
HYPERTANGENCY OF PLANE CURVES AND THE
ALGEBRAIC EXCEPTIONAL SET

LUCIA CAPORASO AND AMOS TURCHET

Abstract. We investigate plane curves intersecting in at most two
unibranched points to study the algebraic exceptional set appearing
in standard conjectures of diophantine and hyperbolic geometry. Our
first result compares the local geometry of two hypertangent curves,
i.e. curves having maximal contact at one unibranched point. This is
applied to fully describe the exceptional set and, more generally, the
hyper-bitangency set, of a plane curve with three components.
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1. Introduction

The goal of this paper is to explore some geometric properties of plane
curves that intersect a given curve in few points.

The main motivation comes from a series of conjectures of Lang, Vojta
Demailly and Campana, as in [Lan91, Conjecture 3.7], [Voj87, Conjecture
3.4.3] [Dem97] and [Cam04, Conjectures 9.2 and 9.20] (see [BG06, HS00,
AT20, DT15] for introductions and discussions), on the distribution of in-
tegral and rational points on quasi-projective surfaces defined over number
fields and function fields. For our goals we state here a consequence of their
more general conjectures.

Conjecture 1. Let B ⊂ P2 be a reduced curve with at most simple normal
crossing singularities (i.e. nodes). If degB ≥ 4, then the set of rational
curves C ⊂ P2 such that |ν−1

C (C ∩ B)| ≤ 2 is finite, where νC : Cν → C is
the normalization.
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The above set is often referred to as the algebraic (or geometric) ex-
ceptional set in the aforementioned circle of conjectures (see for example
[Lan86]); we denote it by E(B), i.e.

(1) E(B) := {C ⊂ P2 : C rational, |ν−1
C (C ∩B)| ≤ 2}.

Conjecturally, E(B) is made of the curves that contain the only potentially
infinite families of integral points in the affine surface P2 \B. We stress here
that the condition “degree of B at least 4” is equivalent to the fact that
(P2, B) is of log general type.

Historically, describing the distribution of integral points (and the ex-
ceptional set) in an affine surface of log-general type of the form P2 \ B,
as predicted by the conjectures of Lang and Vojta, has proven harder the
fewer the irreducible components of the curve B. For instance, if B has at
least 4 components, much is known of the surface P2 \B, and in particular
the above mentioned conjectures follow as an application of Schmidt’s Sub-
space Theorem. The analogue result over function fields is a consequence of
a generalized version of Mason-Stother’s abc theorem for polynomials, see
[BM86].

When B has three irreducible components, Vojta’s Conjecture over num-
ber field is still an open problem. On the other hand, the proof of the
function field version of Vojta’s Conjecture in [CZ08] and [CZ13], for the
surface P2 \ B when B has at least three irreducible components, implies
that in this case all the curves in E(B) have bounded degree (the same re-
sult in the so-called non-split case was proved by the first author together
with Capuano in [CT22] building on the previous work [Tur17]). More re-
cently [GNSW23] showed (as a special case of their Theorem 4) that, in
the same settings, the exceptional set E(B) is indeed a closed subset of P2

and described a closed set containing it. Similar results had been previously
obtained by Corvaja and Zannier in [CZ00].

In another direction one can look at the very general situation, i.e. when
the divisor B is very general in the space of all curves of given degree. In this
setting, Chen, Riedl and Yeong in [CRY23] showed that, when B has degree
4 and it is very general (in particular smooth irreducible), the exceptional
set E(B) consists only of the bitangent lines and the flex lines, answering
a question of Lang. On the other hand, when B has degree at least 5 and
it is very general, the exceptional set E(B) is empty: this has been proven
independently in [Che04] and in [PR07]. No similar result is known without
the very general assumption.

In the present article we focus on the case where B has (at least) three
irreducible components. We describe the exceptional set as a consequence of
Theorem 3.3.2 where we we show that for a general B, an integral curve C
of arbitrary genus, such that |ν−1

C (C ∩B)| ≤ 2, has degree at most 2 (where
again νC is the normalization). Moreover we give sharp upper bounds for
the number of conics and lines and characterize precisely the non general



HYPERTANGENCY AND THE EXCEPTIONAL SET 3

cases. To our knowledge the independence from the genus is a new feature
that was not observed before.

Following Lang’s philosophy, Conjecture 1 is related to the hyperbolicity
of the surface P2 \B. In this setting, the Logarithmic Kobayashi Conjecture
predicts that for a general B of degree at least five, the surface P2 \ B is
Brody hyperbolic, i.e. every holomorphic map C→ P2 \B is constant. This
implies in particular that there are no copies of C or C∗ in the complement
of B. Therefore, there cannot exist any rational curves C that meet B in at
most two unibranched points (for in this case one would get the non constant
map exp : C → C∗ ⊂ P2(C) \ B). In a parallel direction, the logarithmic
Green-Griffiths-Lang Conjecture predicts that, when degB ≥ 4, there ex-
ists an analytic exceptional set, i.e. a proper closed subset of P2 \ B that
contains all the images of the non constant holomorphic maps C→ P2 \B.
Conjecturally the analytic exceptional set and the algebraic exceptional set
should coincide, as predicted by Lang; nevertheless the analytic exceptional
set always contains the algebraic one. Therefore our main results can be
seen as partial progress in the description of the analytic exceptional set for
P2 \ B, in the case where B has at least three irreducible components. In
this latter case, is worth mentioning that the corresponding analytic result
of [CZ08] and [CZ13] was obtained in [NWY08]

To state our results more precisely we introduce the set of curves “hyper-
bitangent” to B

Hyp(B, 2) := {C ⊂ P2 : C integral, |ν−1
C (C ∩B)| ≤ 2}

so that, of course, E(B) ⊂ Hyp(B, 2). We summarize in one statement our
main results; see Proposition 3.2.1, and Theorems 3.3.1, 3.3.2, and 3.3.3 for
more precise and stronger statements.

Theorem. Let B ⊂ P2 be a reduced curve with three irreducible components
and only nodal singularities. If degB ≥ 4 then
(a) E(B) = Hyp(B, 2);
(b) Hyp(B, 2) is finite (and effectively bounded);
(c) if degB ≥ 5 and B is general, then Hyp(B, 2) is empty.

The proof of these facts uses a geometric result of independent interest,
Theorem 2.2.1, which analyzes the local geometry of two plane curves, B
and C, meeting in one point, i.e. C ∩ B = {q}. The precise statement of
this theorem requires some technical preliminaries; informally speaking, it
establishes that the local geometries of B and C at the point q are closely
related.

We expect our techniques to extend to other surfaces and pairs, although
the applications, however involved, may lead to sub-optimal bounds. We
plan to address some of these issues in a future paper.

Outline of the paper. In Section 2 we establish our principal geometric
tool, Theorem 2.2.1, on the local geometry of two plane curves meeting
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in only one unibranched point. In Section 3 we prove our main results
describing the sets Hyp(B, 2) for curves with three components, thus proving
the previously stated Theorem. Finally, Section 4 collects various special
cases and examples related to the earlier topics.

Notation. We work over C. We denote by C an integral (i.e. reduced and
irreducible) projective curve lying in a smooth projective rational surface
S. We denote by νC : Cν → C the normalization, by pa(C) the arithmetic
genus and by g(C) = pa(Cν) the geometric genus of C. A rational curve is
an integral curve of geometric genus zero. Given a point p ∈ C, we write
multp(C) for the multiplicity of C at p. We say that p is unibranched if
|ν−1
C (p)| = 1. We denote by Cνp the partial normalization of C at p; the

so-called δ-invariant, δC(p), of p is δC(p) = pa(C) − pa(Cνp ). The following
formula is well-known

(2) δC(p) =
∑

mq(mq − 1)/2

where q varies over all points infinitely near to p (including p), and mq is
the multiplicity of q.

If C,B ⊂ S are reduced curves with no components in common, and
p ∈ C ∩ B, we write (C · B)p for their multiplicity of intersection at p. We
say that C is hypertangent to B if |ν−1

C (B∩C)| = 1, so that also |B∩C| = 1.
Let now S = P2, fix a reduced curve B ⊂ P2 and a point q ∈ B. The set

of integral curves hypertangent to B at q is denoted as follows

Hyp(B; q) = {C ⊂ P2 : C integral, C ∩B = {q}, |ν−1
C (q)| = 1},

and the set of all integral curves hypertangent to B is

Hyp(B, 1) := ∪q∈B Hyp(B; q).

For a positive integer d we write Hypd(B; q) ⊂ Hyp(B; q) and Hypd(B, 1) ⊂
Hyp(B, 1), for the subsets parametrizing curves of degree d; we view both
of them as subspaces of the projective space Pd(d+3)/2 parametrizing plane
curves of degree d.

If C ∈ Hypd(B; q) and C is singular at q, then it necessarily has a uni-
branched singularity. We set for m ≥ 1

Hypm(B; q) = {C ∈ Hyp(B; q) : multq(C) = m}

and we define Hypmd (B; q) ⊂ Hypd(B; q) analogously.
Now we extend to double intersections. As we said before, C is hyper-

bitangent toB if ν−1
C (C∩B) ≤ 2 and we denote by Hyp(B, 2) the set of curves

hyper-bitangent to B. We have Hyp(B, 1) ⊂ Hyp(B, 2), i.e. hypertangents
are special hyper-bitangents. We set

Hypd(B, 2) := {C ∈ Hyp(B, 2) : degC = d}

so that Hypd(B, 2) ⊂ Pd(d+3)/2.
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2. Hypertangency

2.1. Preliminaries on unibranched points. We here state some basic
facts about unibranched points of curves; we refer to [Wal04] for an exhaus-
tive treatise. Let q be a unibranched point of an integral curve C ⊂ S lying
on a smooth rational surface S. Our analysis here is local, therefore we are
free to replace S with an open neighborhood of q isomorphic to A2. As q
is unibranched, the tangent line to C at q, sometimes called the “tangent
direction”, is locally well defined; we denote it by L. When L 6= C we say
that q is an (m,n)-point if multq(C) = m and if

(C · L)q = n.

If m = 1 and n ≥ 3 we say that q is a flex of C. We choose local coordinates,
x, y, so that q = (0, 0), the line L has equation y = 0, and C has equation
f(x, y) = 0 with deg f = d ≥ n with

(3) f(x, y) = a0,my
m +

∑
m+1≤i+j≤d

ai,jx
iyj

such that a0,m 6= 0 and the smallest power of x appearing in f is xn, i.e.
ai,0 = 0 for i < n and a0,n 6= 0. Notice that, as will be clear in the sequel,
having local equation of type (3) is not sufficient for q to be unibranched.

Consider the blow-up of S at q, denote by E the exceptional divisor and
by C ′ and L′ the strict transforms of C and L. The map σ : C ′ → C induced
by this blow-up is bijective; set q′ := σ−1(q). We state some known facts in
a convenient form; the proof is included for completeness.

Lemma 2.1.1. Let 0 < m < n and let q ∈ C ⊂ S be an (m,n)-point.
(a) If n < 2m then q′ is an (n−m,m)-point of C ′, and C ′ is tangent to E

at q′.
(b) If n > 2m then q′ is an (m,n−m)-point of C ′, and C ′ is tangent to L′

at q′.
(c) If n = 2m then q′ is an m-fold point of C ′, and C ′ is neither tangent to

E nor to L′ at q′.

Proof. To blow-up at q we set y = vx and use (x, v) as local coordinates in
the blow-up at q′ = (0, 0), the local equation of the exceptional divisor E is



6 LUCIA CAPORASO AND AMOS TURCHET

x = 0, and the local equation of L′ is v = 0. Let f ′(x, v) = 0 be the affine
equation of C ′ obtained from (3):

f ′(x, v) = x−mf(x, vx) = a0,mv
m +

∑
m+1≤i+j≤d

ai,jx
i+j−mvj .

The smallest power of x appearing as a summand of f ′ is xn−m, and the
smallest power of v is vm. We have three cases.

Case (a) n < 2m. Hence n −m < m and we set r = n −m. Since C ′ is
unibranched at q′, and f ′ contains the summand xr but not the summand
vr (as r < m), all terms in f ′ of degree at most r divisible by xv must
vanish (for otherwise the lowest homogeneous part of f ′ will be reducible,
contradicting the fact that q′ is a unibranched point of C ′). Hence the
tangent line to C ′ at q′ has local equation x = 0, hence C ′ is tangent to E.
Since the smallest power of v in f ′ is vm, we get that q′ is an (r,m)-point.
(a) is proved.

Case (b) n > 2m. The smallest power of v appearing in f ′ is vm and,
arguing as in the previous case, f ′ has no other term of degree at most m.
Hence the tangent line to C ′ at q′ has local equation v = 0, so that C ′ is
tangent to L. As the smallest power of x is xn−m, we get that q′ is an
(m,n−m)-point. (b) is proved.

Case (c) n = 2m. We have both xn−m = xm and vm appearing in f ′ as
smallest powers of x and v. Since C ′ is unibranched at q′, this is possible
only if the homogeneous part,f ′m, of degree m of f ′, has form

f ′m = (αv + βx)m

with α, β 6= 0. Hence q′ is an m-fold point, and the tangent line to C ′ there
has local equation αv + βx = 0, hence it is different from E and L′. �

We will use the following well known facts.

Remark 2.1.2. LetB,C ⊂ S be two integral curves and q ∈ B∩C. Suppose
that B, respectively C, has a unibranched mB-fold, resp. mC-fold, point at
q. If σ : S′ → S is the blow up at q and C ′, B′ are the proper transforms of
C and B, then (C ′ · B′) = (C · B) −mBmC . Moreover, (C · B)q = mBmC

if and only if C and B are transverse at q, i.e. their tangent directions at q
are different.

2.2. Hypertangency at unibranched points of plane curves. Let B
now be an integral plane curve and q a smooth point of B; we describe curves
that are hypertangent to B at q. See Subsection 4.1 for some examples.

Theorem 2.2.1. Let B,C ⊂ P2 be two integral curves of degree at least 2
such that B ∩ C = {q} and q is a unibranched point for B and C. If q is a
(1, l)-point for B, then q is an (m, lm)-point of C for some m ≥ 1. Moreover
the δ invariant of q on C satisfies

δC(q) ≥ (m− 1)(degB degC −m)/2.
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Proof. Set b = degB, d = degC, and let q be an (m,n) point of C. Hence
l ≤ b and 1 ≤ m < n ≤ d. By hypothesis,

(C ·B)q = (C ·B) = bd > m

therefore C and B must have the same tangent line at q (by Remark 2.1.2);
we write L for this line. Let C1, B1 and L1 be the proper transforms of
C,B and L in the blow-up, S1, of P2 at q, and let q1 ∈ C1 be the point lying
over q. By hypothesis C1 and B1 meet only in q1, hence (as d > m, b ≥ 2)

(C1 ·B1)q1 = (C1 ·B1) = bd−m > bm−m ≥ 2m−m = m.

Now, B1 is smooth at q1 and multq1(C1) ≤ multq(C) = m, hence

(C1 ·B1)q1 > m ≥ multq1(C1)multq1(B1),

hence C1 and B1 are tangent in q1.
We now prove that C has an (m, lm)-point at q. Suppose l = 2, so that

q is a (1, 2)-point of B. Lemma 2.1.1 implies that B1 is neither tangent to
L1, nor to the exceptional divisor, hence the same holds for C1. Hence, by
the same Lemma, q is a (m, 2m) point for C, and we are done.

To set-up an inductive argument we introduce a sequence of blow-ups as
follows. We already considered the blow-up, S1, of S0 = P2 at q0 = q. For
i ≥ 1 we let Si be the blow-up of Si−1 at the unique point qi−1 ∈ Ci−1 lying
over q. We denote by Ci, Bi and Li the proper transforms of C,B and L.
Notice that the multiplicity of Ci at qi is at most m.

Claim. Le l ≥ 3; for every 1 ≤ i ≤ l − 2 the curve Ci has an (m,n− im)-
point at qi, and Ci and Bi are tangent to Li in qi.

We prove the claim by induction; the base is i = 1. Now q is a (1, l ≥ 3)-
point for B, hence Lemma 2.1.1 gives that B1 is tangent to L1 over q. We
proved earlier that B1 and C1 are tangent in q1, hence C1 is tangent to L1

at q1; hence, by Lemma 2.1.1, q is an (m,n)-point for C with n > 2m and
C1 has a (m,n−m)-point. The proof of the base is complete.

To continue with the induction, suppose Ci−1 has a (m,m − (i − 1)n)-
point at qi−1, and Bi−1 and Ci−1 are tangent to Li−1 at qi−1. Now Bi−1 has
a (1, l− (i− 1))-point in qi−1; as i ≤ l− 2 we have l− (i− 1) ≥ l− l+ 3 = 3,
hence Bi is tangent to Li. Now, l ≤ b, hence i ≤ l − 2 ≤ b− 2. Therefore

(Ci ·Bi)qi = (Ci ·Bi) = bd− im > bm− im ≥ bm− (b− 2)m = 2m > m.

Hence Ci and Bi are tangent in qi at Li. Therefore Ci is tangent to Li and
case (b) of Lemma 2.1.1 must occur for Ci−1, i.e. m − (i − 1)n > 2m and
Ci has a (m,n− im)-point. The proof of the claim is complete.

Thus C l−2 has an (m,n − (l − 2)m)-point at ql−2, and Bl−2 and C l−2

are tangent to Ll−2 at ql−2. Now, Bl−2 has a (1, 2)-point at ql−2, hence its
proper transform, Bl−1, is neither tangent to Ll−1 nor to the exceptional
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divisor. We have, as m < d and l ≤ b
(C l−1 ·Bl−1)ql−1 = (C l−1 ·Bl−1) = bd− (l − 1)m > bm− (b− 1)m = m,

hence C l−1 and Bl−1 are tangent in ql−1, hence C l−1 is neither tangent to
Ll−1 nor to the exceptional divisor. Now case (c) of Lemma 2.1.1 occurs
for C l−2, i.e. ql−2 is a (m, 2m)-point. Therefore 2m = n − (l − 2)m, hence
n = lm, as stated.

Let us now study the δ-invariant for q as a point of C. Set
h = d(bd−m)/me.

We prove, by induction on i, that qi is an m-fold point of Ci for every
i ≤ h−1, and Bi and Ci are tangent in qi. We already proved this for every
i ≤ l− 1, hence the base case is settled and we assume i ≥ l. The argument
is similar to the one used in the previous part. Assume multqi−1(Ci−1) = m,
and Bi−1 tangent to Ci−1 in qi−1. Then, as i ≤ h− 1, we have

(Ci ·Bi)qi = (Ci ·Bi) = bd− im ≥ bd− (h− 1)m =
bd− (d(bd−m)/me − 1)m > bd− (bd/m− 1)m = bd− bd+m = m

(as d(bd − m)/me < bd/m). Hence (Ci · Bi)qi > m, hence Ci and Bi are
tangent at qi. Now, the curve Bi−1 has a smooth point at qi−1, hence Bi

is not tangent to the exceptional divisor in qi. Hence the same holds for
Ci. Hence case (a) of Lemma 2.1.1 does not occur for Ci−1, hence qi is an
m-fold point of Ci. So we are done.

Since Ci has an m-fold point at qi for every i = 0, . . . , h − 1, by (2) the
δ-invariant of q ∈ C satisfies

δC(q) ≥ hm(m− 1)/2 = d(bd−m)/mem(m− 1)/2
≥ ((bd−m)/m)m(m− 1)/2 = (bd−m)(m− 1)/2.

The proof is now complete. �

3. Hyper-bitangency for 3C-curves

In this section we concentrate on the case S = P2.

3.1. Definition and simple cases. We study hyper-bitangent curves to a
curve B ⊂ P2 which is the transverse union of three integral curves.

Definition 3.1.1. A 3C-curve is a reduced plane curve B = B1 ∪B2 ∪B3,
with Bi integral of degree bi ≥ 1, such that every point in Bi ∩Bj is a node
of B for all i 6= j. We always assume b1 ≤ b2 ≤ b3. We set

Bi ∩Bj = {pti,j , t = 1, . . . , bibj}

with pti,j = ptj,i; we often omit the superscript t. Notice that the components
of B meet only pairwise, and transversally. We write N := ∪i 6=jBi ∩Bj .

We begin with the case b1 = b2 = b3 = 1. This is a particularly simple
curve which can be easily handled.
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Proposition 3.1.2. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree 3. Then
dim Hypd(B, 2) ≥ 1 for every d ≥ 1.

Proof. The curve B is the union of three lines; set Bi ∩ Bj = {pi,j} so that
N = {p1,2, p1,3, p2,3, }.

Suppose d = 1; then the one-dimensional space of lines through {pi,j},
with Bi and Bj removed, lies in Hyp1(B, 2), and these are the only elements
of Hyp1(B, 2). Hence dim Hyp1(B, 2) = 1.

Let d ≥ 2 and C ∈ Hypd(B, 2). Obviously C ∩N 6= ∅, say p1,2 ∈ C. Then
C must be transverse to at least one between B1 and B2, say C transverse
to B1, hence C meets B1 in a further point. Since C must also meet B3
we get p1,3 ∈ C, and C cannot be transverse to B3. We derive that C
is hypertangent to B2 and B3 respectively at p1,2 and p1,3. Now, setting
m = mp1,2(C) and n = mp1,3(C), we have

d = (C ·B1) = (C ·B1)p1,2 + (C ·B1)p1,3 = m+ n ≤ d
hence d = n+m. Interchanging the three components, we derive

Hypd(B, 2) =
d−1⋃
m=1

⋃
i,j,h=1,2,3
i 6=j

Hypmd (Bi; ph,i) ∩Hypd−md (Bj ; ph,j).

Consider m = 1 and the subspace Hyp1
d(Bi; ph,i) ∩ Hypd−1

d (Bj ; ph,j). Now,
Hyp1

d(Bi; ph,i) is the space of degree-d curves passing through ph,i, which is
easily seen to have codimension d in Pd(d+3)/2. And Hypd−1

d (Bj ; ph,j) is the
space of degree-d curves having a (d − 1, d)-point at ph,j with tangent line
equal to Bj . To compute its dimension we can assume that ph,j is the origin
and the line Bj has equation y = 0. Then a curve C ∈ Hypd−1

d (Bj ; ph,j)
has equation

∑
d−1≤i+j≤d ai,jx

iyj = 0 with ai,j = 0 for every i + j = d − 1
and i 6= 0. One easily checks that such polynomials form a subspace of
codimension equal to d(d− 1)/2 + d− 1 = (d2 + d− 2)/2 hence

codim Hyp1
d(Bi; ph,i)∩Hypd−1

d (Bj ; ph,j) ≤ d+(d2+d−2)/2 = (d2+3d−2)/2.

As dim Hypd(B, 2) ⊃ Hyp1
d(Bi; ph,i) ∩Hypd−1

d (Bj ; ph,j) we get

dim Hypd(B, 2) ≥ d(d+ 3)/2− (d2 + 3d− 2)/2 = 1.
�

3.2. Hyper-bitangent lines. We now describe hyper-bitangent lines to a
3C-curve of degree at least 4. This is quite elementary, possibly part of it
already known. We include it for completeness and lack of references.

Proposition 3.2.1. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree b ≥ 4.
(a) If b = 4 then |Hyp1(B, 2)| = 6.

More precisely, C ∈ Hyp1(B, 2) if and only if C is one of the four
lines through B3 ∩ (B1 ∪ B2) different from B1 and B2, or C is one of
the two lines tangent to B3 and passing through the point B1 ∩B2.
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B3 B2B1

C

C

(b) If b ≥ 5 then Hyp1(B, 2) is finite, and it is empty if B is general.
More precisely, if b1 = b2 = 1 then |Hyp1(B, 2)| ≤ 3b3(b3 − 2), and

|Hyp1(B, 2)| ≤ 2|N | otherwise.

Proof. If b = 4 then b1 = b2 = 1 and b3 = 2; set B1 ∩ B2 = {p1,2}. We first
look at the lines through two points of N . If C is a line through pt1,3 and
pt
′

2,3 it clearly lies in Hyp1(B, 2). If C is a line through pti,3 and pt
′
i,3 then it

is equal to Bi which is not possible. Now suppose that C ∈ Hyp1(B, 2) is
not one of these lines; then we must have p1,2 ∈ C and C must meet B3 in
a unique point, hence C must be tangent to B3. Part (a) is proved.

Let b ≥ 5 and let B a general curve; we can make the following as-
sumptions. If b3 ≥ 3 then B3 has finitely many flexes, hence finitely many
flex lines, and finitely many bitangent lines; we assume that B1 and B2 do
not pass through any flex of B3 or through any point where B3 meets its
bitangent lines, and that B1 ∩B2 intersects no line hyper-bitangent to B3.

If b3 = 2 then b2 = 2, we assume that B1 does not intersect B2 ∪ B3 at
any point where B2 ∪B3 meets its bitangent lines.

Finally, given any p2,3 ∈ B2 ∩ B3, there are finitely many lines through
p2,3 that are tangent to B3, hence there are finitely many points r ∈ B3 such
that the tangent line to B3 at r passes through B2 ∩B3; we assume that B1
does not intersect B3 in any of these points. Also, if b2 6= 1, we assume that
B1 does not intersect B2 in any point lying on some tangent line to B2 or
B3 passing through p2,3.

By contradiction, let C ∈ Hyp1(B, 2). Suppose |C ∩N | = 2.
If b3 ≥ 3 then, as N contains no flex of B3, we have C ∩ B = {p1,3, p2,3}

and, as C cannot be a bitangent to B3, we have

b3 = (C ·B3)p1,3 + (C ·B3)p2,3 ≤ 3

hence b3 = 3. Now C must be tangent to B3 in one of the points, pi,3.
Hence C is a line through B2 ∩B3 tangent to B3 and intersecting B1 ∩B3;
we excluded the existence of such lines, so we are done.

Let b3 = 2, hence b2 = 2. If b1 = 1, up to switching B2 and B3 we have
only the case C ∩ B = {p1,2, p2,3}. Then C is tangent to B3 at p2,3 and
intersects B1 ∩B2, which is excluded.

Let b1 = 2. Our generality assumptions prevent us from switching B1
with B2 or B3, so we have more cases. If C ∩ B = {p1,2, p1,3} then C is a
bitangent of B2 ∪ B3, which is excluded (as before). If C ∩ B = {p1,2, p2,3}
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then C is tangent to B3 at p2,3 and intersects B1∩B2, which is excluded. As
we can switch B2 with B3 we are done. We thus proved that |C ∩N | = 1.

Suppose C ∩ N = {p1,2}. Then C meets B3 in a point r 6∈ N , and it is
hypertangent to B3 at r. If b3 ≥ 3 then r is a flex and, by our assumptions,
the flex line does not pass through B1 ∩B2. If b3 = 2 then b2 = 2 and C is
a bitangent of B2 ∪B3, which is also excluded.

Suppose C ∩ N = {p1,3}, then either b3 ≥ 3 and C is a flex line of B3
which is excluded, or b3 = b3 = 2 and C is a bitangent of B2 ∪B3, which is
excluded.

Suppose C ∩N = {p2,3}. Now, C cannot be tangent to both B2 and B3,
hence b2 = 1, hence b1 = 1, hence b3 ≥ 3, hence p2,3 is a flex of B3. A
contradiction. We thus proved that Hyp1(B, 2) is empty for B general.

If B is an arbitrary curve, the proof shows that for a curve C ∈ Hyp1(B, 2)
only two cases can occur. First case: C is tangent to some component of B
in a point of N ; since at each point of N there are two such tangent lines
we have at most 2|N | possibilities for such a C.

Second case: C meets all components of B transversally along N . Then
one easily checks that b1 = b2 = 1, moreover C passes through B1 ∩B2 and
is hypertangent to B3 in a flex (or rather a hyper-flex) or in a unibranched
singular point. It is well known that the number of flexes of B3 is at most
equal to 3b3(b3 − 2); hence in the second case we have at most 3b3(b3 − 2)
possibilities for C.

If b1 = b2 = 1 the first case occurs only with C hypertangent B3, hence
the bound Hyp1(B, 2) ≤ 3b3(b3 − 2) holds. �

3.3. Hyper-bitangent curves of higher degree. We begin with a geo-
metric description of hyper-bitangent curves.

Theorem 3.3.1. Let d ≥ 2. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree
b ≥ 4 such that Hypd(B, 2) is not empty. Then b1 = 1, b2 ≤ 2 and the
following occur.

(1) If b2 = 1, setting B1 ∩B2 = {p}, we have

Hypd(B, 2) =
⋃

i=1,2
q∈Bi∩B3

Hypd−1
d (Bi; p) ∩Hypd(B3; q).
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B3
B2B1

p1,2

p1,3

C

(2) If b2 = 2 then Hypd(B, 2) is empty for d ≥ 3 and

Hyp2(B, 2) =
⋃

p∈B1∩B2
q∈B1∩B3

Hyp2(B2, p) ∩Hyp2(B3, q).

(3) Every C ∈ Hypd(B, 2) is rational (hence E(B) = Hyp(B, 2), with
E(B) defined in (1)).

Proof. Since b ≥ 4 we have b3 ≥ 2. Let C ∈ Hypd(B, 2), then |C ∩ B| ≤ 2;
on the other hand B1 ∩B2 ∩B3 = ∅, hence |C ∩B| = 2.

Let us prove that C ∩ B3 ⊂ N and |C ∩ B3| = 1. By contradiction,
suppose C ∩B3 contains a point not in N . Hence C must intersect B1 ∪B2
in exactly one point, p1,2 ∈ B1∩B2. Now, p1,2 is a unibranched n-fold point
of C, for some n < d (as d > 1). Since B1 and B2 meet transversally, C is
tangent to one of them and transverse to the other, say C is transverse to
Bi with i < 3. Therefore

bid = (C ·Bi) = (C ·Bi)p1,2 = n < d

a contradiction. Hence C ∩B3 ⊂ N .
By contradiction, suppose |C ∩ B3| = 2; as C must intersect B1 and B2

we have C ∩ B3 = {p1,3, p2,3} ⊂ N , with pi,3 ∈ Bi ∩ B3. Since B3 and Bi
meet transversally, C must be transverse to either Bi or B3 at pi,3. If C is
transverse to Bi then, arguing as above, we get (C ·Bi) < d, a contradiction.
Hence C is transverse to B3 at both p1,3 and p2,3. Set mi = multpi,3(C), so
that m1 +m2 ≤ d. Then

b3d = (C ·B3) = (C ·B3)p1,3 + (C ·B3)p2,3 = m1 +m2 ≤ d

which is impossible, as b3 ≥ 2.
We thus proved that C ∩ B3 = {pi,3} for one i ∈ {1, 2}. Hence C is

hypertangent to B3 at pi,3. As C is not transverse to B3 a pi,3, it must be
transverse to Bi, hence it must meet Bi in a further point. As C must meet
the other component, Bj with j 6= i, 3, there exists a point p1,2 ∈ B1 ∩ B2
such that p1,2 ∈ C. We obtain C ∩ B = {p1,2, pi,3} and C ∩ Bj = {p1,2}.
Now Bj and C meet only at p1,2, hence C cannot be transverse to Bj at this
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point, hence it must be transverse to Bi. Therefore

bid = (C ·Bi) = (C ·Bi)p1,2 + (C ·Bi)pi,3 = multp1,2(C) + multpi,3(C) ≤ d

hence bi = 1 and equality holds, i.e. multp1,2(C)+multpi,3(C) = d. Therefore
b1 = 1 and C ∈ Hypd−md (B2, p1,2) ∩Hypmd (B3, p1,3), with m = multp1,3(C).

We now show that m = 1. Since B3 has degree at least 2 and is smooth at
p1,3, it has a (1, l)-point there for some l ≥ 2. We can apply Theorem 2.2.1
to B3 and C, getting that p1,3 is an (m, lm) point for C. Suppose m ≥ 2; the
same theorem yields δC(p1,3) ≥ (b3d −m)(m − 1)/2. On the other hand C
has also a (d−m)-fold point at p1,2, hence δC(p1,2) ≥ (d−m)(d−m− 1)/2.
Therefore

g(Cν) ≤
(
d− 1

2

)
− (b3d−m)(m− 1)/2− (d−m)(d−m− 1)/2 =(
d− 1

2

)
− (d2 − d− 2md+ b3md− b3d+ 2m)/2 =(

d− 1
2

)
− (d2 + d(−1 +m(b3 − 2)− b3) + 2m)/2 ≤(

d− 1
2

)
− (d2 − 3d+ 4)/2 = (d2 − 3d+ 2)/2− (d2 − 3d+ 4)/2 < 0

as m ≥ 2 and b3 ≥ 2. This is impossible. Hence m = 1 and

(4) C ∈ Hypd−1
d (B2, p1,2) ∩Hypd(B3, p1,3).

If b2 = 1 we can switch roles between B1 and B2; part (1) is proved.
Assume b2 ≥ 2. Then, as B2 is smooth at p1,2, we can apply Theo-

rem 2.2.1, which gives that C has an (h, lh) point at p1,2, for some h ≥ 1.
Now (4) implies that p1,2 is a (d − 1, d)-point of C. Therefore (h, lh) =
(d − 1, d), hence h = 1 and d = 2. Therefore Hypd(B, 2) is empty if d ≥ 3,
and the proof of part (2) is complete.

A curve of degree d having a (d − 1)-fold point is necessarily rational,
hence part (3) follows from the previous parts. �

If d ≥ 2, Theorem 3.3.1 implies that Hypd(B, 2) = ∅ whenever b1 > 1, or
b2 > 3, or b2 = 2 and d ≥ 3. We now treat the remaining cases. We denote
by Hyp≥2(B, 2) the set of curves of degree at least 2 that are hyper-bitangent
to B, i.e. Hyp≥2(B, 2) := ∪d≥2 Hypd(B, 2).

Theorem 3.3.2. Let B be a 3C-curve such that b1 = 1, b2 ≤ 2 and b3 ≥ 2.
Then
(a) |Hyp≥2(B, 2)| ≤ 2b3;
(b) |Hyp≥2(B, 2)| = 0 if B is general.
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Proof. Let C ∈ Hypd(B, 2); by Theorem 3.3.1, up to switching B1 and B2
when b2 = 1, we have C ∈ Hypd−1

d (B2; p) ∩ Hypd(B3; q) with p ∈ B1 ∩ B2
and q ∈ B1∩B3. Hence C has a (d− 1, d)-fold point at p where it is tangent
to B2, and a smooth point at q where it is tangent to B3. We can choose
homogeneous coordinates (X,Y, Z) in P2 so that p = (0 : 1 : 0) and the
tangent line to C at p has equation z = 0. Therefore in the open subset
where Y 6= 0 the curve C has affine equation zd−1 =

∑d
i=0 cix

izd−i. We can
assume that q = (0 : 0 : 1) and the tangent line to B3 has equation y = 0.
Hence c0 = c1 = 0 and the affine equation of C where Z 6= 0 is

y = g(x) where g(x) := cdx
d + cd−1x

d−1 + . . .+ c2x
2.

Claim. g(x) = cdx
d.

We assume d ≥ 3 (otherwise it is obvious). Let f(x, y) = 0 be the affine
equation of B3; as B3 is smooth at q and tangent to y = 0, we have

(5) f(x, y) = y +
∑

2≤i+j≤n
ai,jx

iyj

with n = b3 for notational simplicity. We have (C · B3) = (C · B3)q = dn,
therefore f(x, g(x)) = λxdn for some λ 6= 0. Hence the following holds

(6) g(x) +
∑

2≤i+j≤n
ai,jx

ig(x)j = λxdn.

Now, for every i, j as above, the product xig(x)j is a sum of monomials in
x whose degrees range in the set I(i, j), where

I(i, j) = [i+ 2j, i+ jd] ∩ N.

We have
i+ dj ≤ d(i+ j) ≤ dn

with equality if and only if j = n and i = 0. We have

I(0, n) = [2n, dn], I(1, n− 1) = [2n− 1, dn− d+ 1],

therefore in the left side of (6), the following monomials (up to scalar)

xdn, xdn−1, . . . , xdn−d+2

appear only in g(x)n. For (6) to hold, in its left side
(a) the coefficient of xdn is non zero, hence a0,n 6= 0 and cd 6= 0;
(b) the coefficients of xdn−1, . . . , xdn−(d−2) are zero.

We now show, by induction on h, that (a) and (b) imply that cd−h = 0 for
h = 1, . . . , d− 2. We write g(x)n as follows

g(x)n =
d−2∑
k=1

( ∑
2≤i1<...<ik≤d∑k

1 nj=n, nj≥1

µn1,...,nk
cn1
i1
· . . . · cnk

ik
xn1i1+...+nkik

)



HYPERTANGENCY AND THE EXCEPTIONAL SET 15

where µn1,...,nk
are positive integers which we can ignore. Since ik ≤ d and

ij < ij+1 we have ij ≤ ik − (k − j) ≤ d − (k − j), hence the exponent of x
above satisfies the following
k∑
j=1

njij ≤
k∑
j=1

nj(d− (k − j)) = n1(d− (k − 1)) + . . .+ nk−1(d− 1) + nkd

= d
k∑
j=1

nj −
k−1∑
j=1

nj(k − j) ≤ dn− (k − 1)k/2

where in the second inequality we used nj ≥ 1 for all j ≤ k − 1. Hence
we have equality if and only if ij = d − (k − j) for j ≤ k and nj = 1 for
j ≤ k − 1. If these conditions are satisfied, we furthermore have

k∑
j=1

njij = dn− 1 if and only if k = 2,

i.e. i1 = d − 1, i2 = d, n1 = 1, n2 = n − 1. Therefore the term xdn−1

appears in g(x)n only once, with coefficient equal to (a positive integer
multiple of) cn−1

d cd−1. Hence xnd−1 appears in the left of (6) with coefficient
a0,ncd−1c

n−1
d ; as this coefficient must be zero and a0,ncd 6= 0, we get cd−1 = 0.

The induction base is proved.
Assume cd−1 = cd−2 = . . . = cd−h+1 = 0. We have a non-zero coefficient

of x
∑k

1 njij only if ij 6∈ {id−1, id−2, . . . , id−h+1}, in which case we have
k∑
j=1

njij ≤ n1(d− h− k + 2) + . . .+ nk−2(d− h− 1) + nk−1(d− h) + nkd

= dn− h
k−1∑
j=1

nj −
k−2∑
j=1

j ≤ dn− h(k − 1)− (k − 1)(k − 2)/2.

The first inequality is an equality if and only if ik = d, and ik−1 = d−h, and
ij = ij+1 − 1 for j < k − 1; the second inequality is an equality if and only
if nj = 1 for all j ≤ k − 1. If these conditions hold, we furthermore have∑k
j=1 njij = dn− h if and only if k = 2. Therefore, arguing as above, xdn−h

appears in g(x)n with coefficient cd−hcn−1
d . Hence it appears in the left of

(6) with coefficient a0,ncd−hc
n−1
d ; as this must be zero, we get cd−h = 0. The

claim is proved.

Thus C has equation y = cdx
d, hence q is a (1, d)-point of C. But C is

hypertangent to B3 at q, hence Theorem 2.2.1 implies that B3 also has a
(1, d)-point at q.

Assume d ≥ 3. If B is general we can assume that no point in B3 ∩
(B1 ∪ B2) is a a flex of B3. Hence q is a (1, 2)-point of B3 and we get a
contradiction. Therefore Hypd(B, 2) = ∅ if B is general.
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If, instead, B3 has a (1, l)-point in q for some l ≥ 3, we get d = l, hence d
is determined by B3. Moreover no term of type xi with i < d can appear in
the equation of B3 (for q is a (1, d)-point), hence ai,0 = 0 for all i < d, and
from (6) we derive

cdx
d + ad,0x

d + (terms of degree > d) = λxdn.

As n ≥ 2 we get cd = −ad,0. This proves that C (if it exists) is uniquely
determined by B and q.

Assume d = 2, then q is a (1, 2)-point for C and B3. Now (6) gives

c2x
2 + a2,0x

2 + a1,1c2x
3 + a3,0x

3 + (terms of degree > 3) = λx2n.

We obtain a2,0 = −c2 and a1,1c2 = −a3,0, hence a3,0 = a1,1a2,0. Hence
B3 is not a general curve of degree n (for its equation, (5), must satisfy
a3,0 = a1,1a2,0). Hence Hyp2(B, 2) = ∅ if B is general. (b) is proved.

If B3 is not general, then, as before, C is determined by the condition
c2 = −a2,0, hence it is determined by B and q.

Summarizing, for all d ≥ 2 we proved that, for every q ∈ B1 ∩ B3 there
exists at most one curve C ∈ Hypd(B2; p)∩Hypd(B3; q); as q varies in B1∩B3
we get at most b3 curves in Hyp(B, 2).

If b2 = 1 the same argument applies by taking q ∈ B2 ∩ B3 hence we
might have b3 new elements in Hyp(B, 2). Hence |Hyp≥2(B, 2)| ≤ 2b3

If b2 = 2 we have two choices for the point p ∈ B1 ∩ B2, hence again we
obtain |Hyp≥2(B, 2)| ≤ 2b3. �

For an example where the bound in the theorem is attained, see subsec-
tion 4.2. An immediate consequence is the following.

Theorem 3.3.3. The set Hyp(B, 2) of a 3C-curve B of degree at least 5 is
finite, and it is empty if B is general.

Proof. If d = 1 the statement follows from Proposition 3.2.1. If d ≥ 2 and
b1 > 1 or b2 > 2 it follows from Theorem 3.3.1. The remaining cases follow
from Theorem 3.3.2. �

4. Examples

We collect here some examples and special cases related to our results.

4.1. Examples of hypertangent curves. Let B,C ⊂ P2 be two integral
curves as in Theorem 2.2.1, i.e. they have degree at least 2 and B∩C = {q}
with q a unibranched point for B and C. The following examples show that
there are cases in which q is a (1, l)-point for B and q is a singular point of
C, i.e. is a (m, lm) point with m ≥ 2. In particular, in this setting, the type
of the point q for B is different from its type as a point of C.

(1) Consider the following two curves:

B : y = x2 C : (y − x2)3 + y7.
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One easily checks that C ∈ Hyp(B; q) where q is the origin, and that B has
a (1, 2) point while C has a (3, 6) point, so that m = 3 and l = 2 in our
notation. More generally, the following pair of curves,

B : y = x2 C : (y − x2)c + y2c+1,

gives similar examples where B has a (1, 2) point and C has a (c, 2c) point
for every c ≥ 3.

(2) This second example shows that a similar situation can happen when
l is not 2. Consider the following two curves:

B : y = x3 C : (y − x3)3 + y9.

In this case one checks that q is a (1, 3)-point for B while it is a (3, 9)-point
for C; as before C ∈ Hyp(B; q).

We stress that both these examples do not yield examples of curves in
Hyp(B̃, 2) for a 3C-curve B̃ containing B. In fact, the proof of Theorem
3.3.2 shows that the curves C described above will have to meet the curve
B̃ in more than two points.

4.2. Explicit examples of hyper-bitangent conics. We show that the
bounds in Theorem 3.3.2 are sharp, in the sense that there are examples in
which the set Hyp≥2(B, 2) consists of exactly 2b3 curves.

Figure 1. Example of 4 conics in Hyp2(B, 2)
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For an explicit example consider the following three components of a 3C-
curve B = B1 ∪B2 ∪B3 with (b1, b2, b3) = (1, 1, 2):

B1 : x = 0, B2 : z = 0, B3 : zy = x2 − y2.

Let {q1, q2, q3, q4} = (B1 ∩B3) ∪ (B2 ∩B3), where
q0 = (0 : 0 : 1), q1 = (0 : −1 : 1), q2 = (1 : 1 : 0), q3 = (1 : −1 : 0).

Then for i = 0, 1, 2, 3 the following conics Ci satisfy Ci ∈ Hyp2(B3; qi):

C0 : zy = x2, C1 : zy = −z2 − x2,

C2 : 4xz + 8xy − 8x2 = z2, C3 : 4xz + 8xy + 8x2 = −z2.

Moreover, C0, C1 ∈ Hyp2(B2; p) and C2, C3 ∈ Hyp2(B1; p) where p = (0 :
1 : 0). In other words B2 is the tangent line to C0 and C1 at p, while B1
is the tangent line to C2 and C3 at p. Therefore, for every i = 0, 1, 2, 3,
Ci ∈ Hyp2(B; p, qi) and hence |Hyp2(B, 2)| = 4 reaching the upper bound
of (a) in the statement of Theorem 3.3.2. A picture of these conics in the
affine patch y = 1 can be seen in figure 1.

4.3. Curves with many components. If a curve B has more than three
components, it is not hard to prove that the only hyper-bitangent curves to
B are lines, and describe such lines effectively. We include the analysis of
this case for completeness.

Proposition 4.3.1. Let B be a reduced curve of degree b with c ≥ 4 irre-
ducible components, such that every point in the intersection of two compo-
nents is a node of B.
(a) If c ≥ 5 then Hyp(B, 2) = ∅.
(b) If d = 1 then Hyp1(B, 2) is finite; moreover

(i) if b = 4 then |Hyp1(B, 2)| = 3;
(ii) if B does not contain two lines, then Hyp1(B, 2) = ∅;

(iii) if b ≥ 5 and B is general then Hyp1(B, 2) = ∅.
(c) If d ≥ 2 then Hypd(B, 2) = ∅.

Proof. Write B = B1 ∪ . . . ∪ Bc with c ≥ 4; by hypothesis through every
node of B there pass at most two components. Suppose there exists a curve
C ∈ Hyp(B, 2). Then C meets B in at most two points, and must intersect
all components of B. Hence C ∩ B = {p, q} and p, q belong to exactly two
components, say p ∈ B1 ∩ B2 and q ∈ B3 ∩ B4. In particular, B has only 4
components, proving (a).

Let d = 1 and C ∈ Hyp1(B, 2). As we said, C ∩B = {p, q}. Since B has
finitely many (intersection) nodes, Hyp1(B, 2) is finite.

If b = 4 then B is the union of 4 lines. It is clear that Hyp1(B, 2) is made
of the three bitangent lines of B not contained in B (namely the three lines
not in B and joining a pair of nodes of B).

Let b ≥ 5. We can assume that one component, B4, has degree ≥ 2.
Now, as B3 and B4 meet transversally in q and C ∩ B4 = {q}, the line C
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is necessarily hypertangent to B4 at q; also, B3 must have degree 1, for it
meets C transversally in only one point. Now, if such a line C exists it is
unique and has to pass through the point p as well. Arguing in the same
way for B1 and B2 we have that at least one between B1 and B2 has degree
1. Hence for Hyp1(B, 2) to be non-empty at least two components of B have
degree 1.

Now, if the curve B is general, we can assume that no such line exists, i.e.
we can assume that for every point q ∈ Bi ∩Bj the tangent lines to Bi and
Bj in q do not pass through any other intersection node of B. This proves
that Hyp1(B) is empty if B is general. (b) is proved.

Let d ≥ 2. By contradiction, let C ∈ Hypd(B, 2). As before, we assume
C ∩ B = {p, q} with p ∈ B1 ∩ B2 and q ∈ B3 ∩ B4. Now, B1 and B2 meet
transversally, hence C in p must be transverse to at least one between B1
and B2; say C is transverse to B1. Hence C must intersect B1 in a further
point, and this point must be q, which is impossible as q cannot belong to
three components of B. �

4.4. Hypertangency of rational curves. For an integral curve B ⊂ P2

of degree b ≥ 4 having at most nodal singularities, Conjecture 1 predicts
that there exist only finitely many rational curves hyper-bitangent to B, i.e.
the set E(B) is finite. We will provide an example showing the necessity, in
the conjecture, that B have only nodal singularities.

For every integer b ≥ 3 we denote by Qb ⊂ P2 the curve given by the
homogeneous equation

zb−1y = xb.

The curve Qb is smooth at q0 = (0 : 0 : 1), with tangent line, L0, of equation
y = 0. We have Qb ∩ L0 = {q0}, so L0 is hypertangent to Qb. Next, Qb has
an (b − 1)-fold unibranched point at q∞ = (0 : 1 : 0) with tangent line L∞
of equation z = 0. We have Qb ∩ L∞ = {q∞} so that L∞ is hypertangent
and q∞ is an (b− 1, b)-point.

Qb

L0 L∞

q∞
q0

One checks easily that Qb is integral, has no other singular point, and is a
rational curve; it is, of course, not a nodal curve. Let us look at the set
Ed(Qb) ⊂ Pd(d+3)/2 of rational curvesof degree d hyper-bitangent to Qb. If
d = 1 this has dimension 1, as it contains all lines through q∞. Moreover,
we have
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Proposition 4.4.1. For every d ≥ b and b ≥ 4 we have
(7) dim Hypd(Qb, 1) ≥ 1
and
(8) dim Eb(Qb) ≥ 1

Proof. Consider the curve Ct of equation

y − xb + tyd = 0
with t ∈ C. It is clear that Ct lies in Hypd(Qb; q0) for every t 6= 0 hence (7)
follows. Notice that Ct is smooth, hence not rational, for t 6= 0.

To prove (8) we will exhibit a one-dimensional family of curves in Eb(B).
For every t 6= 0, 1 let Rt be the curve having equation

zb−1y = txb.

It is easy to check that Rt is integral, and its singular locus consists of q∞
which is a (b− 1, b)-singular point, hence Rt is rational Moreover, we have

Rt ·Qb = bq0 + b(b− 1)q∞
hence Rt ∈ Hyp(Qb; q0, q∞). As t varies in C the curves Rt form a family
with a non-integral member, for t = 0, hence the family is not constant.
Therefore the Rt’s give a one-dimensional subspace of Eb(Qb). �
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