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1. Spaces of plane curves

Counting problems are among the most basic in mathematics. Enumera-
tive geometry studies these problems when they concern geometric entities,
but its interaction with other areas has been overwhelming over the past
three decades. In this paper we focus on algebraic plane curves and high-
light the interplay between enumerative issues and topics of a different type.

The classical ambient space for algebraic geometry is the complex pro-
jective space, Pr, viewed as a topological space with the Zariski topology.
The Zariski closed subsets are defined as the the zero loci of a given collec-
tion of homogeneous polynomials in r + 1 variables, with coefficients in C.
These closed sets are called “algebraic varieties” when considered with the
algebraic structure induced by the polynomials defining them.

Plane curves are a simple, yet quite interesting, type of algebraic vari-
ety. As sets, they are defined as the zeroes in the plane, P2, of a non-zero
homogeneous polynomial in three variables. A homogeneous polynomial of
degree d in three variables, x0, x1, x2, has the form

(1) Gd =
∑

i+j+k=d

i,j,k≥0

ai,j,kx
i
0x
j
1x
k
2

where the coefficients ai,j,k are in C. The set of all such polynomials is a

complex vector space of dimension
(
d+2
2

)
and, by definition, two non-zero

polynomials determine the same curve if and only if they are multiple of one
another. Therefore the set of all plane curves of degree d can be identified
with the projective space of dimension cd :=

(
d+2
2

)
− 1 = d(d+ 3)/2,

Pd := space of plane curves of degree d = Pcd .
If d is small these spaces are well known. For d = 1 we have the space

of all lines, which is a P2. For d = 2 we have the space of all “conics”, a
P5. This is more interesting as there are three different types of conics: (a)
smooth conics, corresponding to irreducible polynomials; (b) unions of two
distinct lines, corresponding to the product of two polynomials of degree
1 with different zeroes; (c) double lines, corresponding to the square of a
polynomial of degree 1. Notice that conics of type (c) form a space of
dimension 2 and conics of type (b) form a space of dimension 4, as each of
the two lines varies in P2. Since the family of all conics has dimension 5
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we see that most conics are smooth or, with a suggestive terminology, “the
general conic is smooth”, which is a shorthand for “the set of smooth conics
is dense and open in the space of all conics”.

The assortment of types of curves gets larger as the degree d gets larger,
but for any d the general curve in Pd is smooth, i.e. given by a polynomial
whose three partial derivatives have no common zeroes.

So, smooth curves form a Zariski open dense subset in Pd. This claim is
an instance of a remarkable phenomenon in algebraic geometry. Indeed, let
Sd be the subset in Pd parametrizing singular, i.e. non smooth, curves. By
what we said, Sd is closed in Pd, hence the zero locus of some polynomials,
therefore Sd is an algebraic variety. Moreover, as we shall see, the geometry
of Sd is all the more interesting as it reflects some properties of the curves it
parametrizes. The phenomenon we are witnessing is the fact that the sets
parametrizing algebraic varieties of a certain type have themselves a natural
structure of algebraic variety, they are usually called “moduli spaces” and
are a central subject in current mathematics.

In this spirit, let us go back to plane curves and give an interpretation to
the dimension of the spaces of curves we encountered so far. We introduced
in (1) the general polynomial, Gd, of degree d; now we consider the projective
space Pd with homogeneous coordinates {ai,j,k, ∀i, j, k ≥ 0 : i+ j+k = d},
and the product Pd × P2. The polynomial Gd is bi-homogeneous of degree
1 in the ai,j,k, and d in the xi . Therefore the locus where Gd vanishes is a
well defined subset of Pd×P2, and it is an algebraic variety which we denote
by Fd. We view Fd as a “universal family” of plane curves of degree d, in
fact we have the two projections, written π1 and π2,

Fd ⊂ Pd × P2

π1

yy

π2

%%
Pd P2

(2)

and the restriction of π1 to Fd expresses it as a family of plane curves: the
preimage in Fd of a point, [X] ∈ Pd, parametrizing a curve, X ⊂ P2, is
isomorphic to X, and it is mapped to X by the projection, π2, to P2.

The fact that Pd has dimension cd = d(d + 3)/2 tells us that if we fix cd
points in P2 there will exist some curve of degree d passing through them,
and the curve will be unique for a general choice of points. In fact, fix
p1, . . . , pcd ∈ P2; a curve passes through pi if the polynomial defining it van-
ishes at pi. Therefore the curves passing through our points are determined
by imposing Gd(pi) = 0 for all i = 1, . . . , cd. This gives the following system
of cd homogeneous linear equations in 1 + cd unknowns (the ai,j,k):

Gd(p1) = . . . = Gd(pcd) = 0.

The solutions of this system form a vector space of dimension at least 1,
with equality if and only if the equations are linearly independent, which
will happen for general points p1, . . . , pcd . Since a one dimensional vector
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space of polynomials corresponds to a unique curve, we derive that there
exists at least one curve through our fixed points, and the curve will be
unique for a general choice of points. In short

cd = max{n : any n points in P2 lie in a curve of degree d},
and we solved our first, however easy, enumerative problem by showing that
the number of curves of degree d passing through cd general points is equal
to 1. The phrase “general points” means that the cd points vary in a dense
open subset of (P2)cd .

Let us now focus on Sd, the space of singular plane curves of degree d.
It turns out that Sd is a hypersurface in Pd, i.e. the set of zeroes of one
polynomial, hence dimSd = cd − 1. Arguing as before, the dimension of Sd
can be interpreted as the maximum number of points in the plane which are
always contained in some singular curve of degree d.

For instance, four points always lie in some singular conic and it is easy
to describe which. If the four points are general, i.e. no three collinear,
there are exactly six lines lines passing through two of them, and our conics
are given by all possible pairs of them. This gives a total of three conics
pictured in Figure 1.

• • •

• • •

• • • • • •

Figure 1. The 3 singular conics through 4 points

If three of the fixed points are collinear, we take all conics given by the
union of the line through the three points with any line through the fourth
point; since the set of lines through a point has dimension one, we get a
one-dimensional space of conics. If the four points are collinear, we have the
two-dimensional space of conics given by the union of the line through the
points with an arbitrary line.

Summarizing, if (and only if) the four points are general, i.e. no three
collinear, there exist finitely many singular conics through them, and the
number of such conics is always 3, regardless of the choice of the four points.

As easy as this is for conics, things get more complicated already for
d = 3. Here dimS3 = 8, and counting the “cubics” through eight points is
much harder.
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The key is to give this number a different interpretation1 and identify it
with another invariant of Sd, its degree as a subvariety of Pd.

2. The degree of the Severi variety

The degree of a subvariety in projective space is the number of points of
intersection with as many generically chosen hyperplanes as its dimension.
In Pd there are hyperplanes with a special geometric meaning, parametrizing
curves passing through a fixed point. Indeed, let p be a point in P2 and let
Hp be the locus in Pd of curves through p:

(3) Hp = {[X] ∈ Pd : p ∈ X}.
Thus Hp is the zero locus in Pd of the homogeneous linear polynomial Gd(p),
hence Hp is a hyperplane. Therefore degSd, the degree of Sd, is the num-
ber of singular curves passing through dimSd general points, as claimed.
Recalling that dimSd = cd − 1, we want to solve the following:

Problem 1. Compute the number of singular plane curves of degree d pass-
ing through cd − 1 general points. Equivalently: compute the degree of Sd.

Since Sd is a hypersurface, its degree is equal to the number of points of
intersection with a general line. So, we fix a general line, L, in Pd and notice
that L corresponds to a family of curves of degree d, a so-called “pencil
of curves”. More precisely, from diagram (2) we restrict the projection
Fd → Pd over L to get a map

φ : X −→ L ⊂ Pd
whose fiber over every point, ` ∈ L, is the plane curve of degree d corre-
sponding to the curve parametrized by `. The word “pencil” indicates that
the base of the family, L, is a line.

We identify L with P1 and denote by t0, t1 its homogeneous coordinates.
Then our pencil is given by the zeroes in P1

t0,t1 × P2
x0,x1,x2 of a polynomial

F (t0, t1;x0, x1, x2),

bihomogeneous of degree 1 in t0, t1 and d in x0, x1, x2, so that X ⊂ P1×P2 is
set of zeroes of F . Since L is a general line in Pd, it intersects Sd transversally
in finitely many points. These are the points of L such that the fiber of φ is
singular and our goal is to count them. We first count the singular points
of the fibers of φ, which are determined by the solutions of the following
system, where Fxi is the partial derivative with respect to xi,

(4) Fx0 = Fx1 = Fx2 = 0.

Since F is bihomogeneous of bidegree (1, d), each Fxi is bihomogenous of
bidegree (1, d− 1) and corresponds to a hypersurface in P1×P2 of the same
bidegree. The number of solutions of the system (4) is thus the number of
points of intersection in P1×P2 of three hypersurfaces of bidegree (1, d−1).

1 “Mathematics is the art of giving the same name to different things”. H.Poincaré



ENUMERATIVE GEOMETRY OF PLANE CURVES 5

We do know how to compute this number because we can compute inter-
sections in projective space.

We write H∗(Pr) for the cohomology ring with Z-coefficients of the pro-
jective space Pr, whose cup product can be interpreted as the intersection
product. As a ring, H∗(Pr) is isomorphic to Z[x]/(xr+1) where x is identi-
fied with the cohomology class, hr ∈ H2(Pr), corresponding to a hyperplane.
Hence xk ∈ H2k(Pr) corresponds to a linear subspace of complex dimension
r−k and real codimension 2k. The intersection product in Pr depends only
on the cohomology class, and the degree of the intersection of r hypersur-
faces is the product of their degrees; in algebraic geometry, this is Bézout’s
theorem. This degree is the appropriate count for the number of points of
intersection of the r hypersurfaces.

One usually identifies zero-dimensional classes, like the class of the inter-
section of two curves in P2, with their degree. This amounts to identifying
the top cohomology group, H2r(Pr), with Z so that the class of a point
corresponds to 1.

The generator, h1, for P1 is the dual of a point, and the generator, h2,
for P2 is the dual of a line, with h21 = 0 and h22 equal to the class of a point;
with the above identification we write h22 = 1.

What about P1 × P2? It satisfies a Künneth type formula, so that its
cohomology ring is generated by the pull backs of the generators of the two
factors. Let us denote by hi the pull back of hi for i = 1, 2.

By what we said, the number of solutions of the system (4) is the degree of
the triple intersection of the class h1+(d−1)h2. The following basic relations
are easily seen to hold (again identifying the top cohomology group with Z)

h31 = h21h2 = h32 = 0 h1h
2
2 = 1.

Hence

(h1 + (d− 1)h2)
3 = 3(d− 1)2.

Therefore the number of singularities in the fibers of φ is equal to 3(d− 1)2.
By the generality of the line L, every singular fiber has exactly one singular

point. Hence the number of singular fibers of φ is 3(d− 1)2, and hence

(5) degSd = 3(d− 1)2

is the answer to Problem 1. This confirms that there are three singular
conics through four general points, and it tells us, for example, that there
are twelve singular cubics passing through eight general points. Notice that,
differently from what happens with conics, if the eight points are general (no
three collinear, no six on a conic), each of these cubics will be irreducible,
i.e. not the the union of a line and a conic.

In answering Problem 1 we mentioned that the general curve in Sd has
exactly one singular point. Moreover, this point is a “node”, the simplest
type of singularity a curve can have, whose analytic local equation has the
form x2 = y2.
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We now consider curves with more singular points. We denote by Sd,δ the
Severi variety of plane irreducible curves of degree d with at least δ nodes;
see [S]. More precisely, Sd,δ is defined as the closure in Pd of the locus of
irreducible curves of degree d with δ nodes:

Sd,δ := {[X] ∈ Pd : X irreducible with δ nodes}.

If δ = 0 then Sd,0 = Pd, if δ = 1 and d ≥ 3 we have Sd,1 = Sd.
It is clear that for Sd,δ to be non empty δ cannot be too big, for example

it is easy to see that δ must be less than (d − 1)2/2. Indeed, suppose we
have an irreducible curve, X, of degree d ≥ 3 with at least (d− 1)2/2 nodes.
Through these nodes there certainly passes a curve, Y , of degree d − 2,
because cd−2 > (d − 1)2/2. Hence the degree of the intersection of X and
Y is at least 2(d− 1)2/2 = (d− 1)2, but this contradicts Bézout’s theorem,
according to which the degree of the intersection of X and Y is d(d− 2). A

more refined analysis gives
(
d−1
2

)
as sharp upper bound on δ, and we have

Fact 2.1. If δ >
(
d−1
2

)
then Sd,δ is empty. Assume δ ≤

(
d−1
2

)
, then

(a) Sd,δ is irreducible of dimension cd − δ;
(b) Sd,δ is smooth at points parametrizing irreducible curves with exactly δ

nodes, and the locus of such points is open and dense in Sd,δ.

The irreducibility of Sd,δ is proved in [H]. The number
(
d−1
2

)
is the arith-

metic genus of a plane curve of degree d. There are two types of genus for a
curve: the geometric genus and the arithmetic genus, which coincide if the
curve is smooth and irreducible.

The genus of a smooth curve is the topological genus of the real surface
underlying the curve. For example, a smooth plane curve of degree 1 or 2
has genus zero and its underlying real surface is the sphere, S2. In degree
3, the genus is 1 and the surface underlying a smooth cubic is a torus.

The geometric genus of an irreducible singular curve is defined as the
genus of its desingularization.

The arithmetic genus can be thought of as the total energy of the curve,
with the geometric genus being the potential energy. Just like the total
energy of a system remains constant, so does the arithmetic genus in a
family of curves of fixed degree. On the other hand the potential energy
can be converted, all or part of it, to a “less useful” energy, and indeed
the geometric genus of a curve can decrease in a specialization, but never
increase. In particular, a family of curves of genus zero specializes to a curve
of genus zero, all of whose irreducible components must have genus zero.

What about positive genus? Consider a family of smooth curves of degree
d ≥ 3 specializing to an irreducible curve with δ nodes. The underlying
family of topological surfaces has, as general fiber, a surface of genus g =(
d−1
2

)
, hence with g handles; see Figure 1 for a picture with g = 1 and δ = 1.

In this family every node of the specialization is generated by the contraction
of a loop around a handle of the general fiber. The surface underlying the
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contract loop

desingularize node

Figure 2. A singular specialization and its desingularization

special curve is no longer a topological manifold at the point where the loop
got contracted, where the surface looks locally like two disks with centers
identified. Separating the two disks desingularizes the curve so that the
underlying surface has one fewer handle, hence its genus goes down by 1.

This was an informal explanation for the fact that the geometric genus
of an irreducible curve of degree d with δ nodes is equal to

(
d−1
2

)
− δ; hence

if δ >
(
d−1
2

)
there exist no such curves. We refer to [ACGH] and [ACG] for

the general theory of curves.
Recapitulating, Sd,δ can be defined as the the closure in Pd of the locus of

irreducible curves with geometric genus g =
(
d−1
2

)
− δ. A simple calculation

gives a different expression for its dimension:

dimSd,δ = 3d+ g − 1.

The basic enumerative problem, generalizing Problem 1, is the following

Problem 2. Compute the number of irreducible plane curves of degree d
and genus g passing through 3d+ g − 1 general points.

Or, compute the degree of Sd,δ. If δ = 0 then g =
(
d−1
2

)
and the answer

is 1. If δ = 1 then g =
(
d−1
2

)
− 1 and we know the answer is 3(d− 1)2. For

δ ≤ 8 the answer, given in [KP], is again a polynomial in d; see also [DI]
and [G]. For bigger δ the first general solutions were discovered as recursive,
rather than closed, formulas, as we shall illustrate in the rest of the paper.

3. Recursive enumeration for rational curves

A rational curve is an irreducible curve of geometric genus zero. By what
we said earlier a family of rational curves can specialize only to a curve all
of whose irreducible components are rational. This makes the enumeration
problem in genus zero self-contained and solvable by a recursive formula,
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which expresses the degree of the Severi variety in degree d and genus zero
in terms of the degrees of the Severi varieties in lower degrees and genus,
again, zero.

We denote by Rd the Severi variety of rational curves of degree d:

(6) Rd := S
d,(d−1

2 ), rd := dimRd = 3d− 1, Nd := degRd.

Of course, N1 = 1. In case g = 0 the answer to Problem 2 is the following.

Theorem 3.1. [Kontsevich’s formula.] For d ≥ 2

Nd =
∑

d1+d2=d

Nd1Nd2d1d2

[(
3d− 4

3d1 − 2

)
d1d2 −

(
3d− 4

3d1 − 3

)
d22

]
.

As explained in [KM], this formula was discovered in a rather different
context, and it came as a beautiful surprise. While establishing the math-
ematical foundations for Gromov-Witten theory (a theory largely inspired
by ideas from physics), Kontsevich and Manin gave an axiomatic construc-
tion of the Gromov-Witten invariants and of the quantum cohomology ring,
a generalization of the classical cohomology ring of a projective algebraic
variety. For P2 the quantum product on the quantum cohomology ring
was defined using our numbers Nd, which appeared as Gromov-Witten in-
variants. The above formula was found as the condition characterizing the
associativity of the quantum product.

The proof we shall illustrate was not among the first to be given (for
which we refer to [KM] and [K], or to [RT]) but is close in spirit to our
answer to Problem 1.

The shape of the formula indicates that we should use splittings of the
curve into a union of two components of degrees d1 and d2 with d = d1 +d2.
We will do that via a one-dimensional family of curves similar to the pencil
we used to compute the degree of Sd, but with opposite point of view.
In the previous case the unknown was the number of special curves, now
the number of special curves will be easy to compute and will be used to
determine the unknown, Nd.

To get our one-dimensional family we intersect Rd with general hyper-
planes until we get a curve. Since intersecting with a general hyperplane
decreases the dimension by one, we need to intersect with rd−1 hyperplanes.
We use hyperplanes of type Hp, defined in (3). So, fix q1, . . . , qrd−1 general
points in P2 and set

C = Rd ∩Hq1 ∩ . . . ∩Hqrd−1 .

Now C is the curve in Pd parametrizing the family of rational curves of
degree d through the base points q1, . . . , qrd−1, which we write as follows

C × P2 ⊃ X −→ C.

The basic idea is that our degree, Nd, is equal to the number of points
of intersection between C and one more general hyperplane Hp, as this is
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X1

X2

X1

X2

Figure 3. Reducible specializations of rational quartics

equal to the number of curves in Rd passing through q1, . . . , qrd−1, p. To put
this idea to work we need to study the geometry of the family X → C.

By Fact 2.1 and Bertini’s theorems, C is irreducible and the subset of
points parametrizing irreducible curves with

(
d−1
2

)
nodes and no other sin-

gularities is open, dense, and contained in the smooth locus of C. Let us
look at the reducible curves parametrized by C. There are finitely many
of them and, by what we said earlier, they must be unions of two rational
curves of smaller degrees.

Example 3.2. Let d = 4, hence δ = 3 and r4 = 11. Our C parametrizes
quartics with three nodes passing through ten points. The reducible curves
parametrized by C, written X1 ∪X2, are of two types, drawn in Figure 3.
First type: for any partition of the base points into two subsets, B1 and
B2, of five points, let Xi be the conic through Bi for i = 1, 2 (drawn on the
left in the picture). Second type: for any partition of the base points into a
subset, B1, of cardinality 2 and a subset, B2, of cardinality 8, let X1 be the
line through B1 and let X2 be one of the twelve nodal cubics through B2.

We use the following notation, X1 ∪X2 denotes a reducible curve of our
family, with X1 containing the base point q1. The degree of X1 will be d1
and X2 has degree d2 = d−d1. We say that such curves are of type (d1, d2).
Let us count them; we have

rd1 + rd2 = rd − 1,

which is the number of base points of our family. Therefore for every parti-
tion of the base points into two subsets, B1 and B2, of respective cardinalities
rd1 and rd2 , there exist Ndi rational curves of degree di passing through Bi.
Since we are assuming that the base point q1 lies on X1, the number of
curves of type (d1, d2) is equal to Nd1Nd2 times the number of partitions of
the base points q2, . . . , qrd−1 into two subsets of cardinalities rd1−1 and rd2 ,
hence equal to
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(7) Nd1Nd2

(
rd − 2

rd1 − 1

)
.

Now, is C singular at such special points? As C is a general linear section
of the Severi variety Rd, its singularity at any point reflects the local geom-
etry of Rd, which depends on the singularities of the corresponding plane
curve. Let us count the singular points of a curve of type (d1, d2). This
amounts to counting the nodes of each component and the d1d2 nodes in
which the two components intersect, which gives a total of(

d1 − 1

2

)
+

(
d2 − 1

2

)
+ d1d2 =

(
d− 1

2

)
+ 1.

Now, when rational curves of degree d specialize to a curve of type (d1, d2)

each of the
(
d−1
2

)
nodes of the general fiber specializes to a node of the

special fiber. By the above computation, there is exactly one node of the
specialization which is not the limit of a “general” node. In other words,
the special curve has exactly one node that gets “smoothed”. But can all
the nodes of the special curve be smoothed in this way? No, only the d1d2
nodes lying in the intersection of the two components can.

To see why, suppose we have a curve, X = X1 ∪X2, of type (d1, d2) oc-
curring as the specialization of a family as above parametrized by a smooth
curve, U . Write Z → U for this family and let u0 ∈ U be the point
parametrizing X. Up to shrinking U near u0 we can assume that all fibers
away from u0 are irreducible with

(
d−1
2

)
nodes. The surface Z is necessarily

singular along the nodes of the irreducible fibers, hence it has
(
d−1
2

)
singular

curves which we resolve by desingularizing Z. In Figure 4 we have the ex-
ample of rational quartics specializing to a reducible curve (see also Figure
3 and Example 3.2), the dotted red curves represent the singular curves of
Z. Denote by Z ′ the desingularization of Z so that we have a chain of maps

φ : Z ′ −→ Z −→ U

whose composition is a new family of curves. This operation has the effect
of desingularizing the general fibers, so that φ : Z ′ → U is a family whose
fibers away from u0 is a smooth rational curve.

The curve X1 ∪X2 will be desingularized at all nodes but the one which
is smoothed in Z (i.e. the node which is not a limit of nodes, marked by
a circle in Figure 4), hence the fiber of φ over u0 is reducible with exactly
one node. If, by contradiction, all points in X1 ∩X2 were limits of general
nodes, then they will all be desingularized when passing to Z ′, and the fiber
of φ over u0 will be disconnected. But this contradicts the connectedness
principle, as the fibers of φ away from u0 are all connected.

In conclusion, the local geometry of Rd at a curve, X, of type (d1, d2)
reflects that in a general deformation there is exactly one node of X which
gets smoothed, so that Rd is the intersection of smooth branches, each of
which corresponds to the node of X which gets smoothed along that branch.
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Z Z ′
Desingularize

Figure 4. Reducible specialization and desingularization

By what we said, only the d1d2 “intersection” nodes can be smoothed, and
the fact that all such nodes are actually smoothable follows by a symmetry
argument. Concluding, Rd is, locally at X, the transverse intersection of
d1d2 smooth branches. Hence the curve C has an ordinary d1d2-fold point
and, under B → C, the preimage of a point of type (d1, d2) is made of d1d2
distinct points.

We want to compute Nd using, as for Problem 1, intersection theory. We
start from the family of curves parametrized by C and let B → C be its
desingularization. We pull back to B the original family X → C but, as
we noted above, the so-obtained surface is singular along the nodes of its
irreducible fibers, hence we replace it by its desingularization, Y. We have
a commutative diagram

Y //

π

))

ϕ

��

X

��

� � // P2 ×Rd

��

// P2

B // C �
�

// Rd

where ϕ is a family of rational curves with finitely many reducible fibers.
Our Y is a ruled surface, birational to P1×B, and its intersection product

is something we can handle. First, we need a section of ϕ. Every base point
of the family determines such a section, let Q be the section corresponding
to q1. Thus Q is the curve in Y intersecting each fiber of ϕ in one point and
such that π(Q) = q1.

We denote by T ⊂ B the set of points over which the fiber of ϕ is reducible.
For every b ∈ T we denote its fiber by Zb,1 ∪ Zb,2 with the convention that
the map π sends Zb,i to a plane curve of degree di, and the curve of degree
d1 contains q1; so Zb,2 does not intersect Q. We write T (d1, d2) for the set of
points parametrizing a curve of type (d1, d2), and t(d1, d2) for its cardinality.

We computed in (7) the number of points in C parametrizing curves of
type (d1, d2), over each such point there are d1d2 points of B, hence

(8) t(d1, d2) = d1d2Nd1Nd2

(
rd − 2

rd1 − 1

)
.
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As Y is a ruled surface its intersection ring is generated by the curves

{Q,Y, Zb,2 ∀b ∈ T},

and we will use the same symbols for curves and their cohomology classes.
We have the following obvious relations, for every ∀b ∈ T

Q · Y = 1, Q · Zb,2 = 0, Y · Zb,2 = 0, Y 2 = 0 Z2
b,2 = −1,

identifying, as before, the top cohomology group of Y with Z. To complete
the intersection table we need Q2. We compute it using a second section
from the base points, so let Q′ be the section corresponding to, say, qrd−1.
We have Q ·Q′ = 0 and (Q′)2 = Q2, therefore Q2 = (Q−Q′)2/2.

Now, the intersection numbers of Q and Q′ differ only on the generators
Zb,2 for which the base point qrd−1 lies on π(Zb,2), in which case we have
Q′ · Zb,2 = 1. Write S ⊂ T for the set of such points, so that Q − Q′ and∑

b∈S Zb,2 have the same class in the intersection ring of Y. Hence

Q2 =
1

2
(Q−Q′)2 =

1

2
(
∑
b∈S

Zb,2)
2 = −#S

2
= −1

2

∑
d1+d2=d

s(d1, d2),

where s(d1, d2) is the number of points in S of curves of type (d1, d2). Ar-
guing similarly as for t(d1, d2), we obtain

s(d1, d2) = d1d2Nd1Nd2

(
rd − 3

rd1 − 1

)
.

Now, the preimage of a general point, p, in P2 under the map π is the set
of curves of our family passing through p, whose cardinality is, of course,
deg π. Hence deg π is the number of rational curves of degree d passing
through q1, . . . , qrd−1, p, that is our unknown, Nd. On the other hand, let
h2 be the class of a line in P2, then deg π is equal to (π∗h2)

2, an intersection
number on Y. Hence computing Nd is the same as computing (π∗h2)

2. In
the intersection ring of Y we can write

(9) π∗h2 = cQQ+ cY Y +
∑
b∈T

cbZb,2

for some coefficients cQ, cY , cb. We can compute these coefficients by inter-
secting both sides of (9) with the three types of generators. We have

π∗h2 ·Q = 0, π∗h2 · Y = d, π∗h2 · Zb,2 = d2

by construction. These give linear relations which, with the intersection
table, enable us to determine the coefficients and obtain

π∗h2 = dQ− (dQ2)Y −
∑

d1+d2=d

 ∑
b∈T (d1,d2)

d2Zb,2

 .
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Now, since (π∗h2)
2 = Nd we have

Nd = −d2Q2 +
∑

d1+d2=d

b∈T (d1,d2)

(d2Zb,2)
2 =

∑
d1+d2=d

[
d2

2
s(d1, d2)− d22t(d1, d2)

]
.

Hence

Nd =
∑

d1+d2=d

Nd1Nd2d1d2

[
d2

2

(
rd − 3

rd1 − 1

)
− d22

(
rd − 2

rd1 − 1

)]
.

To see that this formula gives Theorem 3.1, set n = rd − 3 = 3d − 4 and
k = rd1 − 1 = 3d1 − 2. For the term in square brackets we have

d2

2

(
n

k

)
− d22

(
n+ 1

k

)
=
d21 + d22

2

(
n

k

)
+ d1d2

(
n

k

)
− d22

(
n

k

)
− d22

(
n

k − 1

)
=

= d1d2

(
n

k

)
− d22

(
n

k − 1

)
− d22 − d21

2

(
n

k

)
.

Summing up for d1 + d2 = d the third summand vanishes and we are done.
For details we refer to [CH1], where this technique is used to obtain other

recursions enumerating rational curves on rational surfaces.

4. Curves of positive genus

We now look at Problem 2 for g > 0. A complete answer is provided
by means of a recursion, the precise description of which would require too
many new technical details. We thus limit ourselves to illustrating the main
idea and the comparison with the previous formulas.

If we consider, as we did for g = 0, the family of curves of degree d with δ
nodes passing through a number of points equal to dimSd,δ − 1, we will get
a one-dimensional family which, in contrast with the case of rational curves,
will parametrize no reducible curve, in general.

Example 4.1. Let d = 5 and δ = 2 so that the geometric genus is 4 and
dimS5,2 = 18. Let C be the linear section of S5,2 parametrizing all quintics
with two nodes passing through seventeen points. There exists no reducible
quintic passing through seventeen general points, as c1 + c4 = 2 + 14 = 16
and c2 + c3 = 5 + 9 = 14. Hence C parametrizes only irreducible curves.

To set up a recursive approach we need some further constraint to force
reducible curves to appear. Our method is to impose that the base points
lie all on a fixed line in the plane. Since an irreducible curve cannot meet a
line in more points than its degree, imposing a high enough number of base
points on a line will certainly cause the occurrence of reducible curves.

For this idea to work we must impose one base point at a time, in order
to be able to tell at which step reducible curves appear, and to be able to
describe them. This will occur at various steps, and we will have to handle
sections our Severi variety having arbitrary dimension. Therefore we cannot
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limit our study to families over a one-dimensional base, as we did for the
earlier formulas.

More precisely, the procedure starts by fixing fix a line, L, in P2 and
a certain number of general points q1, q2, . . . , on L. Now we intersect the
Severi variety with the hyperplane Hq1 , then with Hq2 , and so on, by keeping
track of how the intersection behaves at every step. After a certain number
of steps the intersection splits into irreducible components, some of which
parametrize curves of type L ∪ X, so that X has lower degree and the
recursion kicks in.

The price of this recursive method is that we must consider a new version
of Severi variety, where the novelty is in the prescription of certain orders
of contact with L at some of the base points qi, and at arbitrary points. In
other words, we need to introduce the Severi variety parametrizing plane
curves of fixed (degree, genus, and) intersection profile with the line L.

We set α = (a1, . . . , an) and β = (b1, . . . , bm), with ai and bi nonnegative
integers such that

∑
iai +

∑
ibi = d. On the line L we fix

∑
ai general

points, {qi,j} with i = 1, . . . , n and j = 1, . . . , ai. We define Sd,δ(α, β) to be
the closure in Pd of the locus of irreducible curves with δ nodes, having

(a) a point of contact of order i with L at qi,j for every i = 1, . . . , n and
j = 1, . . . , ai;

(b) bi points of contact of order i with L for every i = 1, . . . ,m, different
from the ones in (a).

For α = (0, . . . , 0) and β = (d, 0, . . . , 0) we recover the classical Severi
variety Sd,δ.

One final point: in this set-up it is natural to drop the condition that
the general curve be irreducible. So, next to Sd,δ(α, β) we consider the
generalized Severi variety, defined as before but omitting the irreducibility
requirement on the general curve.

Example 4.2. Consider the generalized Severi variety with d = 4 and
δ = 3, defined as the closure in P4 of the set of quartics with three nodes
(so α = (0, . . . , 0) and β = (4, 0, . . . , 0)). This variety is the union of two
irreducible components, both of dimension 11. One component is S4,3, whose
general point parametrizes irreducible rational quartics (the same considered
in Example 3.2). The second component parametrizes reducible quartics
given by the union of a line and a cubic. Since c1 = 2 and c3 = 9, this
component has dimension 11.

The degree of the generalized Severi variety is computed in [CH2] by a
recursive formula from which the (more intricate) recursion for the degree of
Sd,δ(α, β) follows. The proof is based on a thorough analisys of the geometry
of the Severi variety, a subject of its own interest. More recently, a different
proof of the same formula has been given in [GM] using tropical geometry.

In [V] an approach similar to [CH2] is used to enumerate curves of any
genus in general rational surfaces. As for the enumerative geometry of curves
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on different surfaces, some results are known and some interesting conjec-
tures are under investigation by means of diverse techniques. As we cannot,
for lack of space, give here an exhaustive list of references we refer to [GS]
and to its bibliography.
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