
HYPERTANGENCY OF PLANE CURVES AND THE
ALGEBRAIC EXCEPTIONAL SET

LUCIA CAPORASO AND AMOS TURCHET

Abstract. We investigate plane curves intersecting in at most two uni-
branch points to study the algebraic exceptional set appearing in stan-
dard conjectures of diophantine and hyperbolic geometry. Our first re-
sult compares the local geometry of two hypertangent curves, i.e. curves
having maximal contact at one unibranch point. This is applied to fully
describe the exceptional set and, more generally, the hyper-bitangency
set, of a plane curve with three components.
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1. Introduction

The goal of this paper is to study complex plane curves that intersect
a given curve in few points. The main motivation is the quasi-projective
analogue of a well-known conjecture of Lang predicting that on a projective
surface of general type there are only finitely many rational and elliptic
curves. The analogue for the complement of a curve in P2 is the following.

Conjecture 1. Let B ⊂ P2 be a reduced curve with at most normal crossing
singularities (i.e. nodes). If degB ≥ 4, then the set of rational curves
C ⊂ P2 such that |ν−1

C (C ∩ B)| ≤ 2 is finite, where νC : Cν → C is the
normalization.

The set in the conjecture is often referred to as the algebraic exceptional
set (see for example [Lan86]); we denote it by E(B), i.e.

(1) E(B) := {C ⊂ P2 : C rational, |ν−1
C (C ∩B)| ≤ 2}.
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The curves C\B with C ∈ E(B) are quasi-projective analogues of rational
and elliptic curves, both arithmetically (they have a potentially infinite set
of integral points when defined over a number field) and geometrically (see
for example [KM99]).

Conjecture 1 can be deduced by several conjectures of Lang, Vojta, De-
mailly and Campana, as in [Lan91, Conj. 3.7], [Voj87, Conj. 3.4.3] [Dem97]
and [Cam04, Conj. 9.2 and 9.20] (see [BG06, HS00, AT20, DT15] for intro-
ductions and discussions), on the distribution of integral and rational points
on quasi-projective surfaces defined over number fields and function fields.
From the arithmetic point of view, E(B) is conjecturally made of the curves
that contain all potentially infinite families of integral points in the affine
surface P2 \B.

Historically, describing the set E(B), has proven harder the fewer the
irreducible components of the curve B, and Conjecture 1 is open if B has at
most two components. When B has at least three components, Corvaja and
Zannier proved the function field version of Vojta’s Conjecture for P2 \ B,
in [CZ08] and [CZ13], which implies that curves in E(B) have bounded
degree (the same result in the so-called non-split case was proved in [CT22],
building upon [Tur17]). More recently [GNSW23] showed (as a special case
of their Theorem 4) that the set E(B) corresponds to a closed subset of P2

and described a closed set containing it. If two of the three components are
lines, this can be deduced from an earlier result in [CZ00], which covers also
some non normal-crossing B, see Subsection 4.4 for further details.

A different line of investigation assumes that the curve B is very general.
In [CRY23] the authors showed that when B is very general of degree 4
the set E(B) consists only of the bitangents and the flex lines, answering
a question of Lang. On the other hand, when B is very general of degree
at least 5 the set E(B) is empty: this has been proven independently in
[Che04] and in [PR07]. No similar result is known without the “very general”
assumption.

In the present article we extend our analysis from rational curves to curves
of arbitrary genus. This enables us, in particular, to give an explicit descrip-
tion of the set E(B) when B has (at least) three irreducible components. To
state our results we introduce, generalizing (1), the set of curves “hyper-
bitangent” to B

Hyp(B, 2) := {C ⊂ P2 : C integral, |ν−1
C (C ∩B)| ≤ 2}

so that, of course, E(B) ⊂ Hyp(B, 2). We now summarize in one statement
our main results; see Proposition 3.2.1, and Theorems 3.3.1, 3.3.2, and 3.3.4
for more precise and stronger statements.

Theorem. Let B ⊂ P2 be a reduced curve with three irreducible components
and only nodal singularities. If degB ≥ 4 then
(a) E(B) = Hyp(B, 2);
(b) Hyp(B, 2) is finite and effectively bounded;
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(c) if degB ≥ 5 and B is general, then Hyp(B, 2) is empty.

The above effective bounds on |Hyp(B, 2)| depend only on the degrees of
the irreducible components of B. The phrase “B is general” means that, for
every fixed triple of degrees summing to d, the curve B varies in an open
dense subset of the space of triples of curves of fixed degrees.

Proposition 3.2.1 gives the bound for the number of hyper-bitangent lines,
and Theorem 3.3.4 gives the bound for the number of hyper-bitangent curves
of degree at least 2.

The proof of these facts relies on a geometric result of independent interest
proved at the beginning of the paper, Theorem 2.2.1, which analyzes two
plane curves, B and C, meeting in only one point. The precise statement
requires some technical preliminaries; informally speaking, it establishes that
the local geometries of B and C at their intersection point are closely related.

Our results are related to the hyperbolic properties of P2 \ B. Demailly
in [Dem97] introduced an algebraic analogue of hyperbolicity for projective
varieties, which was extended to quasi projective varieties in [Che04]. Using
this analogue, if B has degree at least 4 one expects the existence of a
positive constant A such that, for every integral curve C ⊂ P2 not contained
in the exceptional set E(B), the following bound holds:

(2) degC ≤ A ·
(
2g(Cν)− 2 + |ν−1

C (C ∩B)|
)
.

Equivalently one expects that P2 \ B is “algebraically hyperbolic” modulo
E(B); see [Jav20, Section 9] for further references and discussions on alge-
braic hyperbolicity.

To see the link with our results, curves in Hyp(B, 2) correspond exactly
to curves that satisfy |ν−1

C (C ∩ B)| ≤ 2. Hence our Theorem proves that,
when B has at least three irreducible components and |ν−1

C (C ∩ B)| = 2,
the bound (2) holds. More precisely, we show that the degree of a curve in
Hyp(B, 2) is bounded uniformly independently of the genus, and (2) holds
for curves in Hyp(B, 2) with A = degB − 2; see Corollary 3.3.3. This
strengthens, in this particular case, [CZ13, Theorem 1] which proves (weak)
algebraic hyperbolicity of P2 \B when B has at least three components. We
point out that our method is completely different and uses purely geometric
techniques.

In a parallel direction, the logarithmic Green-Griffiths-Lang Conjecture
predicts that, when degB ≥ 4, there exists an analytic exceptional set, i.e.
a Zariski proper closed subset of P2 \ B that contains all the images of the
non constant holomorphic maps C→ P2 \B, i.e. P2 \B is Brody hyperbolic
modulo such analytic exceptional set. In general, the analytic exceptional
set always contains the algebraic one, and they are conjectured to coincide,
by Lang. In our setting the two coincide, and hence our results provide the
description of the analytic exceptional set for P2\B, in the case where B has
at least three irreducible components. This is only possible since algebraic
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degeneracy (i.e. every holomorphic map C → P2 \ B has non dense image)
was already proven in [NWY08].

Our arguments do not use any of the known results we mentioned in this
introduction. Therefore we expect our techniques to extend to log surfaces
where boundedness is not known.

Outline of the paper. In Section 2 we establish our principal geometric
tool, Theorem 2.2.1, on the local geometry of two plane curves meeting in
only one unibranch point. In Section 3 we prove our main results describ-
ing the sets Hyp(B, 2) for curves with three components, thus proving the
previously stated Theorem. Finally, Section 4 collects various special cases
and examples related to the earlier topics.

Notation and terminology. We work over C. We denote by C an integral
(i.e. reduced and irreducible) projective curve lying in a smooth projective
surface S, by νC : Cν → C its normalization, by pa(C) its arithmetic genus,
and by g(C) = pa(Cν) its geometric genus. A rational curve is an integral
curve of geometric genus zero. Given a point p ∈ C, we write multp(C) for
the multiplicity of C at p. We say that p is unibranched if |ν−1

C (p)| = 1. We
denote by Cνp the partial normalization of C at p; the δ-invariant, δC(p), of
p is δC(p) = pa(C)− pa(Cνp ). The following formula is well-known

(3) δC(p) =
∑

mq(mq − 1)/2

where q varies over all points infinitely near to p (including p), and mq is
the multiplicity of q.

If C,B ⊂ S are reduced curves with no components in common, and
p ∈ C ∩ B, we write (C · B)p for their multiplicity of intersection at p; we
say that C and B are transverse at p if (C ·B)p = multp(B)multp(C).

We say that C is hypertangent to B if |ν−1
C (B ∩ C)| = 1.

Let S = P2, fix a reduced curve B ⊂ P2 and a point q ∈ B. The set of
integral curves hypertangent to B at q is

Hyp(B; q) := {C ⊂ P2 : C integral, C ∩B = {q}, |ν−1
C (q)| = 1},

and the set of all integral curves hypertangent to B is

Hyp(B, 1) := ∪q∈B Hyp(B; q).

For a positive integer d we write Hypd(B; q) ⊂ Hyp(B; q) and Hypd(B, 1) ⊂
Hyp(B, 1), for the subsets parametrizing curves of degree d; we view both
of them as subspaces of the projective space Pd(d+3)/2 parametrizing plane
curves of degree d.

If C ∈ Hypd(B; q) and C is singular at q, then it necessarily has a uni-
branch singularity. We set for m ≥ 1

Hypm(B; q) = {C ∈ Hyp(B; q) : multq(C) = m}

and we define Hypmd (B; q) ⊂ Hypd(B; q) analogously.
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Now we extend to double intersections. As we said before, C is hyper-
bitangent to B if ν−1

C (C ∩ B) ≤ 2 and we denote by Hyp(B, 2) the set of
curves hyper-bitangent to B. We have Hyp(B, 1) ⊂ Hyp(B, 2). We set

Hypd(B, 2) := {C ∈ Hyp(B, 2) : degC = d}

so that Hypd(B, 2) ⊂ Pd(d+3)/2.

Acknowledgements. We are pleased to thank Laura Capuano, Wei Chen,
Ciro Ciliberto, Pietro Corvaja, Kristin DeVleming, Edoardo Sernesi and
Umberto Zannier for discussions and useful comments about this work. We
are grateful to the referees for comments and suggestions which improved
the paper. LC is partially supported by PRIN 2017SSNZAW and PRIN
2022L34E7W, Moduli spaces and birational geometry. AT is partially sup-
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tions and related Diophantine problems and PRIN 2020KKWT53: Curves,
Ricci flat Varieties and their Interactions, and is a member of the INDAM
group GNSAGA.

2. Hypertangency

2.1. Preliminaries on unibranch points. We here state some basic facts
about unibranch points of curves; we refer to [Wal04] for an exhaustive
treatise. Let q be a unibranch point of an integral curve C ⊂ P2; the
tangent line to C at q is well defined, we denote it by L. When L 6= C we
say that q is an (m,n)-point if multq(C) = m and if (C · L)q = n.

If m = 1 and n ≥ 3 we say that q is a flex of C. We choose local
coordinates, x, y, so that q = (0, 0), the line L has equation y = 0, and C
has equation f(x, y) = 0 with deg f = d ≥ n with

(4) f(x, y) = a0,my
m +

∑
m+1≤i+j≤d

ai,jx
iyj

such that a0,m 6= 0 and the smallest power of x appearing in f is xn, i.e.
ai,0 = 0 for i < n and an,0 6= 0. Notice that, as will be clear in the sequel,
having local equation of type (4) is not sufficient for q to be unibranched.

More generally, let S be any smooth surface and q ∈ C ⊂ S a unibranch
point of multiplicity m; let D ⊂ S be a smooth integral curve, C 6= D. If
n := (C · D)q > m we say that D is tangent to C at q, and that q is an
(m,n)-point of C with respect to D.

We are interested in the case where the surface S is an iterated blow-up
of P2 over a fixed point q0 ∈ P2, i.e. we have a finite chain of blow-ups

S −→ Si −→ . . . −→ S0 = P2

all centered at a point lying over q0. Let C ⊂ S be an integral curve with
a unibranch point q ∈ C. Let L ⊂ S be the strict transform of a line in
P2 such that q is an (m,n)-point with respect to L. Consider the blow-up,
S′ → S, at q, let E ⊂ S′ be the exceptional divisor and C ′ and L′ the strict
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transforms of C and L. The map σ : C ′ → C induced by this blow-up is
bijective; set q′ := σ−1(q). With this set-up, we have the following

Lemma 2.1.1. Let 0 < m < n and let q ∈ C ⊂ S be an (m,n)-point with
respect to L
(a) If n < 2m then q′ is an (n−m,m)-point of C ′ with respect to E.
(b) If n > 2m then q′ is an (m,n−m)-point of C ′ with respect to L′.
(c) If n = 2m then q′ is an m-fold point of C ′, and C ′ is neither tangent to

E nor to L′ at q′.

Proof. We can work locally and use on S affine coordinates so that the set-
up described for (4) holds. To blow-up at q we set y = vx and use (x, v)
as local coordinates in the blow-up at q′ = (0, 0), the local equation of the
exceptional divisor E is x = 0, and the local equation of L′ is v = 0. Let
f ′(x, v) = 0 be the affine equation of C ′ obtained from (4):

f ′(x, v) = x−mf(x, vx) = a0,mv
m +

∑
m+1≤i+j≤d

ai,jx
i+j−mvj .

The smallest power of x appearing as a summand of f ′ is xn−m, and the
smallest power of v is vm. We have three cases.

Case (a) n < 2m. Hence n − m < m and we set r = n − m. Since C ′
is unibranch at q′, and f ′ contains the summand xr but not the summand
vr (as r < m), all terms in f ′ of degree at most r divisible by xv must
vanish (for otherwise the lowest homogeneous part of f ′ will be reducible,
contradicting the fact that q′ is a unibranch point of C ′). Hence the tangent
line to C ′ at q′ has local equation x = 0, hence C ′ is tangent to E. Since
the smallest power of v in f ′ is vm, we get that q′ is an (r,m)-point with
respect to E.

Case (b) n > 2m. The smallest power of v appearing in f ′ is vm and,
arguing as in the previous case, f ′ has no other term of degree at most m.
Hence the tangent line to C ′ at q′ has local equation v = 0, so that C ′ is
tangent to L. As the smallest power of x is xn−m, we get that q′ is an
(m,n−m)-point with respect to L′.

Case (c) n = 2m. We have both xn−m = xm and vm appearing in f ′ as
smallest powers of x and v. Since C ′ is unibranch at q′, this is possible only
if the homogeneous part of degree m of f ′, has form f ′m = (αv+βx)m, with
α, β 6= 0. Hence q′ is an m-fold point such that neither E nor L′ are tangent
to C at q′. �

We will frequently use the following well known facts.

Remark 2.1.2. Let B,C ⊂ S be two integral curves and q ∈ B ∩ C.
Suppose that B is smooth at q, and that C has a unibranch mC-fold point
at q. If S′ → S is the blow up at q and C ′, B′ ⊂ S′ are the strict transforms
of C and B, then (C ′ ·B′) = (C ·B)−mC .

Moreover, (C ·B)q > mC if and only if C and B are tangent at q.
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2.2. Hypertangency at unibranch points of plane curves. We de-
scribe plane curves hypertangent to a curve at a smooth point. See Subsec-
tion 4.1 for some examples. Recall that a point q of a plane curve C ⊂ P2

of degree at least 2 is an (m,n)-point if it is unibranch, m = multq(C) and
(L · C)q = n, where L is the tangent line to C at q.

Theorem 2.2.1. Let B,C ⊂ P2 be integral curves of degree at least 2 such
that B ∩ C = {q}; assume that q is a (1, l)-point for B and an (m,n)-point
for C. Then n = lm and the δ-invariant of q on C satisfies

δC(q) ≥ (m− 1)(degB degC −m)/2.

Proof. Set b = degB, d = degC, and let q be an (m,n) point of C. Hence
l ≤ b and 1 ≤ m < n ≤ d. By hypothesis,

(C ·B)q = (C ·B) = bd > m

therefore C and B must have the same tangent line at q (by Remark 2.1.2);
we write L for this line. Let C1, B1 and L1 be the strict transforms of C,B
and L in the blow-up, S1, of P2 at q, and let q1 ∈ C1 be the point lying over
q. By hypothesis C1 and B1 meet only in q1, hence (as d > m, b ≥ 2)

(C1 ·B1)q1 = (C1 ·B1) = bd−m > bm−m ≥ 2m−m = m.

Now, B1 is smooth at q1 and multq1(C1) ≤ multq(C) = m, hence

(C1 ·B1)q1 > m ≥ multq1(C1)multq1(B1),

hence C1 and B1 are tangent in q1.
We prove that C has an (m, lm)-point at q. Suppose l = 2; Lemma 2.1.1

implies that B1 is neither tangent to L1, nor to the exceptional divisor,
hence the same holds for C1. Hence, by the same Lemma, q is a (m, 2m)
point for C, and we are done.

To set-up an inductive argument we introduce a sequence of blow-ups as
follows. We already considered the blow-up, S1, of S0 = P2 at q0 = q. For
i ≥ 1 we let Si be the blow-up of Si−1 at the unique point qi−1 ∈ Ci−1 lying
over q. We denote by Ci, Bi and Li the strict transforms of C,B and L.
Notice that the multiplicity of Ci at qi is at most m.

Claim. Let l ≥ 3; for every 1 ≤ i ≤ l−2 the point qi is an (m,n−im)-point
with respect to Li for Ci, moreover Ci and Bi are tangent at qi.

We prove the claim by induction. If i = 1 then q is a (1, l ≥ 3)-point for
B, hence Lemma 2.1.1 gives that B1 is tangent to L1 over q. We proved
earlier that B1 and C1 are tangent in q1, hence C1 is tangent to L1 at q1;
hence, by Lemma 2.1.1, q is an (m,n)-point for C with n > 2m, and q1 ∈ C1

is an (m,n−m)-point with respect to L1. The proof of the base is complete.
Suppose Ci−1 has a (m,m− (i− 1)n)-point with respect to Li−1 at qi−1,

and Bi−1 and Ci−1 are tangent to Li−1 at qi−1. Now Bi−1 has a (1, l−(i−1))-
point in qi−1; as i ≤ l − 2 we have l − (i − 1) ≥ l − l + 3 = 3, hence Bi is
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tangent to Li. Now, l ≤ b, hence i ≤ l − 2 ≤ b− 2. Therefore

(Ci ·Bi)qi = (Ci ·Bi) = bd− im > bm− im ≥ bm− (b− 2)m = 2m > m.

Hence Ci and Bi are tangent in qi at Li. Therefore Ci is tangent to Li and
case (b) of Lemma 2.1.1 must occur for Ci−1, i.e. m − (i − 1)n > 2m and
Ci has a (m,n− im)-point with respect to Li. The claim is proved.

Thus C l−2 has an (m,n − (l − 2)m)-point with respect to Ll−2 at ql−2 ,
and Bl−2 and C l−2 are tangent to Ll−2 at ql−2. Now, Bl−2 has a (1, 2)-point
at ql−2, hence its strict transform, Bl−1, is neither tangent to Ll−1 nor to
the exceptional divisor. We have, as m < d and l ≤ b

(C l−1 ·Bl−1)ql−1 = (C l−1 ·Bl−1) = bd− (l − 1)m > bm− (b− 1)m = m,

hence C l−1 and Bl−1 are tangent in ql−1, hence C l−1 is neither tangent to
Ll−1 nor to the exceptional divisor. Now case (c) of Lemma 2.1.1 occurs
for C l−2, i.e. ql−2 is a (m, 2m)-point. Therefore 2m = n − (l − 2)m, hence
n = lm, as stated.

Let us now study the δ-invariant for q as a point of C. Set

h = d(bd−m)/me.

We prove, by induction on i, that qi is an m-fold point of Ci for every
i ≤ h−1, and Bi and Ci are tangent in qi. We already proved this for every
i ≤ l− 1, hence the base case is settled and we assume i ≥ l. The argument
is similar to the one used in the previous part. Assume multqi−1(Ci−1) = m,
and Bi−1 tangent to Ci−1 in qi−1. Then, as i ≤ h− 1, we have

(Ci ·Bi)qi = (Ci ·Bi) = bd− im ≥ bd− (h− 1)m =
bd− (d(bd−m)/me − 1)m > bd− (bd/m− 1)m = bd− bd+m = m

(as d(bd − m)/me < bd/m). Hence (Ci · Bi)qi > m, hence Ci and Bi are
tangent at qi. Now, the curve Bi−1 has a smooth point at qi−1, hence Bi

is not tangent to the exceptional divisor in qi. Hence the same holds for
Ci. Hence case (a) of Lemma 2.1.1 does not occur for Ci−1, hence qi is an
m-fold point of Ci. So we are done.

Since Ci has an m-fold point at qi for every i = 0, . . . , h − 1, by (3) the
δ-invariant of q satisfies

δC(q) ≥ hm(m− 1)/2
= d(bd−m)/mem(m− 1)/2
≥ ((bd−m)/m)m(m− 1)/2
= (bd−m)(m− 1)/2.

The proof is now complete. �
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3. Hyper-bitangency for 3C-curves

3.1. Definition and simple cases. We study hyper-bitangent curves to a
curve B ⊂ P2 which is the transverse union of three integral curves.

Definition 3.1.1. A 3C-curve is a reduced plane curve B = B1 ∪B2 ∪B3,
with Bi integral of degree bi ≥ 1, such that every point in Bi ∩Bj is a node
of B for all i 6= j. We always assume b1 ≤ b2 ≤ b3. We set

Bi ∩Bj = {pti,j , t = 1, . . . , bibj}

with pti,j = ptj,i; we often omit the superscript t. Notice that the components
of B meet only pairwise, and transversally. We write N := ∪i 6=jBi ∩Bj .

We begin with the case b1 = b2 = b3 = 1. This is a particularly simple
curve which can be easily handled.

Proposition 3.1.2. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree 3. Then
dim Hypd(B, 2) ≥ 1 for every d ≥ 1.

Proof. The curve B is the union of three lines; set Bi ∩ Bj = {pi,j} so that
N = {p1,2, p1,3, p2,3, }.

Suppose d = 1; then the one-dimensional space of lines through {pi,j},
with Bi and Bj removed, lies in Hyp1(B, 2), and these are the only elements
of Hyp1(B, 2). Hence dim Hyp1(B, 2) = 1.

Let d ≥ 2 and C ∈ Hypd(B, 2). Obviously C ∩N 6= ∅, say p1,2 ∈ C. Then
the tangent line to C at p1,2 (which is well defined as C is unibranched at
p1,2) must be different from at least one of the (different) tangent lines to
B1 and B2 at p1,2. Hence C must be transverse to at least one between B1
and B2, say C transverse to B1, hence C meets B1 in a further point. Since
C must also meet B3 we get p1,3 ∈ C, and C cannot be transverse to B3.
We derive that C is hypertangent to B2 and B3 respectively at p1,2 and p1,3.
Now, setting m = mp1,2(C) and n = mp1,3(C), we have

d = (C ·B1) = (C ·B1)p1,2 + (C ·B1)p1,3 = m+ n ≤ d
hence d = n+m. Interchanging the three components, we derive

Hypd(B, 2) =
d−1⋃
m=1

⋃
i,j,h=1,2,3
i 6=j

Hypmd (Bi; ph,i) ∩Hypd−md (Bj ; ph,j).

Consider m = 1 and the subspace Hyp1
d(Bi; ph,i) ∩ Hypd−1

d (Bj ; ph,j). Now,
Hyp1

d(Bi; ph,i) is the space of integral degree-d curves passing through ph,i,
and meeting the line Bi with multiplicity d at ph,i. It is easy to see that the
closure of this space in Pd(d+3)/2 is a linear subspace of codimension d.

Next, Hypd−1
d (Bj ; ph,j) is the space of integral degree-d curves having

a (d − 1, d)-point at ph,j with tangent line equal to Bj . To compute the
codimension of its closure in Pd(d+3)/2 we can assume that ph,j is the origin
and the line Bj has equation y = 0. Then a curve C ∈ Hypd−1

d (Bj ; ph,j) has



10 LUCIA CAPORASO AND AMOS TURCHET

equation
∑
d−1≤i+j≤d ai,jx

iyj = 0 with ai,j = 0 for every i + j = d − 1 and
i 6= 0. One easily checks that such polynomials form a linear subspace of
codimension equal to d(d− 1)/2 + d− 1 = (d2 + d− 2)/2. Therefore

dim Hyp1
d(Bi; ph,i)∩Hypd−1

d (Bj ; ph,j) ≥ d(d+ 3)/2− d− (d2 + d− 2)/2 = 1.

To conclude the proof it suffices to prove that a general point of the above
intersection parametrizes an integral curve, i.e. an element in Hypd(B, 2).
To do this, it suffices to prove that the above intersection contains one
integral curve, i.e. that there exists an integral curve of degree d meeting
Bi with multiplicity d at ph,i and with a (d− 1, d)-point at ph,j with Bj as
tangent line. By choosing projective coordinates x, y, z such that Bi and
Bj have respective equations z = 0 and y = 0, with ph,i = (0 : 0 : 1)
and ph,j = (0 : 1 : 0), we have the curve of equation yd−1z = xd (see
subsection 4.4 for the properties of such a curve). �

3.2. Hyper-bitangent lines. We now describe hyper-bitangent lines to a
3C-curve of degree at least 4. This is quite elementary, possibly part of it
already known. We include it for completeness and lack of references.

Proposition 3.2.1. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree b ≥ 4.
(a) If b = 4 then |Hyp1(B, 2)| = 6.

More precisely, C ∈ Hyp1(B, 2) if and only if C is one of the four
lines through B3 ∩ (B1 ∪ B2) different from B1 and B2, or C is one of
the two lines tangent to B3 and passing through the point B1 ∩B2.

B3 B2B1

C

C

(b) If b ≥ 5 then Hyp1(B, 2) is finite, and it is empty if B is general.
More precisely, if b1 = b2 = 1 then |Hyp1(B, 2)| ≤ 3b3(b3 − 2), and

|Hyp1(B, 2)| ≤ 2|N | otherwise (recall N = ∪i 6=jBi ∩Bj).

Proof. If b = 4 then b1 = b2 = 1 and b3 = 2; set B1 ∩ B2 = {p1,2}. We first
look at the lines through two points of N . If C is a line through pt1,3 and
pt
′

2,3 it clearly lies in Hyp1(B, 2). If C is a line through pti,3 and pt
′
i,3 then it

is equal to Bi which is not possible. Now suppose that C ∈ Hyp1(B, 2) is
not one of these lines; then we must have p1,2 ∈ C and C must meet B3 in
a unique point, hence C must be tangent to B3. Part (a) is proved.

Let b ≥ 5 and let B a general curve; we can make the following as-
sumptions. If b3 ≥ 3 then B3 has finitely many flexes, hence finitely many
flex lines, and finitely many bitangent lines; we assume that B1 and B2 do
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not pass through any flex of B3 or through any point where B3 meets its
bitangent lines, and that B1 ∩B2 intersects no line hyper-bitangent to B3.

If b3 = 2 then b2 = 2, we assume that B1 does not intersect B2 ∪ B3 at
any point where B2 ∪B3 meets its bitangent lines.

Finally, given any p2,3 ∈ B2 ∩ B3, there are finitely many lines through
p2,3 that are tangent to B3, hence there are finitely many points r ∈ B3 such
that the tangent line to B3 at r passes through B2 ∩B3; we assume that B1
does not intersect B3 in any of these points. Also, if b2 6= 1, we assume that
B1 does not intersect B2 in any point lying on some tangent line to B2 or
B3 passing through p2,3.

By contradiction, let C ∈ Hyp1(B, 2). Suppose |C ∩N | = 2.
If b3 ≥ 3 then, as N contains no flex of B3, we have C ∩ B = {p1,3, p2,3}

and, as C cannot be a bitangent to B3, we have

b3 = (C ·B3)p1,3 + (C ·B3)p2,3 ≤ 3

hence b3 = 3. Now C must be tangent to B3 in one of the points, pi,3.
Hence C is a line through B2 ∩B3 tangent to B3 and intersecting B1 ∩B3;
we excluded the existence of such lines, so we are done.

Let b3 = 2, hence b2 = 2. If b1 = 1, up to switching B2 and B3 we have
only the case C ∩ B = {p1,2, p2,3}. Then C is tangent to B3 at p2,3 and
intersects B1 ∩B2, which is excluded.

Let b1 = 2. Our generality assumptions prevent us from switching B1
with B2 or B3, so we have more cases. If C ∩ B = {p1,2, p1,3} then C is a
bitangent of B2 ∪ B3, which is excluded (as before). If C ∩ B = {p1,2, p2,3}
then C is tangent to B3 at p2,3 and intersects B1∩B2, which is excluded. As
we can switch B2 with B3 we are done. We thus proved that |C ∩N | = 1.

Suppose C ∩ N = {p1,2}. Then C meets B3 in a point r 6∈ N , and it is
hypertangent to B3 at r. If b3 ≥ 3 then r is a flex and, by our assumptions,
the flex line does not pass through B1 ∩B2. If b3 = 2 then b2 = 2 and C is
a bitangent of B2 ∪B3, which is also excluded.

Suppose C ∩ N = {p1,3}, then either b3 ≥ 3 and C is a flex line of B3
which is excluded, or b3 = b3 = 2 and C is a bitangent of B2 ∪B3, which is
excluded.

Suppose C ∩N = {p2,3}. Now, C cannot be tangent to both B2 and B3,
hence b2 = 1, hence b1 = 1, hence b3 ≥ 3, hence p2,3 is a flex of B3. A
contradiction. We thus proved that Hyp1(B, 2) is empty for B general.

If B is an arbitrary curve, the proof shows that for a curve C ∈ Hyp1(B, 2)
only two cases can occur. First case: C is tangent to some component of B
in a point of N ; since at each point of N there are two such tangent lines
we have at most 2|N | possibilities for such a C.

Second case: C meets all components of B transversally along N . Then
one easily checks that b1 = b2 = 1, moreover C passes through B1 ∩B2 and
is hypertangent to B3 in a flex (or rather a hyper-flex) or in a unibranch
singular point. It is well known that the number of flexes of B3 is at most
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equal to 3b3(b3 − 2); hence in the second case we have at most 3b3(b3 − 2)
possibilities for C.

If b1 = b2 = 1 the first case occurs only with C hypertangent B3, hence
the bound Hyp1(B, 2) ≤ 3b3(b3 − 2) holds. �

3.3. Hyper-bitangent curves of higher degree. We begin with a geo-
metric description of hyper-bitangent curves.

Theorem 3.3.1. Let d ≥ 2. Let B = B1 ∪B2 ∪B3 be a 3C-curve of degree
b ≥ 4 such that Hypd(B, 2) is not empty. Then b1 = 1 and the following
occur.
(a) If b2 = 1, setting B1 ∩B2 = {p}, we have

Hypd(B, 2) =
⋃

i=1,2
q∈Bi∩B3

Hypd−1
d (Bi; p) ∩Hypd(B3; q).

B3
B2B1

p

q

C

(b) If b2 ≥ 2 then Hypd(B, 2) is empty for d ≥ 3 and

Hyp2(B, 2) =
⋃

p∈B1∩B2
q∈B1∩B3

Hyp2(B2, p) ∩Hyp2(B3, q).

(c) Every C ∈ Hypd(B, 2) is rational (hence E(B) = Hyp(B, 2), with E(B)
defined in (1)).

Proof. Since b ≥ 4 we have b3 ≥ 2. Let C ∈ Hypd(B, 2), then |C ∩ B| ≤ 2;
on the other hand B1 ∩B2 ∩B3 = ∅, hence |C ∩B| = 2.

Let us prove that C ∩ B3 ⊂ N and |C ∩ B3| = 1. By contradiction,
suppose C ∩B3 contains a point not in N . Hence C must intersect B1 ∪B2
in exactly one point, p1,2 ∈ B1 ∩ B2. Now, p1,2 is a unibranch n-fold point
of C, for some n < d (as d > 1). Since B1 and B2 meet transversally, C is
tangent to one of them and transverse to the other, say C is transverse to
Bi with i < 3. Therefore

bid = (C ·Bi) = (C ·Bi)p1,2 = n < d

a contradiction. Hence C ∩B3 ⊂ N .
By contradiction, suppose |C ∩ B3| = 2; as C must intersect B1 and B2

we have C ∩ B3 = {p1,3, p2,3} ⊂ N , with pi,3 ∈ Bi ∩ B3. Since B3 and Bi
meet transversally, C must be transverse to either Bi or B3 at pi,3. If C is
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transverse to Bi then, arguing as above, we get (C ·Bi) < d, a contradiction.
Hence C is transverse to B3 at both p1,3 and p2,3. Set mi = multpi,3(C), so
that m1 +m2 ≤ d. Then

b3d = (C ·B3) = (C ·B3)p1,3 + (C ·B3)p2,3 = m1 +m2 ≤ d

which is impossible, as b3 ≥ 2.
We thus proved that C ∩ B3 = {pi,3} for one i ∈ {1, 2}. Hence C is

hypertangent to B3 at pi,3. As C is not transverse to B3 a pi,3, it must be
transverse to Bi, hence it must meet Bi in a further point. As C must meet
the other component, Bj with j 6= i, 3, there exists a point p1,2 ∈ B1 ∩ B2
such that p1,2 ∈ C. We obtain C ∩ B = {p1,2, pi,3} and C ∩ Bj = {p1,2}.
Now Bj and C meet only at p1,2, hence C cannot be transverse to Bj at this
point, hence it must be transverse to Bi. Therefore

bid = (C ·Bi) = (C ·Bi)p1,2 + (C ·Bi)pi,3 = multp1,2(C) + multpi,3(C) ≤ d

hence bi = 1 and equality holds, i.e. multp1,2(C)+multpi,3(C) = d. Therefore
b1 = 1 and C ∈ Hypd−md (B2, p1,2) ∩Hypmd (B3, p1,3), with m = multp1,3(C).

We now show that m = 1. Since B3 has degree at least 2 and is smooth at
p1,3, it has a (1, l)-point there for some l ≥ 2. We can apply Theorem 2.2.1
to B3 and C, getting that p1,3 is an (m, lm) point for C. Suppose m ≥ 2; the
same theorem yields δC(p1,3) ≥ (b3d −m)(m − 1)/2. On the other hand C
has also a (d−m)-fold point at p1,2, hence δC(p1,2) ≥ (d−m)(d−m− 1)/2.
Therefore

g(C) ≤
(
d− 1

2

)
− (b3d−m)(m− 1)/2− (d−m)(d−m− 1)/2

=
(
d− 1

2

)
− (d2 − d− 2md+ b3md− b3d+ 2m)/2

=
(
d− 1

2

)
− (d2 + d(−1 +m(b3 − 2)− b3) + 2m)/2

≤
(
d− 1

2

)
− (d2 − 3d+ 4)/2

= (d2 − 3d+ 2)/2− (d2 − 3d+ 4)/2
< 0,

as m ≥ 2 and b3 ≥ 2. This is impossible. Hence m = 1 and

(5) C ∈ Hypd−1
d (B2, p1,2) ∩Hypd(B3, p1,3).

If b2 = 1 we can switch roles between B1 and B2; part (a) is proved.
Assume b2 ≥ 2. Then, as B2 is smooth at p1,2, we can apply Theo-

rem 2.2.1, which gives that C has an (h, lh) point at p1,2, for some h ≥ 1.
Now (5) implies that p1,2 is a (d − 1, d)-point of C. Therefore (h, lh) =
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(d − 1, d), hence h = 1 and d = 2. Therefore Hypd(B, 2) is empty if d ≥ 3,
and the proof of part (b) is complete.

A curve of degree d having a (d − 1)-fold point is necessarily rational,
hence part (c) follows from the previous parts. �

If d ≥ 2, Theorem 3.3.1 implies that Hypd(B, 2) = ∅ whenever b1 > 1,
or b2 ≥ 2 and d ≥ 3. We now treat the remaining cases. We denote by
Hyp≥2(B, 2) the set of curves of degree at least 2 that are hyper-bitangent
to B, i.e. Hyp≥2(B, 2) := ∪d≥2 Hypd(B, 2).

Theorem 3.3.2. Let B be a 3C-curve of degree b ≥ 4 such that b1 = 1.
Then
(a) |Hyp≥2(B, 2)| ≤ b3 max{2, b2};
(b) |Hyp≥2(B, 2)| = 0 if B is general.

Proof. Let C ∈ Hypd(B, 2) with d ≥ 2; by Theorem 3.3.1, up to switching
B1 and B2 when b2 = 1, we have C ∈ Hypd−1

d (B2; p) ∩ Hypd(B3; q) with
p ∈ B1 ∩B2 and q ∈ B1 ∩B3. Now, C has a (d− 1, d)-fold point at p where
it is tangent to B2, and a smooth point at q where it is tangent to B3. We
can choose homogeneous coordinates (X,Y, Z) in P2 so that p = (0 : 1 : 0)
and the tangent line to C at p has equation z = 0. Therefore in the open
subset where Y 6= 0 the curve C has affine equation zd−1 =

∑d
i=0 cix

izd−i.
We can assume that q = (0 : 0 : 1) and the tangent line to B3 has equation
y = 0. Hence c0 = c1 = 0 and the affine equation of C where Z 6= 0 is

y = g(x) where g(x) := cdx
d + cd−1x

d−1 + . . .+ c2x
2.

Claim. g(x) = cdx
d.

We can assume d ≥ 3. We provide two proofs of the claim, giving different
insights.

First proof. We follow the proof of [Kól24, Lm. 42]. The tangent line, L,
to C at q has equation y = 0, hence it suffices to prove that (L · C)q = d.
Denote by (B3)C and LC the (Cartier) divisors cut by B3 and L on C. Set
n := b3 to simplify; we have (B3)C = ndq and, of course, (B3)C ∼ nLC ,
hence n(dq−LC) ∼ 0. On the other hand, C is a rational curve whose unique
singular point, p, is unibranch, hence PicC has no torsion; see [Har77, Ex.
6.11.4]. Therefore dq ∼ LC , hence (as curves of degree d cut on C a complete
linear series) dq = LC , and the claim is proved.

Second proof. Let f(x, y) = 0 be the affine equation of B3; as B3 is
smooth at q and tangent to y = 0, we have
(6) f(x, y) = y +

∑
2≤i+j≤n

ai,jx
iyj

with n = b3. We have (C ·B3) = (C ·B3)q = dn, therefore f(x, g(x)) = λxdn

for some λ 6= 0. Hence the following holds
(7) g(x) +

∑
2≤i+j≤n

ai,jx
ig(x)j = λxdn.
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Now, for every i, j as above, the product xig(x)j is a sum of monomials in
x whose degrees range in the set I(i, j), where

I(i, j) = [i+ 2j, i+ jd] ∩ N.

We have
i+ dj ≤ d(i+ j) ≤ dn

with equality if and only if j = n and i = 0. We have

I(0, n) = [2n, dn], I(1, n− 1) = [2n− 1, dn− d+ 1],

therefore in the left side of (7), the following monomials (up to scalar)

xdn, xdn−1, . . . , xdn−d+2

appear only in g(x)n. For (7) to hold, in its left side
(a) the coefficient of xdn is non zero, hence a0,n 6= 0 and cd 6= 0;
(b) the coefficients of xdn−1, . . . , xdn−(d−2) are zero.

We now show, by induction on h, that (a) and (b) imply that cd−h = 0 for
h = 1, . . . , d− 2. We write g(x)n as follows

g(x)n =
d−2∑
k=1

( ∑
2≤i1<...<ik≤d∑k

1 nj=n, nj≥1

µn1,...,nk
cn1
i1
· . . . · cnk

ik
xn1i1+...+nkik

)

where µn1,...,nk
are positive integers which we can ignore. Since ik ≤ d and

ij < ij+1 we have ij ≤ ik − (k − j) ≤ d − (k − j), hence the exponent of x
above satisfies the following
k∑
j=1

njij ≤
k∑
j=1

nj(d− (k − j)) = n1(d− (k − 1)) + . . .+ nk−1(d− 1) + nkd

= d
k∑
j=1

nj −
k−1∑
j=1

nj(k − j) ≤ dn− (k − 1)k/2

where in the second inequality we used nj ≥ 1 for all j ≤ k − 1. Hence
we have equality if and only if ij = d − (k − j) for j ≤ k and nj = 1 for
j ≤ k − 1. If these conditions are satisfied, we furthermore have

k∑
j=1

njij = dn− 1 if and only if k = 2,

i.e. i1 = d − 1, i2 = d, n1 = 1, n2 = n − 1. Therefore the term xdn−1

appears in g(x)n only once, with coefficient equal to (a positive integer
multiple of) cn−1

d cd−1. Hence xnd−1 appears in the left of (7) with coefficient
a0,ncd−1c

n−1
d ; as this coefficient must be zero and a0,ncd 6= 0, we get cd−1 = 0.

The induction base is proved.
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Assume cd−1 = cd−2 = . . . = cd−h+1 = 0. We have a non-zero coefficient
of x

∑k

1 njij only if ij 6∈ {id−1, id−2, . . . , id−h+1}, in which case we have

k∑
j=1

njij ≤ n1(d− h− k + 2) + . . .+ nk−2(d− h− 1) + nk−1(d− h) + nkd

= dn− h
k−1∑
j=1

nj −
k−2∑
j=1

j ≤ dn− h(k − 1)− (k − 1)(k − 2)/2.

The first inequality is an equality if and only if ik = d, and ik−1 = d−h, and
ij = ij+1 − 1 for j < k − 1; the second inequality is an equality if and only
if nj = 1 for all j ≤ k − 1. If these conditions hold, we furthermore have∑k
j=1 njij = dn− h if and only if k = 2. Therefore, arguing as above, xdn−h

appears in g(x)n with coefficient cd−hcn−1
d . Hence it appears in the left of

(7) with coefficient a0,ncd−hc
n−1
d ; as this must be zero, we get cd−h = 0. The

claim is proved.

Thus C has equation y = cdx
d, hence q is a (1, d)-point of C. But C is

hypertangent to B3 at q, hence Theorem 2.2.1 implies that B3 also has a
(1, d)-point at q.

Assume d ≥ 3. If B is general we can assume that no point in B3 ∩ (B1 ∪
B2) is a flex of B3. Hence q is a (1, 2)-point of B3 and we get a contradiction.
Therefore Hypd(B, 2) = ∅ if B is general.

If, instead, B3 has a (1, l)-point in q for some l with 3 ≤ l ≤ b3, we get
d = l, hence d is determined by B3, and d ≤ b3. Moreover no term of type
xi with i < d can appear in the equation of B3 (for q is a (1, d)-point), hence
ai,0 = 0 for all i < d, and from (7) we derive

cdx
d + ad,0x

d + (terms of degree > d) = λxdn.

As n ≥ 2 we get cd = −ad,0. This proves that C (if it exists) is uniquely
determined by B and q.

Assume d = 2, then q is a (1, 2)-point for C and B3. Now (7) gives

c2x
2 + a2,0x

2 + a1,1c2x
3 + a3,0x

3 + (terms of degree > 3) = λx2n.

We obtain a2,0 = −c2 and a1,1c2 = −a3,0, hence a3,0 = a1,1a2,0. Hence
B3 is not a general curve of degree n (for its equation, (6), must satisfy
a3,0 = a1,1a2,0). Hence Hyp2(B, 2) = ∅ if B is general. (b) is proved.

If B3 is not general then, as before, C is determined by the condition
c2 = −a2,0, hence it is determined by B and q.

Summarizing, for all d ≥ 2 we proved that, for every q ∈ B1 ∩ B3 there
exists at most one curve C ∈ Hypd(B2; p)∩Hypd(B3; q); as q varies in B1∩B3
we get at most b3 curves in Hyp(B, 2).

If b2 = 1 the same argument applies by taking q ∈ B2 ∩ B3 hence we
might have b3 new elements in Hyp(B, 2). Hence |Hyp≥2(B, 2)| ≤ 2b3.
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If b2 ≥ 2 we have b2 choices for the point p ∈ B1 ∩ B2, hence we obtain
|Hyp≥2(B, 2)| ≤ b2b3. �

For an example where the bound in the theorem is attained, see subsec-
tion 4.2.

Corollary 3.3.3 (of the proof). If B is a 3C-curve of degree at least 4, and
C ∈ Hyp(B, 2), then degC ≤ b3 (hence degC ≤ degB − 2).

It is worth stating the following simple consequence of our earlier results.

Theorem 3.3.4. The set Hyp(B, 2) of a 3C-curve B of degree at least 5 is
finite, and it is empty if B is general.

Proof. If d = 1 this follows from Proposition 3.2.1. Assume d ≥ 2; then this
follows from Theorem 3.3.1 if b1 > 1, and from Theorem 3.3.2 if b1 = 1. �

4. Examples

We collect here some examples and special cases related to our results.

4.1. Examples of hypertangent curves. Let B,C ⊂ P2 be two integral
curves as in Theorem 2.2.1, i.e. they have degree at least 2 and B∩C = {q}
with q a unibranch point for B and C. The following examples show that
there are cases in which q is a (1, l)-point for B and q is a singular point of
C, i.e. is a (m, lm) point with m ≥ 2. In particular, in this setting, the type
of the point q for B is different from its type as a point of C.

(1) Consider the following two curves:

B : y = x2 C : (y − x2)3 + y7.

One easily checks that C ∈ Hyp(B; q) where q is the origin, and that B has
a (1, 2) point while C has a (3, 6) point, so that m = 3 and l = 2 in our
notation. More generally, the following pair of curves,

B : y = x2 C : (y − x2)c + y2c+1,

gives similar examples where B has a (1, 2) point and C has a (c, 2c) point
for every c ≥ 3.

(2) This second example shows that a similar situation can happen when
l is not 2. Consider the following two curves:

B : y = x3 C : (y − x3)3 + y9.

In this case one checks that q is a (1, 3)-point for B while it is a (3, 9)-point
for C; as before C ∈ Hyp(B; q).

We stress that both these examples do not yield examples of curves in
Hyp(B̃, 2) for a 3C-curve B̃ containing B. In fact, the proof of Theorem
3.3.2 shows that the curves C described above will have to meet the curve
B̃ in more than two points.
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4.2. Explicit examples of hyper-bitangent conics. We show that the
bounds in Theorem 3.3.2 are sharp, in the sense that there are examples in
which the set Hyp≥2(B, 2) consists of exactly 2b3 curves.

For an explicit example consider the following three components of a 3C-
curve B = B1 ∪B2 ∪B3 with (b1, b2, b3) = (1, 1, 2):

B1 : x = 0, B2 : z = 0, B3 : zy = x2 − y2.

Let {q1, q2, q3, q4} = (B1 ∩B3) ∪ (B2 ∩B3), where

q0 = (0 : 0 : 1), q1 = (0 : −1 : 1), q2 = (1 : 1 : 0), q3 = (1 : −1 : 0).

Then for i = 0, 1, 2, 3 the following conics Ci satisfy Ci ∈ Hyp2(B3; qi):

C0 : zy = x2, C1 : zy = −z2 − x2,

C2 : 4xz + 8xy − 8x2 = z2, C3 : 4xz + 8xy + 8x2 = −z2.

Moreover, C0, C1 ∈ Hyp2(B2; p) and C2, C3 ∈ Hyp2(B1; p) where p = (0 :
1 : 0). In other words B2 is the tangent line to C0 and C1 at p, while B1
is the tangent line to C2 and C3 at p. Therefore, for every i = 0, 1, 2, 3,
Ci ∈ Hyp2(B; p, qi) and hence |Hyp2(B, 2)| = 4 reaching the upper bound
of (a) in the statement of Theorem 3.3.2. A picture of these conics in the
affine patch y = 1 can be seen in figure 1.

Figure 1. Example of 4 conics in Hyp2(B, 2)
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4.3. Curves with many components. If a curve B has more than three
components, it is not hard to prove that the only hyper-bitangent curves to
B are lines, and describe such lines effectively. We include the analysis of
this case for completeness.

Proposition 4.3.1. Let B be a reduced curve of degree b with c ≥ 4 irre-
ducible components, such that every point in the intersection of two compo-
nents is a node of B.

(a) If c ≥ 5 then Hyp(B, 2) = ∅.
(b) If d = 1 then Hyp1(B, 2) is finite; moreover

(i) if b = 4 then |Hyp1(B, 2)| = 3;
(ii) if B does not contain two lines, then Hyp1(B, 2) = ∅;

(iii) if b ≥ 5 and B is general then Hyp1(B, 2) = ∅.
(c) If d ≥ 2 then Hypd(B, 2) = ∅.

Proof. Write B = B1 ∪ . . . ∪ Bc with c ≥ 4; by hypothesis through every
node of B there pass at most two components. Suppose there exists a curve
C ∈ Hyp(B, 2). Then C meets B in at most two points, and must intersect
all components of B. Hence C ∩ B = {p, q} and p, q belong to exactly two
components, say p ∈ B1 ∩ B2 and q ∈ B3 ∩ B4. In particular, B has only 4
components, proving (a).

Let d = 1 and C ∈ Hyp1(B, 2). As we said, C ∩B = {p, q}. Since B has
finitely many (intersection) nodes, Hyp1(B, 2) is finite.

If b = 4 then B is the union of 4 lines. It is clear that Hyp1(B, 2) is made
of the three bitangent lines of B not contained in B (namely the three lines
not in B and joining a pair of nodes of B).

Let b ≥ 5. We can assume that one component, B4, has degree ≥ 2.
Now, as B3 and B4 meet transversally in q and C ∩ B4 = {q}, the line C
is necessarily hypertangent to B4 at q; also, B3 must have degree 1, for it
meets C transversally in only one point. Now, if such a line C exists it is
unique and has to pass through the point p as well. Arguing in the same
way for B1 and B2 we have that at least one between B1 and B2 has degree
1. Hence for Hyp1(B, 2) to be non-empty at least two components of B have
degree 1.

Now, if the curve B is general, we can assume that no such line exists, i.e.
we can assume that for every point q ∈ Bi ∩Bj the tangent lines to Bi and
Bj in q do not pass through any other intersection node of B. This proves
that Hyp1(B) is empty if B is general. (b) is proved.

Let d ≥ 2. By contradiction, let C ∈ Hypd(B, 2). As before, we assume
C ∩ B = {p, q} with p ∈ B1 ∩ B2 and q ∈ B3 ∩ B4. Now, B1 and B2 meet
transversally, hence C in p must be transverse to at least one between B1
and B2; say C is transverse to B1. Hence C must intersect B1 in a further
point, and this point must be q, which is impossible as q cannot belong to
three components of B. �
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4.4. Hypertangency of rational curves. For an integral curve B ⊂ P2

of degree b ≥ 4 having at most nodal singularities, Conjecture 1 predicts
that there exist only finitely many rational curves hyper-bitangent to B, i.e.
the set E(B) is finite. We will provide an example showing the necessity,
in the conjecture, that B have only nodal singularities. This example was
already considered by Vojta in [Voj87, Example 3.5.3].

For every integer b ≥ 3 we denote by Qb ⊂ P2 the curve given by the
homogeneous equation

zb−1y = xb.

The curve Qb is smooth at q0 = (0 : 0 : 1), with tangent line, L0, of equation
y = 0. We have Qb ∩ L0 = {q0}, so L0 is hypertangent to Qb. Next, Qb has
an (b − 1)-fold unibranch point at q∞ = (0 : 1 : 0) with tangent line L∞ of
equation z = 0. We have Qb ∩ L∞ = {q∞} so that L∞ is hypertangent and
q∞ is an (b− 1, b)-point.

Qb

L0 L∞

q∞
q0

One checks easily that Qb is integral, has no other singular point, and is a
rational curve; it is, of course, not a nodal curve. Let us look at the set
Ed(Qb) ⊂ Pd(d+3)/2 of rational curves of degree d hyper-bitangent to Qb. If
d = 1 this has dimension 1, as it contains all lines through q∞. We have

Proposition 4.4.1. For every d ≥ b and b ≥ 4 we have
(8) dim Hypd(Qb, 1) ≥ 1
and
(9) dim Eb(Qb) ≥ 1

Proof. Consider the curve Ct of equation y − xb + tyd = 0 with t ∈ C. It is
clear that Ct lies in Hypd(Qb; q0) for every t 6= 0 hence (8) follows. Notice
that Ct is smooth, hence not rational, for t 6= 0.

To prove (9) we will exhibit a one-dimensional family of curves in Eb(B).
For every t 6= 0, 1 let Rt be the curve having equation zb−1y = txb. It is easy
to check that Rt is integral, and its singular locus consists of q∞ which is a
(b− 1, b)-singular point, hence Rt is rational. Moreover, we have

Rt ·Qb = bq0 + b(b− 1)q∞
hence Rt ∈ Hyp(Qb; q0, q∞). As t varies in C the curves Rt form a family
with a non-integral member, for t = 0, hence the family is not constant.
Therefore the Rt’s give a one-dimensional subspace of Eb(Qb). �
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We stress that the condition that the integral curve B ⊂ P2 has at most
nodal singularities, although sufficient is not necessary. In other words there
exist curves B, with worse singularities, for which E(B) is still finite. A series
of examples was constructed in [CZ00], see in particular the Proposition in
page 2. To see the link with our setting, fixing x, y, z as coordinates of P2,
the curve B is given in op. cit. by the union of the line at infinity, the line
x = 0, and a third component of affine equation f(x, y) = 0.
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