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1. INTRODUCTION

This paper is concerned with two conjectures in number theory describing
the behavior of the number of rational points on an algebraic curve defined
over a number field, as that curve varies.

Uniformity Conjecture. Let K be a number field and g > 2 an integer.
There ezists a number B(K, g} such that no smooth curve X of genus g
defined over K has more than B(XK, g) K-rational points.

Universal Bound Conjecture. Let g > 2 be an integer. There exists a
number N{g) such that for any number field K there are only finitely many
smooth curves of genus g defined over K with more than N(g) K-rational
points.

It is worth pointing out here that, in the statement of the Universal Bound
Conjecture, by “finitely many curves” we really mean “finitely many K-
isomorphism classes of curves”.

The first Conjecture comes naturally from a well known theorem of Fal-
tings, to the effect that any smooth curve of genus g > 2 defined over a
number field K has only finitely many K-rational points. The second may
at first seem less likely. In both cases, our motivation for considering these
questions is the recent theorem [CHM] that they are consequences of the
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Lang Conjectures. For a discussion of this theorem, see the companion paper
IC] in this volume; for a broader discussion of the Lang Conjectures, sec [L].

The purpose of this note is not to offer any arguments for .nrc truth or
falsity of these conjectures, but rather to record what can be said at present
about the numbers B(Q, ¢) and N(g) assuming they exist {when we E:._:r
of B(K,g) and N(g) we mean the rminimal number for which the n.o:n_:xw::
of the corresponding conjecture holds). We do this in hopes of stimulating
further discussion concerning these questions.

To begin with, the current records for B(Q, g) for low values of g arc

B(Q,2) > 144 (A. Brumer)
B(Q,3) > 72 (A. Brumer)
B(Q,4) > 126 (N. Elkies)
B(Q,5) 2 132 (N. Elkies)

Oue can also ask for lower bounds for B(X|, g) for fixed number fields K and
varying g; and for N(g) for varying g. We will sketch U&oﬁ. some methods
for producing such lower bounds. In response to the circulation of a draft of
this note, A. Brumer and J.-F. Mestre have independently produced methods
yielding better bounds than ours (the more elementary of Mestre's methods
is described in section 5 below). One common feature of all the presently
known methods is that they produce bounds of the form ¢« g+ O{1}. Tt is
thus natural to speculate about the possible constants ¢, by defining

B(K, g)
P

B{K) = limsup,

and

N N(g)

N = lim mEU@IBlQI.

and asking whether B(K) and N are finite.

The methods we outline in this paper currently give B(Q) > 6 and N> s
We are happy to list the following improvement on these bounds:

Mestre: For all g, B(Q,g) > 89+ 12, and N(g) > 16(g +1).

Brumer: For all g and for K any field containing a primitive (g + 1} root
of unity, B(K,g) > 16(g + 1); and for all g, N(g) = 16(g +1).

We should also mention a very recent note of Abramovich in which W.m
proves that, assuming the Weak Lang Conjecture, the number B(K,g) is
bounded as K varies over all quadratic extensions of a given number field.
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The results of sections 3 and 4 of this paper are based largely on con-
versations with David Eisenbud, Noam Elkies and Nick Shepherd-Barron,
to whom we are very grateful. The results of section 5.3 are, as the title
suggests, entirely the work of J.-F. Mestre. We thank the referee of this pa-
per for his/her detailed report, and for noticing and correcting a mistake in
Corollary 5.1.

2. LowER BOUNDS ON B(%Q, ¢)

Here is a simple method of obtaining smooth curves of a given genus with
a fair number of Q-rational points. As we indicated in the introduction, the
results obtained in this section are weaker, for all but finitely many values of g,
than the results obtained by Mestre in section 5.3; we include this discussion
in the hopes that an improvement of the method {or a combination of the
two) may yield stronger results still.

Suppose we have an m-dimensional linear system of curves on a surface
S defined over Q, whose general member is a smooth curve of genus g. For
any m rational points py, ..., pm of S there will exist at least one member C
of the linear series passing through them; if the linear system is base point
free and the points are suitably general on §, C will be a general member
of our linear series and so will be a smooth curve of genus g possessing at
least mn rational points. The only further wrinkle-we will introduce is this:
if in addition we can ensure that C has nontrivial automorphisms defined
over Q, we may hope thal applying these automorphisms to the points p;
will produce more rational points.

Given that our goal is to locate linear series whose dimension is large
relative to the genus of their members, where do we look? Compare the
adjunction formula
_C-C+Ks-C
B 2
for the genus of a curve C on a surface S, and the Riemann-Roch formula,
which in case O(C) has no higher cohomology says that

G «€'=Ks=C

dim(iC|) = °(0s(C)) - 1 = ————— +x(0s) ~ 1

g +1

where |C} is the complete linear series associated to C. Together, these
suggest the answer: on a surface whose canonical bundle is as negative as
possible. The first places to look, accordingly, are rational surfaces. (This

- has the further virtue of making it easy to locate as many rational points on

S as we want, in as general position as we want.) Now, any rational surface
is a blow-up of either F? or a rational ruled surface; and if we compare the
self-intersection - C and intersection number K5 -C with the canonical class
of a curve C on such a blow-up to its image in the plane or ruled surface, we
see we might as well restrict our attention to the latter: the self-intersection
of the image will be greater, and the intersection number with the canonical
bundle less, for the image curve than for the original.
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Moreover, as between the plane and ruled surfaces, the latter have an
advantage: since all line bundles on the plane are rational multiples of cach
other, as the degree of a curve in the plane grows its self-intersection must
increase quadratically, while its intersection mumber with the anticanonical
class can only increase linearly. Thus asymptotically the dimension of a linear
series in the plane can only grow as fast as the genus, giving us curves with
¢ + o{g) rational points. [nasmuch as the Picard number of a rational ruled
surface is 2, however, we have the option of taking curves whose class Is not
simply a multiple of the canonical class; and this, as we will see, will allow
us to choose curves of increasing genus whose intersection numbers with the
anticanonical class grow at the same rate as their gelf-intersections.

We are thus led to examine curves on a rational ruled surface. For simplic-
ity, we will restrict our attention further to the surface S =P x P (as the
reader can readily verify, the calculations analogous to the following may be
carried out as well on any rational ruled surface, and will yield exactly the
same results). By way of terminology, if a curve C on S is linearly equivalent
to d lines of the first ruling plus e lines of the second (that is,

O5(C) = 7 Opa(d} @ 73 Opi(e))

we will say that C has class (d,e). For example, since the canonical bundle
of S has class {—2,—2), applying the adjunction formula we see that the
(arithmetic} genus of a curve of class (d,e) on S is (d — 1)(e — 1). The
preceding discussion also suggests that we look for our curve C among curves
whose classes are as far removed as possible from multiples of the canonical
class of S; and since any non-rational curve on S has class (d, €) with d,e > 2,
we will look first at the linear series D of curves of class (2,g+1) on 3. The
dimension of the linear series D is 3(g + 2) — 1 = 3¢ + 5, as may be seen
either from the Riemann-Roch formula or, more directly, from the fact that
the vector space of bihomogeneous polynomials F(Xg, X1;Ys, Y1) of bidegree
(d,e) in two sets of two variables has dimension (d + 1)(e + 1). It follows
that, for any positive g, and any 3g + 5 rational points py, ..., P3g+s € 5(Q)
we can find a curve in this linear system passing through pi, ..., Pag+si and
if the points pi, ..., P3g+s are general on S then € will be a smooth curve of
genus g defined over Q.

Now, a bonus: as long as the points p; are chosen generically, for each
i = 1,...,3g + 5 the curve C will intersect the line of the second ruling
through p; — that is, the line 73 Yay{p:}) — in two distinct points, p; and a
second point ¢; also defined over @ (alternatively, we may observe that C
is a hyperelliptic curve, ¢; is simply the image of p; under the hyperelliptic
involution on C). Finally, as long as no two of the points p; have the same
image in the second factor, none of the points g; will coincide with a point p;.
We see that the curve C will thus have at least 2(3¢ +5) = 69 + 10 rational
points; that is, we have established the

Theorem 2.1. B(Q, g) > 6g + 10.
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We can also improve the constant term “10” in this statement. The idea is
simple: if the presence of the hyperelliptic involution on the curve C doubled
the number of rational points we were able to make ¢ contain, why not
look for curves in this linear series that have other automorphisrs as well?
The immediate answer is that, while every curve with class (2,n) on S is
necessarily hyperelliptic, the locus of those with strictly larger automorphism
groups is a proper subvariety ¥ of the space P**® parametrizing D. This
has two negative effects: first, it reduces our degree of freedom in choosing
a curve {, that is, the number of points of S we can make C pass through.
Secondly, we know nothing about the geometry of the components of ¥. In
particular, irreducible components ¥y of ¥ may have no rational points on
them, meaning there are no curves C C S defined over Q with [C] € Tg.

We may deal with the second objection by focussing our attention on com-
ponents of ¥ that are linear spaces of P3*5 {though, since these components
tend to be small, the first objection will remain a problem). Specifically
suppose that G is any finite group of automorphisms of P!, all of which m:,m
defined over (@, let

Vo C HY (P!, Opi{g + 1))
be the space of polynomials of degree g + 1 invariant under &, and assume
that the polynomials in Vz have no common zeroes. Let

W = m; HY(PL, Opi(2)) ® 73 Ve

Vm the space of bihomogeneous polynomials of bidegree (2,9 + 1) on P! x P?
invariant under the action of G on the second factor. If we denote by pg(g)
the dimension of the vector space Vi, then the dimension of the linear series
of curves associated to Wg will be simply m = 3pg(g) — 1, and we can find a
curve C in this linear series containing a given collection pq, ... ,pn, of that
many points. Moreover, if py, ..., p,, are rational, and general on S (so that
in particular their orbits are of maximal size and have disjoint images in the
second factor), the curve C will be smooth of genus g and defined over Q
and will contain the erbits under GG of the points p;; thus we may no:&:&m
that C has at least

IC(Q = 2-1G]- (3pe(e) — 1)

rational points. The question then becomes, which is greater: the loss of
degrees of freedom, as measured (roughly) by the ratio of pz(g) to the di-
Bwuw._.Ob g + 2 of the space of all polynomials of degree g + 1 on P!, or the
gain in automorphism group, as measured simply by the order |G| of G7
The answer is, they are very nearly equal; and the occasional net profit will
produce only a bounded number of additional rational points.

For example, consider the simplest case, G = Z/2Z (there is only one
passible action up to conjugation). In this case we have

e wu % g wm even; and
&= ifgisodd
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so that we have a slight gain in case g is odd: specifically, the curve C through
n = 3(g + 3)/2 — 1 general rational points of § will have at least

n=6(g+3)—4=>6g+14

rational points. Note that we do slightly worse than before if g is even;
as we will see, this is typical. Note also that, instead of looking at the
space Vg of polynomials invariant under &, we could have looked at the
complementary space of anti-invariant polynomials and again found curves
¢ with automorphism group containing Z/2Z x Z/2Z, but the dimension of
this linear series would have been no greater for g even and strictly less for
g odd; again, this is typical.

Consider now other possible groups G. In fact, there are up to conjugation
only five other finite groups of automorphisms of P! all of whose elements
are defined over @ the symmetric group Ss, acting as the group of automor-
phisms fixing the subset {0,1,00} C P!; the dihedral group D; of order 8,
acting as the group of automorphisms fixing the subset {0,1,-1,00} C P,
and the subgroups Z/3Z of Sy and Z/2Z x Z/27Z and Z/4Z of Dg. Moreover,
these proper subgroups of S; and D do not yield better results than S; and
D, so we will only consider the two larger groups.

To start with 53, observe that its action on P! is simply the action asso-
ciated to the standard two-dimensional representation of S3; we have to ask
simply what are the dimensions of the subspaces of invariant vectors in the
symmetric powers of this representation. The calculation is a standard one,
and we simply list the result here: the dimensions are

(g/6 if g = 0 mod 6;
(g+5)/6 if g=1mod6;
(g+4)/6 if g=2mod6§;
(g+43)/6 if g=3 mod6;
{g+2)/6 if g=4mod6;and
(g +7)/6 if g=5mod6.

Ps:(g) =

In case g is congruent to 1,2 or 5 mod 6, this yields an improvement: we
can find curves in this linear series with at least 65+ 18,69+ 12 and 6g + 30
rational points, respectively.

The case of the action of the dihedral group Dy is slightly complicated
by the fact that the action is not linear, that is, the action of Dy on P
cannot be lifted to an action on a two-dimensional vector space. Instead, the
inverse image in SL, of the group Dy C PGL; described above is a group
H of order 16 that does not split. It may seem at first that we are getting
a bad deal'here: we have to look for invariants under the action of a group
of order 16, but the resulting curves only have 8 extra automorphisms. In
fact, however, the action of D4 on the even Veronese images of P! is linear;
that is, the action of [ on the even symmetric powers of its two-dimensional
representation factors through the surjection H — Dy; and for some of these
powers we do realize some advantage. It is straightforward to write out the
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character table for the group H and calculate the dimensions of the subspaces
of invariant vectors; again, we will spare the reader the details and simply
write out the results, which are (for g odd)

(29 +14)/16 if g = 1 mod §&;
(2g + 10)/16 if ¢ = 3 mod 8;
{29+ 6)/16 if g =5 med &
(29 + 18)/16 if g =7 mod 8.

pp.(9) =

This yields, in case g is congruent to 1 or 7 mod 8, curves with 6g + 26 and
6g + 38 rational points, respectively; in the remaining cases we do not do
as well as previously. Again, in the case of either .Sy or Dy we could also
lock at the subspaces of polynomials of degree g + 1 corresponding to other
one-dimensional representations than the trivial; but in each case these do
not give any further results. Summarizing what we have found, we have:

Proposition 2.1.

6g+38 ifg=7 mod8;
6g+26 ifg=1mod§;
6g+30 i g=>5mod6;
B{Q,g) > <6g+18 ifg=1 mod6;
6g-+ 12 if g = 2 mod 6;
6g+ 14 if g is odd; and
6g + 10 in general

3. LowER BOUNDS ON N(3)

. By our definition of N{g), in order to establish a lower bound N{g) > Ny
it suffices to exhibit a number field K and an infinite collection of non-
isomorphic curves C) of genus g defined over K such that

ICA(K)| = No

for all A. In this section, we will do so by exhibiting one-parameter families

.{C.} of curves of genus 3 on a fixed surface 5, such that various curves on

S cut the curves Cy in rational points. We will start with the
Proposition 3.1. N(3) > 72.

Proof. H.Wm. surface we will use for this case (and the next one as well) is
the quarti¢ surface § C P? defined, in terms of homogenecus coordinates
[X,Y,Z, W] on P3, by the equation

XK~ Y= 2(2E — W™,

The key feature of this surface is that it contains a total of 64 lines. To see
this, first introduce the two lines £ and M ¢ P® given by

Z=W=20
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and
X=Y=0
respectively. L meets S in the four points
n = —O_H_O. O_, P2 = m”_._ HquO_v

7 = [Lw,0,0] and p;=[1,w?0,0]
where w 1z a cube root of unity; and similarly M meets S in the four points

g1 = —D._ O._ Du ”_.T_ g2 = HO_OMHVHT
g = [0,0,1,w] and ¢4 =1[0,0,1,07.
The first thing to observe is that 5 contains the 16 lines L;; = P;g; for

1 <1, 7 € 4. Here is a picture representing them; for future reference, we
will call these the lines of type A.

A i S

16 lineson §

Next, observe that the points p; € L form the configuration of 4 points
on P! with the greatest number of symmetries, and likewise for the points
g; € M; in fact, for any even permutation o € A, of the set {1,...,4}, there
is a (unique) isomorphism ¢, : L — M between the two lines carrying the
point p; to the point g,y for i = 1,...,4. The surface

Q. = U w.(p)

pEL

given as the union of the lines in P® joining points of L to their images in
M under ¢, is a smooth quadric surface. Its intersection with S contains
the four lines L), ¢ = 1,...,4, all of which belong to one ruling of Q;
its intersection with S must therefore consist of these four lines and four
additional lines of the second ruling of @, (that is, the ruling including the
lines I and M).

These four lines will indeed be distinct, as the two surfaces @, and S have
different degrees. We will denote them M,;, ¢ = 1,...,4 (the order is not
significant), and call them lines of type B. Note that these four lines are
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distinct from the 16 lines L;; (they are skew to L and M, which the L;;
are not), and that none of the four can lie on a second quadric @, (the
intersection of any two quadrics &J, and @@, will consist of the two lines L
and M and two lines of the first ruling). Since there are 12 permutaticns ¢,
we arrive in this way at 48 lines {M,;} distinct from each other and from the
lines L;;; thus S contains a total of 64 lines. (Tn fact, these are all the lines
on S; for a proof of this fact, and the fact that no smooth quartic surface in
P? contains more than 64 lines, see [3].) ,

Here, for example, is a picture showing the four lines of intersection of the
quadrics (14 and Q,, where I'd is the identity and o = (2, 3, 4), and the eight
lines { M2, M, ;}.

_c___u_o_ 1} [0,1,0,u]

- | f ! [ i

L
_ﬁ ;
! .x
1 _- i
. .H,_\ L v
AR T A R A '
\ H \ ! ‘... ._ ..\_\_
\_ _ ___ _.1 ,_ !
/ ,_ / / H i
iy / [
_{, “.\ ,ﬂ Y=W=10
[ noof : A [ (ot on )
L:Z=W=0 M:X=Y=0

Note that of the four lines L; ; contained in ¢};4 the only one contained in @, is
L1, corresponding to the fixed point 1 of the permutation &; the intersection
(212N &}, consists thus of L, M, L1 ; and a fourth line not contained in S. We
see moreover that the lines of type B contained in both Qs and @, must
meet this fourth line in its four points of intersection with S, and so meet
each other there; but they meet L;; at different points.

Now let {Hy}sep1 be a general pencil of hyperplanes in P* defined over
and let G, = H, NS be the corresponding hyperplane sections. Note that,
since the pencil AQL consists of stable curves (every C) is either a smooth
curve or an irreducible curve with a single node), we get a map P! — M,
sending A to the isomorphism class of Cy; since both smooth and irreducible
nodal curves appear in the pencil, the map will be nonconstant, hence finite.

The base locus N = NH), of the pencil is a line meeting S in four points
T1y..., 74, none of which will lie on a line of S. Let K be any number field
such that the 64 lines of S and the four points r; are defined over X. For
finitely many values of A € K, C, will either be singular or will contain one
of the points of pairwise intersection of the lines of §. For the remaining
{infinitely many) values of A, the curve ) will be smooth, and the points of
intersection of Cy with the lines of S, together with the four points r; € €},
will all be distinct. We thus have

|CA(K)| > 68
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and since only finitely many curves Cy can be isomorphic over K to a given
C,, we conclude that N(3) > 68.

We can do slightly better by using the fact that, in addition to its lines,
the surface S also contains lots of plane conic carves. To exhibit such conics,
take a pair of incident lines of the form M;4; and M, ;, where 7 = (12)(34).
Recall that the intersection Qg and @, will consist of L, M and two further
lines not contained in S. These lines will each meet S in four points, through
which the lines Myq; and M. ; must pass, so we can certainly choose 1 and 7
so that Myq; and M, ; meet. For example, we could take Myy; and M, ; the
lines passing through the point [1,a, 1, a, where a =1+ +/3, that is,

Mug; = V(X - Z,W = Y)

and

M, ;= V(Y +2X - V3W,Y - X - V32).
The plane they span has equation
T=(W-Y —{/3-1)(X - 2))

and intersects S in the union of these two lines and the irreducible conic
given in [' by the equation

X4 XY + Y 4+ (53 -9)XZ+(3-2V3)YZ +(6-3v3)2* =0.

Other conics can be found by applying automorphisms of S to this one.

Now, if C C S is a conic, then over some number field L it will have
infinitely many rational points s,. Moreover, each such point will lie on a
(unique) hyperplane H, of the pencil discussed above; and that hyperplane
will intersect C in s, and one other point ¢4, also defined over L and distinct
from s, except for the (at most) two values of A for which H) is tangent
to . Since only finitely many planes H of our pencil contain points of
intersection of ¢ with lines of 5, we thus have infinitely many values of A
for which C, contains two additional points rational over L, and we conclude
that N(3) > 70.

Finally, we can play the same game with two conics simultaneously: we
have the

Lemma 3.1. Let C and D C P be two plane conics, {H,} a pencil of planes
in P?, none of which contains C or D. Suppose that {H\} 1s defined over a
number field K. There ezists an extension L of K and infinitely many values
X € L for which the four points of intersection of Hy with CUD are defined
over L.

Proof. We simply observe here that the pencil {#,} defines a correspondence
of bidegree (2,2} on the product C x D: that is, the incidence correspondence

E=1{(pg):pqé€ Hy forsomer} cCxD

is a curve of bidegree (2,2) in Cx D 2 P! x P!, If E is smooth and irreducible,
it is a curve of genus 1; otherwise all components of E are rational curves.
Fither way, for some extension L of K, E has infinitely many L-rational

TR T A
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points {(Pas o)} with distinct images in ¢ and D. Throwing away those
4 (Pa» ga) With either p, or g, contained in the base locus of the pencil,
caeh pair p, and g, lies on a unique hyperplane Hy,) of the pencil; and
since by hypothesis each plane H), contains at most finitely many pairs p,
sl ¢, we arrive at infinitely many A € L satisfying the statement of the
Lemima.

[nasmuch as S does contain more than one conic, we have completed the
proof of Proposition 3.1. O

4. A LOWER BOUND ON N(2)

We can play a similar game for curves of genus two, again using the quartic
surface § above but now looking at the normalizations ¢ of the intersections
‘o of S with tangent planes H. We will get in this way curves of genus 2,
with 64 rational points coming from the lines of S; in addition, we will have
the points conjugate to these 64 points under the hyperelliptic involution on
the curves &. We will thus prove the

Proposition 4.1. N(2) > 128.

Proof. To carry out the program outlined above, we have three things to
check: that there are enough tangent planes to S defined over a fixed number
fielld K, that the 128 points described above are indeed all distinct on a
general curve € constructed in this way, and that the curves C obtained do
indeed vary in moduli. We will give a lemma for each of these points, starting
with the straightforward

Lemma 4.1. The surface S contains an infinite {and hence Zariski dense)
rollection of rational curves defined over Q.

Proof. Start with three lines N, T}, Ty on &, with T} and T, meeting at a
point p and NV disjoint from both,

ch w_O_lH_
\ 0,1,0,1] . [0.1,0, ]
gt LS S , Liy:X=2=0
— 7 : ,
! i LA
C i _\ ! ;
N Lo ”
: T
! i
_ﬁ ,‘_,\ Ty
oy
. ki : ! Y=W=0
\ / \ﬂ , 4 f (not on S}
:.O.H_Om :..O..!H.O_ M. X=Y=10

L. Z=W=0
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For example, we could take

N = Mug,=V(X-2,Y-W)
T, = VI(X+Z,Y+W)
T, = V(X +ZwY +W)

with p = [1,0, -1, 0}.

Now consider the pencil {H,} of planes containing N. The general plane
H, meets S in the union of N and a smooth plane cubic Cj, so that projection
from N expresses S as an elliptic surface over P!, with two sections

p(A) = ThNCy
Qﬁ\rv = NJMDQ»

given by Ty and T2. We can thus form a sequence of sections p,(A) by adding
multiples of {p(A) ~ g(A)) to g(A), that is, we can specify, for general A,

pa(A) ~ 1 p(A) = (n - 1) - g(})

on Qy.

We claim next that the difference p{A} - ¢(A) is not torsion in the Picard
group of Cj for general A. To see this, observe that the plane Hy, = V(Y -W)
spanned by N and p intersects S in the union of the line N and the smooth
cubic

Cho = VIX*+ X2 Z4+ X2+ 2° +W?).
The two sections p() and g()) thus agree in the smooth fiber C, and not
in general; we conclude that the difference cannot be torsion for all A.

The sections p, thus give an infinite sequence of distinct rational curves

¥, on S, all defined over K; this completes the proof of Lemma 4.1.

Remark. In fact, the argument above allows us to identify number fields X
(for example, K = Q(w), where w® = 1) such that the surface S contains
infinitely many rational curves defined over K; but we don't need this for
what follows. The point is that we do not need the fact that there exists
a number field X such that S(K) is Zariski dense, but only the weaker
statement that for any proper closed subvariety T C S there is-a number
field K such that S(K) contains infinitely many points not in T'. Thus the
fact that all the T, may be defined over the same field K is not logically

relevant.

As we suggested above, our infinite family of curves of genus 2 with 128
rational points will consist of the normalizations C of the intersections Cp of
S with tangent planes H = T,S to S at the points p € s for n sufficiently
large, which are in effect general points. The 128 points will be the points
7; of intersection of the curves C; with the 64 lines of S, together with their
conjugates under the hyperelliptic involution, which are simply the remaining
points 8; of intersection of Cp with the lines spanned by the points r; and

L= e

R
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the point p of tangency. The next part of the argument, then, is to see that
these points are indeed distinct. This is the content of the following Lemma.

Lemma 4.2. Let p € S be a general point, and let H = T,S C P be the
projective tangent plane to § at p. The following are true:

a}. H intersects the 64 lines of S af distinct poinds vy, ..., Teq.

b). No two of the points r; are collinear with p.

). The line joining p to 7; 1s not tengent to S af ry.

d). The tangent lines to the branches of H NS at p do not meet any line
of S (i.e., the line joining p to r; is not tangent to either of the branches of
HnNS atp)

In sum: by ¢), the line pr; meets S with multiplicity one at ry; by d) it
meets S with multiplicity 2 at p, and hence it meets S eractly once more at
a point s; # p,7;; and by b) the points s; are all distinet from each other and
from the ;.

Proof. Part a) simply says that for general p € S, the tangent plane T,S
does not contain any of the points of pairwise intersection of the 64 lines of
5, which follows from the fact that the dual surface is nondegenerate.

As for part b), we need only check two of these lines L, M C S at a time.
If I and M meet, it is immediate, since p will not lie in the plane they span.
If they are skew, we have to check that the locus of triples

{(p,g,7): g€ Lyr € M; r,g € T,S and p,q,r are collinear}

has dimension strictly less than 2, which amounts to saying that not every
line joining I and M is tangent to S. But this is an immediate consequence
of Bertini’s theorem, which says that only finitely many planes containing L
are tangent to S at a point outside L. Similarly, for part ¢) we have to check
that not every line tangent to S at a point of L is tangent somewhere else,
which also follows from Bertini’s theorem.

Lastly, for part d} we note that by the irreducibility of 5 there can be at
most four lines on .S with the property that the tangent lines to the branches
of HN & at a general point p meet L; but since the automorphism group of
S acts transitively on lines of type A and lines of type B, if there were any
there would have to be at least 16.

Finally, to complete our argument we have to check that, for n 3 0, the
family of curves obtained as normalizations of intersections of S with planes
tangent at points of the curve £, € 5 do in fact vary in moduli. We do this
by a variant of the argument used before. We consider the map

¢:8 -+ M,

sending a general point p € S to the normalization C of the intersection Cp
of the tangent plane T,.S with S.

For general p € §, ( is a smooth curve of genus 2, so the image of ¢
is not contained in the boundary of Af;. On the other hand, it does hit
the boundary: for example, if p is a general point on a line M,; C S, Cy
will consist of the union of M, and a smooth cubic curve EF meeting it
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transversely, so that C is the union of E with a rational curve meeting it at
two points, g, 7 € E. Since C is nodal, the map ¢ is regular, in a u&mr,c.omroom
of p, and sends p to the point [C] € M, where C is the curve ogmzu.om by
identifying the points ¢ and r on E. Finally, we note that as p varies on
M, ; the j-invariant of F varies (for special values of p, E degenerates to a
Ewum_m. which corresponds to a pole of 7). The image of ¢ thus meets the
boundary of M in a curve, and we conclude that the image of ¢ must be
two-dimensional; in particular, the positive-dimensional fibers of ¢ cannot be
Zariski dense in S.

{Recalling the remark following the proof of Lemma (4.1), we should note
that we don’t really need to work quite this hard: if we use the fact that
S does indeed contain a Zariski dense collection of K-rational points for
come number field K. we need only show that the image of ¢ is at least
one-dimensional.) .

In sum, then: for sufficiently large n, the curves of genus 2 obtained as
the normalizations of the intersections of S with tangent planes T,S as p
varies along the curve £, C § do vary in moduli, and an infinite number
have 128 or more K-rational points. Thus we have completed the proof of

Proposition 4.1. [J

5. BESTIMATES ON N{g) FOR LARGE g

In this section, we will derive lower bounds on N{g) for general g, with a
view toward estimating the limit

— N
N = lim mcvb18|anlv

discussed in the introduction. o
We describe three approaches to this. The latter two yield in general a
stronger result, but we mention all three methods in the hope that the reader

may see a way of improving one.

5.1. Plane sections of surfaces with lines. Our first approach is a nat-
ural generalization of the way we derived a lower bound for N(3) in mmnn.mow 3
above. Specifically, if we have a surface S C 3 defined over () and containing
a finite number £ of lines, then we can, by taking plane sections of S, find an
infinite collection of curves defined over some number field K {(the common
field of definition of S and the lines on S) with £ or more K-rational points.
This raises the question: what is the greatest number of lines a {non-ruled)
surface of degree d in P® can have? Denoting this number by #(d), we have

the
Lemma 5.1. &(d) > 3d? for all d > 3; and beyond that,

g4y =64
46) > 180
#(8) 256

=
£(12) > 864
£(20) > 1600
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{"roof. All these assertions can be verified by exhibiting surfaces of the ap-
propriale degree possessing the indicated number of lines; and all of these
surfnees can be described in the same way. (This is in fact how the quartic
lnee of Sections 3 and 4 was obtained.) Specifically, let F{X,¥) be any
homogeneous polynomial of degree d, and denote its zero locus in P! by T}
lok v be the order of the group & of automorphisms of P! carrying T into
itnell, Consider the surface S C P® defined by the equation

F{X,¥Y- F(Z,W)=1.
[t 1°) be the set of points F(X,¥Y) =2 = W = 0 on the line L, given by
/4 - W =0, and similarly let I'; be the locus F{Z, W) =X =Y =0 on the
line Ly given by X = Y = 0. To begin with, we see that S contains the d*
lines joining 'y to ['y. Moreover, if v : Ly — L, is any isomorphism carrying
I'y to I'y, we consider the gquadric

Q.= U p.olp)

pelq

given as the union of the lines in P? joining points of L, to their images in
I.3 under . Its intersection with S contains the d lines {p, ¢(p) : p € T}, all
of which belong to one ruling of @,,; its intersection with S must therefore
cansist of these d lines and d additional lines of the second ruling of Q.. (that
is, the ruling including the lines Ly and L;). Note that these d lines, being
wkew to L and M, are distinct from the d* lires joining I'; to I'y, and that
none of thern can lie on a second quadric of the form @, (the intersection
of nuy \wo quadries @, and @, will consist of the two lines L; and L,
ated two lines of the first ruling). We thus have d additional lines for every
motnorphism g, for a total of (at least) d® + ad lines.

Now, for any d we can take I" the d-th roots of unity. In this case the
dthedral group of order a = 2d acts and we get a total of 3d? lines; in fact,
this is just the Fermat surface. For general d, this is the best we can do by
this method, but there are exceptions. For d = 4, we can take I" the vertices
of a tetrahedron, on which the group A, acts, giving us d? + 12d = 64 lines;
this is the quartic surface described in §3. For d = 6 and 8 we can take the
fuces and the vertices of a cube, respectively; the symmetric group 5, then
acts, giving us d? + 24d = 180 and 256 lines respectively. Finally, for d = 12
and 20 we can take the faces and vertices of a dodecahedron, on which Ay
acts; we obtain surfaces with d% 4 60d = 864 and 1600 lines respectively. [1

As we pointed out, whenever g = (d — 1)(d — 2)/2 we have N(g) = #(d),
and we can therefore deduce from Lemma 5.1 that for such values of g we
have N(g) > 3d® = 6g + o(g). In other words, we may conclude that

N > 6.
This is not particularly striking; with only minimal efforts, for example, the
method of Section 2 would yield this result; and indeed this method will give
a stronger result below. Again, we mention this in the hope that the reader
may see a way to improve the result. We should remark in particular that
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the only degrees for which the bound of Lemma 5.1 is known to be sharp are
d = 3 and 4 {for a proof in case d = 4 see [S]).
The best upper bound on £(d) in general known to us is
£(d) < 11d* — 244,

(cf. [S]) which is sharp for d = 3 but not in general. In particular, this says
that the limit
£{d)

i —= <11
i pap g 2

|
il

is that N > 27, so this approach has the potential to prove that N > 22, but
not more (and even this seems unlikely).

A further remark is that, while this method does not yield the best asymp-
totic results, for some specific g it does give lower bounds for N(g) that do
exceed what we can show by other means. Specifically, for d = 6,8,10,12 and
20 we can take general hyperplane sections of the surfaces S of degree d de-
scribed in Lemma 5.1 to exhibit families of curves of genus ¢ = (d—1){d-2)/2.
We can also, in each of these cases, take the pencil of plane curves of degree
d—1 and genus g = (d - 2)(d — 3)/2 cut out on S by the planes containing a
line L € S; each line on S not meeting L then provides a rational point on a
general member of this pencil. (As the reader may verify, exactly 2d - 2+«
lines of § other than L meet L.) Omitting the verification that the moduli
of the curves in such a pencil do in fact vary, we tabulate the results in the

so the state of our knowledge is that 3 < £ < 11. What we can say, of course,

Corollary 5.1. We have the following lower bounds on N(g):
g | 6 10 15 21 28 36 45 55 153 171
N{g) > | 145 180 217 256 261 320 781 864 1501 1600

Of course, there is no reason to restrict our attention to P?, except for
sheer ignorance: we could ask in gereral for the maximal number of lines on
nondegenerate surfaces in P* with given degree and/or genus of hyperplane
section. The problem is simply that we have no knowledge of the situation
in general. For example, we could ask what is the maximum number of lines
a smooth K3 surface of degree 2n + 2 in P" can have; but the answer to this
~ or even to the qualitative question of whether this number grows linearly

with n — Is unclear.

5.2. Base loci of pencils. As we indicated, our second approach yields a
stronger result in general; in particular, it improves our existing lower bound

on N toN > 8

Proposition 5.1. For all g, N(g) > 8g + 14. In particular, N > 8.

Proof. We will give first a simpler proof of the weaker statement that N{g) =2
8¢ + 8, and then indicate how this construction may be modified to yield the

extra 6 points.
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An in Section 2, we will work with the linear system 22 of curves of bidegree
(g + 1) on P! x P! — that is, zero loci of bihomogeneous polynomials of
bidegrees (2,9 + 1). Let £ = {Cy}acpr be a general pencil of curves in this
tinenr series. Note that since D'is a linear series of self-intersection 4g -+ 4
wilhout base points, £ will have 4¢ + 4 distinct base points p1, . .., Pigta.

il is not hard to see by a dimension count that no member of the pencil
will contain a fiber of P' x P! over the second factor: inside the (3¢ + 5)-
dlmensional linear series D the locus of products of polynomials of bidegree
(%, #) with those of bidegree (0,1} is (3¢ +2) + 1 = 3g + 3, so that a general
ine £ in D 22 P¥*5 will miss it. It follows in turn that no two base points
of the pencil will lie in the same fiber of P! x P! over the second factor. (We
vould also embed P! x Pt in P3*5 by the linear series D, realize the base
polnts as the points of intersection of the image with a general codimension
2 mibspace P93 C D, and deduce this from the observation that the points
nre therefore in uniform position, that is, as £ C D varies, the monodromy
nction on the points py, ..., Pig4q is the full symmetric group.)

Now let /' be the number field generated over Q by the coordinates of
Lhe points py, .. ., Pagre. We have immediately that Cy(K) D {py,...,psgra}
Moreover, all the curves are hyperelliptic, and the images ¢; of the points p;
nnder the hyperelliptic involution {that is, the points of Cy lying in the same
fiber of P! x P! over the second factor as the points p;) are also defined over
I By what we said above, each ¢; is distinct from all the points p; for 7 # ¢
Henee exeept for the finitely many values of A for which €, is tangent to the
liber of "' x P* over the second factor at one of the points p;, the set {g;}
in digjoint from {p;}. All but finitely many of the curves C) thus contain at
[rnut By 1 8 K -rational points. Finally, as in Section 3, the curves C, are all
stable, wilh some singular, and so they do vary in moduli; we conclude that
N(y) = 89 + 8.

We vin o slightly better by a variant of this technique: we can, by choos-
ing, the pencil well, ensure that g of the base points lie on a fiber of PT x P!
over the first factor. Each C) will then meet this fiber in those g peoints, plus
one more point that must likewise be defined over K; with this extra point
and its hyperelliptic conjugate we get up to 8¢+10. In fact, we can do this
Lhree times: choose {p1,... ,pg}, {Pgs1,--- ,P2e} and {Pagt1,... ,pag) to be
general g-tuples of points defined over K, each lying on a fiber of P! x P!
over the first factor. Let Dy be the linear series of curves of bidegree (2, g+1)
on P! x P! passing through the points {P1,... ,P3g}, and let £ be a general
pencil in Dy, It is not hard to see that Dy embeds the blow-up of P! x P!
at these points in P®, from which all the statements above about the base
points of £ follow,

Now let K be the number Aeld generated over Q by the coordinates of the
base points of the pencil £. As before, each member C), of the pencil contains
these points, plus their hyperelliptic conjugates. In addition, for o = 1,2,3
the intersection of Cy with the fiber of P! x P! over the first factor containing
{Plac1)g41, - - -, Pag} Will consist of {Pia-1)g41,- - »Pag} Plus a (g + 1) point
Ga also defined over K. Moreover, by the same monodromy arguments on a
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general C) the points ¢,, together with their hyperelliptic conjugates, will be
distinct from each other and from the 8¢ + 8 points already found, bringing
the total up to 8¢+ 14. O

, ;

A final remark: it seems a shame that we can’t use the degree of freedom
we have in choosing the pencil to improve the result of Proposition 5.1. After
all, the Grassmannian of pencils in the linear series D has dimension 6g + 8,
which should give us a fair amount of play. In the above construction, these
degrees of freedom yield only 6 additional points, and in particular we get
no better estimate on N. ,

5.3. Mestre’s method. We will describe here the work of Jean-Frangois
Mestre. This technique gives us a way of writing down, for any number field
K, a set of curves defined over X, dense in the hyperelliptic locus in moduli,
that possess at least 8¢ + 12 K-rational points. This will of course give us a
second demonstration of the fact that N > &: and - inasmuch as the method
works as well with K' = Q - it will improve our estimate on B(, ¢} for all
but finitely many values of g.

The method is completely elementary. We start by fixing the number field
K, and choosing ay, ...., a4g16 any 4g -+ 6 distinct elements of X. Let P = P,
then denote the polynomial

4g+6

Pz} = J[(z—a:) = 2% 4 cppusat®5 + .+ ez 40

i=1
Suppose we start naively trying to take a square root of P, that is, to find a
polynomial

Qz) = £ 4 bage2? T 4 4 by + by
of degree 2g + 3 over the field X whose square is P. We have no trouble
starting out: we take byy42 = C915/2, so that the coefficients of z49+% jn Q2
and P will agree; and similarly we choose

2
b _ Cag+e — m.@+u
2941 — 9

and so on. Problems arise only when we run out of coefficients of : we can
continue in this way until we have chosen by so as to make the coefficients
of %73 in ? and P agree, but after that we have no further degrees of
freedom.

What we have succeeded in doing in this way is writing our polynomial P
as the difference of a square and a polynomial of lower degree: we have

P=0Q'—R
where It = R, is a polynomial of degree 2g + 2 or less over K. Now, let
X = X, be the hyperelliptic curve defined by the equation
y* = R(z)

As will follow from the argument below, for a general choice of Q1. Qagtg €
K, the polynomial R will be of degree exactly 2g + 2, and will have distinct
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toots, so that X will be a smooth curve of genus g What is more, we can
exhibit explicitly 8¢ + 12 K-rational points on X: these are simply ﬁmm points
{(, 2Qa)) : i=1,. .. 49 + 6}.

It remains to be seen that we do indeed get infinitely many isomorphism
clnsses of curves Aq in this way. In fact, we can see more than that: we claim
that as ay,. .., G446 vary in JC, the polynomials R, sweep out a Zariski-dense
subset of polvnomialy of degree 2g + 2. This will also establish the statement
nuule above that for general choice of 4, the polynomial R is of degree 29+ 2
und has nonzero discriminant,

But this is clear: cerbainly as qy, ... 1 4g46 Vary the polynomials P, sweep
out a dense subset of the A4 4 6-dimensional space U/ of monic polynomials
of degree 4g + 6. On the other haud, if either @, or R, were constrained to
n proper subvaricty of Lhe spaces V of monic polynomials of degree 2g + 3
and W oof polynominls of degree 2¢ + 2 respectively, the image of the map
VXW -y U given by sending (€2, R) to Q? — R would have dimension strictly
less than dim(V) 4 dim(W) = 4g + 6.

We have thus established 4he

Theorem 6.1, for any genus ¢ and number field K, B(K, g} > 8¢g+12; and
Jor any genus y, N{g) > 8y 4+ 12. In particular, N > 8. B n
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