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COMPACTIFYING MODULI SPACES

LUCIA CAPORASO

Abstract. The boundary of some well known algebro-geometric moduli
spaces is described by highlighting the recursive combinatorial properties in
connection with tropical and non-Archimedean geometry.
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1. Introduction

A characteristic of algebraic geometry is the fact that the sets parametrizing
equivalence classes of a certain type of objects (for example, smooth projective
curves of given genus up to isomorphism or hypersurfaces of given degree in pro-
jective space up to projective equivalence) are themselves endowed with a natural
algebraic structure, and are called moduli spaces. In fact, the structure of a moduli
space is largely governed by the geometric properties of the parametrized objects.
This phenomenon, known and used for a long time, has been established on rigorous
mathematical ground during the second half of the twentieth century when moduli
theory flourished; see [18], [23], [28], [19], [3].

A moduli problem is thus a way of posing a classification problem. Loosely
speaking, this amounts to considering a class C of objects to parametrize up to
some equivalence relation and a notion of a family of objects, specifying how our
objects are allowed to move within C. A family is, essentially, a fibration of objects
in C over an algebraic variety or scheme B, the base of the family. The precise
definition depends on the particular moduli problem; the common point is that to
any point b in B the fiber of the family over b is an object in C. To say that a moduli
problem admits a moduli space is to say that there is a natural algebraic structure
on the setM of all equivalence classes on C, which makesM into an algebraic variety
or scheme (or a more sophisticated space, like a stack). The algebraic structure on
M must satisfy some basic properties. As we said, the points of M are in bijective

Received by the editors June 15, 2018.
2010 Mathematics Subject Classification. Primary 14H10, 14D06, 14D20.

c©2018 American Mathematical Society

1

https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1662


2 LUCIA CAPORASO

correspondence with the equivalence classes of objects in C. Next, for every family
of objects in C over a base B, the set theoretic map

μ : B −→ M,

sending a point in B to the equivalence class of its fiber in the family, is a morphism
of algebraic varieties or schemes (or stacks). One usually refers to μ as the moduli
map of the family.

Without going into details, let us mention two subtle points. First of all, does
a given moduli map determine the family uniquely? Second, is every morphism
B → M the moduli map of some family of objects in C? The answer to such
questions is seldom positive. In case it is positive, we say that M is a fine moduli
space.

Let us look at the geometric structure of our moduli spaces. It turns out that
many of them are not complete as topological spaces, or, in algebro-geometric
language, they are not projective. This reflects the fact that the objects they
parametrize, the elements of C, are bound to degenerate to objects that are not
in C. Constructing completions, or compactifications, for moduli spaces has been
a major area of research in algebraic geometry since at least the mid-1950s. On
the one hand, compactifications of moduli spaces are projective and, hence, more
tractable in computations and applications. On the other hand, they usually come
with a geometric description and are moduli spaces themselves. This provides new
geometric insights and has been a constant source of inspiration for new progress.

In recent years a new interesting connection has been established between the
compactification of certain moduli spaces and moduli spaces of polyhedral objects.
In loose words, the “skeleton” of some compactified algebro-geometric moduli space
M is expressed as the moduli space of the skeleta of the objects parametrized by
M . The connection relies on the study of the boundary of the compactification and
on its recursive, combinatorial properties, some of which have long been known but
are now viewed from a new perspective.

We will survey this area by focusing on the moduli spaces of stable curves and
of line bundles on curves. In the first case we have a clear picture of the above-
mentioned connection; in the second, partial results are known, but a complete
understanding of the connection with polyhedral geometry is not yet available.

2. Compactifying moduli spaces of smooth curves

2.1. Moduli of smooth and stable curves. The moduli problem for smooth
(connected, projective) curves was perhaps the first moduli problem ever stud-
ied. A curve is a projective and connected variety over an algebraically closed
field, unless we specify otherwise. Classically, over the field C a smooth curve is
a compact, connected, orientable surface (a two-dimensional topological manifold)
endowed with an algebraic structure, and our moduli problem was studied already
by Riemann.

Now, C is the set of all smooth curves of genus g, and the equivalence is the
isomorphism. A family is a flat, projective morphism f : X → B such that for
every point b in B, the fiber f−1(b) is a smooth curve of genus g.

The moduli space of smooth algebraic curves of genus g is an algebraic variety
denoted by Mg. As we said, its structure captures some of the properties of the
curves it parametrizes. In particular, if g ≥ 1, it is not a projective variety, since
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smooth curves of positive genus are often forced to specialize to singular ones. As
we said in the introduction, it is quite important to find compactifications for Mg,
and we shall now concentrate on this.

The best known compactification is a projective variety Mg whose boundary

points (i.e., the points in Mg � Mg) parametrize singular curves of a very simple
type, called stable curves, and were introduced for the first time by P. Deligne,
A. Meyer, and D. Mumford. A remarkable feature of stable curves (whose definition
will come soon) is that they can be characterized inductively using smooth curves
of lower genus. In order to do this, we need to extend our range a little and consider
not only smooth curves, but smooth curves together with a set of n marked (and
ordered) points. Our n has to be chosen so that every curve of genus g ≥ 0 with
n marked points has only finitely many automorphisms fixing the marked points.
Thus, we need n ≥ 3 if g = 0 and n ≥ 1 if g = 1; hence, we assume from now on
n > 2− 2g.

We denote by Mg,n the moduli space of smooth curves of genus g with n marked
points. If n = 0, we just write Mg.

Example 2.1.1. The simplest cases are g = 0 and n = 3, which are almost
trivial. Indeed M0,3 is a point since any smooth curve of genus 0 is isomorphic to
P
1, and any two ordered triples of points in P

1 are mapped to one another by an
automorphism.

If g = 0 and n = 4, then M0,4 has dimension 1, and, if we work over C, it is not
hard to see that M0,4 can be identified with C� {0, 1}.

The varietyMg,n, known to be irreducible of dimension 3g−3+n, is not complete

unless g = 0 and n = 3. We shall now describe its compactification Mg,n by the
moduli space of stable n-pointed curves. A stable curve with n marked points is
defined as a (connected, projective) curve having only nodes as singularities, plus
n (ordered) smooth points on it, and having finitely many automorphisms fixing
the marked points. We shall see a more explicit description soon.

Thanks to a series of remarkable achievements (see [15], [21], [16]) we know that
that Mg,n is an open dense subset in Mg,n, and that Mg,n � Mg,n is a union of
strata described in terms of smooth curves of genus at most g with marked points.
The strata parametrize curves of a fixed topological type and are described via an
important combinatorial tool, the dual graph of a curve, which we shall introduce
below.

The basic observation is that to give a curve X with exactly one node N is
the same as to give the desingularization Xν of X and the two branch points of
Xν that get identified in N . More generally, to give a curve having only nodes as
singularities is the same as giving its desingularization (a disjoint union of smooth
curves, one for each irreducible component of X) and a set of pairs of points, one
for each node. To reconstruct X from the data of the smooth curves with marked
points, one needs gluing data, which are encoded in the dual graph GX of X.

GX will be a so-called vertex-weighted graph with legs (i.e., every vertex is
weighted by a nonnegative integer, which we call the genus of the vertex) and
may have some leg (i.e., some half-edge) adjacent to it. For example, in Figure
1 we have a graph with three legs, labeled by l1, l2, l3. In this paper the legs are
always ordered and will be fixed by any automorphism. We draw vertices of genus 0
by an empty circle “◦” and vertices of positive genus by a “•”, with sometimes the
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G = ◦
l1���

◦ ◦
l3

��
��

l2 ���
1
• [G] = ◦ ◦ ◦

1
•

Figure 1. On the left is a (weighted) graph with three legs. On
the right is the underlying leg-free graph.

genus as subscript. We denote by [G] the graph obtained from G by removing all
legs.

To define the dual graph, let (X; p1, . . . , pn) be a nodal curve with n smooth
points. Its dual graph GX has as set of vertices, V = V (GX), the set of irreducible
components of X, and as set of edges, E = E(GX), the set of nodes of X. An
edge joins the (at most two) vertices/components on which the node lies. For every
marked point, the graph has a leg attached to the vertex/component in which the
marked point lies. Finally, every vertex v of the graph is assigned an integer g(v)
equal to the geometric genus of the corresponding component.

The (arithmetic) genus g(X) of the curve X is expressed through the first Betti
number b1(GX) of its dual graph as

g(X) = b1(GX) +
∑
v∈V

g(v) = g(GX),

with b1(GX) = |E| − |V | + c, where c is the number of connected components of
GX (here, but not always in the rest of this paper, assumed to be 1). The number
g(GX) is defined as the genus of the graph. For example, the graphs of the above
picture have genus 2.

The requirement that X is stable translates into (and is equivalent to) a simple
requirement on G, namely that vertices of weight 0 (resp., 1) have degree at least
3 (resp., 1). Such graphs are called stable and form a finite set denoted by Gg,n. In
Figure 1 the graph on the left is stable, whereas the graph on the right is not.

Now we can exhibit a stratification of Mg,n. Let G ∈ Gg,n be a stable graph, let

MG ⊂ Mg,n be the locus of curves whose dual graph is G, and it is easy to see that
MG is never empty. We have

(1) Mg,n =
⊔

G∈Gg,n

MG.

Example 2.1.2. In the case where g = 0 and n = 4, encountered in Example 2.1.1,
it is quite easy to list all stable graphs. Together with the graph having no edges
and the four legs attached to its unique vertex, we have the three cases pictured
in Figure 2. To each of them there corresponds a unique curve up to isomorphism,
made of two smooth components (isomorphic to P1) intersecting in one node, and
each component has two marked points. The three distributions of the four points
give the three different isomorphism classes. It is not hard to show that M0,4

∼= P1.

From now on, X will denote a connected, projective curve having only nodes as
singularities, defined over an algebraically closed field k.
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◦
l1 ��

��
�

l2

◦
l3 ��

��
�

l4

◦
l1 ��

��
�

l3

◦
l2 ��

��
�

l4

◦
l1 ��

��
�

l4

◦
l2 ��

��
�

l3

Figure 2. The three genus 0, stable graphs with four legs.

2.2. The strata of Mg,n. Before analyzing the stratification (1), we study its
strata MG and describe them explicitly. Let Aut(G) be the automorphism group
of G, and recall that elements of Aut(G) fix every leg of G. For example, the three
graphs in Figure 2 have no automorphisms.

Recall what we said above about reconstructing a curve from the union of its
(desingularized) components plus the marked points. We shall use it now to intro-
duce the natural morphism

(2) π :
∏
v∈V

Mg(v),deg(v) −→
( ∏

v∈V

Mg(v),deg(v)

)
/Aut(G) ∼= MG,

where deg(v) is the degree of the vertex v. Let X be a curve in MG, and consider
a point in π−1(X). This will correspond to the disjoint union of |V | stable pointed
(smooth) curves, which maps to X birationally via a surjective normalization (or
desingularization) morphism, ν:

(3) ν :
⊔
v∈V

(Cv; p1, . . . , pdeg(v)) −→ X

with (Cv; p1, . . . , pdeg(v)) ∈ Mg(v),deg(v). In fact,
⊔

v∈V Cv = Xν is the desingular-
ization of X mentioned earlier. The map ν glues some pairs in

⊔
v{p1, . . . , pdeg(v)}

to the nodes of X. The pi which are not glued to anything will correspond to the
marked points of X. We think of (3) as a presentation of X. Now, Aut(G) acts
on the gluing data, and we may have different presentations of the same curve; see
Example 2.2.2.

Example 2.2.1. Let G be the stable graph in Figure 1. We have

MG
∼= M0,3 ×M0,3 ×M0,4 ×M1,1

since the action of Aut(G) on the product is trivial. Indeed, the only nontrivial
automorphism of G, interchanging the two edges on the left, acts trivially on M0,3

which is a point. The stable curve of genus 2 associated to(
(C0; p1, p2, p3), (D0; q1, q2, q3), (E0; r1, r2, r3, r4), (C1; s1)

)
with C0

∼= D0
∼= E0

∼= P1 and C1 of genus 1, is given by identifying

p1 = q1, p2 = q2, q3 = r1, r2 = s1

so that the legs correspond to p3, r3, r4. In these identifications we made a choice
which, being the same for all curves parametrized by MG, is irrelevant. Below is a
representation of these identifications on the graph.

◦
p3�����

p2 q2

p1 q1

◦
q3 r1

◦
r3

���
��
r4 �����

1

s1r2 •
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Example 2.2.2. Consider the graph G in the picture below, stable of genus 4
with one leg. We marked the identifications on the edges. Now Aut(G) contains
the automorphism α, which interchanges the two edges. We shall see that α acts
nontrivially.

•q3

p2
q2

1 2

p1 q1

•

In this case we have MG
∼= M1,3×M2,2

Aut(G) , and the action of α on M1,3×M2,2 swaps

the two marked points of M2,2 and the first two marked points of M1,3. Indeed,
the following two elements in M1,3 ×M2,2(

(C1; p, p
′, p3), (C2; q, q

′)
)
,

(
(C1; p

′, p, p3), (C2; q
′, q)

)
are conjugated by Aut(G) and give the same point of MG. In other words, they
are different presentations for the same curve.

Example 2.2.3. We now consider M0,3 ×M0,3 and list the strata MG presented
by it, with G ∈ Gg,n for all g and n. It is easy to check that g ≤ 2. If g = 0, we
leave it to the reader to check that n = 4 and to find the corresponding unique
(up to labeling the legs) stable graph. The remaining cases are drawn in Figures 3
and 4.

◦

p1����p2

p3���
� ◦

q1
���� q2

q3���
� G = ◦

p2��

p3
��
�
p1 q1◦

q3

q2

G′ = ◦

p2��

p3 q3

p1 q1 ◦

q2
��

Figure 3. Presentation of MG and MG′ in M1,2 by M0,3 ×M0,3

◦

p1����p2

p3���
� ◦

q1
���� q2

q3���
� G = ◦

p2

p1

p3 q3◦
q2

q1

G′ = ◦

p3 q3

p1 q1

p2 q2
◦

Figure 4. Presentation of MG and MG′ in M2 by M0,3 ×M0,3

Let G be a stable graph of genus g with n legs; recall that [G] denotes the graph
obtained from G by removing all legs. To describe the inductive structure of MG,
we need some notation.

If S is a set of edges of G, the graph G−S is the subgraph obtained by removing
the edges in S, so that G and G− S have the same vertices. We denote by G− So

the graph obtained by replacing every edge e in S by a pair of legs attached to the
vertices adjacent to e. Hence G− So has n+ 2|S| legs and

[G− So] = G− S.
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Consider the set of all such graphs

(4) HG := {H = G− So ∀S ⊂ E(G)}.

For any H ∈ HG it is convenient to denote by SH the set of edges of G such that
H = G− So

H .
We have a lattice structure (i.e., a poset structure with a unique maximum and

a unique minimum) on HG induced by the inclusion, so that H ≥ H ′ if [H] ⊃ [H ′].
Of course, the maximum is G and the minimum G− Eo.

If H ∈ HG is connected, H is a stable graph of genus g − |SH | with n + 2|SH |
legs. Therefore, we can consider the locus MH of curves in Mg−|SH |,n+2|SH | having
H as dual graph. More generally, if H = H1 � · · · � Hc with Hi connected, then
one easily checks that Hi is a stable graph for every i, and we set

MH = MH1
× · · · ×MHc

.

Of course, if H = G− Eo, we recover MH =
∏

v∈V Mg(v),deg(v), which we encoun-
tered earlier in (2). In fact, generalizing (2), for every H ∈ HG, we have a natural
surjection

πH : MH −→ MG,

which we call, again, a presentation of MG. The map described in (2) is π = πG−Eo ,
and it factors for any H ∈ HG as

π :
∏
v∈V

Mg(v),deg(v) −→ MH
πH−→ MG.

The set {πH ∀H ∈ HG}, of all presentations of MG, is in a natural bijection
with HG and hence has the lattice structure πH ≥ πH′ if H ≥ H ′.

If πH ≥ πH′ , we have a map π
H′,H : MH′ → MH and a factorization

πH′ : MH′
π
H′,H−→ MH

πH−→ MG.

In conclusion, the recursive structure of the stratum MG is described by the lattice
HG.

Example 2.2.4. In the next picture we have a stable graph G and the lattice HG

which, as we said, can be viewed as representing the recursive structure of MG. We
denote by H∗ the graph obtained from G by removing the edges with labels in ∗.

G = ◦

p3 q3

p1 q1

p2 q2
◦ •

H3

G

��	
		

		
		

H1 ��











H2
��•

H1,3

���
��

��
�

H1,2 ��

•
���

��
��

�

����
��
�� •

H2,3������
��
��

• • •

•��
��������

H1,2,3

������ ��
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2.3. The stratification of Mg,n. We now go back toMg,n and recall that we have

Mg,n =
⊔

G∈Gg,n
MG. This decomposition has some properties reflecting how curves

degenerate. Indeed, consider a family of curves in a stratum MG degenerating to a
curve X0 in a different stratum MG0

so that G0 is the dual graph of X0. How are
G and G0 related? Of course, every node of the curves in MG must specialize to a
node of X0, i.e., an edge of G0. And the remaining nodes of X0 (those that are not
specializations of nodes of the curves in MG) form a well defined set of edges S0 of
G0. Then the graph G is obtained from G0 by contracting to a vertex every edge
of S0. And the converse turns out to be true: if G is obtained from G0 contracting
a set of edges, we have that MG0

lies in the closure of MG.
We denote (weighted) edge-contractions as follows

γ : G0 −→ G = G0/S0,

where S0 ⊂ E(G0). Observe that the genus of a vertex of G0/S0 is defined as the
genus of its preimage in G0, so that edge-contractions preserve genus and stability.

The simplest example is the contraction of every edge of G0. Then G is the
graph with one vertex of genus g, no edges, and n legs, so that G is the dual graph
of a smooth curve of genus g, i.e., MG = Mg,n. Here the contraction G0 → G
corresponds to a family of smooth curves specializing to a curve in MG0

.
Now, we define a partial order on Gg,n by setting G0 ≥ G if there exists a

contraction G0 → G = G0/S0. The poset Gg,n is graded, and the rank function
ρ : Gg,n → Z≥0 defined by ρ(G) = |E(G)| is such that ρ(G) = codimMG.

Example 2.3.1. The picture of the poset G2,0 is in Figure 5, with the horizontal
levels marking the ranks and the minimum at the top.

So, the top vertex corresponds to M2 ⊂ M2. The two stata below correspond to
the two codimension-1 strata of M2, parametrizing curves with exactly one node.
The two bottom strata correspond to two points whose recursive presentation is in
Figure 4.

The graded poset structure on Gg,n corresponds to the poset structure on the
strata {MG ∀G ∈ Gg,n} of (1) induced by inclusion of closures. More precisely, we
have the following theorem.

• 2

•��
��

��
���

��
��
�

•
1 1

• • • •
1

•
1

◦ •

		 

��������� •

		

◦

◦ ◦ •

		 

��������� •

		

◦ ◦

Figure 5. The poset G2,0, or the dual graph of M2
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Theorem 2.3.2. The decomposition (1) is a graded stratification of Mg,n by the
poset Gg,n, i.e., the following properties hold.

(1) MG ∩MG′ �= ∅ ⇔ MG ⊂ MG′ ⇔ G ≥ G′.
(2) MG is irreducible and locally closed.
(3) The map Gg,n → Z sending G to codimMG is a rank function.

Example 2.3.3. We now describe G0,5. We say that two graphs have the same
type if they differ only by the labeling on the legs. Then in G0,5 we have three types
of graphs: the graph with no edges and the two types below.

◦
l2����

l1
◦

l5����

l3

l4

◦
l2����

l1
◦
l3

◦
l5
����

l4

For the type on the left, we have
(
5
2

)
= 10 different graphs. For the type on the

right, we have 15 different graphs (the number of partitions of shape l1l2|l3|l4l5, up
to symmetry), corresponding to the top vertices of Figure 6.

•

�� ���
��

��
��

��
�� •

����
��
��
��

��
���

���
���

�� •

����
��
��
��
��
�

����
���

���
���

���
� •

����
��
��
��

����
���

���
���

���
���

� •

����
��
��
��
��
�

����
����

����
����

����
�� •

����
��
��
��
��

�����
����

����
����

����
��� •

�����
���

���
���

�

�����
����

����
����

����
����

� •

����
��
��
��
��
�

�����
����

����
����

����
����

��� •

�����
���

���
���

���

������
�����

�����
�����

�����
����� •

�����
���

���
���

�

��	
		

		
		

		
		 •

�����
���

���
���

���
���

��
���

���
���

�� •

�����
���

���
���

���

����
��
��
��
� •

�����
����

����
����

����
�

��	
		

		
		

		
		 •

�����
���

���
���

���
���

��
��

��
��

�� •

�����
���

���
���

���

����
��
��
��
�

• • • • • • • • • •

•��

23������� ��

14











��

24
�������������������

15
��������������������������

25
                               ��

13
��������

34
���������������

35
����������������������

45
�����������������������������

12
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Figure 6. The poset G0,5 of strata of M0,5

2.4. Skeleta and tropical curves. Now we want to view Gg,n as a category whose
objects are stable graphs and whose arrows are generated by isomorphisms and
edge-contractions. We shall construct a cone complex out of the category Gg,n, as
follows. To a graph G we associate a cone

σG = R
E(G)
≥0 .

To an arrow (a composition of contractions and isomorphisms)

γ : G0 −→ G

we associate an injective morphism of cones

ιγ : σG ↪→ σG0
.

If γ is the contraction of S0 ⊂ E(G0), then ιγ identifies σG with the face of σG0
,

where the coordinates of the edges in S0 are zero. If γ is an isomorphism, then ιγ
corresponds to the bijection E(G) → E(G0) induced by γ. We can thus construct
the colimit over Gg,n and define it to be the skeleton of Mg,n

(5) Σ(Mg,n) := lim−→(σG, ιγ).

By definition, the above space is a topological space and a so-called generalized
cone complex. Let us give it an explicit geometric interpretation, so let Γ be a



10 LUCIA CAPORASO

point in it. Then there exists a stable graph G such that Γ lies in the interior of
σG. Hence Γ can be identified with G, and with a set of positive real numbers
{xe, xe ∈ R>0, e ∈ E(G)}, we think of xe as the length of the edge e. Then Γ is
a so-called stable tropical curve, i.e., a stable graph whose edges have a length (a
positive real number). By construction, two different points in Σ(Mg,n) correspond
to nonisomorphic curves, and to every stable tropical curve there corresponds a
point in Σ(Mg,n).

Tropical curves have been studied as objects of independent interest, and, as
such, they have a moduli space, M trop

g,n , parametrizing isomorphism classes of stable
tropical curves of genus g with n marked points, where a marked point of a tropical
curve is a leg of the graph. As in the algebraic case, the n legs are ordered and
must be fixed by any automorphism. By its very construction, M trop

g,n is a topological
space and has the structure of a generalized cone complex; see [22], [8].

Our previous analysis on the geometric interpretation of Σ(Mg,n) enables us to

conclude, at least set-theoretically, that the skeleton of Mg,n can be identified with
the moduli space of tropical curves of genus g with n legs:

Σ(Mg,n) ∼= M trop
g,n .

It turns out that the above is not only a set-theoretic bijection, but it is an isomor-
phism of generalized cone complexes.

It is clear that the spaces above are not compact, but it is not hard to compactify
them. We do that by extending our cones σG to σG = (R≥0∪{∞})E endowed with
the compact topology. This implies that we allow our tropical curves to have
edges of infinite lengths. We thus obtain the compactified version of the above
isomorphism (see [1]),

(6) Σ(Mg,n) ∼= M
trop

g,n .

2.5. Curves over valuation fields and analytifications. The isomorphism (6)
is actually the reflection of a deep connection between algebraic and tropical curves.
In loose words, a tropical curve encodes the local data of a family of smooth alge-
braic curves specializing to a singular one.

In algebraic geometry, local problems are often studied via local rings and valu-
ation fields, whose associated algebraic schemes are the analogues of small balls in
complex geometry. Let us set up the notation. We shall denote by K a valuation
field and by R ⊂ K its valuation ring. The valuation of K is a homomorphism,
v : K∗ → R, from the multiplicative group K∗ to the additive group R. We have
R = v−1(R≥0) and M = v−1(0), so that M is the unique maximal ideal of R. We
shall always assume that the residue field k = R/M is algebraically closed. Now,
the scheme SpecR associated to R has a unique closed point, corresponding to the
ideal M , called special and denoted by s. The scheme SpecK is open and dense
in SpecR and is referred to as the generic point. It is useful to think of SpecK
as having a limiting point built in itself: the special point s of SpecR. In anal-
ogy with complex geometry, SpecR corresponds to a small ball about the origin, s
corresponds to the origin, and SpecK corresponds to the complement of the origin.

For the rest of this section we assume that K is also complete with respect to
a non-Archimedean valuation. Without going into technical details, let us mention
that this has the effect of making the analysis as local as possible, enabling us to
better handle limits.
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Let XK be a smooth (connected, projective) curve over K. As SpecK has a
limiting point, one can ask whether XK has a limiting curve, i.e., if it can be
completed over SpecR by adding a curve over s. By the moduli properties of Mg,
we know that to XK there is associated a canonical moduli map μK : SpecK → Mg

mapping SpecK to the isomorphism class of XK . On the other hand we have a
compactification Mg of Mg; therefore, μK extends to a morphism

μR : SpecR −→ Mg.

The image μR(s) of the special point is thus a stable curve X over the residue
field of R (which we assume is algebraically closed). In this way we associate to
XK the stable curve X. Now, Mg is not a fine moduli space, hence there does
not necessarily exist a family of curves over SpecR such that the fiber over s is X
and the fiber over SpecK is XK . But, by the Stable Reduction Theorem, such a
family exists for the base change XK′ of XK to some finite extension K ⊂ K ′ of
non-Archimedean fields. In other words, denoting by R′ the valuation ring of K ′,
there does exist a family over SpecR′ having XK′ as a generic fiber and X as a
special fiber.

On the one hand, of course, this involves the choice of K ′ and will therefore give
different families if we vary that. But we can still ask what data do not depend on
the choice of K ′. We have already said that the curve X will not change, hence its
dual graph will not change either. But also, the local geometry of the family at the
nodes of X will be independent on the choice of K ′, and this is precisely what will
enable us to define a tropical curve, denoted by ΓXK

, associated to XK .
Our ΓXK

will have as underlying graph the dual graph GX of X. To define the
length of its edges, pick one of them e ∈ E(GX). Then e corresponds to a node of
X, which we shall denote by e again. Consider a field extension K ⊂ K ′ as above,
so that there is family

X ′ −→ SpecR′

whose special fiber is X and whose fiber over SpecK ′ is the base change of XK ,
i.e., X ′

K′ = XK ×SpecK SpecK ′. Then, locally at the node e, the equation of X ′ is
xy = fe for some fe in the maximal ideal of R′. We set the length of e to be equal
to v′(fe) where v′ is the valuation of K ′. We have thus defined the tropical curve
ΓXK

, and this definition turns out to be independent of the choice of K ′ or of the
local equation of X at e; see [29].

We shall say that the tropical curve ΓXK
is the skeleton, or the tropicalization,

of XK .
Now, the construction we just described fits into a more general picture involving

the theory of analytifications of algebraic schemes (developed by V. Berkovich)
and its connection to tropical geometry. By the theory developed in [6], to every
algebraic scheme T there corresponds an analytic space, the analytification T an,
and this correspondence is functorial and profound.

We then introduce M
an

g,n, the analytification of Mg,n. A point in M
an

g,n corre-
sponds, up to base change, to a stable curve over an algebraically closed field K
complete with respect to a non-Archimedean valuation.

The analytic space M
an

g,n has quite a complicated structure, but, by general
results, it retracts onto a simpler subspace. Indeed, to every space T with a
boundary and a toroidal structure, one associates the (extended) Berkovich skel-
eton Σ(T ) ⊂ T an which is a generalized, extended cone complex onto which the
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analytification T an retracts; see [27]. Now, Mg,n does not have a proper toroidal

structure associated to its boundary Mg,n � Mg,n, but the stack associated to it,

written Mg,n, does. This enables us to construct the Berkovich skeleton of Mg,n.

Now, recall definition (5) and its compactified version Σ(Mg,n). How does it com-

pare with the Berkovich skeleton of the stack Mg,n? It turns out that they are
naturally isomorphic, and hence we shall identify them. This allows us to apply
Berkovich’s theory to Σ(Mg,n), so that we have a retraction ρ,

Σ(Mg,n) ⊂ M
an

g,n
ρ−→ Σ(Mg,n).

To give a geometric interpretation of the map ρ, we recall the isomorphism

Σ(Mg,n) ∼= M
trop

g,n introduced in (6). Composing it with ρ we have the following.

Theorem 2.5.1. The following tropicalization map

trop : M
an

g,n
ρ−→ Σ(Mg,n)

∼=−→ M
trop

g,n

is a continuous, surjective map that sends the class of a stable curve XK over the
(algebraically closed, complete, non-Archimedean) field K to its skeleton ΓXK

.

See [1]. Concluding in loose words: the skeleton of Mg,n is the moduli space of
skeleta of stable curves.

The existence of analogous “correspondence” results in other situations has been
investigated, and is under investigation, as of this writing. An important case in
which it has been proved to hold is the compactification of the space of admissible
covers, constructed in [20]. For details, we refer to the original paper [13], where
the authors also relate their results to the ones for moduli space of stable curves
described above, proving that the various correspondence results are consistent with
one another.

3. Compactifying Jacobians and Néron models

3.1. Moduli of line bundles on curves. Line bundles on curves and, more gen-
erally, on abstract algebraic varieties capture the information about the projective
models of the varieties, i.e., their mappings in projective spaces. Here we focus on
line bundles on curves, and on their moduli spaces. Motivated by our earlier dis-
cussion, we restrict to stable curves although some of what we are going to explain
holds in greater generality. For example, if we release the condition of stability by
assuming our curves have at most nodes as singularities, all the results described
before section 3.4 continue to hold.

The set of isomorphism classes of line bundles on a curve X forms a fine moduli
space, denoted by Pic(X) and called the Picard scheme of X; see [17], [23]. The
isomorphism class of a line bundle corresponds to the linear equivalence class of a
Cartier divisor. If the line bundle L corresponds to the divisor

∑m
i=1 nipi, where pi

are smooth points of X and ni ∈ Z, we write L = O(
∑m

i=1 nipi). Also, Pic(X) is a
group under the tensor product of line bundles, and it has infinitely many connected,
irreducible components. The component containing the trivial line bundle (or the
zero divisor) is called the Jacobian of X and is denoted by JX . More precisely, JX
is the moduli space for line bundles of multidegree (0, 0, . . . , 0) (i.e., of degree 0 on
every irreducible component ofX) so that, with the notation of the introduction, the
set C consists of line bundles of multidegree (0, 0, . . . , 0) on X, and the equivalence
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is an isomorphism over X. A family over a base B, written

L −→ X ×B
f−→ B,

is given by a line bundle L on X × B whose restriction to every fiber of f has
multidegree (0, 0, . . . , 0).

If X is nonsingular, then the Jacobian JX is projective and is thus an abelian
variety, i.e., a projective algebraic group. Moreover, if X has positive genus, JX
encodes important information about X itself. For example, fixing a point x0 in X
we can map every x ∈ X to the line bundle O(x− x0), and this gives an injective
morphism, X ↪→ JX . Our curve X can thus be realized as a subvariety of its
Jacobian, and in fact it generates the whole of JX as a group.

On the other hand, if X is allowed to have nodes, JX easily fails to be projective;
let us see how. Consider GX = (V,E), the dual graph of X. As we saw in (3),
the desingularization Xν of X is the disjoint union of the desingularizations of its
components, and we have a birational morphism

ν : Xν =
⊔
v∈V

Cv −→ X.

Then we have an exact sequence of algebraic groups,

(7) 0 −→ (k∗)b1(GX) −→ JX
ν∗
−→ JXν =

∏
v∈V

JCv
−→ 0,

where ν∗ is simply the pullback of line bundles via the map ν (and b1(GX) the
first Betti number). In this sequence, the product on the right is a product of
Jacobians of smooth curves, which are all abelian varieties, hence the product is
also an abelian variety. The kernel of ν∗ accounts for the gluing data needed to
specify a line bundle on X from a line bundle on Xν . For instance, suppose X
is irreducible with one node N , so that b1(GX) = 1 and the kernel of ν∗ is k∗.
A line bundle L on Xν determines a line bundle on X once the datum of how to
identify the fibers of L over the two branch points of N is given. This datum is an
isomorphism between two one-dimensional k-vector spaces, hence it corresponds to
an element of k∗.

By the exact sequence, JX is complete if and only if b1(GX) = 0 (i.e., the dual
graph of X, regardless of its weights, is a tree); if that is the case, X is said to be
of compact type. Now, for any g ≥ 1 there exist plenty of curves that are not of
compact type for example irreducible singular curves.

We are thus in the situation described in the introduction, and we want to
construct compactifications for JX . This problem is classical and presents various
aspects. As we said earlier, the noncompleteness of JX reflects the fact that families
of line bundles on X degenerate, i.e., do not admit a line bundle on X as a limit.
On the other hand, if X is viewed, as it often happens, as the limit of a family of
smooth curves, then families of line bundles on these smooth curves also degenerate.
We want a good compactification of JX to account for both types of degenerations.

3.2. Line bundles on families of curves. As we said, we want to view our curve
X as a limit of smooth curves, and we do that in the following way. We denote
(here and in the rest of this paper) by

(8) X ↪→ X−→ SpecR
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a family of curves over the spectrum of a discrete valuation ring R with X as a
special fiber and a smooth generic fiber. A discrete valuation ring can be thought
of as a one-dimensional valuation ring. So, in (8) we assume the generic fiber XK

to be a nonsingular curve over the quotient field K of R. We shall always make the
harmless (for us) assumption that XK has a K-rational point.

The Jacobian JXK
of XK is a smooth projective variety over K and the moduli

space of line bundles of degree 0 on XK . How are JXK
and JX related? The answer

is, roughly speaking, that JX is a (noncomplete) limit of JXK
over SpecR. Indeed,

together with the existence of the Jacobian for a fixed curve, the general theory
gives the existence of a relative Jacobian,

(9) JX/R −→ SpecR,

for any family X → SpecR as above. The morphism (9) has JXK
as fiber over

SpecK and JX as special fiber, and it is thus a so-called model of JXK
over R. It

is smooth and separated, but not projective in general.
Now, as we said, a natural requirement for a good compactification of JX is to

control not only degenerations of line bundles on X but also degenerations of line
bundles on XK as XK degenerates to X. Therefore, we want it to appear as a
(complete) limit of JXK

over SpecR, which is why we are now looking at models
of JXK

over R.
Of course, we also want a good compactification of JX to have a moduli descrip-

tion extending that of JX . From this perspective there is a fundamental model of
JXK

over R to consider, which is the relative degree 0 Picard scheme,

(10) Pic0X/R −→ SpecR.

The generic (resp., special) fiber of the above morphism is the moduli space of line
bundles of degree 0 on XK (resp., on X). The special fiber, written Pic0(X), is
quite big if X is not irreducible. Indeed we have a decomposition into connected
components, Pic0(X) =

⊔
|d|=0 Pic

d(X), where d ∈ Z
V and Picd(X) is the locus

parametrizing line bundles multidegree d. Notice that JX = Pic(0,0,...,0)(X), and

we have (noncanonical) isomorphisms JX ∼= Picd(X); see section 4.1.
These two models of JXK

are related by a natural inclusion JX/R ⊂ Pic0X/R, and
neither of them is complete, unless X is of compact type. But even when X is of
compact type, they present some problems, described in the next example.

Example 3.2.1. Let X → SpecR be a family of curves as above, and assume
that X is nonsingular. Let the special fiber X have the following dual graph

•
p1 q1

•

(such a family surely exists). So, X is of compact type, with one node and two
irreducible components of positive genus, C1 and C2, and it is obtained by gluing
the two marked curves (C1; p1) and (C2; q1):

X = (C1 � C2)/p1 = q1.

We pick a line bundle LK on XK of degree 0; since X is nonsingular, LK admits
an extension to a line bundle L on X . We choose LK so that the restriction of L
to X is the line bundle L = O(p − q), where p ∈ C1 and q ∈ C2 are two smooth
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points of X. Notice that L has degree 0 and multidegree (1,−1). The moduli map
associated to L

μL : SpecR → Pic0X/R

maps the special point to the connected component Pic(1,−1)(X) of Pic0(X). There-
fore, although the image of SpecK under μL lies in the Jacobian of XK , the image
of the special point does not lie in JX . Hence, even if JX is complete, the relative
Jacobian fails to parametrize degenerations of line bundles on XK .

Now let us show that the morphism (10) is not separated; i.e., loosely speak-
ing, a line bundle on XK can have more than one limit. To be more precise, let
μLK

: SpecK → JXK
be the moduli map of LK ; it suffices to exhibit an extension

SpecR → Pic0X/R of μLK
different from the map μL defined above. Since X is

nonsingular, C1 is a Cartier divisor of multidegree (−1, 1), and L′ := L(C1) is a
line bundle of degree 0 on the fibers whose restriction to XK coincides with the
restriction of L. But the restriction of L′ to X satisfies

L′
|C1

= O(p− p1), L′
|C2

= O(−q + q1).

Hence the restriction of L′ to X has multidegree (0, 0). Therefore μL′ maps the
special point of SpecR to JX , and it is obviously different from μL.

The problem described in this example is the existence and uniqueness of an
extension for a map of the form μLK

: SpecK → JXK
, where LK is a degree 0

line bundle on XK . For the relative Jacobian the existence of the extension can
fail. On the other hand, for the relative Picard scheme the existence holds if X is
nonsingular but the uniqueness can fail.

3.3. The Néron model of the Jacobian. We shall now describe a third model
for JXK

for which the problems illustrated in the previous example do not occur.
The issue, as we saw, was the existence and uniqueness of an extension for maps
of the form μLK

. We now approach it using Néron models, and their defining
mapping property. The existence of Néron models holds in more general situations
than ours; see [24]. For us the following special case is enough.

Theorem 3.3.1. Let K be a discrete valuation field. Let XK be a smooth curve
over K, and let JXK

be its Jacobian. Then there exists a smooth and separated
model of JXK

, the Néron model

N(JXK
) −→ SpecR,

satisfying the following mapping property. For any smooth scheme YR → SpecR
and any morphism φK : YK → JXK

(with YK the fiber of YR over K) there exists
a unique extension of φK to a morphism φR : YR → N(JXK

).

We just mention that the Néron model is a group scheme, and it extends the
group structure of its generic fiber JXK

. Moreover, the Néron model is natural be-
cause its mapping property determines it uniquely, but it is known not to commute
with ramified base change.

Now, in the setup of Example 3.2.1, we can apply the mapping property of
Theorem 3.3.1 to Y = SpecR and φK = μLK

, obtaining that the map μLK
extends

uniquely to a map μR from SpecR to N(JXK
).

In general, to give a geometric interpretation to the extension μR and to the
Néron model itself, we assume that the curve XK in the theorem admits a model
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X → SpecR with a stable curve X as special fiber and nonsingular total space X .
We denote by NX the special fiber of the Néron model N(JXK

) → SpecR. We
shall see that under these assumptions NX is a finite disjoint union of components
isomorphic to the Jacobian of X, and such union is indexed by a combinatorial
invariant of X. In particular, NX is independent of the choice of XK .

We need some combinatorial preliminaries. Fix an orientation (whose choice is
irrelevant) on the dual graph G = GX . Let C0(G,Z) and C1(G,Z) be the usual
groups of i-chains, so that C0(G,Z) is the free abelian group on the vertex set V
and C1(G,Z) is the free abelian group on the edge set E. Consider the boundary
homomorphism ∂ : C1(G,Z) → C0(G,Z), mapping an edge e oriented from u to
v to u − v. Let δ : C0(G,Z) → C1(G,Z) be the coboundary, mapping a vertex v
to

∑
e+v −

∑
e−v where the first sum is over all edges originating from v and the

second is over all edges ending at v. Now we can introduce the finite group

ΦG :=
∂δC0(G,Z)

∂C1(GZ)
.

This group is well known in graph theory. By the Kirchhoff–Trent (or Kirchhoff
matrix) theorem, its cardinality is equal to the number of spanning trees of G (i.e.,
the connected subgraphs of G having the same vertices as G and the first Betti
number equal to 0). We have (see [26], [25], [4]) the following.

Proposition 3.3.2. Let X → SpecR have a stable special fiber X and a nonsin-
gular total space X . Then

(11) NX
∼=

⊔
i∈ΦGX

(JX)i.

Using compactifications of Néron models and Jacobians, we shall give, in (22),
a concrete realization of the above isomorphism.

Example 3.3.3. By what we said before the statement, the number of irreducible
components of NX equals the number of spanning trees of GX . In particular, if X
is of compact type or is irreducible, we have NX

∼= JX .
By contrast, if G is a graph consisting of two vertices joined by  ≥ 2 edges, we

have  spanning trees, and one can prove that ΦG
∼= Z/Z.

It is not hard to find other graphs G with ΦG
∼= Z/Z, for example, a cycle with

 vertices and edges.

There is a clear relation between the Néron model and the relative Picard scheme.
Indeed N(JXK

) → SpecR is the maximal separated quotient of the Picard scheme
Pic0X/R → SpecR. Moreover, there is an embedding of the relative Jacobian in the

Néron model; see [26] and [7].

3.4. Compactified Jacobians and Néron models. A compactified Jacobian for
a (stable) curve X is a projective variety PX containing JX not necessarily as a
dense subset (which is why we use the notation PX rather than JX) and satisfying
the following requirement. For any family X → SpecR as in (8), there is a projective
morphism

(12) PR −→ SpecR

having JXK
as generic fiber and PX as special fiber, and such that PR has a moduli

interpretation extending that of JX/R.



COMPACTIFYING MODULI SPACES 17

Going back to the issues illustrated in Example 3.2.1, we observe that since the
morphism (12) is projective, any map μK : SpecK → JXK

(associated to a line
bundle LK on XK) admits a unique extension to a map μR : SpecR → PR.

From now on we apply the notation introduced in Proposition 3.3.2 and, for a
connected nodal curve X, we denote by NX the special fiber of the Néron model
N(JXK

) → SpecR of the Jacobian associated to a family X → SpecR, with X
nonsingular.

From Proposition 3.3.2 we see that NX is not complete unless JX is complete.
We thus introduce a terminology to distinguish compactified Jacobians which also
compactify the Néron model. We say that a compactified Jacobian PX is of Néron
type (or a Néron compactified Jacobian) if it contains NX as a dense open subset.

Compactified Jacobians of Néron type do exist, but we postpone to the next
section the discussion on their existence. Assuming it, we describe how these Néron
compactified Jacobians have a recursive structure in terms of Néron models.

We introduced in (4) the latticeHG associated to the graph G. We now introduce
a subposet of HG,

H1
G := {H ∈ HG : H is connected}.

The maximum of H1
G is G, and the minimal elements are the graphs H such that

[H] is a spanning tree. Moreover, just as HG, the poset H1
G is graded by the rank

function H �→ g(H).
If G is the dual graph of the curve X, then for every H ∈ H1

G we have a set
S = SH of nodes of X (and edges of G) such that H = G− So

H . We denote by Xν
S

the desingularization of X at S, so that Xν
S is a connected nodal curve of genus

g(G− S) whose dual graph is [H].
With our notation, NXν

S
is the special fiber of the Néron model of the Jacobian

of a smooth curve specializing to Xν
S .

The following statement (from [10]) describes the compactification of NX pro-
vided by a Néron compactified Jacobian in terms of the Néron models of all the
connected partial normalizations of X. This is another instance of a widespread
recursive phenomenon for compactified moduli spaces. Namely, to compactify a
space (e.g., NX), one adds at the boundary the analogous spaces associated to
simpler objects (e.g., NX′ with X ′ a connected partial normalization of X).

Theorem 3.4.1. Let X be a stable curve, and let G be its dual graph. Then there
exists a Néron compactified Jacobian PX such that

(13) PX =
⊔

H∈H1
G

NH

with NH
∼= NXν

SH
for every H ∈ H1

G. Moreover, (13) is a graded stratification, i.e.,

the following hold.

(1) NH ∩NH′ �= ∅ ⇔ NH′ ⊂ NH ⇔ H ′ ≤ H.
(2) NH is locally closed of pure dimension g(H).
(3) The map H1

G → Z mapping H to dimNH is a rank on H1
G.

Notice the similarities between this theorem and Theorem 2.3.2.

Remark 3.4.2. The strata of minimal dimension in (13) are Néron models of curves
whose dual graph is a spanning tree of GX , hence they are irreducible and projec-
tive. By Proposition 3.3.2, the number of such strata is equal to the number of
irreducible components of PX .
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The strata of (13) are, in general, not connected. Hence it is quite natural to
ask whether the stratification can be refined so as to have connected strata. We
will answer this question in the affirmative after Theorem 4.2.3.

4. Compactifying Jacobians of any degree

4.1. Universal Jacobians of any degree. We now concentrate on compactified
Jacobians and, before continuing, we pause for a moment to recall that the Jacobian
is the moduli space for line bundles of multidegree (0, . . . , 0) on a curve X, and we
ask, why not extend our consideration to all degrees and multidegrees?

We have mentioned that for any d ∈ ZV , where GX = (V,E) as usual, there

are isomorphisms Picd(X) ∼= JX . How are they defined? For every vertex v, pick
a smooth point pv of X lying on the component corresponding to v. Then the
following is an isomorphism:

JX −→ Picd(X), L �→ L(
∑
v∈V

dvpv),

which is obviously not canonical, as it depends on the choice of the points pv. For
a smooth curve XK over a discrete valuation field K, we have similar isomorphisms
Picd(XK) ∼= JXK

for every d ∈ Z.

We can define compactified degree d Jacobians, written P
d

X , as we did in sec-

tion 3.4 for d = 0. So, for any family of curves X → SpecR as in (8), our P
d

X is
the special fiber of a projective morphism

(14) P
d

R −→ SpecR

having Picd(XK) as generic fiber.
In generalizing our analysis to all degrees, we lose the group structure, but we

gain a better understanding on the geometric complexity of the situation.
We shall approach the problem of compactifying the Jacobians of any degree from

the point of view of the moduli theory of stable curves, described earlier. First of
all, over the moduli space of stable curves, we have a universal curve, denoted by
Xg −→ Mg, whose fiber over an automorphism-free curve X is the curve itself.
The requirement that X be free from automorphisms is a bit annoying, but it
is needed if, as is done in this paper, we work with varieties and schemes rather
than stacks. On the other hand, if g ≥ 3, the curves in Mg admitting nontrivial
automorphisms form a proper closed subset, i.e., the general stable curve has no
nontrivial automorphisms. To simplify the forthcoming description, from now on
we assume that curve X is general in this sense.

Now, as we did for curves over valuation rings, we can consider the relative
degree d Jacobian associated to the universal curve over Mg. This is often called
the universal degree d Jacobian, and it is given by a morphism P d

g → Mg, whose

fiber over the point parametrizing the curve X is Picd(X). We point out that, as
d varies, the varieties P d

g are not always isomorphic.

Just as Mg is not complete, P d
g is not complete, and we want to construct a

compactification P
d

g of P d
g parametrizing compactified degree d Jacobians for all

stable curves of genus g. We refer to such a space as a compactified universal
degree d Jacobian.
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The spaces P
d

g can be constructed for all d ∈ Z by imitating the Geometric

Invariant Theory (GIT) construction of Mg. Indeed, Mg was constructed in [16] as
the GIT quotient of the Hilbert scheme of n-canonically embedded curves (n � 0),
i.e., curves in projective space embedded by the nth power of their dualizing line
bundle. In view of the fact that the Hilbert scheme of n-canonically embedded
curves has such a remarkable GIT quotient, one is led to ask about the Hilbert
scheme of all curves of degree d � 0 and genus g in a fixed projective space. Can
we construct its GIT quotient? And, if so, is this quotient a good compactification
of the universal degree d Jacobian?

The answer to these questions is positive, and we have, for every d ∈ Z, a
projective morphism

ψd : P
d

g −→ Mg

whose fiber over the curve X is a compactified degree d Jacobian, written P
d

X ; see

[9]. Now, P
d

X is a connected, projective variety, all of whose irreducible components
have dimension g. It is singular in general, and its smooth locus, written P d

X ,
parametrizes line bundles on X of suitable multidegree. More exactly, we have an

identification between the smooth locus of P
d

X and a (disjoint) union of components
isomorphic to JX ,

(15) P d
X =

⊔
d∈Δd

Picd(X),

where Δd is a well-defined finite set of multidegrees of total degree d. From Propo-
sition 3.3.2 and the discussion in the earlier sections, we expect

(16) |Δd| ≤ |ΦGX
|,

with equality for Néron type Jacobians. This expectation does hold, and we shall
discuss some examples later,

The points of the boundary, P
d

X �P d
X , parametrize equivalence classes of certain

line bundles on nodal curves having X as stable model (i.e., admitting a genus-
preserving birational morphism onto X). As we shall see in the next sections, these
line bundles are determined, recursively, by suitable line bundles on the partial
normalizations of the given curve X.

Going back to the construction of P
d

g as a GIT quotient, there is a main difference

with the GIT quotient defining Mg. Namely, in the latter case the quotient is a

so-called geometric quotient, which implies that every point in Mg corresponds to

exactly one orbit in the Hilbert scheme. For P
d

g the quotient is geometric only

for certain values of d. When P
d

g is not a geometric quotient, some of its points
parametrize more than one orbit and its moduli description becomes more complex.

The degrees d for which P
d

g is a geometric quotient are precisely those satisfying
the condition (d − g + 1, 2g − 2) = 1. In these cases, and only in these cases, all
fibers of ψd are Néron compactified Jacobians.

Now, the above numerical condition holds if d = g, but it fails if d = g − 1. We
shall concentrate on these two cases, which are interesting for different reasons, and
give a combinatorial analysis of the compactified Jacobian, highlighting its recursive
structure.
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4.2. Compactified Jacobians in degree g. As we said, the compactified Jaco-
bians P

g

X are of Néron type for every stable curve X. We shall now describe them
closely by adapting to the present case a method introduced in [5] to handle the
case d = g − 1.

Let G = (V,E) be the dual graph of X. We know, by the general results
mentioned in the previous section, that our compactification has finitely many
irreducible components all of dimension g. Moreover, by (15), each component
contains a dense subset parametrizing line bundles on X of a fixed multidegree
d ∈ Z

V such that |d| = g; we wrote Δg for the set of these special multidegrees.

As P
g

X is of Néron type, we have |Δg| = |ΦG|, and the question is how to interpret
the multidegrees lying in Δg in a geometrically meaningful way.

At a very basic level, this amounts to distributing the integer g among the
vertices of G. We start from the identity

g =
∑
v∈V

(
g(v)− 1

)
+|E|+ 1.

The first term on the right, the summation, contains the topological data of each
component (or vertex) of X (or G), while the second part, |E| + 1, is not related
to the vertices. It is thus natural to try and distribute it among the vertices in a
combinatorially meaningful way. A natural approach in the graph-theoretic setting
is to consider an orientation O on G and, for any vertex v, denote by tOv the number

of edges having v as target. Now we define a multidegree dO associated to O:

(17) dOv := (g(v)− 1) + tOv ∀v ∈ V.

By definition of orientation, every edge has exactly one target, and hence
∑

v∈V tOv =

|E|, so that |dO| = g−1, which is off by 1 from what we want (i.e., g). A way to fix
this problem is to modify the orientation O by allowing one edge to be bi-oriented
(i.e., having both ends as targets). So, we define a 1-orientation on a graph G as
the datum of a bi-oriented edge e and of an orientation on G − e; see Figure 7
for some examples. Now, if O is any 1-orientation, we have

∑
v∈V tOv = |E| + 1.

Therefore, if we define the multidegree of O as in (17), we have |dO| = g for any
1-orientation O.

In this way we have selected a special set of multidegrees of total degree g, and
this set is finite as there are only finitely many 1-orientations on a graph. Now, it
may happen that two 1-orientations, O and O′, have the same multidegree. If that
is the case, we say that O and O′ are equivalent.

We now ask whether we got the correct set of multidegrees Δg. It is immediately
clear that the answer is negative, as this set is still too big. Indeed, from our earlier
discussion we expect |Δg| = |ΦG|, but the set of equivalence classes of 1-orientations
on G is bigger than |ΦG|, as Example 4.2.1 shows.

Now, let us observe that the definition of a 1-orientation depends on the choice
of the bi-oriented edge, which is quite arbitrary from our point of view. To elim-
inate this problem, we ask whether this dependence disappears when passing to
equivalence classes of 1-orientations. The answer is no in general, but it is yes for
a special type of 1-orientations, called rooted orientations.

A 1-orientation O is rooted if, for every edge e, the class of O contains a repre-
sentative having e as bi-oriented edge.

A more geometric definition is the following. A 1-orientation with bi-oriented
edge e is rooted if for every vertex v there exists a directed path from e to v. In
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Figure 7. The eight 1-orientations on a 4-cycle

the next example the orientations from 1 to 4 are rooted, the ones from 5 to 8 are
not.

Example 4.2.1. In Figure 7 we have all the 1-orientations on a 4-cycle with the
same bi-oriented edge. One checks easily that they are not equivalent to one an-
other. Since |ΦG| = 4, we see that the number of multidegrees corresponding to
1-orientations is greater than |ΦG|.

We denote by O
1
(G) the set of equivalence classes of rooted orientations on G.

We have two facts; see [14], [11].

Remark 4.2.2.

(a) O
1
(G) = Δg.

(b) O
1
(G) is not empty if and only if G is connected.

We can go back to our main problem, the description of P
g

X . Recall that we
denote by H1

G the poset of connected spanning subgraphs of G having legs corre-
sponding to the removed edges. In our case, since G has no legs, an element in HG

is a graph H of the form G − So having 2|S| legs. We denoted by [H] the graph
obtained by removing all legs from H, hence [H] = G− S.

We have defined neither orientations nor rooted orientations on a graph with
legs. We do it now in the simplest possible way, namely by simply disregarding the
legs and using exactly the same terminology. In particular, for any H ∈ H1

G, we
have

O
1
(H) = O

1
([H]).

Now consider the set of all rooted orientations on all (connected) spanning sub-
graphs of G:

(18) OP1

G :=
⊔

H∈H1
G

O
1
(H).

The above set admits a natural partial order. To define it recall that for any
H ∈ H1

G, we denote by SH ⊂ E the set of edges such that H = G− So
H . We write

OH for an orientation on H. Then for two classes of rooted orientations, OH1
and

OH2
, we set OH1

≤ OH2
if H1 ⊂ H2 and if the restriction of OH2

to H1 is equivalent
to OH1

.
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The forgetful map below is a (surjective) quotient of posets

(19) ϕ : OP1

G −→ H1
G, OH �→ H.

The following result of [14], using the terminology of Theorem 3.4.1, states that

P
g

X admits a recursive graded stratification governed by rooted orientations.

Theorem 4.2.3. Let X be a stable curve of genus g, and let G be its dual graph.
Then P

g

X admits the graded stratification

(20) P
g

X =
⊔

OH∈OP1
G

POH

X ,

with a natural isomorphism POH

X
∼= Picd

OH
(Xν

SH
) for every OH ∈ OP1

G.

4.3. Néron compactified Jacobians. Now let us recall that P
g

X is of Néron

type. Hence by Theorem 3.4.1 we have the following stratification of P
g

X and the
associated stratification map σN ,

(21) σN : P
g

X =
⊔

H∈H1
G

NH −→ H1
G

such that σ−1
N (H) = NH . We know that σN is surjective and its fibers are not

always connected.
Similarly, Theorem 4.2.3 gives us another stratification map

σP : P
g

X−→OP1

G,

whose fiber over the class of OH is the stratum POH

X . In this case the stata are
connected, so that (20) is a refinement of (21) with connected strata. Combining
with the map in (19), we have the commutative diagram

P
g

X

σP     

σN !! !!""
"""

"""
""

OP1

G

ϕ
��

H1
G .

In other words, for any connected spanning subgraph H of G, we have

NH =
⊔

OH∈O
1
(H)

POH

X

which, by Theorems 3.4.1 and 4.2.3, implies that we have an isomorphism

(22) NX
∼=

⊔
O∈O

1
(G)

Picd
O

(X).

This is an explicit description of the isomorphism (11), within a specific moduli
problem.

We now show how the stratification of Mg,n of Theorem 2.3.2 fits together with
the stratifications of Theorems 3.4.1 and 4.2.3. We defined above two stratification
maps, σN and σP . We can define the analogous stratification map for Mg, using
Theorem 2.3.2:

σM : Mg −→ Gg

whose fiber over the graph G is the stratum MG.
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Now, consider the union of all posets H1
G for all stable graphs G,

H1
g :=

⊔
G∈Gg

H1
G.

We have an obvious map
γg : H1

g −→ Gg

mapping H1
G to G. Now, H1

g has a natural poset structure which restricts to the

poset structure of H1
G for every G and is compatible with the poset structure of Gg.

More precisely, the map γg is a quotient of posets.
We can argue in a similar way for the posets of rooted orientations up to equiv-

alence. Namely, we define

OP1

g :=
⊔

G∈Gg

OP1

G

with a natural map

ϕg : OP1

g −→ H1
g

mapping an orientation class OH ∈ O
1
(H) ⊂ OP1

G to the graph H on which the
orientation is defined.

It turns out that OP1

g also has a poset structure extending that of the OP1

G and

is compatible with that of H1
g, so that the above map ϕg is a quotient of posets;

see [11].
Now we need a bit of extra care to describe the global picture over Mg. In fact

there are, as we mentioned earlier, technical problems for curves having nontrivial
automorphisms. To avoid dealing with them, we here restrict to the locus in Mg

of curves free from automorphisms, denoted by M̃g; we refer to [11] for the general

case. Recall that if g ≥ 3, then M̃g is open and dense in Mg. We write P̃ g
g for the

restriction of P
g

g over M̃g.
In conclusion, we have the following commutative diagram involving the maps

we described earlier.

(23) P̃ g
g

ψg

��

σP   

σN
!!##

###
###

###
OP1

g

ϕg

��

H1
g

γg

��

M̃g
σM   Gg

4.4. Compactified Jacobians in degree g − 1. The case d = g − 1 has been
the object of much attention because of its connections with the Theta divisor, the
Torelli and the Schottky problems, and the Prym varieties. On the other hand, the

compactified Jacobian P
g−1

X is never of Néron type, and its moduli properties are
not as good.

Let us analyze P
g−1

X by the same pattern used for P
g

X . We need to describe
the special set Δg−1 of multidegrees of total degree g − 1 which correspond to the

irreducible components of P
g−1

X . The basic identity to look at is, again, g − 1 =∑
v∈V

(
h(v)− 1

)
+|E|.
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How can we partition |E| among the components of X? As before, if we consider
an orientation O on G and denote by tOv the number of edges ending at the vertex

v, we have
∑

v∈V tOv = |E|. We define the multidegree dO of O exactly as we did in

(17), by setting dOv = h(v)− 1 + tOv for every v ∈ V . Then, as we already noticed,

we have |dO| = g − 1, which now is what we need.
As for 1-orientations, two orientations with the same multidegree are defined to

be equivalent.
How many equivalence classes of orientations do we have on a graph G? One

easily sees, as is Example 4.4.2, that there are more than |ΦG|, which is against our
expectation (16).

Therefore, to compactify the degree (g − 1) Jacobian, we must select a special
type of orientation, or we must exclude some of them. To explain which orientations
to exclude, we connect to Example 3.2.1 and argue as in the next example.

Example 4.4.1. Consider the two following orientations, O1 and O2, on the same
graph.

O1 = •v1 ��
""
v2
  • O2 = •��v1

## ��
v2
•

Suppose g(v1) = g(v2) = 1. Then dO1 = (0, 3) and dO2 = (3, 0); hence, O1 and O2

are not equivalent.
Now let X be a curve having the above graph as a dual graph, and view it as

the special fiber of a family X → SpecR with X nonsingular, as in Example 3.2.1.
So, X has three nodes and two irreducible components, C1 and C2. Now let L be
a line bundle on X such that its restriction to X has the multidegree

degL|X = (3, 0) = dO2

(it is not hard to prove such an L exists). Now, since X is nonsingular, C1 is a
Cartier divisor on X of multidegree (−3, 3). Hence we can consider the line bundle
L′ := L(C1), whose multidegree on X satisfies

degL′
|X = degL|X + (−3, 3) = (3, 0) + (−3, 3) = (0, 3) = dO1 .

As the restrictions of L and L′ to XK coincide, we conclude that dO1 and dO2 are
the multidegrees of two different limits of the same line bundle.

Now, compactified Jacobians are projective and, hence, separated. Therefore the
moduli map of L and L′ from SpecR to P g−1

R must coincide. In fact, the image of
the special point of SpecR under this moduli map turns out to lie in the boundary

of P
g−1

X and to parametrizes both L|X and L′
|X .

The conclusion we want to draw is that the two multidegrees dO1 and dO2 cannot
lie in Δg−1; hence, we need to exclude the orientations O1 and O2. A close look
shows that the reason why O1 and O2 must be excluded is that they have a vertex
with no incoming edge.

With this example in mind, we define an orientation to be totally cyclic if every
set of vertices Z admits at least one incoming edge, i.e., an edge with target in Z
and source not in Z. In analogy with rooted orientation, we mention that totally
cyclic orientations are characterized by the property that any two vertices in the
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same connected component lie in a directed cycle. The set of equivalence classes of

totally cyclic orientations on G is denoted by O
0
(G).

Example 4.4.2. In Figure 8 we have the four orientations on a 2-cycle. The first
two are totally cyclic and equivalent. The last two are not totally cyclic and not

equivalent. In this case |O0
(G)| < |ΦG| = 2.

• ""
$$ ◦ •�� ��◦ •�� $$ ◦ • ""

��◦

Figure 8. The four orientations on a 2-cycle

Now, as we did for d = g, we want to consider totally cyclic orientations on all
subgraphs of G. For this reason we need to extend our consideration to disconnected
graphs.

Remark 4.4.3. Let H be a (possibly disconnected) graph.

(a) If H is connected, then O
0
(H) = Δg−1, and if |V | ≥ 2, |O0

(H)| < |ΦH |.
(b) O

0
(H) is empty if and only if H contains some bridge (an edge whose

removal disconnects the connected component in which it lies).

Since totally cyclic orientations exist only on bridgeless graphs, we introduce a
new sublattice of HG:

H0
G := {H ∈ HG : H has no bridge}.

The maximum of H0
G is the graph obtained from G by removing all bridges, the

minimum is G− Eo. The poset H0
G is graded by H �→ g(H). We write

OP0

G :=
⊔

H⊂H0
G

O
0
(H)

for the set of all classes of totally cyclic orientations on all spanning subgraphs of G.

We have a partial order on OP0

G exactly as for OP1

G. Now, rephrasing results from

[12], we are ready to exhibit a graded stratification of P
g−1

X governed by totally
cyclic orientations, and we use the same terminology as in Theorem 4.2.3.

Theorem 4.4.4. Let X be a stable curve of genus g, and let G be its dual graph.
Then we have a graded stratification

(24) P
g−1

X =
⊔

OH∈OP0
G

POH

X

and a natural isomorphism for every OH ∈ OP0

G,

(25) POH

X
∼= Picd

OH
(Xν

SH
).

The isomorphism (25) exhibits a recursive behavior which we have already en-

countered in our earlier statements. Indeed, Picd
OH

(Xν
SH

) ∼= JXν
SH

and dOH is the

multidegree associated to a totally cyclic orientation on G−H. Hence the boundary
of the compactified degree (g−1) Jacobian of X is stratified by Jacobians of degree
(g(X ′)− 1) of partial normalizations X ′ of X.
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Now, having diagram (23) in mind, we ask whether the stratifications of The-
orem 4.4.4 glue together over Mg consistently with the stratification of Mg of
Theorem 2.3.2. The answer is positive, and, reasoning as we did for d = g with
some obvious modification, we have the commutative diagram below, where the

posets OP0

g and H0
g are defined exactly as OP1

g and H1
g (in the previous section).

We refer to [11] for details.

(26) P̃ g−1
g

ψg−1

��

σP   OP0

g ϕg−1

��
���

H0
g

γg−1�����
���

M̃g
σM   Gg

From Remark 4.4.3(a), it is clear that P
g−1

X is not of Néron type unless X is

irreducible or of compact type. Nevertheless P
g−1

X as been used in various applica-
tions.

An example of these applications concerns the Theta divisors and the generalized
Torelli map. Recall that on a smooth curve X a general line bundle of degree g− 1
has no nontrivial sections, whereas as soon as the degree is at least g, Riemann–
Roch theory predicts the existence of nontrivial sections for every line bundle of
that degree. The subset in Picg−1(X) of all line bundles admitting some nontrivial
global section is a proper closed subset of codimension 1, called the Theta divisor,
denoted by ΘX ,

(27) ΘX := {L ∈ Picg−1(X) : h0(L) �= 0}.
It is well known that ΘX is a prime divisor giving a principal polarization on
Picg−1(X). By using the isomorphisms Picg−1(X) ∼= JX , we obtain Theta divisors

on the Jacobian (or on any other Picd(X)), but since these isomorphisms are not

natural, the Theta divisor of Picd(X) is canonically given only in the case where
d = g − 1 (in the other cases, its class is canonically given).

A famous theorem involving the Theta divisor is the Torelli theorem, stating
that a smooth curve is uniquely determined, up to isomorphism, by the pair given
by its Jacobian and its Theta divisor.

The definition of ΘX given in (27), with small modifications, makes sense also for

our singular curve X, and enables us to define the Theta divisor ΘX in P
g−1

X as the

closure of the locus of line bundles on X parametrized by P
g−1

X admitting nontrivial
global sections. Moreover, ΘX is a Cartier divisor and a principal polarization,

and the pair (P
g−1

X ,ΘX) is endowed with a natural group action of JX . Using the

language of moduli theory for abelian varieties, (P
g−1

X ,ΘX) is a so-called principally
polarized stable semi-abelic pair. Such pairs appear as the boundary points in

the compactification A
mod

g of the moduli space of principally polarized abelian
varieties constructed in [2]. Moreover, they form the image of the compactified
Torelli morphism

τ : Mg −→ A
mod

g

mapping a curve X to the pair (P
g−1

X ,ΘX). By the Torelli theorem, the restriction
of τ to Mg is injective, but τ is easily seen not to be injective. The combinatorial
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structure of P
g−1

X described in Theorem 4.4.4 is a key tool in [12] to describe the
fibers of τ in detail.

We conclude by observing that, by the moduli properties of A
mod

g , the com-
pactified Torelli map τ can be viewed as the moduli map associated to the family

ψg−1 : P
g−1

g → Mg.
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