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1. Uniformity and correlation

1.1. Introduction. Let K be a number field. Faltings has proved the finiteness of
the number of K-rational points on any given curve of geometric genus 2 or more,
and his proof gives an effective upper bound for that number. In this paper, we
raise the question of how such points behave in families. Specifically, given a family
f : X → B of curves defined over a number field K, how does the set of K-rational
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points of the fibers vary with b ∈ B, and in particular how does its cardinality
behave as a function of b? For example, is it a bounded function of b? Given the
existence of algebraic families including among their fibers every isomorphism class
of smooth curve of genus g over K, this is equivalent to the

Uniformity Conjecture. Let K be a number field and g ≥ 2 an integer. There
exists a number B(K, g) such that for any smooth curve X of genus g defined over
K,

|X(K)| ≤ B(K, g).

The principal arithmetic results of this paper say that this conjecture, and sim-
ilar (and even stronger) statements, follow from various purely qualitative con-
jectures made by Lang and others about the distribution of rational points on
higher-dimensional varieties.

Before we state our results, however, we need to introduce briefly the precise
forms of the Lang conjectures that we will be invoking.

1.1.1. Lang conjectures. The Lang conjectures extend the Mordell Conjecture,
proved by Faltings, to varieties of higher dimension. We will discuss here only
a small subset of the various conjectures made by Lang and others; for a more
complete discussion see for example [L] and [Vo].

One natural generalization to higher dimensions of the notion of “curve of geo-
metric genus g ≥ 2” is “variety of general type”.1 Of course, if we adopt this as our
hypothesis on the variety X , we cannot expect the conclusion to be that the set
X(K) is finite: a variety of general type may contain rational subvarieties defined
over K – a smooth hypersurface of any degree, for example, may contain lines –
which may in turn have infinitely many rational points. We are thus led to

Conjecture A (Weak Lang Conjecture). If X is a variety of general type defined
over a number field K, then the set X(K) of K-rational points of X is not Zariski
dense.

Now, another way to generalize the Mordell Conjecture would be to insist that
the conclusion be that X(K) is finite and ask what hypothesis on X would be
necessary to imply this. As is suggested by the discussion preceding the Weak Lang
Conjecture, it is not enough to ask that X be of general type; we have to ask as
well that it not contain subvarieties with too many rational points. Thus, following
Lang, we may formulate a conjecture to the effect that if X is any variety defined
over a number field K such that X itself and all irreducible, positive-dimensional
subvarieties of X are of general type, then X(K) is finite. Note that this conjecture
is much less robust than Conjecture A – its hypothesis and conclusion are not
birational invariants; and while it is often possible to tell whether a given variety is
of general type (for example, any smooth hypersurface of degree d ≥ n+ 2 in Pn is
of general type), it is difficult to tell whether a given variety satisfies this stronger
hypothesis. (Although it is known that hypersurfaces of degree d ≥ 2n in Pn of
sufficiently general moduli do satisfy it ([E]), there is no algorithm for determining
if a given hypersurface does, and in particular there are no hypersurfaces of any

1In this paper, the phrase “variety of general type” will only refer to positive-dimensional, irre-

ducible varieties. A smooth projective variety is of general type if and only if it has enough regular
pluricanonical forms to effect an embedding of a dense Zariski open subset into projective space;
more generally, we say that an arbitrary projective variety is of general type if a desingularization
is.
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degree in any projective space Pn for n ≥ 3 that are known to satisfy it.) In any
event, since the main geometric results of this paper are birational in nature, we
will not be able to use it.

There is, however, a conjecture that combines the two, a sort of fiber product of
them. This is what we call the Strong Lang Conjecture:

Conjecture B (Strong Lang Conjecture). Let X be any variety of general type,
defined over a number field K. There exists a proper closed subvariety Ξ ⊂ X
such that for any number field L containing K, the set of L-rational points of X
lying outside of Ξ is finite.

It is worth remarking that this is actually implied by Conjecture A together with
the purely geometric conjecture:

Geometric Lang Conjecture. If X is any variety of general type, the union of
all irreducible, positive-dimensional subvarieties of X not of general type is a proper,
closed subvariety Ξ ⊂ X.

The Strong Lang Conjecture is known to hold for arbitrary subvarieties of abelian
varieties ([F]). The Geometric Lang Conjecture has been proved for all surfaces with
c21 > c2 ([B]), and has recently been announced for all surfaces ([LM]).

1.1.2. The main arithmetic results of this paper. The first statement we will prove
is simply that the Weak Lang Conjecture implies the Uniformity Conjecture; that
is, the

Theorem 1.1 (Uniform Bound). If Conjecture A is true, then for every number
field K and integer g ≥ 2 there exists an integer B(K, g) such that no smooth curve
defined over K has more than B(K, g) rational points.

We can deduce much more if we assume the stronger Conjecture B: remarkably,
we can say that the number B(g,K) depends only on g and not on K! – allowing,
as we must, a finite list of exceptions for each K. Precisely, we will prove

Theorem 1.2 (Universal Generic Bound). The Strong Lang Conjecture implies
that for any g ≥ 2, there exists an integer N(g) such that for any number field
K there are only finitely many smooth curves of genus g defined over K with more
than N(g) K-rational points.

Note that the presence of the finite set of exceptions to the inequality |X(K)| ≤
N(g) is necessary: we can take any given curve X and give it as many K-rational
points as we like simply by enlarging the number field K. We can similarly do this
for any finite set of curves X1, . . . , Xn simultaneously, so that the set of exceptions
will necessarily grow as K does. What the existence of a universal generic bound
N(g) is saying, though, is that even though we can make up towers of number fields

K1 ⊂ K2 ⊂ K3 ⊂ . . .

such that X(Ki)→∞, any such tower is specific to X in the sense that for each i
all but finitely many other curves will continue to have N(g) or fewer Ki-rational
points.

The proofs of Theorems 1.1 and 1.2 are based on our main geometric statement,
the Correlation Theorem 1.3. This will be the subject of 1.1.3 below.
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Comments. 1. There is a preliminary draft of this paper, [CHM1], available by
anonymous ftp from math.harvard.edu. This draft may be more accessible than the
present paper to people whose primary background is not in algebraic geometry,
in that it has a self-contained treatment of certain aspects of the paper, with more
examples.

2. We originally proved something weaker than Theorem 1.2, and we are thank-
ful to Dan Abramovich for providing us with the argument that yields the above
statement. For a more specific account of this, see below.

3. Given the existence of bounds such as B(K, g) and N(g), it is natural to ask
how large they must be. Indeed, we would like to have more numerical examples
than we presently have of, for example, curves with given genus and respectably
large numbers of Q-rational points. The current record, as far as we know, for
curves of genus 2 and 3 is held by A. Brumer, who has an example of a curve
of genus 2 with at least 144 Q-rational points, and of genus 3 with at least 72 Q-
rational points. As for the current knowledge concerning the asymptotics of B(K, g)
for fixed K and varying g, and of N(g), see the discussion in [CHM]. Briefly, the
best estimates to date are B(Q, g) ≥ 8 · g+ 12 (due to Brumer) and gb ≥ 16(g+ 1)
(coming from different constructions, one due to Brumer and another to Mestre).
We also thank David Eisenbud, Noam Elkies and Nick Shepherd-Barron for help in
making contructions that guarantee some present-day record-holding lower bounds
in particular instances, such as N(2) ≥ 128 and N(3) ≥ 72.

4. The result of Theorem 1.1 has been generalized in two ways by Dan Abramo-
vich. In [Ab1] he proves an analogous result for stably integral points on elliptic
curves. In [Ab2] he strengthens the statement of Theorem 1.1 substantially, showing
that, if we assume only the Weak Lang Conjecture, then the bound B(K, g) of the
theorem remains bounded as K varies over all quadratic extensions of a given
number field.

1.1.3. The main geometric results of this paper: Correlation. To prove Theorems
1.1 and 1.2 we need to study a phenomenon that occurs in families of curves of
genus at least 2, and which we call Correlation or n-point Correlation. To define
this concept in fuller generality, let

f : X −→ B

be a proper morphism of integral2 varieties over K, such that the generic fiber of f
over B is a smooth variety of general type. As is customary, we will denote the fiber
of f over any point b in B as Xb; that is, Xb := f−1(b). For n ≥ 0 we denote by
Xn
B the unique irreducible component of the nth fiber product of X over B, which

dominates B (and we set X0
B = B), so that we get a natural morphism

fn : Xn
B −→ B.

We say that the family f : X −→ B has correlation if there is an integer n such
that Xn

B admits a rational dominant map, defined over K, to a variety of general
type. The question is: do all such families have correlation?

We have adopted the term “correlation” in anticipation of using Lang’s conjec-
ture, and here is why. Let us consider the case in which our X → B is a family of
curves of genus at least 2. Faltings’ theorem guarantees that the K-rational points
of each fiber of X over B are finite in number. But, of course, we have no idea

2By “integral” variety we will mean reduced, irreducible scheme.
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of how they are distributed in X , unless X itself is a variety of general type; for
example, they may very well form a dense subset, if X is rational. In other words,
there is no evident “correlation” or contiguity between the (finite) set of rational
points of one fiber and another. But suppose, say, that the symmetric square X2

B

dominates a variety of general type. Then, by Lang’s conjecture, the K-rational
points of X2

B lie in a proper, closed subvariety of X2
B; that is to say, there are

“algebraic function relations” that govern the placement of couples of K-rational
points in a fiber. These “algebraic function relations” we think of as being like sta-
tistical “two-point correlation” among K-rational points of fibers. Similarly, if Xn

B

dominates a variety of general type, Lang’s conjecture would imply the existence
of the analogue of an “n-point correlation” among K-rational points of fibers.

In this paper, we will show that every family of generically smooth curves of
general type has correlation. This will be the key ingredient in the proofs of Theo-
rems 1.1 and 1.2. Here is the precise statement:

Theorem 1.3 (Correlation). Let f : X −→ B be a proper morphism of integral
varieties, whose general fiber is a smooth curve of genus at least 2.

Then for n sufficiently large, Xn
B admits a dominant rational map h to a variety

of general type W . Moreover, if X is defined over the number field K, then W and
h are defined over K.

That is, using our terminology, such a family f : X −→ B has Correlation.
We are thankful to János Kollár and Eckhart Viehweg for conversations con-

cerning the case of families with higher-dimensional fibers. See Section 6 for an
account of this, and for an account of some of the arithmetic applications (which
are even more sweeping uniformity statements than those discussed in the preceding
section).

Addendum. A few more words about the variety W are in order. Recall that a
family of generically smooth curves f : X → B, such as the one in the Theorem,
yields a canonical rational morphism φ : B 99KMg to the moduli space of smooth
curves Mg (cf. Section 3 for details). Up to restricting to a dense subset of B, so
that all maps will be regular and f a family of smooth curves, we will show that
there is a commutative diagram of morphisms

Xn
B −−−−→ W

f

y y
B

φ−−−−→ Mg

and that W is the quotient by a finite group of a tautological family, over a finite
cover Σ of Mg.

1.2. Proof of the Uniform Bound Theorem. We are now going to prove The-
orem 1.1, assuming the Weak Lang Conjecture and Theorem 1.3.

Throughout this section we will consider a family f : X −→ B of generically
smooth curves of genus g > 1 as in Theorem 1.3.

Lemma 1.1. Let f : X −→ B be a family of curves as above. Then there exist a
non-empty Zariski-open subset U0 of B and an integer N such that for every K-
rational point b ∈ U0 the number of K-rational points of the fiber Xb is at most
equal to N.
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Proof. Throughout this proof, all morphisms and varieties will be defined over K,
and we will not specify that any further.

By Theorem 1.3, our family has correlation, hence we can consider an integer
n such that Xn

B dominates a variety of general type W , via a rational map h. By
Conjecture A, there is an open subset W ′ of W containing no K-rational points.
Letting U ⊂ Xn

B be the largest open subset over which the morphism to W is
regular and such that g(U) ⊂ W ′, we see that U contains no K-rational points,
and therefore there is a proper closed subvariety Z of Xn

B containing all the K-
rational points of Xn

B. Let j be an integer such that 1 ≤ j ≤ n, and denote by

πj the morphism corresponding to the natural family of curves πj : Xj
B → Xj−1

B

obtained by forgetting the last coordinate. Clearly, π1 = f .
It is useful to think of the proof of our Lemma as falling into two parts.
Part 1. We fix a closed subvariety Zn ⊂ Xn

B, containing all K-rational points of
Xn
B, and we let Un be its complement; that is, Un := Xn

B r Zn. Then we let Zn−1

be the largest closed subvariety of Xn−1
B such that the full inverse image of it in

Xn
B is contained in Zn; that is, π−1

n (Zn−1) ⊂ Zn. Then we proceed inductively to

define Zj to be the largest closed subvariety of Xj
B such that its inverse image via

πj+1 is contained in Zj+1. Another (equivalent) way to define Zj is as the largest

closed subvariety of Xj
B such that its inverse image in Xn

B is entirely contained in
Z. Notice that either Zj is fibered in curves over Zj−1, or Zj−1 is empty. Let

Uj := Xj
B r Zj .

The variety Uj is clearly open, and, by construction, the restriction of the projection

πj to π−1
j (Uj−1) ∩ Zj is finite over its image in Uj−1 ⊂ Xj−1

B . Now, Zj may be

reducible, so let us index its irreducible components by α so that Zj =
⋃
α(Zj)

(α).

Then we let dj be the sum over α of the degrees of πj restricted to (Zj)
(α); that is,

dj :=
∑
α

(
deg{πj : π−1

j (Uj−1) ∩ (Zj)
(α) −→ Uj−1}

)
.

The point is, dj is an upper bound on the cardinality of the fibers of Zj over
Uj−1.

Our goal is to show that we can take the following as the upper bound on the
number of K-rational points of the fibers over U0:

N = max{dj, 0 < j ≤ n}.
Part 2. Now we consider U0 ⊂ B. Let b be a K-rational point of U0, and let

j(b) denote the smallest integer j such that all K-rational points of Xj
B lying over b

are contained in Zj . Since Un contains no K-rational points, we have that j(b) ≤ n
for every b in U0(K).

Equivalently, j(b) is the largest integer for which there exists a K-rational point
u of Uj−1 such that fj−1(u) = b.

Fix such a u, and set j = j(b) for b = fj−1(u). We claim that the fiber of X
over b has at most dj K-rational points. To see this, denote by Xu the fiber of

πj : Xj
B → Xj−1

B over the point u, so that Xu is isomorphic to Xb over K. By our
choice of j, Uj contains no K-rational point above u, which is to say that the set
of K-rational points of Xu is entirely contained in Zj. Hence we conclude that

|Xb(K)| = |Xu(K)| ≤ dj ,
which proves our claim.



UNIFORMITY OF RATIONAL POINTS 7

Therefore, the open subvariety U0 of B and the integer N = max{dj, 0 < j ≤ n}
have the properties asserted in our statement.

Proof of Theorem 1.1. To conclude the proof of the Theorem, we would like to have
a family (a finite collection of families would be enough, in fact) with the property
of being “global” in the following sense: we require that every smooth curve of
genus g, defined over K, appears at least once as a fiber of our family (or collection
of families). Precisely, the fact that we need to extract and use is the following

Fact: Existence of Global Families of Curves. For any integer g ≥ 0 and any num-
ber field K, there exists a global family for curves of genus g, that is, there ex-
ists a proper, flat K-morphism of integral, projective varieties (defined over K)
f : X −→ B such that given any curve C of genus g defined over K there exists a
point b ∈ B(K) such that the fiber of X over b is isomorphic to C.

To establish this, we will invoke the existence of the Hilbert scheme. The Hilbert

scheme Hilbh(t)
r is the fine moduli scheme for closed subschemes of a fixed projective

space Pr with fixed Hilbert polynomial h(t). In particular, the K-rational points of

Hilbh(t)
r will be in one-to-one correspondence with closed subschemes of Pr defined

over K having h(t) as Hilbert polynomial; and the fact that Hilbh(t)
r is a fine moduli

scheme translates into the existence of a universal family X h(t)
r over it:

X h(t)
r ⊂ Hilbh(t)

r ×Pry
Hilbh(t)

r

For our purposes, we may consider that Hilbert scheme whose numerical in-
variants are such that it parametrizes (among many other things) all n-canonical
embeddings of all curves of genus g ≥ 2, with n any fixed integer greater than 2.
That is to say that we pick the following numerical data: take n = 10 say, and
d = 10 · (2g − 2); the Hilbert polynomial will then be h(t) = d · t − g + 1 and the
projective space will have dimension r = d− g.

It is well known (cf. [GIT]) that the locus of pluricanonical smooth curves in

Hilbh(t)
r is a locally closed, irreducible, smooth subscheme of the Hilbert scheme;

we will denote it by Hg:

Hg := {h ∈ Hilbh(t)
r : Xh is smooth, connected,

non-degenerate and OXh(1) ∼= K⊗10
Xh
}.

We can take our global family f : X −→ B to be the closure of Hg in Hilbh(t)
r

with the restriction of the universal family.
We conclude the proof of the Theorem by a downwards induction argument

on the dimensions of the bases of our families. We start with a global family,
f : X −→ B as described above. The previous Lemma produces a finite upper
bound N0 on the number of rational points for the fibers of our global family, except
for the fibers lying over a lower dimensional subvariety B1 of our base B. Let B1 be
the union of all the irreducible components of B1, which are not contained in the
discriminant locus of the original family; that is, B1 is the union of those irreducible
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components whose general fiber is a smooth curve. Let X1 be the restriction of the
original family to B1; this will be a new family of curves whose base B1 will be the
union of a finite number of lower dimensional closed subvarieties of B. We can then
apply the Lemma to these families, and obtain an upper bound N1 on the number
of K-rational points of the fibers over an open and dense subset of B1. We can
iterate this process, and at each application of our Lemma we get an upper bound
Ni for the K-rational points lying over the fibers of an open dense subset of Bi.
Since of course dimBi < dimBi−1 we will arrive at an end in finitely many steps.
Therefore if we take B(K, g) equal to the maximum of the Ni, we have that every
fiber over B has at most B(K, g) K-rational points. Since such a family was global,
such a B(K, g) satisfies the requirement of the Theorem.

1.3. Proof of the Universal Generic Bound Theorem. Now, assuming the
Strong Lang Conjecture together with Theorem 1.3, we will prove Theorem 1.2.

The proof is very similar to that of Theorem 1.1. It consists in two steps. In the
first step – which is basically the analogue of the Lemma in the proof of Theorem 1.1,
we find a universal bound on the number of rational points of the fibers over an
open dense subset of the base of our family. The second step sets up an iterating
procedure in finitely many steps, starting from a global family. First of all, let us
revisit the construction of the proof of the Lemma. Recall that we had the following
set up: n is an integer such that Xn

B dominates a variety of general type W via a
map h; after restricting to an appropriate dense subvariety of B, we can assume
that h is a regular morphism, without really changing the format of the proof. We
reproduce here the diagram given by Theorem 1.3:

Xn
B

h−−−−→ W

f

y yt
B

φ−−−−→ Mg

We obtained bounds on the number ofK-rational points of the fibers of f , defined
over K. Now we will study how these bounds depend on the number field K.

By the Strong Lang Conjecture, there exists a proper, closed subvariety Ξ of W
such that for any number field K the set W (K) is contained in the union of Ξ and
a finite subset EK of W .

Let Eg,K(f) be the image of EK in Mg via the map t, and let B′ be the comple-
ment in B of the preimage of Eg,K(f) via φ; that is,

B′ := B r φ−1(Eg,K(f)).

At this point, let us restrict our family to the base B′, but to keep our notation
from being too heavy, we relabel B′ as B. Having done this, let Z ⊂ Xn

B be the
inverse image of Ξ in Xn

B under h, so that, for any number field K, Z contains
all the K-rational points of Xn

B. We now make the construction of Part 1 of the

proof of the Lemma, obtaining closed subvarieties Zj ⊂ Xj
B, their complements Uj,

and the integers dj , for 0 < j ≤ n. Of course the point is that all of this does not
depend on K.

Now we pass to Part 2. For each number field K we can proceed as we did for
the proof of the Lemma. To start, we associate to each point b ∈ U0(K) an integer
jK(b), playing the same role as j(b) there.
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Specifically, let j(b) denote the smallest integer j such that all K-rational points

of Xj
B lying over b are contained in Zj ; equivalently, j(b) is the largest integer for

which there exists a K-rational point u of Uj−1, such that fj−1(u) = b. (The only
difference now is that we need to consider the dependence of the index j on K.)
Now Part 2 gives us

|Xb(K)| ≤ dj
K

(b)

where recall that dj was defined to be the sum of the degrees of the finite morphisms

obtained by restricting πj to the irreducible components of π−1
j (Uj−1)∩Zj . Hence

there is a finite upper bound on the dj
K

(b)’s, for K and b varying, which does not
depend on K; in fact we have

max{dj
K

(b), ∀K, ∀b ∈ U0(K)} = max{dj, 0 < j ≤ n} = N.

We have therefore concluded that there is an integer N and a dense subset U0 of
B, such that for any K, the number of rational points of any fiber over U0 is less
than N.

The inductive process of considering families with successive lower dimensional
bases proceeds exactly as before, by starting with a global family f : X −→ B such
as the one described in Section 1.2. Let us index these families by the index i ≥ 0,
so that the original global family corresponds to i = 0. We obtain that – except for
the exclusion of the inverse images of the finite sets Eg,K(fi) in Bi, for each of the
families that we must deal with, during our inductive procedure, we get an upper
bound Ni, independent on the number field K, for the number of K-rational points
that lie on our curves. There being only a finite number of such families, we obtain
that the maximum over the Ni is a finite number, which will therefore be our N(g);
moreover, by taking Eg,K to be the union of all the exceptional sets Eg,K(fi), we
have that Eg,K is also finite.

We have thus shown a uniform bound, independent of K, on the number of
K-rational points of any curve Xb of our family such that ϕ(b) does not lie in
Eg,K . This is not quite strong enough to establish the conclusion of the Theorem as
stated, however, since there may be infinitely many fibers Xb that are isomorphic
over the algebraic closure Q, and so correspond to the same point ϕ(b) in the moduli
space, but that are not isomorphic over K. (We had originally stated Theorem 1.2
in this way, and we thank Dan Abramovich for suggesting the present stronger
formulation, and for showing us the following argument to prove it.) To conclude
the proof, we must show that in this case, for each K, there are only finitely many
K-isomorphism classes of such fibers Xb with more than N(g) points.

For this purpose, we may restrict our attention to an isotrivial family X → B
defined over K. By an isotrivial family we will mean one with an open subset
U ⊂ B such that the fibers Xb with b ∈ U(Q) are all isomorphic to a fixed curve
C over Q. This is equivalent (cf. [SGA]) to the condition that for some generically
finite map B′ → B the pullback family X ′ = X ×B B′ is birational (again, over Q)
to a product B′×C. Note that we don’t actually have to go all the way to Q: there
will exist some finite extension L0 of K, a curve C defined over L0 and a birational
isomorphism of X ′ with B′ × C is defined over L0. One key observation: for any
point b ∈ B and any b′ ∈ B′(Q) lying over b, the fiber Xb will be isomorphic to C
over the compositum of the field L0 and the field of definition of b′.

In this situation, let Y = Xn
B and let h : Y → W be as above the map of Y to

a variety W of general type. In fact, as we will establish in Section 2.4, in the case
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of an isotrivial family, we can say very explicitly what h and W look like: we can
in this case take B′ → B a Galois cover, with Galois group G a subgroup of the
group of automorphisms of C, and W = Cn/G the quotient of Cn by the group G
acting diagonally. Setting W ′ = Cn, we have a diagram

B′

��

Y ′oo f
′

��
π

//h′

W ′

��
g

B Yoo f //h
W

where Y ′ := Y ×B B′ = B′ × Cn, W ′ := Cn and h′ is the projection map. In
particular, Y ′ is the fiber product

Y ′ = W ′ ×W Y.

Now suppose that x is any K-rational point of W , and suppose b ∈ B(K) is any
K-rational point such that

Yb(K) ∩ h−1(x) 6= ∅,
i.e., the fiber Yb contains a K-rational point y lying over x. We have to show that
the fiber Xb of our original family belongs to one of finitely many K-isomorphism
classes.

To see this, let L1 be any number field such that there is an L1-rational point
x′ ∈W ′(L1) lying over x, and let L be the compositum of L0 and L1. The crucial
point is that we now have an L1-rational point (x′, y) ∈W ′×W Y = Y ′, and hence
B′ contains an L1-rational point b′ = f ′(x′, y) lying over b. From this it follows,
as we observed above, that the fiber Xb is isomorphic to C over L. But now we
have achieved our goal, because there are only finitely many isomorphism classes
of curves defined over K that become isomorphic over a given finite extension L.

In conclusion: each point x of W not contained in the Langian exceptional locus
Ξ contributes an extra K-rational point only to fibers Xb belonging to one of a
finite set of isomorphism classes over K; the result follows.

1.4. The Correlation Theorem. To conclude this section, we will describe the
structure of the remainder of our paper, most of which will be devoted to the proof
of our main geometric result, the Correlation Theorem. Our proof of this will
occupy Sections 3, 4, and 5.

To begin with, Section 2 introduces two examples of families of curves, pencils of
plane quartics and isotrivial pencils of hyperelliptic curves (we also include a com-
plete proof of the Theorem in the case of an arbitrary isotrivial family). These serve
to illustrate the phenomenon that Theorem 1.3 asserts holds in general, and to give
a sense of what we might hope to be true in general. They also introduce a notion
that will be essential in the sequel: adjoint conditions and canonical singularities
(cf. 2.3).

In Section 3 we prove Correlation for complete families of stable curves having
maximal variation of moduli (see Section 3 for the terminology used below). This is
largely a matter of quoting the relevant sources in the literature, notably Viehweg
([V1]) and Elkik ([E]). Alternatively, for an ad-hoc but self-contained proof, see
[CHM1].

In Section 4, we extend this result: we consider again a complete family f :
X → B of stable curves having maximal variation, but now with a finite group G
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acting on X and B. The result we want is that, for n sufficiently large, the quotient
Xn
B/G of the fiber power Xn

B by G is again of general type. The reason for this is
that, in order to reduce to the case of families of stable curves, we have to make
base changes; and in order for our result to say something about rational points on
the fibers of the original family we need in the end to take quotients. (After all,
the family we obtain after base change need not have any fibers defined over our
original number field K.) The main additional ingredient in the proof is an analysis
of the adjoint conditions imposed by the singularities of the quotients; we show in
Section 4.2 that these conditions remain bounded as n grows and this allows us to
deduce the main result, Proposition 4.1.

In Section 5 we complete the proof of the Correlation Theorem by showing how
to reduce the case of an arbitrary family X → B to the case already considered.
Specifically, we show that, after a base change, we can construct a family T → Σ of
stable curves whose fibers are the same as those of X on an open set, and that after
a further base change B′ → B we can express X ′ = X ×B B′ → B as the pullback
of the family T → Σ. Moreover, we show that we can make the construction in
such a way that the group introduced in making the base change acts as well on
the family T → Σ. We then apply the results of Section 4 to the family T → Σ to
deduce the theorem.

Finally, we append in Section 6 some speculations on the case of families of
varieties of general type with higher-dimensional fibers. We state an analogue of
the Correlation Theorem, discuss possible ingredients of a proof, and mention at
least some of the consequences, geometric as well as arithmetic.

2. Examples

The purpose of this section is to discuss the type of difficulties that we will
have to overcome in proving the Correlation Theorem. We will do that by directly
proving the Theorem for two examples of families of curves.

2.1. Pencils of plane quartics. Let f(x, y) and g(x, y) be general quartic poly-
nomials, and consider the family of plane quartic curves given by

f(x, y) + t · g(x, y) = 0

parametrized by a line B ∼= P1 with coordinate t. Homogenizing the polynomial
f + t · g with respect to the variables t and (x, y) separately, the total space of this
family can be realized as a hypersurface X ⊂ P1 × P2 of bidegree (1,4), smooth as
long as the base points of the pencil are distinct. The projection map

π2 : X → P2

expresses X as the blow-up of P2 at the 16 base points of the pencil; in particular,
X is a rational variety over K. Note that this means that the rational points of X
are everywhere dense, in the classical as well as the Zariski topology. We think of
this as suggesting that there are no “relations” between the finite sets of rational
points Xt(K) as t varies through K.

It also follows, of course, that X is not of general type, but we could also see
this by calculating its canonical bundle using the adjunction formula. Since the
canonical bundle of P1 × P2 is

KP1×P2 = OP1×P2(−2,−3)
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and

OP1×P2(X) ∼= OP1×P2(1, 4),

we have

KX = KP1×P2(X)⊗OX = OX(−1, 1)

and no positive power of this line bundle can have regular global forms.
On the other hand, the same calculation allows us to conclude that the fiber

square of X over B is of general type: the fiber square Y = X ×B X is given in
P1 × P2 × P2 as the locus of the (homogenization of the) two equations

f(x, y) + t · g(x, y) = 0

and

f(u, v) + t · g(u, v) = 0;

in other words, it is a complete intersection in P1 × P2 × P2 of two hypersurfaces
X1 and X2 of tridegrees (1,4,0) and (1,0,4). Let ωY be the dualizing sheaf of Y .
Applying adjunction once more, we see that

ωY = ωP1×P2×P2(X1 +X2)⊗OY
= OP1×P2×P2(−2,−3,−3)⊗OP1×P2×P2(1, 4, 0)

⊗OP1×P2×P2(1, 0, 4)⊗OY
= OY (0, 1, 1).

In particular, the dimension of the space of sections of (ωY )⊗m = OY (0,m,m)
grows as a cubic polynomial in m.

We would like to use this fact to conclude that Y is of general type, i.e., that
the tensor powers of ω

eY (= K
eY ) have enough sections to define an embedding of an

open subset of Ỹ in projective space, for a desingularization Ỹ of Y . This is easy

to do in the present case by exhibiting a desingularization Ỹ → Y and relating ω
eY

to ωY . Explicitly, in a neighborhood of each singular point p of a fiber of X → B
we have local coordinates z, w so that X has local equation zw − t = 0. The fiber
square Y will then have local equation

zw− t = ab− t = 0,

i.e., it is the zero locus, in a smooth fourfold Z with local coordinates (z, w, a, b),
of the single equation zw = ab. This we recognize as an ordinary double point of

a threefold, which is resolved by simply blowing up Z at the point p and taking Ỹ

as the proper transform of Y in Z̃. In terms of the exceptional divisor E of the
blow-up, we have

ω
eZ = (π∗ωZ)(3E)

and

O
eZ(Ỹ ) = (π∗OZ(Y ))(−2E),

so we see that the canonical bundle of the resolution is given by

ω
eY = (π∗ωY )(E)

where E is the exceptional divisor; in particular, we see that the singularities of Y
are canonical (for the definition of canonical singularities see Section 2.3, where we
treat this problem in greater generality). It follows that regular sections of tensor
powers of ωY pull back to regular sections of powers of ω

eY , and we conclude that
Y is of general type.
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2.2. An isotrivial family. Consider in this section a family f : X → B that is
isotrivial in the sense that the fibers {Xb : b ∈ U} lying over an open subset U ⊂ B
are all isomorphic, over a large enough field K to a fixed curve C. In this case we
cannot expect the spaces Xn

B to be of general type – as we will see below, they
are finite quotients of products B1 × Cn, where B1 will be a suitably defined base
change of B – but they do admit dominant rational maps to lower-dimensional
varieties of general type.

Let us begin with a concrete example. We fix a polynomial

f(x) = xn + an−1x
n−1 + . . .+ a0

= (x− α1) · (x− α2) · . . . · (x− αn)

of degree n = 2g + 2 with no multiple roots, ai ∈ K, and consider the isotrivial
family X → A1 of hyperelliptic curves of genus g, parametrized by the affine line
with coordinate t, given by

t · y2 = f(x).

We view this family as a pencil of curves of bidegree (2g + 2, 2) on P1 × P1, so
that its total space is a blow-up of P1 × P1; in particular, is rational.

When we take the fiber square X2
B of X over A1 = B, however, we see something

different: the total space of X2
B has equations

t · y2 = f(x), t · v2 = f(u)

so that X2
B is birational to the threefold

{(x, u, v, y) : v2 · f(x) = y2 · f(u)} ⊂ A4.

In particular, it maps to the surface V given by

{(x, u, w) : w2 = f(u) · f(x)}
by the map sending (x, u, v, y) to (x, u, v · f(x)/y).

Now, the surface V is birationally the double cover of P1 × P1 branched along
the locus f(x) · f(u) = 0 – that is, the union of 2g + 2 fibers from each ruling of
P1×P1. As such, it is not hard to see that V is a surface of general type. (It should
be observed that V is not a smooth surface, but is singular at the (2g+ 2)2 points
(αi, αj , 0) lying over the double points of the branch divisor.) For example, we can
simply write down the canonical differentials on V : if we set

θ =
du ∧ dx
w

we can readily check that the products

θk,l = uk · x` · θ
give regular canonical differentials on the smooth locus of V for all 0 ≤ k, ` ≤ g−1.
Alternatively (equivalently), we can apply the Riemann-Hurwitz formula to the
cover η : V → P1 × P1: the ramification divisor R of η is the zero-divisor of the
function w on V , and from the equality

2R = (w2) = (f(u)) + (f(x))

we may deduce that, on the smooth locus of V ,

KV = π∗(KP1×P1)⊗OV (R)
= π∗(KP1×P1 ⊗OP1×P1(g + 1, g + 1)) = π∗(OP1×P1(g − 1, g − 1))

which is ample.
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Finally, we need to deal with the singular points of V . In fact, these do not
present a difficulty in this case: at the singular point (αi, αj , 0), after replacing u
and x by (u− αi) and (x− αj), V will have local equation

w2 = u · x

and blowing up once we arrive at a smooth surface Ṽ . Moreover, in terms of local
coordinates

w′ = w, x′ = x/w and u′ = u/w

on Ṽ , the pullback of the form θ to Ṽ may be written as

θ̃ =
d(u′w′) ∧ d(x′w′)

w′

= w′(du′ ∧ dx′) + x′(du′ ∧ dw′) + u′(dw′ ∧ dx′)

which is regular on all of Ṽ . Thus all the forms θk,` above pull back to regular

forms on Ṽ . (It will also follow from more general results described in the next
section that every regular differential on the smooth locus of V gives a regular

differential on Ṽ .) Ṽ is thus a surface of general type, and so the family X → A1

has correlation.

2.3. Adjoint conditions and canonical singularities. The example above con-
tains the essential ingredients of the isotrivial case in general. There is one com-
ponent in the analysis, however, that we will need to develop further in order to
tackle arbitrary isotrivial families, and that is the way we handled the singularities
of the surface V .

Let X be an integral variety over a field K of characteristic 0. The condition
that X be of general type is defined in terms of pluricanonical forms on some
desingularization

π : X̃ → X

of X . But such resolutions may be hard to write down explicitly. There are times
however, when the singularities of X impose no impediment to the extension of
pluricanonical sections from the smooth locus to any desingularization of X . Let
us formalize this occurrence by the following definitions:

Definition 1. Let X be any variety and π : X̃ → X a desingularization of X .
By a smooth pluricanonical form on X we will mean a pluricanonical form on the
smooth locus of X – that is, a section η of the mth power of the canonical bundle

of Xsm – such that the pullback π∗(η) of η to π−1(Xsm) ⊂ X̃ extends to a regular

pluricanonical form on all of X̃. A point p ∈ X is said to impose no adjoint
conditions if for all m and all sufficiently small neighborhoods U of p in X , any
m-canonical form η on the smooth locus Usm of U is smooth.

Remark. Both of these notions are independent of the choice of resolution π : X̃ →
X . Also, we should mention that the classical use of the phrase “imposes no adjoint
conditions” was in the context of hypersurface singularities, where the condition
above is satisfied for one value of m if and only if it is satisfied for all m. It
was, correspondingly, expressed in terms of canonical, rather than pluricanonical,
differentials.
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We wish to relate this notion of imposing no adjoint conditions to the currently
more common notion of canonical singularities. For this, recall that a point p
on a normal variety X is Q-Gorenstein if, in some neighborhood U of p, some
positive power (KUsm)⊗m of the canonical bundle on the smooth locus of U extends
to a line bundle L on all of U (note that, since the singular locus of X is of
codimension at least 2, L is unique if it exists). In this case, we can make a direct

comparison between the pullback of L to Ũ = π−1(U) ⊂ X̃ and the corresponding

pluricanonical bundle (KUsm)⊗m of Ũ : we write

(K
eU)⊗m = π∗L⊗O

eU(D)(1)

where D is a divisor supported on the exceptional locus of the map π.

Definition 2. A Q-Gorenstein point p ∈ X is said to be a t canonical singularity
if the divisor D occurring in (1) is effective.

We claim that in case X is Q-Gorenstein (i.e. some power of KXsm extends to
a line bundle on the whole of X) this is equivalent to the condition that p impose
no adjoint conditions. To see this, in one direction let θ be any regular section
of (KUsm)⊗m. Since the singularities of X occur in codimension at least 2, θ will
extend to a regular section of L. The pullback of this section will then be a rational

section θ̃ of (K
eU )⊗m, whose divisor will be simply the pullback of the divisor of

θ, plus D. Thus, if D is effective, then (θ̃) will be effective, i.e., θ̃ will be regular.
Conversely, if D is not effective a section of L non-zero in a neighborhood of p

will give a rational differential on Ũ with actual poles, whose restriction to Usm is
regular.

We should say at this point that we do not need to deal with these notions
in anything like their full generality. In fact, all the singularities that we will be
considering are quotients of local complete intersection varieties by finite groups.
In particular, in this case the singularities will always be Q-Gorenstein, so the
reader can equate the notions of “imposing no adjoint conditions” and “canonical
singularities”. It is also the case that we have a very effective and elementary
criterion for such singularities to be canonical, which we will prove in Section 4 (cf.
Lemma 4.1). A Corollary of this Lemma that we will use here is

Corollary 2.1. Let G be a finite group acting on a smooth variety Y , and p ∈ Y
an isolated fixed point of the action of G – that is, an isolated fixed point of the
action of every γ 6= Id ∈ G. If the dimension of Y is greater than or equal to
the order of G, then the image of p in the quotient X = Y/G imposes no adjoint
conditions.

We should mention at the same time that this Corollary also follows from the
more general Reid-Tai criterion, which we shall state here without proof. (See [R].)

The Reid-Tai Criterion. Let G be a finite group acting on a smooth variety Y ,
and p ∈ Y a fixed point of the action of G. Suppose that the action satisfies
the following condition: for all γ ∈ G and primitive mth roots of unity ζ, if the
eigenvalues of the action dγ of γ on the tangent space TpY are ζa1 , · · · , ζan with
0 ≤ ai < m, then the exponents ai satisfy∑

ai ≥ m.

Then the singularity of the quotient Y/G at the image q of p is canonical.
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2.4. Proof of Correlation for isotrivial families. Let C be a smooth curve of
genus g ≥ 2, with automorphism group G, and suppose X → B is any isotrivial
family with general fiber isomorphic to C. Of course, if the family is birationally a
product, X maps to C and we are done. In general, however, we have to make a
base change before the family becomes birationally trivial: explicitly, we may set

B0 = {(b, ψ) : b ∈ B, ψ : Xb → C an isomorphism}
and let B1 be any connected component of B0, dominating B. The pullback

X1 = X ×B B1

= {(b, ψ, p) : (b, ψ) ∈ B1, p ∈ Xb}
is then visibly isomorphic to the product B1 × C, via the maps π1 : (b, ψ, p) 7−→
(b, ψ) and π2 : (b, ψ, p) 7−→ ψ(p). Moreover, the group G acts on B0 by setting for
every γ ∈ G

γ : (b, ψ) 7−→ (b, γ ◦ ψ).

The quotient B0 under this action is B; let H ⊆ G be the subgroup carrying B1

into itself. H also acts on X1 by the rule

γ : (b, ψ, p) 7−→ (b, γ ◦ ψ, p);
in terms of the identification of X1 with B1 × C above this is just the diagonal
action of H on B1 × C

γ : (b, ψ, q) 7−→ (b, γ ◦ ψ, γ(q))

coming from the separate actions of H on B1 and on C.
The quotient of X1 by H is, by the first representation, birational to X itself;

from the second description we see that the quotient X1/H admits a map to the
quotient C/H. Thus X dominates the quotient C/H, and if this is a curve of genus
2 or more we are done. This is not, however, generally the case (as it is not in the
example we started with).

What ultimately saves us is that, just as X admits a dominant rational map
to C/H, so by the same construction the fiber powers Xn

B of X admit dominant
rational maps to the quotients Cn/H, where H acts diagonally on the product Cn.
We will thus be done if we establish the

Lemma 2.1. Let C be a smooth curve of genus g ≥ 2, and H ⊆ Aut(C) any group
of automorphisms of C. Then for n ≥ |H|, the quotient Cn/H is of general type.

Proof. To begin with, Cn is certainly of general type; in fact, its canonical bundle
is ample, and its canonical ring

R =
⊕
m

H0(Cn, (KCn)⊗m)

is finitely generated of dimension n + 1. It follows that the subring RH of pluri-
canonical forms on Cn invariant under the action of H is likewise of dimension
n+ 1. The problem is that pluricanonical forms on Cn invariant under H do not
necessarily descend to give pluricanonical forms on Cn/H: in the case n = 1, for ex-
ample, invariant pluricanonical forms descend to give rational pluricanonical forms
that may have poles at the branch points of the map C → C/H; that is, at the
images of fixed points of the action of H.

For large n, however, this will not cause any trouble. To begin with, we observe
that the fixed points of elements γ ∈ H on Cn are just points of the form p =
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(p1, · · · , pn) where the pi are (not necessarily distinct) fixed points of γ. The point
is, these are isolated fixed points; applying Corollary 2.1, we deduce that whenever
n ≥ |H| the singularities of Cn/H are canonical, and we are done.

We may now deduce, as a corollary, the main result of this section:

Proposition 2.1. Let X → B be any isotrivial family of curves whose general fiber
is a smooth curve C of genus g ≥ 2. Then the family X → B has correlation. More
specifically, Xn

B admits a dominant rational morphism to the variety Cn/Aut(C),
which is of general type for n� 0.

3. Families with maximal variation of moduli

in this section we prove Correlation for complete families of stable curves having
maximal variation of moduli. In fact we will show the stronger fact that high fiber
products of such families are of general type.

3.1. Preliminaries. We start by recalling some basic facts about stable curves and
their moduli spaces. Let g ≥ 2. As usual, we let Mg be the moduli space of smooth
curves of genus g, which is a reduced and irreducible quasiprojective variety. Mg

is not complete, and we need to consider its Deligne-Mumford compactification,
which we denote by Mg. The projective variety Mg is reduced and irreducible
and it contains Mg as a dense subset. It is characterized as the moduli space of
the so-called Deligne-Mumford stable curves of arithmetic genus g. We recall the
definition: A Deligne-Mumford stable curve (briefly: stable curve) is a reduced
connected curve having only ordinary double points as singularities (that is, nodes)
and having only finitely many automorphisms. The restriction on the number of
automorphisms is just saying that every smooth rational component of a stable
curve intersects the remaining components in at least three points. It is important
to remark that Mg and Mg are only coarse moduli spaces; that is, there does not
exist a universal family of curves over such spaces.

Given a family f : X −→ B of stable curves, we obtain a canonical morphism

φ : B −→ Mg

b 7→ [Xb],

which sends a point b ∈ B to the point of Mg classifying the stable curve Xb. We
will refer to φ as the canonical morphism to moduli. We will say that a family
as above has maximal variation of moduli (or simply maximal variation) if its
canonical morphism is generically finite; that is, if there are no isotrivial subfamilies
including a general fiber.

Next, in proving Correlation we need to know how to use our information about
line bundles on the initial family to obtain results about line bundles on the fiber
product. The lemma that we are now going to prove is a very general one, and it
will provide us with the key information.

Let f : X → B be a morphism with integral general fiber, and denote by Xn
B

the irreducible component of the n-fold fiber product of X over B, dominating B
(just as in 1.1.3). If L is a line bundle on X , we denote by Ln the line bundle on
Xn
B defined as

Ln := p∗1L⊗ · · · ⊗ p∗nL
where pi : Xn

B → X is the projection onto the ith factor. Let fn be the natural
morphism from Xn

B to B.
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Lemma 3.1. Let X → B be a flat, projective family of varieties. Let L be an
ample line bundle on X and let M be an arbitrary line bundle on B. Then there
exists a positive integer n0 such that for all n ≥ n0 the line bundle Ln ⊗ f∗nM is
ample on Xn

B.
Moreover, the same holds if we replace “ample” by “big”.

Proof. Let us assume that L is ample. Then there exists a positive integer e such
that L⊗e ⊗ f∗M is itself ample. Hence, for every curve C in X , we have

degC(L⊗e ⊗ f∗M) ≥ 0.

We will now take n0 = e+ 1 and n will be any integer greater or equal to n0, as in
our statement. We want to apply Kleiman’s ampleness criterion with Ln as ample
bundle A (Ln is ample because L is). In other words, we want to show that there
exists a positive constant ε such that for every curve C in Xn

B, we have

degC(Ln ⊗ f∗nM) ≥ ε degC(Ln).

This is not hard. Denote Ci := pi(C) and let di be the degree of C over Ci. Then
we can estimate

degC(Ln ⊗ f∗nM) =
e

n
degC Ln +

n− e
n

degC Ln + degC f
∗
nM

=
e

n

n∑
i=1

di degCi L+ degC f
∗
nM +

n− e
n

degC Ln

≥ − 1

n

n∑
i=1

di degCi f
∗M + degC f

∗
nM +

n− e
n

degC Ln

=
n− e
n

degC Ln.

Our positive constant ε is set equal to (n− e)/n and we deduce that Ln ⊗ f∗nM
is ample.

Now suppose L is big. Since X is projective, a line bundle L on X is big if and
only if there exist an ample line bundle A and an effective Cartier divisor D on X ,
such that

L = A⊗OX(D).

Therefore the proof of the result for the big line bundle L follows immediately from
the same result being true for the ample line bundle A.

3.2. Proof of Correlation for families with maximal variation. We are now
ready to prove our main Theorem for complete families of stable curves with max-
imal variation of moduli. Therefore, throughout this section, we will assume that
f : X −→ B is a proper morphism of integral varieties, whose general fiber is a
smooth curve of genus at least two. Moreover, we will require that B is projective.

We will prove Correlation for our family as an immediate consequence of the
following stronger result:

Proposition 3.1. Let f : X −→ B be a family of stable curves, over a projective
base B. Assume that the family has maximal variation of moduli. Then there exists
a positive integer n such that the nth fiber product of X over B is of general type.
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Proof. To understand what goes into the proof, suppose for simplicity that X and
B are smooth and let KX and KB be the canonical bundles of X and B; then, if
ωf is the relative dualizing sheaf of X over B, we have of course

KX = ωf ⊗ f∗KB.

Modulo some known facts about families of stable curves, it is not hard to see that
ωf has good positivity properties, hence what really prevents X itself from being of
general type is evidently the canonical bundle of B, which is completely arbitrary.
Now the point is that taking higher and higher powers of X over B will allow the
positivity of ωf to overcome the negativity of KB (cf. Lemma 3.1).

With that said, the argument reduces simply to two statements, for each of
which we refer the reader to the literature (for a self-contained account of both, see
Section 3 of [CHM1]). The first is simply the positivity of the relative dualizing
sheaf:

First statement. Let f : X −→ B be a family of stable curves having maximal
variation of moduli. Then the relative dualizing sheaf ωf is big.

The key ingredient in a proof of this is the fact that if f : X −→ B is a family of
stable curves having maximal variation of moduli, then the divisor class λ – that
is, the determinant of the direct image of the relative dualizing sheaf ωf – is big.
This is expressed in Proposition 7.1 of [V1].

Given this, we can write λ = α+D for some ample divisor class α and effective
divisor class D on B. Moreover, by a standard calculation due to Arakelov [Ar]
and quoted in [V1], the divisor class ωf on X may be expressed as a sum of the
pullback f∗λ and an effective divisor: specifically, we have

g(g + 1)

2
ωf = f∗λ+W

where W is the class of the divisor of Weierstrass points of fibers of f , plus a linear
combination of the divisors of singular fibers of f .

Now, since ωf is ample on every fiber of f , for sufficiently large m the divisor
class

β = m · f∗α+ ωf

is ample on X . Combining this with the Arakelov relation (multiplied by m) we
have

(m
g(g + 1)

2
+ 1)ωf = m · f∗α+ ωf +m · f∗D +m ·W = β +E.

Thus ωf is big, being the sum of an ample class and an effective class.
Notice now that the dualizing sheaf of the space Xn

B may be expressed as a tensor
product

ωXnB = p∗1ωf ⊗ ...⊗ p∗nωf ⊗ f∗nKB.

Thus, the above statement together with our technical Lemma 3.1 implies that
the dualizing sheaf of some high fiber power Xn

B is big; that is, it has lots of
sections. It remains to see that these give rise to sections of the canonical bundle
of a desingularization of Xn

B, which constitutes the second part of the proof.
Second statement. Let f : X → B be any family of stable curves such that B

is smooth, irreducible and the support ∆ ⊂ B of the discriminant locus of f is a
divisor with normal crossings. Then for every n, the singularities of the nth fiber
power of X over B are canonical.
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This result can be easily proved by performing an explicit series of blow-ups
and calculating the dualizing sheaf at each step. Alternatively, the referee of this
paper points out that it may be proved using the arguments in [El]. The techniques
of that paper show the following. Let g : Y → Z be a flat morphism such that
Z has rational singularities. Assume moreover that for any smooth curve C and
morphism h : C → Z whose image is not contained in the discriminant locus of g,
the pullback Y ×Z C has rational singularities. Then Y has rational singularities.

Applying this inductively to the projection maps Xn
B → Xn−1

B we arrive at the
desired statement.

We can ensure that the hypotheses of the second statement are satisfied by
pulling our family back to a suitable blow-up of the original base B; this does not
alter the fact that the family has maximal variation.

Now, since the singularities of Xn
B are canonical, every regular section of ωXnB

pulls back to a regular section of a desingularization X̃ of Xn
B. It follows that K

eX
is big, which completes the proof of Proposition 3.1.

In fact the proof of Proposition 3.1 tells us something more, which will be nec-
essary in the following sections; we will state it here as a lemma. To begin with,

denote by X̃n
B a desingularization of Xn

B and by σ the corresponding birational

morphism from X̃n
B to Xn

B. Also, let gn = fn ◦ σ denote the composition map

gn : X̃n
B −→ B.

We then obtain the following

Lemma 3.2. Let X → B be a family of stable curves having maximal variation of
moduli, and let M be any line bundle on B. Then, with the above notation, there
exists n > 0 such that the line bundle

ωgn ⊗ g∗nM

is big on X̃n
B.

4. Families of stable curves with group action

4.1. Statement of the main Proposition. In the preceding two sections we
have considered families of curves representing two extremes of behavior: families
of stable curves whose associated map to moduli is generically finite, and other
families of curves for which it is constant. The techniques we used to analyze
these cases were correspondingly different. In the former case we had our basic
Proposition 3.1 on the positivity of the relative dualizing sheaf, combined with the
argument that in sufficiently high fiber powers this positivity outweighs the possible
negativity of the canonical bundle of the base (Lemma 3.1). In the isotrivial case,
by contrast, we made a base change to trivialize the family, so that its fiber powers
would map to the ordinary products of a curve with itself; we then had to analyze
the geometry of the quotient of these products by the automorphism group of the
curve.

We now want to consider the case of an arbitrary family. Since such a family in
general involves curves of varying moduli, we will need to incorporate the content of
Proposition 3.1 on the positivity of the relative dualizing sheaf. But such a Lemma
deals only with families of stable curves, and in order to relate an arbitrary family
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to a family of stable curves, we will have to make a base change. Such a base
change will have the effect of introducing a (finite) group action, of which we will
have to consider the quotient. Moreover, since an arbitrary family will in general
contain subfamilies that are isotrivial but not trivial, we will have to make base
changes analogous to the one made in the isotrivial case to “straighten out” our
family – and, if the original family is fibered by isotrivial subfamilies, express it as
the pullback of a family over a lower-dimensional base. Again this means, exactly
as in the isotrivial case, that at the end we will have to take a quotient of a variety
of general type by a finite group and show that this does not lower its Kodaira
dimension. We thus need a statement combining aspects of the isotrivial and the
generically finite/stable cases; and this is what we will do here. Specifically, our
goal in this section is to prove the

Proposition 4.1. Let f : X → B be a family of stable curves of genus g ≥ 2
with projective base B and smooth general fiber. Assume that the associated map
φ : B → Mg is generically finite. Suppose G is a finite group acting birationally
and equivariantly on X and B – so that, for every g ∈ G we have birational maps

X //g

��
f

X

��
f

B //g
B

commuting with the projection. Then for all sufficiently large n, the quotient Xn
B/G

of Xn
B by the action of G acting diagonally is of general type.

In outline, the proof for this Proposition is simply a combination of the arguments
already given, with one additional element. Briefly, Proposition 3.1 – which remains
the mainspring of the proof – says that for n� 0 we have lots of sections of powers
of the canonical bundle of Xn

B; and, as in the isotrivial case, it follows that we have
lots of such sections invariant under G. The difference is that the fixed points of
the action of G on X and on Xn

B need not be isolated: in fact, since elements of
G may fix components of fibers of f , the codimension of the fixed point locus will
not necessarily increase with n. Thus it will not always be the case, even for large
n, that invariant differentials on Xn

B descend to give smooth differentials on the
quotient Xn

B/G; some vanishing at fixed points of the action of G is required. This
requirement, at least potentially, may kill off too many of our differentials.

What we need is a suitable bound on the order of vanishing needed to ensure
that an invariant differential on Xn

B descend to give a smooth differential on the
quotient. This is the content of the following subsection, which also yields a proof
of the weak version of the Reid-Tai criterion used in the isotrivial case (that is,
Corollary 2.1).

4.2. Singularities of quotients: adjoint conditions. Let X be a smooth, n-
dimensional variety and G a group of (finite) order ` acting on X ; let Y0 = X/G
be the quotient. Let θ be an m-canonical form on X invariant under the action
of the group G, so that θ descends to give a pluricanonical form η0 on the smooth
locus of Y0. We ask when the form η is smooth. (Recall from Section 2 that by a
smooth form on a possibly singular variety Z we will mean a form on the smooth
locus Zsm of Z whose pullback extends to a regular form on some, and hence any,
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desingularization.) A sufficient condition is given in

Lemma 4.1. For each point p ∈ X, let Gp ⊂ G be the stabilizer of p in G. If, for
all points p ∈ X, θ vanishes to order at least m · (|Gp| − 1) at p, then θ descends
to a smooth form η0 on X/G. In particular, if θ vanishes to order m(` − 1) on
the locus of all points p ∈ X that are fixed by some element g 6= Id ∈ G, then θ
descends to a smooth form on X/G.

Proof. We start with a few observations.
First, the action of G on X is equivalent, in a neighborhood of a fixed point

p ∈ X (in the analytic or étale topology), to its action on the tangent space to X at
p; so we can simply replace X by the vector space V = Tp(X) and take the action
to be a linear representation of G.

Second, we may decompose V into a direct sum of irreducible representations of
G and throw away the trivial summands: if V is the direct sum of subspaces V ′ ⊂ V
and V ′′ ⊂ V with G acting trivially on V ′′, it is enough to verify the statement for
the action of G on V ′. Thus we may assume that the origin 0 ∈ V is the only point
of V fixed by the action of all of G.

Third, for any fixed action of G on V , there is some order of vanishing that works;
that is, some number α(m) such that an m-canonical form θ-invariant under G and
vanishing to order α(m) or more on the locus of fixed points of elements of G
descends to a smooth form on the quotient. (To see this, observe that if Y is any
desingularization of the quotient V/G, then pulling back to V a set of generators
for the direct image in V/G of the pluricanonical bundle of Y we obtain a collection
of pluricanonical forms on V that generate a subsheaf of the canonical bundle KV .
This subsheaf coincides with KV outside the locus Γ of fixed points of elements of
G and so must contain the product of KV with some power of the ideal sheaf of Γ.)
Since there are only finitely many groups of order ` or less and only finitely many
representations of each such group on vector spaces of given dimension, there is a
number that works for all actions of all groups of order ` or less on vector spaces
of dimension n or less. We will denote by β = β(m,n, `) the minimal such number.

Our goal is thus to show that β ≤ m(` − 1). Note that we cannot have β <
m(`− 1), as shown by the simple example of a cyclic group of order ` acting on a
one-dimensional vector space V . In fact, we will see in the proof that this is the
unique case where a form has to vanish to order m(`− 1) in order to descend to a
smooth form; for any other action of a group of order ` on a vector space (without
any trivial factors) a lower order of vanishing suffices.

Let θ be any m-canonical form on V invariant under G and satisfying the hy-
pothesis of the Lemma; let η0 be the m-canonical form induced on the smooth locus
of the quotient Y0 = V/G and η its extension to a rational m-canonical form on a
resolution π : Y → Y0. By our hypothesis that the action of G on V contains no
trivial factors, the stabilizer of any point p ∈ V other than the origin is a proper
subgroup of G. By induction on the order `, then, we may assume that η is regular
outside the inverse image π−1(0) ⊂ Y of the image 0 of the origin 0 ∈ V , and we
just have to check the regularity of η at points of π−1(0).

There are now two cases to consider: either n = 1, or it isn’t.
If n = 1, things are simple: the group acts on the one-dimensional vector space

V by scalar multiplication by `th roots of unity; the quotient Y = Y0 = V/G is
again smooth, with the quotient map V → Y a cyclic cover of order `′ ≤ ` ramified
at the origin 0 ∈ V . A regular m-canonical differential on Y pulls back to one on
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V with a zero of order m · (`′ − 1), and conversely an invariant differential on V
descends to a regular form on Y if it vanishes to order m · (`′ − 1) or more at 0.

If n > 1, on the other hand, let Ṽ be the blow up of the origin in V ; the action

of G on V lifts to an action of G on Ṽ , and we have a diagram

Y −→ Ṽ /G ←− Ṽy y
V/G ←− V

where Y is any resolution of singularities of Ṽ /G, and hence of V/G as well.

Now let θ be any m-canonical form on V invariant under G, and θ̃ the pullback

to θ to Ṽ ; let η and η̃ be the forms induced on the smooth loci of V/G and Ṽ /G

respectively. Since η pulls back to η̃ on Ṽ /G and both pull back to the same form
on the desingularization Y , we see that θ descends to a smooth form if and only if

θ̃ does. On the other hand, if γ is the order of vanishing of θ at the origin 0 ∈ V ,

then the order of vanishing of θ̃ at every point of the exceptional divisor E ⊂ Ṽ is
γ +m(n− 1).

Combining the two cases, we conclude that β = β(m,n, `) satisfies

β ≤ max{m · (`− 1), β −m(n− 1)}
and hence

β = m · (`− 1).

We should remark that Lemma 4.1 gives, as an immediate corollary, the weak
form of the Reid-Tai Criterion (Corollary 2.1) used in Section 2. Another corollary
is the following statement, which was suggested by Viehweg:

Corollary 4.1. Let X be any variety of general type and G a finite group of bi-
rational automorphisms of X. Then for n � 0, the quotient Xn/G of Xn by G
(acting diagonally) is of general type.

Proof. As in the proof of Proposition 4.1 below, we may assume both that X is
smooth and that the action of G is biregular. We then simply observe that the
codimension in Xn of the locus of points fixed by g ∈ G is at least n.

We will want to apply Lemma 4.1 to the total space of the fiber powers of a
family of curves. These varieties may not be smooth, but their singularities will be
canonical; therefore we will need the following slight extension of Lemma 4.1.

Corollary 4.2. Let X be a variety with canonical singularities and G a finite group
of biregular automorphisms of X. Let θ be a G-invariant, regular section of the mth

power of the dualizing sheaf of X, such that for every point p ∈ X, θ vanishes to
the order at least m · (|Gp|−1) at p. Then θ descends to a regular m-canonical form
on the quotient X/G.

Proof. We first need to introduce an equivariant desingularization of X ; that is, a

resolution σ : X̃ −→ X such that the action of G on X lifts to an action on X̃ . The
existence of such a resolution is asserted in the survey article [Hi], which formulates
a number of important results regarding resolution of singularities. For a proof in
the special context of hypersurfaces (which is, in fact, not our context) see [BM].
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Now observe that the stabilizer of any point q ∈ X̃ is a subgroup of the stabilizer
of its image σ(q) = p. At the same time, since the singularities of X are canonical,
we have

ω
eX = (σ∗ωX)(E)

where E is an effective divisor. We conclude that if θ is any m-canonical form on

X , the order of vanishing of its pullback θ̃ to X̃ at q will be at least equal to the
order of vanishing of θ at q. Thus if θ satisfies the hypotheses of our statement,

then so will θ̃.
Now let us denote by Y the quotient X/G and let Ỹ = X̃/G. Finally, let Y ′ be

any resolution of singularities of Ỹ :

X̃ −→ Ỹ ←− Y ′y y
X −→ Y

Suppose that θ is an m-canonical form on X , invariant under the action of G. The
form θ descends to a form η on the smooth locus of Y ; let η̃ be the pullback of η to

Ỹ . We can also view η̃ as the descent of θ̃ from X̃. If θ satisfies the hypothesis of

the Corollary, so does θ̃; since we have proved the statement for a smooth variety
(Lemma 4.1), it follows that the pullback of η̃ to Y ′ will extend to a global regular
form.

4.3. Proof of the main Proposition and other corollaries. Here is the main
application of Lemma 4.1.

Proof of Proposition 4.1. Let us review the context of the Proposition: we have a
family f : X → B of stable curves, with projective base B and smooth general
fiber, whose associated map φ : B →Mg is generically finite, and on which a finite
group G acts birationally.

We claim that we may assume at the outset that our family X → B has smooth
base B, that the discriminant locus ∆ in B (that is, the locus of points b ∈ B such
that the fiber Xb is singular) has normal crossings, and that the action of G on both
B and X is regular. We achieve this state of affairs by making two base changes.
First, we make a regular birational base change B′ → B to ensure that the action
of G on B is biregular. To do this, we label the elements of G as

G = {g1, · · · , g`}
and take U ⊂ B to be an open subset such that the birational map gα : B 99K B is
regular on U for all α. We then take B′ to be the closure of the locus

Γ = {(g1p, · · · , g`p) : p ∈ U} ⊂ B`;
and we observe that the action of G on B′ is regular, since it is just the restriction
of the action of G on B` permuting the factors.

Next, we make another base change B′′ → B′, with B′′ a resolution of singular-
ities of B′, such that the support of the discriminant locus of the induced family
X ′′ = X×BB′′ −→ B′′ is a divisor with normal crossing. Moreover, by [Hi] we can
do this equivariantly with respect to the action of G; that is, so that the action of
G on B′ lifts to a regular action of G on B′′.

Finally, we claim that if X ′′ = X ×B B′′ is the pullback of our family to B′′, the
action of G on X lifts to a regular action of G on X ′′. This follows from the fact
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that stable curves have only finitely many automorphisms, which says that for any
g ∈ G, the variety

Ψ = {(b, ψ) : b ∈ B′′, ψ : Xb → Xg(b) an isomorphism}

is a finite cover of B′′. The action of g on B′′ lifts over an open subset U of B′′, so
that we have a section of Ψ→ B′′ over U ; since Ψ→ B′′ is finite and B′′ is smooth
(and in particular normal), this section extends to all of B′′.

We continue with the proof. We will proceed in two stages: we will give the
proof first under the additional hypothesis that the action of G on the base B
of our family is faithful ; that is, no element g ∈ G other than the identity fixes
B pointwise. This is, as we will see in the following section, the case relevant to
families having maximal variation, and the proof is somewhat more transparent
here. Finally, we will indicate the modifications necessary to make the argument
work without this assumption.

Assuming that the action of G on B is indeed faithful, let

Φ = {b ∈ B : g(b) = b for some g 6= Id ∈ G}

be the locus of points b ∈ B fixed by some element g ∈ G other than the identity,
and let D0 be any effective divisor on B whose support contains Φ. Set

D = |G| ·D0

and let M be the line bundle

M = KB(−D).

By Lemma 3.2, for all sufficiently large n the line bundle

ωfn ⊗ f∗nM

is big; choose such an integer n. We see then that the ring

R =
∞⊕
m=0

H0(Xn
B, (ωfn ⊗ f∗nM)m)

of sections of powers of ωfn ⊗ f∗nM has (maximal) dimension dim(Xn
B) + 1, and

correspondingly so does the subring RG of elements of R fixed under the action of
G. But now we can write

ωfn ⊗ f∗nM = ωXnB (−|G| · f∗nD0)

so we can view sections of (ωfn ⊗ f∗nM)m as m-canonical differentials on Xn
B van-

ishing to order m · |G| along the locus of points of Xn
B fixed by elements of G other

than the identity. Thus, applying Corollary 4.2 we see that if Z is any resolution
of singularities of Xn

B/G, we have an inclusion

RG ↪→
∞⊕
m=0

H0(Z, (KZ)m)

of RG in the canonical ring of Z. We conclude finally that Z is of general type, and
hence so is the quotient Xn

B/G.
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It remains to consider what may happen if the subgroup G′ ⊂ G of elements of
G that fix B pointwise is not equal to the identity. Now, if an element g ∈ G that
acts trivially on B does not fix pointwise any component of a fiber of X over B,
then the codimension of its fixed point locus in Xn

B grows with n, and there is no
problem. We thus have to replace Φ ⊂ B above with the subset

Φ = {b ∈ B : g fixes some component of Xb pointwise, for some g 6= Id ∈ G},

and again let D0 be any effective divisor on B whose support contains Φ; the
argument then proceeds as before.

5. The general case

5.1. Stable reduction over arbitrary bases. We are now prepared to complete
the proof of Theorem 1.3, which says that if f : X → B is an arbitrary family of
curves (by which we mean any morphism of integral varieties whose general fiber
is a smooth curve of genus g ≥ 2), then high fiber powers of X over B admit
dominant rational maps to varieties of general type. To do this, we have to relate
our arbitrary family to the sort of families considered in Proposition 4.1 above, so
that we can deduce our Theorem using Proposition 4.1.

Given an arbitrary family f : X → B of curves, we want to construct a family
of stable curves whose smooth fibers are those of the family f . In other words, we
want to carry out stable reduction over an arbitrary-dimensional base B. A key
step in doing this is the following

Lemma 5.1 (Tautological families of stable curves). There exists a tautological
family over a finite cover of the moduli space of stable curves; that is, there ex-
ists a variety Ω and a family of stable curves T → Ω such that the associated map
ϕ : Ω → Mg is finite and surjective. Equivalently, there exists a variety Ω, a fi-

nite surjective map ϕ : Ω −→ Mg and a family of stable curves T → Ω such that
ϕ(x) = [Tx] for every x in Ω.

Remark. This follows from the existence of universal curves with suitably defined
level structure; see [Po1] or [Po2]. It is also true for more general moduli problems;
see [Ko1]. In the special case of curves Looijenga and Pikaart (see for example
[Lo]) have given explicit constructions of such Ω showing in particular that we can
take Ω to be smooth. The constructions of Looijenga and Pikaart, however, are
subtle, and require a deep understanding of the local structure of families of stable
curves. Alternatively, one can give an ad-hoc proof of just this statement, using
the description of Mg as a geometric quotient (in the sense of geometric invariant
theory) of the Hilbert scheme Hg parametrizing n-canonically embedded stable
curves (cf. Section 1.2). Since Hg is naturally endowed with a universal family of
curves, a tautological family can be constructed by patching together local liftings
of the map Hg →Mg; for the details, see Section 5 of [CHM1].)

As we indicated, the import of Lemma 5.1 for us is the following Corollary.
(The proof of this statement will be carried out in the course of the proof of the
Correlation Theorem 1.3 in the next section; but it seems worth stating on its own.)
Before we state it, however, we should make one remark concerning base change.

Remark. Suppose we are given a family f : X → B of curves, and we want to
apply to this family the base change associated to a generically finite map B′ → B
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with B′ irreducible. If in fact the fiber dimension of f does jump, then it may
happen that the fiber product X ×B B′ is no longer irreducible. In this case, we
will simply disregard the components of the fiber product that fail to dominate B:
we define the essential pullback X ′ → B′ of our family to be the unique irreducible
component X ′ of the fiber product X ×B B′ dominating B, with the restriction of
the projection map to B′.

Corollary 5.1 (Stable reduction for curves). Given any morphism f : X → B of
integral varieties whose general fiber is a smooth curve of genus g ≥ 2, there exists a
generically finite map B′ → B, a family of stable curves X ′ → B′ and a birational
isomorphism of X ′ with the essential pullback of the family X → B to B′.

5.2. Completion of the proof of the Correlation Theorem 1.3. We consider
now the general case: an arbitrary morphism f : X → B of integral varieties whose
general fiber is a smooth connected curve of genus g ≥ 2. We will not assume
anything about the smoothness or singularity of the spaces X or B, or about the
flatness (or even constancy of fiber dimension) of the map.

Our first goal must be, starting with the family f : X → B, to find a family Tf →
Σ of stable curves that X dominates, and to which we can apply Proposition 4.1 of
the preceding section. We cannot do this right away, however; we first have to make
a series of base changes of the original family to obtain families Xi → Bi, and then
at the end we need to deduce the desired statement (that for n sufficiently large
the fiber power Xn

B dominates a variety of general type) for the original family,
not the one obtained after base change. Note that since the statement we wish to
make (that Xn

B dominates a variety of general type for n � 0) concerns only the
birational isomorphism class of our original family X → B, we do not need to worry
about particular models for the families Xi → Bi; for example, we may specify a
base change as a dominant rational map Bi+1 99K Bi – that is, only on an open
subset of Bi. We cannot allow ourselves the same luxury with regard to the family
Tf → Σ, however: if we want to apply Proposition 4.1 to it, we need to know that
Tf → Σ is a complete family of stable curves.

First base change. By hypothesis there is an open subset U ⊂ B over which the
map f is smooth, with fibers smooth connected curves of genus g. We thus have
a regular map U → Mg, which extends to a rational map B 99K Mg. We let B1

be the graph of this map, and Σ1 its image in Mg; let X1 → B1 be the essential
pullback of our family to B1.

Note that the map B1 → Σ1 ⊂Mg determines, for every point p ∈ B1, a stable
curve, which is isomorphic to the fiber of X1 over b for an open subset of b ∈ B1.
But these stable curves do not necessarily fit together to form a family; for that we
have to pass to a cover of Σ1 and the corresponding cover of B1.

Second base change. Now, we have constructed a tautological family over the

cover ϕ : Ω −→Mg in Lemma 5.1. We then let Σ2 = ϕ−1(Σ1) be the inverse image
of Σ1, and T2 −→ Σ2 the restriction of the tautological family T −→ Ω to Σ2 ⊂ Ω.
We then make the corresponding base change on our family X1 −→ B1; that is, we
set

B2 = B1 ×Σ1 Σ2,

and let X2 −→ B2 be the essential pullback of our family to B2. We arrive at the
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Third base change. We now have a family T2 → Σ2 of stable curves, and a map
B2 → Σ2 such that, on an open subset U of B2 at least, the fiber of our pullback
family X2 → B2 over each b ∈ U ⊂ B2 agrees with (that is, is isomorphic to) the
fiber of T2 over the image of b in Σ2. This is not enough, however: we would like
to say that the family X2 → B2 is birational to the pullback of the family T2 → Σ2

to B2; but the fact that the corresponding fibers are individually isomorphic is not
sufficient to guarantee this. For example, consider the isotrivial case. If the original
family X → B were isotrivial with general fiber C, the map B → Mg would be
constant, and all the constructions made so far essentially trivial: we would have
Σ2 = Σ1 = {[C]}, B2 = B1 = B and X2 = X1 = X ; but the family X → B need
not be, as we observed before, birationally trivial.

We thus have to make one more base change in order to arrive at a family
X3 → B3 that is indeed birational to the pullback of a family T3 → Σ3 of stable
curves finite over moduli. We do this exactly as in the isotrivial case: for every
point b ∈ B2 we consider the set of isomorphisms between the fiber of X2 over b
and the fiber of the pullback of T2 → Σ2 to b, that is, the fiber of T2 at µ(b), where
µ is the base change µ : B2 −→ Σ2; over an open subset of B2 these will give us
our cover B3 → B2. The one difference is that, since we want a finite group to act
on X3 → B3 with quotient X → B, we may have to make one further extension to
ensure that the generically finite map B3 → B is Galois, i.e., that the extension of
function fields K(B3)/K(B) is Galois.

Explicitly, we set

B′ = {(b, ψ) : b ∈ B2, ψ : (X2)b −→ (T2)µ(b) an isomorphism}

and let B′′ be any connected component of B′ dominating B2; we let B3 be the
Galois normalization of B′′ → B (that is, the normalization of B in the Galois
closure of the function field of B′′). If U ⊂ B2 is an open subset where the fibers
(X2)b and (T2)µ(b) are indeed isomorphic, and the automorphism group of (X2)b is
constant, then over U the pullback

X3 = X2 ×B2 B3

= {(b, ψ, p) : (b, ψ) ∈ B3, p ∈ Xb}
of our family to B3 is visibly isomorphic to the pullback B3 ×Σ2 T2, via the maps
π1 : (b, ψ, p) 7−→ (b, ψ) and π2 : (b, ψ, p) 7−→ ψ(p).

By construction, we have an action of the Galois group

G = Gal(K(B3)/K(B))
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on B3, with quotient birational to B. Since X3 is birationally the pullback X×BB3,
that action lifts as well to a birational action of G on X3, with quotient X3/G
birational to the total space X of our original family.

Finally, we introduce our desired family T3 → Σ3. To start with the base Σ3, we
want this to be in some sense the finite cover of Σ2 analogous to the cover B3 → B2

– that is, we want the map B3 → Σ2 to factor through it, with the same finite
group G acting simultaneously on B3 and Σ3, with quotients birational to B1 and
Σ1; we would also like that action to lift to the pullback T3 = T2 ×B2 B3 as well;
that is, we want G to act (birationally) on the whole diagram

X3 99K T3y y
B3 −→ Σ3

where the top arrow is the composition of the birational isomorphism X2 → B3×Σ2

T2 with the projection B3 ×Σ2 T2 −→ Σ3 ×Σ2 T2 = T3.
There are several ways of characterizing the desired variety Σ3. Algebraically, we

can let L be the algebraic closure of the function field K(Σ2) in the function field
K(B3), and take Σ3 to be the normalization of Σ2 in the field L. Geometrically,
we apply Stein factorization to the map B3 → Σ2 to express this as a composition
B3 → Σ3 → Σ2, where Σ3 → Σ2 is finite and B3 → Σ3 has connected fibers.

Either way, the main point to check is that the action of G on X3 → B3 descends
to a (birational) action of G on T3 → Σ3. From the algebraic description of Σ3 it
is clear that G acts birationally on Σ3: since G acts on the field K(B3) fixing the
subfield K(B1) = K(B), it fixes K(Σ1) ⊂ K(B1); thus it carries elements of K(B3)
algebraic over K(Σ1) into elements algebraic over K(Σ1), which is to say it acts on
the field L = K(Σ3). Geometrically, we can also see this readily: suppose we are
given a general point σ ∈ Σ3 and an element g ∈ G, and we want to decide to which
of the (finitely many) points of Σ3 in the fiber of Σ3 → Σ1 over σ the action of g
should send σ. We simply choose a general point b in the fiber of B3 → Σ3 over σ,
and send σ to the image of g(b); since the general fiber of B3 over Σ3 is irreducible,
there is no ambiguity in this choice. The same applies to the map X3 → T3: since
the general fiber is irreducible, the action of G on X3 descends to an action on T3.

We arrive (finally!) at the diagram that contains the desired map ν:

X

��
f

X1
oo

��

X2
oo

��

X3
oo

��

// T3 ×B3

##

ν

GGG
GGG

GGG

B

  

B1
oo

��

B2
oo

��

B3
oo

��

T3

uuk k k k
k k k k
k k k k
k k k k
k k k

Σ1

  B
BBB
BBB
B Σ2
oo Σ3

oo

Mg

The point is, the group G acts as a group of birational automorphisms of X3 and
T3, and hence acts on the fiber powers (X3)nB3

and (T3)nΣ3
as well. In the former

case, the quotient (X3)nB3
/G is birational to the fiber power Xn

B of our original
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family. We thus have a dominant map

Xn
B

∼=99K (X3)nB3
/G −→ (T3)nΣ3

/G

and by Proposition 4.1 of the preceding section, for n sufficiently large the quotient
(T3)nΣ3

/G is of general type.

6. The higher-dimensional case

Having completed the proof of the Correlation Theorem, two questions naturally
arise: is the analogous statement valid for families with higher-dimensional fibers,
and what are the consequences if it is? We will discuss these questions in turn in
this section.

6.1. Correlation for families of higher-dimensional varieties. For the first
question, both János Kollár and Eckhart Viehweg have, in private correspondence
with us, indicated that the likely answer is “yes”; we will state it as a conjecture and
discuss which ingredients of a possible proof are known, and which represent poten-
tial obstacles. The discussion below is based to a large degree on our conversations
with Kollár and Viehweg.

Conjecture H. Let f : X → B be an arbitrary morphism of integral varieties,
whose general fiber is an integral variety of general type. Then for n � 0, Xn

B

admits a dominant rational map h to a variety W of general type such that the
restriction of h to a general fiber of f is generically finite.

This has recently been proved by Brendan Hassett [Ha] in case the general fiber
of f is a surface.

To understand what is involved in a proof of Conjecture H, it is useful to go
back to the case of one-dimensional fibers, and even to the very first example we
studied: the general pencil of plane quartics, which we described in Section 2.1.
This time, however, take the family X → B of all plane quartics, parametrized by
the projective space B = P14. The situation is formally very much the same: X is
a smooth hypersurface in P14×P2, given as the zero locus of the (bihomogenization
of the) polynomial ∑

ai,jx
iyj = 0,

which is to say, again a smooth hypersurface of bidegree (1,4). Given that the
canonical bundle of P14 × P2 is

KP14×P2 = OP14×P2(−15,−3)

it will take a little longer for the fiber power to have positive dualizing sheaf, but
it happens: if we let Y be the 15th fiber power of X with itself over B, we see that
Y is a complete intersection in P14 × (P2)15 of 15 hypersurfaces, of multidegrees
(1,4,0, . . . ,0), (1,0,4,0, . . . ,0), . . . ,(1,0, . . . ,0,4); and accordingly

ωY ∼= OY (0, 1, . . . , 1)

which is big - in fact, it is very ample.
But Y itself cannot possibly be of general type, for X and likewise all its fiber

powers are acted upon by PGL3, and the general orbits of these actions are iso-
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morphic to PGL3. In particular, the fiber powers will have copies of PGL3 passing
through a general point and so cannot have any sections of any power of the canon-
ical bundle.

The conclusion is that the situation must be exactly the opposite of that in the
case of the pencil: namely, the singularities of the fiber powers Y must not be
canonical; and indeed they must impose so many adjoint conditions that none of
the (many) sections of powers of ωY can extend to regular sections of the canonical
bundle of a desingularization.

This shows how important to our proof in the case of curves is the reduction
to the case of families with only normal crossing singularities. In fact, everything
about the argument except this reduction holds as well in the higher-dimensional
case. Explicitly, suppose we are given a family X → B whose general fiber is of
general type; for simplicity suppose that the spaces X and B are smooth and that
the fiber dimension of the map is constant (so that in particular the fiber powers
are local complete intersections and therefore have locally free dualizing sheaves).
Suppose also that the family has maximal variation of moduli, in the sense of [Ko].
Then we have

i. The relative dualizing sheaf ωX/B is big (cf. [Ko]).
ii. By our Lemma 3.1, it follows that for n� 0 the dualizing sheaf of Xn

B is big.
iii. If the fibers of X → B have normal crossing singularities, then the singulari-

ties of the fiber powers are canonical (cf. [V]).
iv. Moreover, if in the above setting a finite group G acts simultaneously on X

and B, then the adjoint conditions imposed by the singularities of the quotient
of Xn

B by the diagonal action of G will again be bounded independently of n,
by our Corollary 4.2. In particular Xn

B/G will be of general type for n� 0.

Thus we see that all the ingredients of a proof in the higher-dimensional case are
in place, except for the analog of semistable reduction. In particular, the conjecture
would presumably follow from the existence of a compact moduli space for a class
of varieties including the general fiber of X → B and whose singularities were no
worse than normal crossings (or more generally such that the singularities of the
fiber powers of their deformations were canonical).

In the remainder of this section, we will discuss two results that would follow
from Conjecture H above, one general and geometric and the other special and
arithmetic.

6.2. Geometric consequences of the higher-dimensional conjecture. Re-
call that, according to the Geometric Lang Conjecture, if X is any variety, then the
union of all (positive-dimensional) subvarieties of X not of general type is again
a subvariety, which we will call the Langian exceptional locus of X and denote
ΞX ⊂ X . Lang has conjectured further that ΞX is the Zariski closure of the union
of all images of rational and abelian varieties under non-constant maps to X , and
that it is the smallest subvariety of X satisfying the statement of Conjecture B
(the Strong Lang Conjecture) above. Note one property of the Langian locus that
follows from any of these characterizations: if Y ⊂ X is any subvariety of X and
ΞX ⊂ Y , then ΞX = ΞY .

Assuming the truth of the Geometric Lang Conjecture, a natural question to
ask is how the subvarieties Ξ vary with parameters – that is, if we are given a
family X → B of varieties of general type, what can we say about the exceptional
subvarieties Ξb = ΞXb of the fibers? The answer is expressed in the following
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Theorem 6.1. Assuming the Geometric Lang Conjecture and Conjecture (H )
above, there is a number D(d, k) such that for all projective varieties X of de-
gree d or less and dimension k or less, the total degree of the Langian exceptional
locus is

deg( ΞX) ≤ D(d, k).

Here by the total degree of a variety we mean the sum of the degrees of its
irreducible components; this differs from the ordinary notion of degree precisely
when the variety does not have pure dimension.

Before proceeding with the proof of Theorem 6.1, we mention a few consequences
of this boundedness statement. In perhaps its simplest application, for example,
it would say that for any d ≥ 5 there is an upper bound L(d) on the degree of
a curve of geometric genus 0 or 1 lying on a smooth surface S of degree d in P3,
independent of the particular surface S. (This is actually a consequence of the
more general theorem announced by Lu and Miyaoka in [LM].) Likewise, it would
say that for any d ≥ 6 there is an upper bound on the degree of any surface not of
general type lying on a smooth threefold X of degree d in P4, and also on the degree
of any rational or elliptic curve lying on such a threefold but not contained in any
such surface, again independent of the particular hypersurface. Both of these latter
statements are completely unknown.

Proof. We will use an induction on the dimension k. We start with a sequence
of reductions. First of all, since the Hilbert scheme parametrizing subvarieties of
projective space of bounded degree and dimension is of finite type, and there exists a
universal family over it, it will suffice to prove that, given any morphism f : X → B
of projective varieties, the degrees of the Langian exceptional loci ΞXb of the fibers
are bounded. Secondly, by the Noetherian property of the Zariski topology, it will
suffice to show that in this circumstance there is a non-empty open subset U ⊂ B
such that the degrees of the loci ΞXb for B ∈ U are bounded. Third, we may
by pulling back assume that the base B is smooth; and fourth, replacing X by its
normalization we may assume that the general fiber of f is smooth. Finally, since
we are only concerned with an open subset of B, we can assume the morphism f
is smooth.

Now, by upper-semicontinuity of the dimension of the space of global sections of
a family of coherent sheaves applied to the powers of the relative dualizing sheaf,
if f : X → B is a smooth morphism, then the locus of points b ∈ B over which the
fiber Xb is of general type is closed. If in our present circumstance this locus is a
proper subvariety Z ⊂ B, we are trivially done, since then we may restrict to the
complement U = B \Z, and ΞXb = Xb for all b in this open set. Otherwise, all the
fibers of f are of general type.

We may thus apply the Conjecture H to our family, to conclude that for n
sufficiently large the fiber power Xn

B admits a dominant rational map h to a variety
W of general type. Let Z ⊂ Xn

B be the union of two subvarieties of Xn
B: the inverse

image in Xn
B of the Langian exceptional locus of W ; and the locus of positive-

dimensional fibers of the map f × h : Xn
B → B ×W – that is, the union of the loci

of positive-dimensional fibers of the restrictions of h to the fibers of f . Z is then
a proper subvariety of Xn

B that, for every point u in Xn−1
B , contains the Langian

exceptional locus of the fiber of Xn
B over u.

Consider now the projection map πn : Xn
B → Xn−1

B and its restriction to Z;
note in particular that for any choice of projective embedding of Xn

B, the degrees
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of the fibers of Z over Xn−1
B are bounded. Let Zn−1 ⊂ Xn−1

B be the locus of points

u ∈ Xn−1
B such that Z contains the whole fiber of Xn

B over u, and let Un−1 ⊂ Xn−1
B

be its complement; let U0 be the image of Un−1 in B, which contains a non-empty
open subset U ⊂ B. For every point b ∈ U , there is a point u ∈ Xn−1

B lying over b
such that Z does not contain the fiber of Xn

B over u; thus the Langian exceptional
loci of the fibers of X over b ∈ U are the Langian exceptional loci of the fibers
of Z over points of Un−1. But these fibers form a family of bounded degree and
dimension k − 1 or less; so by induction the degrees of their Langian exceptional
loci are bounded.

6.3. An arithmetic consequence of the higher-dimensional conjecture. In
contrast to the general nature of Theorem 6.1, this will be a very special application
of Conjecture H; indeed, we will assume only the Lang conjectures and Conjecture
H for the symmetric fiber squares of families of curves.

What makes it possible to deduce consequences of the conjectures in this case is
simply that we have some knowledge of the Langian exceptional loci of symmetric
squares of curves. Specifically, if C is a hyperelliptic curve, the symmetric square
of C will contain a rational curve, namely the fibers of the degree 2 map from C to
the projective line. Similarly, if C is bielliptic - that is, admits a map π of degree 2
to an elliptic curve E – then the fibers of π give an elliptic curve in the symmetric
square C(2) of C. Less obviously, we have a converse to these observations: if C is
any curve that is assumed to be neither hyperelliptic nor bielliptic, then by [AH] the
symmetric square of C will contain no rational or elliptic curves; and the Langian
exceptional locus of C(2) will thus be empty.

Assuming the Weak Lang Conjecture, if X → B is a family of curves with no
hyperelliptic or bielliptic fibers, then the number of rational points on the fibers
of the symmetric fiber square will be bounded. Thus, we may deduce from the
Weak Lang Conjecture that for every number field K and any non-hyperelliptic,
non-bielliptic curve C of genus g defined over K, there is a uniform bound on the
total number of points of C whose coordinates are quadratic over K, independent
of the particular curve C. Similarly, from the Strong Lang Conjecture we could
deduce the existence of a bound Nq(g), independent of K, that applies with finitely
many exceptions for any K. We state this formally:

Theorem 6.2. Assuming the Weak Lang Conjecture and Conjecture H for families
of symmetric squares of curves, there exists for every integer g and number field K
a number Bq(g,K) such that no non-hyperelliptic, non-bielliptic curve C of genus
g defined over K has more than Bq(g,K) points whose coordinates are quadratic
over K. If we assume in addition the Strong Lang Conjecture, there exists for every
integer g a number Nq(g) such that for any number field K there are only finitely
many non-hyperelliptic, non-bielliptic curves of genus g defined over K that have
more than NQ(g) points whose coordinates are quadratic over K.
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sions quadratiques et cubiques. preprint.



34 LUCIA CAPORASO, JOE HARRIS, AND BARRY MAZUR

[AH] D.Abramovich, J.Harris. Abelian varieties and curves in Wd(C). Compositio Math. 78
(1991) p. 227-238. MR 92c:14022

[Ar] S.Ju.Arakelov. Families of algebraic curves with fixed degeneracies. Izv. Akad. Nauk.
SSSR, Ser. Math 35 (1971); English translation Math USSR Izv. 5 (1971) p. 1277-1302.
MR 48:298

[ACGH] E.Arbarello, M.Cornalba, P.Griffiths, J.Harris. Geometry of Algebraic Curves, Volume
1. Springer-Verlag, NY. MR 86h:14019

[BM] E. Bierstone, P. Milman. A simple constructive proof of canonical resolution of sin-
gularities. In: Effective Methods in Algebraic Geometry, Progress in Math. vol. 94,
Birkhauser Boston 1991, p. 11-30. MR 92h:32053

[B] F.Bogomolov. Families of curves on surfaces of general type. Dokl. AN SSSR 236 (6)
(1977) p. 1294-1297 (English: Sov. Math. Doklady 1041-1044). MR 56:15655

[CHM] L.Caporaso, J.Harris, B.Mazur. How many rational points can a curve have? Proceed-
ings of the Texel Conference, Progress in Math. vol. 129, Birkhauser Boston, 1995, p.

13–31. CMP 96:04
[CHM1] L.Caporaso, J.Harris, B.Mazur. Uniformity of rational points. Preliminary version of

this paper, available by anonymous ftp from math.harvard.edu.
[SGA] M.Demazure Exposé IV: Topologies et Faisceaux 6.5, 6.5. In: SGA 3 (Schemas en

Groupes I), Springer Lecture Notes in Mathematics 151 (1970) MR 43:223a
[E] L.Ein. Subvarieties of generic complete intersections, II. Math. Ann. (289), pp 465-471.

MR 92h:14002
[El] R.Elkik, Singularités rationnelles et deformations., Invent. Math. 47, (1978) p. 139-147.

MR 80c:14004
[F] G.Faltings. The general case of S. Lang’s Conjecture. Barsotti Symposium in Algebraic

Geometry, Perspectives in Mathematics, Academic Press, Inc. 1994 p.175-182. MR
95m:11061
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