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Uniformity of rational points
an up-date and corrections

Lucia Caporaso, Joe Harris and Barry Mazur

The purpose of this note is to correct, and enlarge on, an argument in a paper we
published a quarter century ago (J. Amer. Math. Soc. 10:1 (1997), 1–35). The
question raised is a simple one to state: given that a curve C of genus g ≥ 2
defined over a number field K has only finitely many rational points, we ask if
the number of points is bounded as C varies.

1. Introduction

In [Caporaso et al. 1997] it is asserted that, assuming the truth of the strong Lang
conjecture (Conjecture 8), a very strong form of boundedness holds: for every g ≥ 2
there is a finite bound N (g)— not depending on K ! — such that for any number field
K there are only finitely many isomorphism classes of curves of genus g defined
over K with more than N (g) K-rational points. The issue is, in that statement do
we mean finitely many isomorphism classes over K , or over the algebraic closure
K ? The paper asserts the statement in the stronger form — up to isomorphism over
K — but the proof establishes only the weaker statement that there are finitely many
curves with more than N (g) points up to isomorphism over K .

The main purpose of this note is to give a complete argument of the stronger form,
which we will do in Sections 3 and 4. Of course, if indeed there is a “universal”
bound N = N (g) on the number of points on a curve of genus g defined over
an arbitrary number field — with finitely many exceptions for any given K — the
question of how large N (g) has to be is an intriguing one, and we devote the final
chapter to a preliminary discussion of this and related questions.

2. Moduli spaces

Fix a genus g > 1.

The coarse moduli space. Let M = Mg, the coarse moduli space of smooth pro-
jective curves of genus g; so M is a variety defined over Q.
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The rigidified moduli space.

Definition 1. A point p in a variety V over a field K is rigid in V if there are no
nontrivial automorphisms of V (over the algebraic closure K ) that fix p; i.e., for
any automorphism α : V → V if α(p)= p then α is the identity.

Let Mg,1 be the Deligne–Mumford stack of smooth projective curves C of genus
g with one marked point p ∈ C . We will denote by M∗ the open substack of Mg,1

corresponding to pairs (C, p) where C is a smooth projective curve of genus g and
p is a rigid point in C . (Call such a pair (C, p) a rigidified curve.) The stack M∗ has
trivial inertia and so is a fine moduli space representable by an algebraic space M∗

(see 92.13 in [Stacks 2005–]). The algebraic space M∗ is a quasiprojective scheme
(see the classical results of Knudsen [1983] and Kollár [1990]). We note that M∗ is
a scheme of finite type over Q and: there is a universal family φ : CM∗ → M∗, such
that for any rigidified curve (C, p) defined over K there is a K-point [(C, p)] ∈ M∗

such that the fiber of CM∗ over the point [(C, p)] is isomorphic to C .
The forgetful projection (C, p) 7→ C gives us a mapping

M∗
−→ M

defined over Q (with one-dimensional fibers).

Proposition 2. For g > 1 there is a finite bound Bg with the property that if K
is a (number) field and C a smooth projective curve of genus g, defined over K ,
such that |C(K )| > Bg there is a K-rational rigid point p in C. The curve C is
(therefore) represented by a K-rational point of M∗.

We thank Jakob Stix for communicating a proof of the fact that one can take Bg

to be equal to 82(g − 1). See Appendix B.

The moduli space with level structure. Here it will suffice for us to work over C.
Let ℓ ≫ 0 be a prime and M̃g,1 := Mg,1[ℓ] the moduli space of smooth pointed
curves of genus g with full level ℓ structure. That is, Mg,1[ℓ] classifies pairs (C, λ)
where C is a smooth pointed curve of genus g (over C) and (the “level structure”)
λ is an isomorphism of Fℓ-vector spaces

λ : F
2g
ℓ

≃
−→ H1(CC; Fℓ).

Note that M̃g,1 is not connected, but this won’t bother us. The finite group

G := GL2g(F)

acts on M̃g,1 with quotient Mg,1.
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Define M̃∗ by the following diagram, the upper square being exact:1

M̃∗ //

G
��

M̃g,1

G
��

M∗ //

��

Mg,1

��

M =
// M

(1)

So the group G acts on M̃∗ with quotient M∗ rendering M̃∗ a G-torsor over M∗ as
well. The fine moduli space M̃∗ classifies triples (C, p, λ) and we have an exact
square of universal families:

CM̃∗

G
//

φ̃
��

CM∗

φ

��

M̃∗ G
// M∗

(2)

These (i.e., the vertical morphisms) are flat families of smooth projective curves of
genus g, and the group G acts equivariantly, rendering the domains of the horizontal
morphisms G-torsors over the corresponding ranges.2

General families of rigid curves. Let B be a scheme of finite type over C, and
φB :CB → B a flat family of smooth projective rigidified curves of genus g (over B) —
that is, such that there is a section p : B → CB having the property that for every
point b of B the image point p(b) in the fiber Cb over b is a rigid point of that
curve Cb. Since M∗ is the fine moduli space for such objects, this family comes by
pullback from a unique morphism

j : B → M∗

1This is sometimes called a “cartesian square:” An exact (synonymously: cartesian) square

A //

��

B

��

D // C

is a commutative square, where the mapping A → B ×C D determined by the diagram is an
isomorphism.

2E.g., the mapping
G × M̃∗

−→ M̃∗
×M∗ M̃∗

given by (g,m) 7→ (m, g(m)) is an isomorphism.
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and φB fits into a diagram, the upper square being exact:

CB //

φB
��

CM∗

φ

��

B
j

//

i

%%��

M∗

k
��

B0 = i(B) �
�

// M

(3)

Here, by Chevalley’s classical theorem, the image of B in M∗ (via the mapping j )
and in M (via the mapping i) are constructible sets, so the first is a finite union of
locally closed (irreducible) subvarieties of M∗, and the second is a finite union of
locally closed (irreducible) subvarieties of M . We will deal, inductively with all of
these subvarieties; but

• let B ′

0 be any one of the locally closed (irreducible) subvarieties in M that is
among components of the constructible set which is the image of B in M , and

• let B ′ be a locally closed (irreducible) subvariety of M∗ that is

– among components of the constructible set which is the image of B in M∗,
and

– that contains a Zariski-dense open in the inverse image of B ′

0 under k.

We have an analogous diagram as (3) but

• with B replaced with B ′; and B0 replaced with B ′

0; but such that

• all morphisms are morphisms of varieties, and

• where B ′

0 and B ′ are locally closed subvarieties of M and M∗, respectively.

Removing the primes (′) from the terminology we have:

CB
� � //

φB
��

CM∗

φ

��

B �
�

//

i

%%��

M∗

k
��

B0 = i(B) �
�

// M

(4)

In diagram (4) it is only the upper square that is exact. These are the diagrams we
will be studying. Call such a family of rigid curves, CB → B, clean. From now on
we will assume that our families CB → B are “clean.”
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Augmenting such a clean family with level structure by tensoring with M̃ (over
M) with we might form

CB // B
j
// M∗ CM∗oo

CB̃
//

G

OO

��

B̃
j̃
//

G

OO

��

M̃∗

G

OO

��

CM̃∗

��

oo

G

OO

CB̃0
// B̃0
� � //

G
��

M̃

G
��

CM̃
oo

B0
� � // M

(5)

Here the vertical mappings in the two exact diagrams

CB

��

// CM∗

��

CB̃0
//

��

CM̃

��

B �
�

// M∗ B̃0
� � // M̃

are flat families of (smooth projective rigidified curves of genus g) and — respec-
tively — flat families of (smooth projective curves of genus g with level structure).
The arrows labeled “G” are morphisms obtained by passing to the quotient by the
natural action of G. All squares where the vertical arrows are labeled “G” are
cartesian and G-equivariant. And note that the schemes on the bottom line of
diagram (5) — i.e., B0 ↪→ M — do not possess “universal families.”

3. A strengthened correlation theorem

Note: the results of this section are purely geometric, rather than arithmetic; objects
will be varieties defined over C. Moreover, we will be dealing entirely with birational
properties, so we will feel free to restrict to open subsets where convenient. Thus,
for example, when we say that the fibers of a morphism are curves of genus g, we
will mean that they are open subsets of a curve whose normalization is a smooth
projective curve of genus g.

For our purposes, we will need the following slightly strengthened version of the
correlation theorem, the key geometric lemma (i.e., Proposition 3.1) of [Caporaso
et al. 1997]:

Proposition 3. With the notation of the previous section, if the map B j
→ M∗ is

generically finite, then for n ≫ 0 the fiber power Cn
B (over B) is of general type.
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Remarks. (1) This is stronger than the correlation theorem in just one respect:
we are only assuming that the map j : B → M∗ is generically finite, not that the
projection B → B0 ↪→ M is generically finite:

B
j
//

j0

!!

h
��

M∗

��

B0
� � // M

(2) There is an obvious bifurcation: either the map j0 : B → M is generically finite,
or it has generically one-dimensional fibers. In the former case, Proposition (3.1)
of [loc. cit.] applies, and we’re done; thus we can, and will, assume that the general
fiber of j0 has dimension 1, and more specifically that

B ⊂ M∗ is the inverse image of B0 in M. (6)

Lemma 4. Under hypothesis (6) above, the morphism

B̃ → B̃0 (7)

is a smooth morphism with fibers that are curves of genus g.

Proof. First, the morphism M̃∗
→ M̃ has the property that its fibers are curves

(whose smooth projective completions are) of genus g. This is because M̃ is a fine
moduli space, and the operation of “tilde” (˜) and “star” (∗) commute, so that the
fiber of a point [(C, λ)] in M̃ is given by ([(C, λ)], p), where p ranges through the
locus of all rigid points of C .

Also, by (6), we also have that:

B̃ ⊂ M̃∗ is the inverse image of B̃0 in M̃ (8)

so that
B̃

j̃
//

h̃
��

M̃∗

��

B̃0
� � // M̃

is an exact square, and therefore the fibers of B̃ → B̃0 are pullbacks of the fibers of
M̃∗

→ M̃ . □

(3) However if it were true (but it is not true, generally) that h : B → B0 has fibers
that are curves of genus g we would then be done: a high fiber power Cn

B0
(over B0)

would be of general type by the correlation theorem, and the projection

Cn
B := Cn

B0
×B0 B

1×h
−−→ Cn

B0
×B0 B0 = Cn

B0
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would have fibers that generically are curves of genus g. so — by [Kollár 1987] —
it would be of general type as well. Another way of thinking about the obstruction
to proving Proposition 3 is that there may not exist a tautological family over B0.

To prove Proposition 3 we use a proposition supplied by Kenneth Ascher and
Amos Turchet. Consider the diagonal action of G on fiber powers Cn

B̃
and Cn

B̃0
(these

powers being taken over B̃ and B̃0 respectively).3

Proposition 5. Keeping to the notation and hypotheses of Section 2, for n sufficiently
large the quotient Cn

B̃0
/G of Cn

B̃0
(under the diagonal action of G) is of general type.

Proof. This is just Theorem 1.7 in [Ascher and Turchet 2016], in the special case
D = 0. The hypotheses in [Ascher and Turchet 2016] require that the base B be
smooth and projective, but we can always achieve this by completing the family,
applying stable reduction and resolving the singularities of the new base. □

It should be noted that a major part of the work in [Ascher and Turchet 2016] is
to extend the original theorem to the setting of log varieties, which does not concern
us; what is new and useful for us is the incorporation of the group G.

3.1. Fiber powers. The group G acts equivariantly on the objects in the exact
diagram

CB̃
//

��

CB̃0

��

B̃ // B̃0

(9)

The square (9) is exact since the C involved are the universal families of curves
over B̃ → B̃0 (that is, pullbacks of the universal family over the fine moduli space
M̃g). For any n ≥ 1 let

Cn
B̃ := CB̃ ×B̃ CB̃ ×B̃ · · · ×B̃ CB̃,

i.e., the n-fold power of CB̃ over B̃, with the group G acting on Cn
B̃

by the diagonal
action. This action is equivariant for the natural projection Cn

B̃
→ B̃. The map

Cn
B̃ → Cn

B̃0
(10)

is a morphism of G-torsors.

Lemma 6. For n ≥ 1 the natural map Cn
B̃

→ Cn
B identifies Cn

B (the corresponding
fiber power Cn

B of our original family C → B) with Cn
B̃
/G, the quotient of Cn

B̃
by the

action of G.

3See Section 3.1. The action of g ∈ G is induced, in the evident way, from the action on
isomorphism classes (C, λ) 7→ (C, λ · g).



190 LUCIA CAPORASO, JOE HARRIS AND BARRY MAZUR

Proof. The natural map referred to arises from the following natural map, valid for
any three schemes over a scheme S, call them

X

��

S̃

��

Y

��

S

Put: X̃ := X ×S S̃ and Ỹ := Y ×S S̃. We have canonical isomorphisms of
S̃-schemes:

X ×S Y ×S S̃ ≃ (X ×S S̃)×S̃ (Y ×S S̃)≃ X̃ ×S̃ Ỹ ,

E.g., on points x, s̃, y of X, S̃, Y all of which map to the same point s of S, it’s
given by

x × y × s̃ 7→ (x × s̃)× (y × s̃).

Proceeding inductively on n this gives us a canonical isomorphism

Cn
B ×B B̃ := CB ×B CB ×B · · · CB ×B B̃ ≃

−→ Cn
B̃ := CB̃ ×B̃ CB ×B̃ · · · CB ×B B̃, (11)

by taking S := B, S̃ := B̃, X := CB , Y := Cn−1
B . Equation (11) is an equivariant

isomorphism for the action of the group G, which acts diagonally on the right
hand side and as for the left-hand side, an element g ∈ G acts on the fiber product
Cn

B ×B B̃ by the identity on the first factor; and as it has been defined to act, on the
second. The map B̃ → B = B̃/G (i.e., the map that exhibits B as the quotient of
B̃ under the action of G) induces a mapping Cn

B ×B B̃ → Cn
B ×B B = Cn

B .
Since the quotient of B̃ under the action of G is B, the quotient of Cn

B ×B B̃ under
the action of G is B is canonically isomorphic to Cn

B , and we have the commutative
diagram:

Cn
B ×B B̃ ≃

//

��

Cn
B̃

��

Cn
B

≃
// Cn

B̃
/G □

We also have the following lemma:

Lemma 7. For n ≥ 1 the fibers of the map of quotients by the action of G

Cn
B̃/G → Cn

B̃0
/G (12)

are generically curves of genus g.

The proof of Lemma 7 is given in Appendix A.
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Proof of Proposition 3. By Proposition 5 we have that for n ≫ 0 Cn
B̃0
/G is of

general type. By Lemmas 6 and 7, the mapping Cn
B → Cn

B̃0
/G has fibers that are

curves of genus ≥ 2, i.e., that are of general type. By [Kollár 1987], it follows that
Cn

B is of general type. □

4. The boundedness argument

Let us first state the version of the Lang conjecture we will be invoking.

Conjecture 8 (strong Lang). Let X be a variety of general type, defined over a
number field K . There is then a proper subvariety Z ⊂ X such that for any finite
extension L of K , #(X \ Z)(L) <∞; that is, all but finitely many L-rational points
of X lie in Z.

Given this and Proposition 3 of Section 3, we can deduce:

Theorem 9. Assume the SLC (Conjecture 8). If π : C → B is a family of pointed
curves without automorphisms, defined over Q, such that the induced map φ :

B → M∗ is finite, then there is then an integer N such that for any number field K ,

#{b ∈ B(K ) | #Cb(K ) > N }<∞

Proof. We will prove an a priori weaker form of this: we will show that there exists
a nonempty open subset U ⊂ B and an integer N such that for any number field K ,

#{b ∈ U (K ) | #Cb(K ) > N }<∞;

Theorem 9 will then follow by Noetherian induction.
To prove this, let πn : Cn

B → B be the n-th fiber power of the family C → B. By
Proposition 3, for large n the fiber power Cn

B will be of general type. By the Strong
Lang Conjecture, then, there will be a proper subvariety Z ⊂ Cn

B such that for any
number field K , all but finitely many K-rational points of Cn

B lie in Z ; that is,

#(Cn
B \ Z)(K ) <∞.

We now define a sequence of subvarieties Zk ⊂ Ck
B inductively as follows. We

start with Zn = Z , and let

Zn−1 = {b ∈ Cn−1
B | π−1

n,n−1(b)⊂ Zn},

where πn,n−1 : Cn
B → Cn−1

B is the projection; similarly, given Zk we set

Zk−1 = {b ∈ Ck−1
B | π−1

k,k−1(b)⊂ Zk},
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where πk,k−1 : Ck
B → Ck−1

B is the projection. We arrive at a tower of spaces and
closed subvarieties:

Z = Zn
� � // Cn

B

πn,n−1

��

Zn−1
� � // Cn−1

B

πn−1,n−2

��...

π2,1

��

Z1
� � // C

π=π1,0

��

Z0
� � // B

where the k-th story in this tower has the structure:
...

πk+1,k

��

π−1
k,k−1(Zk−1)

%%

� � // Zk
� � // Ck

B

πk,k−1

��

Zk−1
� � // Ck−1

B

πk−1,k−2

��...

Note that since Z ⊊ Cn
B and π−1

n (Z0)⊂ Z , we necessarily have Z0 ⊊ B.
Now fix for the moment a value of k with 1 ≤ k ≤ n. Every irreducible component

Wα ⊂ Zk will either be the preimage of a subvariety in Ck−1
B , or will map onto its

image in Ck−1
B with degree dα . Let dk be the sum of the degrees dα , so that for any

p ∈ Ck−1
B , either #(π−1

k,k−1(p)∩ Zk)≤ dk , or π−1
k,k−1(p)⊂ Zk .

Finally, let N be the maximum of the dk , and set U = B \ Z0. We claim that for
any number field K ,

#{b ∈ U (K ) | #Cb(K ) > N }<∞;

as noted above, Theorem 9 will follow by Noetherian induction. To see this, restrict
our family and all fiber powers to the open subset U ⊂ B; similarly, replace Z by
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its intersection with π−1
n (U ). Fix a number field K , and let

6 = {(Cn
U \ Z)(K )},

and let 60 = πn(6) be its image; by hypothesis, this is a finite subset of U .
We claim finally that for any b ∈ B(K ) \60, we have #(Xb(K )) ≤ N . To see

this, let b ∈ B(K ) be any K-rational point, and suppose that #(Xb(K )) > N . Since
b /∈60, all K-rational points of Cn

B lying over b must lie in Z . Pick any n −1 points
p1, . . . , pn−1 ∈ Xb(K ), and consider the points{

(Xb, p1, . . . , pn−1, p) | p ∈ Xb(K )
}

⊂ π−1
n,n−1

(
(Xb, p1, . . . , pn−1)

)
in the fiber of Cn

B over (Xb, p1, . . . , pn−1) ∈ Cn−1
B . Since there are by hypothesis

more than N ≥ dn such points, we conclude that Z = Zn must contain the fiber of
Cn

B over (Xb, p1, . . . , pn−1) ∈ Cn−1
B ; in other words, (Xb, p1, . . . , pn−1) ∈ Zn−1.

The same argument applies sequentially to show that (Xb, p1, . . . , pn−2)∈ Zn−2,
and so on; ultimately, we deduce that b ∈ Z0, establishing our claim. □

5. Behavior of N(g) as g tends to ∞

For C a smooth projective, irreducible curve of genus g > 1 defined over a number
field K let AutK (C) be the group of automorphisms of C defined over K . The group
AutK (C) acts naturally on the set C(K ) of K-rational points of C . Let ν(C; K )
denote the number of AutK (C)-orbits in C(K ) under that natural action. So, of
course, ν(C; K )≤ |C(K )| and therefore any uniform upper bound established for
|C(K )| is valid for ν(C; K ) as well.

Define ν(g) to be the smallest integer that has the property that for each number
field K there are only finitely many curves C of genus g defined over K with
the property that ν(C; K ) is strictly greater than ν(g). By what we have shown,
assuming the SLC, ν(g) is finite for every g > 1.

If one feels that there is a fair chance for Conjecture 8 to be true, and hence for
ν(g) to be finite, one might wonder about the asymptotic behavior of ν(g) as g
tends to infinity. Needless to say, we have no real evidence to make any conjectures,
or precise predictions, but we set

ν∗ := lim inf
g→∞

ν(g)/g and ν∗
:= lim sup

g→∞

ν(g)/g.

Note that curves in P1
×P1 of bidegree (2, g +1) are of arithmetic genus g, and

form a linear system of dimension 3(g + 2)− 1. Given 3(g + 2)− 1 general points
p1, . . . , p3g+5 ∈ P1

× P1(Q), accordingly, there will be a smooth curve C defined
over Q and passing through them. Moreover, since C is a general hyperelliptic
curve, its automorphism group is equal to Z/2, consisting of the identity and the
hyperelliptic involution; and since no two of the points pi lie in the same fiber of
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P1
× P1 over P1, no two are conjugate under the automorphism group of C . Thus

we have ν(C,Q)≥ 3g + 5 and hence ν(g)≥ 3g + 5.
We have accordingly:

3 ≤ ν∗ ≤ ν∗. (13)

Some natural questions:

(1) Is ν∗, or perhaps only ν∗, or neither of them, finite?

(2) Are both inequalities in Equation (13) equalities? (or is one of them, or neither)?

(3) Let M∗
g,n denote the moduli space of projective smooth curves of genus g with n

distinct marked rigid points. For K a number field let dg,n(K ) denote the dimension
of the Zariski-closure in M∗

g,n of the set of K-rational points M∗
g,n(K ). Now define

dg,n := maxK dg,n(K ) where the maximum is taken over all number fields K . The
discussion in this note shows that the SLC implies that — for fixed g ≥ 2 — if
n ≫g 0, then dg,n = 0. What else can one say — or even just conjecture — about
these dimensions? For example, might dg,n be decreasing (albeit not necessarily
strictly) for fixed g and increasing n?

Appendix A: Proof of Lemma 7

Recall:

Lemma 7. For n ≥ 1 the fibers of the map of quotients by the action of G

Cn
B̃/G → Cn

B̃0
/G (12)

are generically curves of genus g.

The statement of Lemma 7 being geometric, we work over C; and since we are
only interested in fibers, we may assume that B0 is a point. This point B0 (in Mg)
classifies a single isomorphism class of curves (of genus g > 1); call one curve in
that isomorphism class C . If we want to refer to that isomorphism class as a whole,
we’ll denote it [C].

A.1. What is B̃0? Consider now B̃0 which classifies isomorphism classes of pairs
(C, λ) where C is a curve in the isomorphism class [C] equipped with a level
structure λ on it. We have chosen our level structure so that such pairs are rigid: C
has no nontrivial automorphisms that preserve that level structure λ. Let G be, as
we had before, the group of automorphisms of the level structure.

More specifically, for any curve X (of our fixed genus g > 1) we have specified
an ℓ such that no automorphism of a curve of genus g leaves fixed a basis of
H1(X, Z/ℓZ) ≃ (Z/ℓZ)2g. By definition a level structure on X is a specific
isomorphism H1(X, Z/ℓZ) λ

→ (Z/ℓZ)2g; and G = GL2g(Z/ℓZ) acts naturally on
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level structures (by right-composition: λ 7→ λ · g−1); hence — since B0 is just one
point — G acts transitively on the set B̃0.

Consider 0 := the full automorphism group of the curve C (the curve classified
by the point B0). Any automorphism of a curve X induces an automorphism of
H1(X,Z/ℓZ) and so induces a permutation of level structures on X . Fixing such a
curve X = C we get a homomorphism 0→ G; it is injective since the curve C with
a level structure is rigid. In other words — given our fixed curve C — the image of
0 in G is the isotropy subgroup of G relative to its (transitive) action on the finite
set B̃0. Consequently,

Lemma 10. Making a choice of curve and level structure (C, λ) there is a natural
identification,

B̃0
≃

−→ G/0. (14)

A.2. What is CB̃0
? Now let’s pass to considering CB̃0

; i.e., the union of the actual
curves in the isomorphism class “[C]” with their level structures λ (that are classified
by the corresponding points (C, λ) in the finite set B̃0). A point in CB̃0

is a triple
(C, p; λ) where C is — as will always be, in this discussion — “classified by” the
point B0, p ∈ C and

(Z/ℓZ)2g λ
−→ H1(C, Z/ℓZ)

is a level structure. There is a natural action of G on CB̃0
. That is

g(C, p; λ) := (C, g(p); λ · g−1). (15)

giving us G-equivariant mappings

CB̃0

π
−→ B̃0 ≃ G/0 (16)

every fiber of which is a curve of genus g — these being just our curves “C” with
different level structures.

A.3. What is the quotient of CB̃0
by the action of G?

Lemma 11. Fix a curve and level structure (C, λ) classified by a point in B̃0. After
passing to the quotient by G the (G-equivariant) mapping (16) induces

CB̃0
/G

π
−→ B̃0/G = B0, (17)

the fibers being curves isomorphic to the quotient curve C/0.

Proof. This follows from the fact that the image of 0 in G is the isotropy subgroup
of G relative to its (transitive) action on B̃0. □
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A.4. What is B? B consists of isomorphism classes of pairs (C, q) where C is a
curve classified by the point B0 and q is a rigid point on C .

Lemma 12. Fixing a curve C with moduli point B0 ∈ Mg, let C∗ denote the Zariski
open subset of rigid points in C. We have an isomorphism

B ≃
−→ C∗/0.

Proof. This is evident, but one might also notice that C∗ is a 0-torsor over B, as
follows from the definition of rigidity. □

A.5. What is B̃? The cover B̃ of B consists of isomorphism classes of triples
(C, q; λ) with C having moduli point [C] = B0, q a rigid point on C and λ a level
structure on C . Now just consider the pair (C, λ). This pair has no nontrivial
automorphisms, so as q ranges through the (rigid) points of C , we get that

Lemma 13. Fixing a curve C with moduli point B0 ,

(1) The (G-equivariant) mapping

B̃
ψ
−→ B̃0 = G/0 (18)

is surjective with fibers isomorphic to C∗.

(2) The quotient of (18) by the action of G induces a mapping

B̃/G
ψ
−→ B̃0/G = B0 (19)

with fibers isomorphic to C∗/0.

A.6. What is CB̃? Consider the mapping

CB̃ → B̃. (20)

A point c̃ of CB̃ is given by an isomorphism class of 4-tuples (C, q; λ; p) where
(C, q; λ) comprises the coordinates of the point of B̃ over which c̃ lies, and p ∈ C
is a point of C . So (20) is a family of curves whose fibers are all isomorphic to C
(over the base which is isomorphic to C∗).

Lemma 14. We have an exact commutative ‘G-equivariant’ diagram

CB̃
//

��

CB̃0

��

B̃ // B̃0 = G/0

where the fibers of the vertical maps are isomorphic to C and the fibers of the
horizontal maps are isomorphic to C∗.
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Proof. The vertical map sends the point c̃∈CB̃ represented by the 4-tuple (C, q; λ; p)
to the point in B̃ represented by the triple (C, q; λ) while the horizontal map sends
it to (C, λ; p). In either case the “retention” of a level structure λ (under either of
these “forgetful mappings”) — guaranteeing the fact that (C, λ) admits no nontrivial
automorphisms — tells us that the fibers of these projections are as claimed in the
lemma. □

A.7. Specializing Lemma 14 to a point b̃0 ∈ B̃0. Consider, now, the pullback of
the above commutative square to a point b̃0 ∈ B̃0 = G/0. Let F ⊂ CB̃ denote the
fiber over b̃0 ∈ B̃0 of the mapping

CB̃ → B̃0 = G/0,

so that the pullback of the diagram in Lemma 14 to the point b̃0 ∈ B̃0 yields an
exact commutative “0-equivariant” diagram

F //

��

C ∼= Cb̃0

��

C∗ ∼= B̃b̃0
// b̃0

(21)

This diagram may be written simply as a “0-equivariant” isomorphism

F ∼= C × C∗ (22)

where we note that the restriction of the action of G (on CB̃) to 0 ⊂ G stabilizes F ,
and the action of 0 on the range C × C∗ is the natural diagonal action; i.e.,

γ (x, y)= (γ (x), γ (y)).

We propose to show that the fibers of the mapping

F/0 −→ C/0 (23)

(in the quotient by the action of 0 on the top horizontal morphism of the above dia-
gram (21) are (generically) curves in the isomorphism class [C]. More specifically,
this is true for the fibers of (23) over points in the Zariski dense open C∗/0⊂ C/0.
We focus, then, on

(C∗
× C∗)/0 ⊂ (C∗

× C)/0 ∼= F .

Lemma 15. Consider the projection

(C∗
× C∗)/0 → C∗/0. (24)
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Fixing any point x ∈ C∗, the mapping

C∗ α
−→ (C∗

× C∗)/0

given by
y 7→ the image of (x, y) in (C∗

× C∗)/0

identifies C∗ with the fiber of (24) over the image of x in C/0.

Proof. That α maps C∗ surjectively onto that fiber is clear: if (x ′, y′) ∈ C∗
× C∗

maps to a point z in that fiber, we can find a γ ∈ 0 such that γ (x ′) = x . Taking
y := γ (y′) we have that the image of y is z. But α is also injective, since if for
y, y′

∈ C∗ there were an element γ ∈ 0 such that γ (x, y) = γ (x, y′) we would
have γ (x)= x , which would contradict the rigidity of the point x ∈ C∗. □

A.8. Returning to Lemma 14. We are now ready to consider the quotient of the
diagram in Lemma 14 by the (equivariant) action of the group G.

We get the commutative (but not necessarily exact) diagram:

CB

��

CB̃/G≃
oo

f
//

��

CB̃0
/G

π
��

B B̃/G≃
oo

ψ
// B̃0/G = B0

(25)

where ψ has fibers isomorphic to C∗/0 and π has fibers isomorphic to C/0. The
two unlabeled vertical morphisms have fibers isomorphic to the curve C .

Returning to the notation of diagram (25) we have:

Proposition 16. The fibers of the mapping

CB̃/G
f

−→ CB̃0
/G

are (generically) curves of genus g.

Let n ≥ 1. Let

Cn
B̃ = CB̃ ×B̃ CB̃ ×B̃ · · · ×B̃ CB̃, i.e., n times,

as in Section 3.1 above; and ditto for Cn
B̃0

.
We let the group G act diagonally.4 It was only for notational convenience that

we worked, above, with the case n = 1. The same arguments, word for word, allow
us (for general n ≥ 1) to get, after passing to quotients by G:

Proposition 17. The fibers of the mapping

Cn
B̃/G → Cn

B̃0
/G

are generically curves of genus g.
4As in Section 3.1 and as in Equation (15).
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Appendix B: Automorphisms of curves: a lemma of Jakob Stix

Proposition 18. Let C be a smooth projective curve of genus> 1, and let 6 ⊂ C be
the set of points of C fixed by some automorphism of C other than the identity. Then
|6| admits some finite upper bound Bg <∞, dependent only on the genus g > 1.

Remark. Although we only need to know that there is some finite upper bound
Bg <∞ for the purposes of application to Proposition 2 in Section 2 we are grateful
to Jakob Stix for providing the following sharp bound.

A Hurwitz curve is a smooth projective curve X which admits a branched Galois
cover X → P1 with only three branch points and ramification index 2, 3 and 7.
These are precisely the curves for which the Hurwitz-bound |Aut(X)| ≤ 84(g − 1)
is an equality.

Lemma 19 (Stix). Let X be a smooth projective geometrically connected curve of
genus g ≥ 2 over an algebraically closed field k = k̄ of characteristic 0. The number
of points in X which are fixed by a nontrivial automorphism of X is bounded above
by 82(g − 1)∣∣{P ∈ X ; ∃ id ̸= σ ∈ Aut(X) : σ(P)= P

}∣∣ ≤ 82(g − 1).

The bound is sharp and attained if and only if X is a Hurwitz curve.

Proof. Let G =Aut(X) be the automorphism group and let eP denote the ramification
index for points above P ∈ X/G in the cover

X → Y = X/G.

The number of points that we want to estimate is

T = |G| ·

∑
P∈Y

1
eP
.

Let B = |{P ∈ Y ; eP > 1}| be the number of branch points. The Riemann–Hurwitz
formula tells us

2g − 2 = |G|(2gY − 2)+
∑
P∈Y

|G|

(
1 −

1
eP

)
= |G|(2gY − 2 + B)− T

= |G|

(
2gY − 2 + B −

∑
P∈Y

1
eP

)
.

If gY ≥ 1, then since 1 − 1/ep ≥
1
2 ≥ 1/eP we are done because of

T ≤

∑
P∈Y

|G|

(
1 −

1
eP

)
= 2g − 2 − |G|(2gY − 2)≤ 2g − 2.
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So from now on we assume gY = 0. Since 2g − 2> 0, we must have that

B − 2>
∑
P∈Y

1
eP
.

If B ≥ 5, then

B − 2 −

∑
P∈Y

1
eP

≥ B ·
1
2 − 2 ≥

1
2

and so

|G| =
2g − 2

B − 2 −
∑

P∈Y 1/eP
≤ 4(g − 1).

It follows that

T ≤

∑
P∈Y

|G|

(
1 −

1
eP

)
= 2g − 2 + 2|G| ≤ 10(g − 1).

If B = 4, then

B − 2 −

∑
P∈Y

1
eP

≥ 2 −
1
2 −

1
2 −

1
2 −

1
3 =

1
6 ,

hence
|G| ≤ 12(g − 1) and T ≤ 26(g − 1).

It remains to discuss the case of B = 3. Here, as in the proof of the Hurwitz bound,
the minimal positive value of

B − 2 −

∑
P∈Y

1
eP

is attained for ramification indices 2, 3 and 7 leading to the Hurwitz bound |G| ≤

84(g − 1). But now

T = |G| · (2gY − 2 + B)− 2(g − 1)= |G| − 2(g − 1)≤ 82(g − 1). □

Acknowledgements

We are extremely grateful to Jakob Stix, who pointed out our error, and who
helpfully — and generously — entered into detailed discussion about it with us. We
are also immensely thankful to Dan Abramovich for his patient guidance as we
wrote this, and for his more general results regarding uniform boundedness.

References

[Ascher and Turchet 2016] K. Ascher and A. Turchet, “A fibered power theorem for pairs of log
general type”, Algebra Number Theory 10:7 (2016), 1581–1600. MR Zbl

[Caporaso et al. 1997] L. Caporaso, J. Harris, and B. Mazur, “Uniformity of rational points”, J. Amer.
Math. Soc. 10:1 (1997), 1–35. MR Zbl

http://dx.doi.org/10.2140/ant.2016.10.1581
http://dx.doi.org/10.2140/ant.2016.10.1581
http://msp.org/idx/mr/3554241
http://msp.org/idx/zbl/1376.14035
http://dx.doi.org/10.1090/S0894-0347-97-00195-1
http://msp.org/idx/mr/1325796
http://msp.org/idx/zbl/0872.14017


UNIFORMITY OF RATIONAL POINTS: AN UP-DATE AND CORRECTIONS 201

[Knudsen 1983] F. F. Knudsen, “The projectivity of the moduli space of stable curves, III: The line
bundles on Mg,n , and a proof of the projectivity of Mg,n in characteristic 0”, Math. Scand. 52:2
(1983), 200–212. MR Zbl

[Kollár 1987] J. Kollár, “Subadditivity of the Kodaira dimension: fibers of general type”, pp. 361–398
in Algebraic geometry (Sendai, 1985), edited by T. Oda, Adv. Stud. Pure Math. 10, North-Holland,
1987. MR Zbl

[Kollár 1990] J. Kollár, “Projectivity of complete moduli”, J. Differential Geom. 32:1 (1990), 235–268.
MR Zbl

[Stacks 2005–] “The Stacks project”, electronic reference, 2005–, http://stacks.math.columbia.edu.

Received 14 Jun 2021. Revised 13 Jul 2021.

LUCIA CAPORASO:

caporaso@mat.uniroma3.it
Department of Mathematics and Physics, Roma TRE University, Rome, Italy

JOE HARRIS:

harris@math.harvard.edu
Department of Mathematics, Harvard University, Cambridge, MA, United States

BARRY MAZUR:

mazur@math.harvard.edu
Department of Mathematics, Harvard University, Cambridge, MA, United States

msp

http://dx.doi.org/10.7146/math.scand.a-12002
http://dx.doi.org/10.7146/math.scand.a-12002
http://msp.org/idx/mr/702954
http://msp.org/idx/zbl/0544.14021
http://dx.doi.org/10.2969/aspm/01010361
http://msp.org/idx/mr/946244
http://msp.org/idx/zbl/0659.14024
http://projecteuclid.org/euclid.jdg/1214445046
http://msp.org/idx/mr/1064874
http://msp.org/idx/zbl/0684.14002
http://stacks.math.columbia.edu
mailto:caporaso@mat.uniroma3.it
mailto:harris@math.harvard.edu
mailto:mazur@math.harvard.edu
http://msp.org




Tunisian Journal of Mathematics
msp.org/tunis

EDITORS-IN-CHIEF
Ahmed Abbes CNRS & IHES, France

abbes@ihes.fr
Ali Baklouti Faculté des Sciences de Sfax, Tunisia

ali.baklouti@fss.usf.tn
EDITORIAL BOARD

Hajer Bahouri CNRS & LAMA, Université Paris-Est Créteil, France
hajer.bahouri@u-pec.fr

Arnaud Beauville Laboratoire J. A. Dieudonné, Université Côte d’Azur, France
beauville@unice.fr

Philippe Biane CNRS & Université Paris-Est, France
biane@univ-mlv.fr

Alexander Bufetov CNRS & IM Marseille, France & Steklov Inst., Russia
alexander.BUFETOV@univ-amu.fr

Ewa Damek University of Wrocław, Poland
edamek@math.uni.wroc.pl

Bassam Fayad CNRS & Institut de Mathématiques de Jussieu - Paris Rive Gauche, France
bassam.fayad@imj-prg.fr

Benoit Fresse Université Lille 1, France
benoit.fresse@math.univ-lille1.fr

Dennis Gaitsgory Harvard University, United States
gaitsgde@gmail.com

Paul Goerss Northwestern University, United States
pgoerss@math.northwestern.edu

Bernhard Hanke Universität Augsburg, Germany
hanke@math.uni-augsburg.de

Emmanuel Hebey Université de Cergy-Pontoise, France
emmanuel.hebey@math.u-cergy.fr

Mohamed Ali Jendoubi Université de Carthage, Tunisia
ma.jendoubi@gmail.com

Sadok Kallel Université de Lille 1, France & American University of Sharjah, UAE
sadok.kallel@math.univ-lille1.fr

Minhyong Kim University of Warwick, UK & Korea Institute for Advanced Study, Seoul, Korea
minhyong.kim2020@gmail.com

Toshiyuki Kobayashi The University of Tokyo & Kavlli IPMU, Japan
toshi@kurims.kyoto-u.ac.jp

Patrice Le Calvez Institut de Mathématiques de Jussieu - Paris Rive Gauche & Sorbonne Université, France
patrice.le-calvez@imj-prg.fr

Jérôme Le Rousseau Université’ Sorbonne Paris Nord, France
jlr@math.univ-paris13.fr

Nader Masmoudi Courant Institute, New York University, United States
masmoudi@cims.nyu.edu

Haynes R. Miller Massachusetts Institute of Technology, Unites States
hrm@math.mit.edu

Enrique Pujals City University of New York, United States
epujals@gc.cuny.edu

Daniel Tataru University of California, Berkeley, United States
tataru@math.berkeley.edu

Nizar Touzi Centre de mathématiques appliquées, Institut Polytechnique de Paris, France
nizar.touzi@polytechnique.edu

Michał Wrochna Cergy Paris Université, France
michal.wrochna@cyu.fr

PRODUCTION
Silvio Levy (Scientific Editor)

production@msp.org

The Tunisian Journal of Mathematics is an international publication published in electronic and print formats by MSP in Berkeley,
and organized by the Tunisian Mathematical Society (http://www.tms.rnu.tn).

See inside back cover or msp.org/tunis for submission instructions.

The subscription price for 2022 is US $/year for the electronic version, and $/year (+$, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Tunisian Journal of Mathematics (ISSN 2576-7666 electronic, 2576-7658 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid
at Berkeley, CA 94704, and additional mailing offices.

TJM peer review and production are managed by EditFlow® from MSP.
PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2022 Mathematical Sciences Publishers

http://msp.org/tunis/
abbes@ihes.fr
ali.baklouti@fss.usf.tn
hajer.bahouri@u-pec.fr
beauville@unice.fr
biane@univ-mlv.fr
alexander.BUFETOV@univ-amu.fr
edamek@math.uni.wroc.pl
bassam.fayad@imj-prg.fr
benoit.fresse@math.univ-lille1.fr
gaitsgde@gmail.com
pgoerss@math.northwestern.edu
hanke@math.uni-augsburg.de
emmanuel.hebey@math.u-cergy.fr
ma.jendoubi@gmail.com
sadok.kallel@math.univ-lille1.fr
minhyong.kim2020@gmail.com
toshi@kurims.kyoto-u.ac.jp
patrice.le-calvez@imj-prg.fr
jlr@math.univ-paris13.fr
masmoudi@cims.nyu.edu
hrm@math.mit.edu
epujals@gc.cuny.edu
tataru@math.berkeley.edu
nizar.touzi@polytechnique.edu
michal.wrochna@cyu.fr
production@msp.org
http://www.tms.rnu.tn
http://dx.doi.org/10.2140/tunis
http://msp.org/
http://msp.org/


Tunisian Journal of Mathematics
2022 vol. 4 no. 1

1Partially algebraic maps and operator algebras
MAX KAROUBI

19Twisted differential operators of negative level and prismatic crystals
MICHEL GROS, BERNARD LE STUM and ADOLFO QUIRÓS

55Large facing tuples and a strengthened sector lemma
MARK HAGEN

87Homotopy theory of equivariant operads with fixed colors
PETER BONVENTRE and LUÍS A. PEREIRA

159Constructibilité générique et uniformité en ℓ

LUC ILLUSIE

183Uniformity of rational points: an up-date and corrections
LUCIA CAPORASO, JOE HARRIS and BARRY MAZUR

Tunisian
Journalof

M
athem

atics
2022

vol.4
no.1


	1. Introduction
	2. Moduli spaces
	3. A strengthened correlation theorem
	3.1. Fiber powers

	4. The boundedness argument
	5. Behavior of N(g) as g tends to 
	Appendix A. Proof of 0=theorem.381=Lemma 7 
	A.1.  What is B"0365B0?
	A.2.  What is CB"0365B0?
	A.3. What is the quotient of CB"0365B0 by the action of G?
	A.4. What is B?
	A.5.  What is B"0365B?
	A.6.  What is CB"0365B?
	A.7. Specializing 0=theorem.711=Lemma 14 to a point 0 B"0365B0 
	A.8. Returning to 0=theorem.711=Lemma 14

	Appendix B. Automorphisms of curves: a lemma of Jakob Stix
	Acknowledgements
	References
	
	

