well defined).
Now, µ has finite fibers (Lemma 3.3 in [C]) and is surjective by definition. Thus
C2
g (L) is finite if and only if M2

g (L) is finite.
Part b) is an immediate consequence of part a), by the theorem of Manin. We

will prove our result by showing that M2
g (L) is finite by induction on dimV . If

dimV = 1, then the finiteness of C2
g (L) and of M2

g (L) is the theorem of Parshin
(the locus of bad reduction being empty in such a case). Then let dimV ≥ 2 and
suppose that M2

g (L) is infinite. Notice that M2
g (L) is dominated by a union of

finite sets as follows: if T is a closed subset of V , denote by Mg(V, T ) the set of
equivalence classes of moduli maps to Mg that are regular on V −T ; then Mg(V, T )
is finite, by Theorem 1 and Lemma 3.3 in [C]. We have a natural, surjective map⋃

codimV T≥2

Mg(V, T ) −→M2
g (L);

hence, if M2
g (L) is infinite, so is the union on the left-hand side. Then there exists

a countable collection {Tn, n ∈ Z}, with Tn a closed subset of V of codimension at
least 2, such that the set

M :=
⋃
n∈Z

Mg(V, Tn)

is infinite. Now, M itself being a countable set, we shall put an ordering on it:

M = {φi, i ∈ N}.
For every pair of distinct i, j, denote by U i,j the nonempty open subset of V such
that U i,j ⊂ Uφ

i ∩ Uφj and φi(u) 6= φj(u) for every u ∈ U i,j . The U i,js form a
countable collection of nonempty open subsets of V , whose intersection I is dense
in V . Let p ∈ I and, for every i ∈ N, let Fi = (φi)−1φi(p) be the fiber of φi through
p. Since φi is non-constant (by assumption), Fi is a proper closed subset of V .
Thus, the complement of

⋃
i∈N Fi intersects I in a subset J , with J dense in V .

Fix a (non-degenerate) projective model of V in some projective space. Then there
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exists a hyperplane H such that p ∈ H , such that H ∩J 6= ∅ and such that H does
not contain any Tn. Letting W = H ∩ V , we can furthermore choose H so that W
is smooth. By construction we have

(a) dimW = dimV − 1;
(b) dim Tn ∩W = dimTn − 1 ≤ dimW − 2

(since H does not contain any Tn);
(c) ∀φi ∈M , the restriction φi|W is not constant

(since p ∈W and W ∩ J 6= ∅);
(d) ∀i 6= j we have φi|W 6= φj|W

(since W ∩ I 6= ∅);

hence φi|W ∈M2
g (C(W )) and the restriction to W gives an inclusion (by (d) above)

M ↪→ M2
g (C(W )). Thus M2

g (C(W )) is infinite. This is a contradiction with the
inductive assumption. �

See [Md] for an analogue over Q. Part a) of this result should be compared with
the examples of A. Beauville (in [B], section 5) or with the example below. They
show that the assumption that the curves have good reduction in codimension 1 is
crucial; that is, a) is false without that assumption. On a different vein, compare
also with Proposition 4. The example that we are going to describe shows that there
is no hope of getting a substantially stronger uniform version of the Shafarevich
Conjecture for function fields; in other words, any uniform bound on |Fg(B,S)|
must depend on the degree of S.

What happens to the cardinality of Fg(B,S) when s grows while g and q (or
even B) stay fixed? The way we defined Fg(B,S), it is an exercise to show that
its cardinality is not bounded; but this is just because the families parametrized by
Fg(B,S) are not required to have a singular fibers over S. The interesting question
is about the asymptotics of the cardinality of that subset of Fg(B,S) parametrizing
families of curves that have a singular fiber over every point of S. We will make
this precise now, describing an example suggested by J. de Jong, showing that the
set of fibrations with fixed degeneracy locus is not bounded, as the cardinality of
the degeneracy locus grows.

Fix g ≥ 2 and B = P1. Given a subset S ⊂ P1 denote by F (S) ⊂ Fg(P1, S)
the set of all genus g non-isotrivial fibrations X −→ P1 such that the fiber Xb is
smooth if and only if b /∈ S.

Let S = {a1, ....as} be a set of generic points in P1, and let I ∪ J = {1, 2, ...., s}
be a partition of {1, 2, ...., s} in two disjoint subsets such that |I| = 5. Define a
non-isotrivial fibration XI of curves of genus 2 over P1 by the affine equation

y2 = (x− t)Πi∈I(x− ai)Πj∈J (t− aj)

with t an affine coordinate in P1. For t /∈ S (and t 6=∞ ) we get a smooth curve of
genus 2. For t = ai with i ∈ I, we get a nodal curve and for t = aj , j ∈ J , we get
a singular, non-reduced curve. Thus XI ∈ F (S ∪∞) and, by varying the partition

I ∪ J , we get a total of
( s

5
)

different such fibrations. Hence the cardinality of

F (S) goes to infinity, as |S| grows.
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One final word about this example.
First, we make two comments: the given family has fibers of genus 2, but of

course one can construct the same example for any genus (just replace the integer
5 by a higher odd number), obtaining families of hyperelliptic curves.

The second comment is about those singular fibers over aj with j ∈ J that
are not stable curves; their semistable reduction is actually a smooth curve. The
remaining 5 fibers over ai are instead nodal. In other words, the moduli map φI
associated to the family XI −→ P1,

φI : P1 −→M2

(such that φI(t) is the isomorphism class of the fiber of XI over t) intersects the
boundary ∆2 in exactly 5 points, regardless of the cardinality of S.

We ask:
(a) Can one find similar examples whose fibers do not belong to any proper

closed subset of Mg?
(b) Is the same “unboundedness” result true for families of stable curves? In

other words, does there exist a similar example all of whose singular fibers
are nodal?

3. Uniformity for “truly varying” curves

This section contains results that are independent of the degeneracy locus. Given
a family X −→ V of generically smooth curves of genus g over V , we get a natural
rational map φ : V −→ Mg (regular on a nonempty open subset of V ). The
dimension of the image of φ is called the variation of moduli of the family; we shall
say that the family has maximal variation of moduli if

dim Imφ = min{dimV, 3g − 3}.
We shall say that a curve over L = C(V ) has maximal variation of moduli if a
corresponding family of curves over V does.

Thus the condition of having maximal variation of moduli can be interpreted
as saying that the family (or the curve) is truly varying and can be viewed as a
generalization of the non-isotriviality condition. Obviously, if the base field has
transcendence degree 1, a curve is non-isotrivial if and only if it has maximal vari-
ation of moduli.

Definition. Let L be a function field. We define Cg(L) to be the set of L-isomor-
phism classes of curves of genus g defined over L and having maximal variation of
moduli.

Proposition 4. Let g ≥ 24 and let L be a function field of transcendence degree
3g − 3. Then

a) Cg(L) is finite.
b) There exists a number N(L, g) such that for every curve X of genus g

defined over L and having maximal variation of moduli, we have |X(L)| ≤
N(L, g).

c) There exists a function Pg(n,m) such that for every V of general type, we
have |Cg(L)| ≤ Pg(dim V,KdimV

V ).

Proof. The assumption g ≥ 24 implies that Mg is of general type (for this famous
result of J. Harris and D. Mumford we refer to [HMu] and to 6F in [HM]).
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Denote by R(V,Mg) the set of dominant, rational maps from V to Mg. A
theorem of Kobayashi and Ochiai [KO] implies that, Mg being of general type,
R(V,Mg) is finite. Notice now that there is a natural bijection between Cg(L) and
R(V,Mg): to a truly varying curve X of genus g over L we can associate its moduli
map φX ∈ R(V,Mg). The fact that such a correspondence is bijective follows from
the existence of the universal curve over an open subset of Mg. Thus Cg(L) is
finite.

By the theorem of Manin, any curve in Cg(L) has a finite set of L-rational points.
Thus part b) follows immediately from a).

Part c) is proved like part a); we can in this case apply a strengthening of the
theorem of Kobayashi and Ochiai provided by T. Bandman and D. Markushevich.
From [BM] we obtain that, V and Mg being of general type and Mg having canon-
ical singularities (Theorem 1 in [HMu]), there exists a function of g, of dimV and
of KdimV

V bounding the cardinality of R(V,Mg) and hence that of Cg(L). �

Let u : Cg −→Mo
g be the universal curve over the moduli space of automorphism

free smooth curves of genus g, so that the fiber of u over the point corresponding
to the curve X is X itself.

It is a well-known fact (see [HM], 2D) that u has no rational sections; thus, Cg
has no rational point over the function field of Mg. In fact, much more is known:
the Picard group of Cg is generated over the Picard group of Mg by the relative
dualizing sheaf ωu; therefore, a multisection of u must have degree over Mo

g equal
to a multiple of 2g − 2.

We apply this to obtain that if V is a variety of dimension 3g−3 and X is a curve
of genus g over L having maximal variation of moduli, then a necessary condition
for X to have a rational point over L is that its moduli map have degree equal to
a multiple of 2g − 2. This follows easily by looking at the commutative diagram

X
γ−→ Cg

f

yxσ yu
V

φX−→ Mg

where the horizontal arrows are rational maps and σ is the rational section cor-
responding to a rational point of X over L. Let τ = γ ◦ σ : V −→ Cg and let
ρ : Im τ −→Mg; by what we said, deg ρ = n(2g− 2) for some integer n. We finally
obtain

degφX = deg τ · deg ρ = m(2g − 2),

where by deg φX we mean the degree of the restriction of φX to the nonempty open
subset of V and where φX is a regular and finite map. Let us call such a number
degφX the modular degree of a family X −→ V ; this definition is general, provided
that X −→ V has maximal variation of moduli and that dimV ≤ 3g − 3. We just
proved the following

Lemma 5. Let V be a variety of dimension 3g − 3 with function field L and let
X be a smooth curve of genus g over L having maximal variation of moduli. Then
either X(L) = ∅ or the modular degree of X is a multiple of 2g − 2.
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The following well-known conjecture is open:

Geometric Lang Conjecture. Let W be a variety of general type defined over
C. Then there exists a proper closed subvariety ZW of W containing all positive-
dimensional subvarieties of W that are not of general type.

In particular, according to such a conjecture, all curves in W having genus at
most 1 are contained in ZW .

Consider now Mg, and let Zg ⊂ Mg be defined as the closure of the union of
all integral curves in Mg having geometric genus at most equal to 1. Since Mg is
of general type if g ≥ 24, the above conjecture would imply that Zg is a proper,
closed subset of Mg for all g ≥ 24.

As a consequence, we get the following.

Lemma 6. Let g ≥ 24 and let B be a curve of genus q. The Geometric Lang
Conjecture implies that if X −→ B is a non-isotrivial family of curves of genus g,
passing through the general point of Mg, then the modular degree of X is at most
q − 1.

Proof. As we mentioned above, the union of all curves in Mg of genus at most 1 is
contained in a proper closed subset Zg of Mg. The condition that the given family
of curves goes through the general point of Mg, combined with the Geometric Lang
Conjecture, implies that ImφX 6⊂ Zg. Thus the geometric genus of ImφX is at least
2. By the Riemann-Hurwitz formula, the degree d of a dominant map of a curve B
of genus q onto a curve C of geometric genus p ≥ 2 is at most equal to q − 1. In
fact, the formula gives

d =
2q − 2− r

2p− 2
≤ q − 1
p− 1

≤ q − 1

since r ≥ 0 (being the degree of the ramification divisor) and p ≥ 2 by assumption.
�
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