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1. Introduction

In this paper we study the geometry of the Severi varieties parametrizing
plane curves of given degree d and geometric genus g. As an application, we
derive a recursive formula for their degrees. This is the formula in Theorem
1.1, which enumerates the number of curves in IP? of degree d with § nodes
that pass through the appropriate number of points; that result is actually
more general, as we shall explain below.

Such a classical enumerative question has been an object of study by
many other people. In 1989, Z. Ran described an inductive approach to the
problem (cf. [R]), giving for the first time a recursive formula. More recently,
interest in it has been revived by work on quantum cohomology and by the
discovery by M. Kontsevich ([KM]) in 1993 of a beautiful recursion solving
the problem for curves of genus 0. Another proof in the genus 0 case, using
different techniques, was given independently by Ruan and Tian in [RT].
One aspect of the work of Kontsevich and Ruan-Tian is that they relate
these numbers to the coefficients in the structure equations of an algebraic
object, the quantum cohomology ring. It would be very interesting to see if
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any similar interpretation could be placed on the degrees of Severi varieties
in positive genus. We don’t at present know of any algebraic structure that
generates these numbers. However, Ezra Getzler [G] has described a gen-
erating function having the degrees of the generalized Severi varieties as
coefficients; Getzler observes that the recursion formula in Theorem 1.1 is
equivalent to the fact that this function satisfies a certain differential
equation.

Our approach is simple. We work over the complex numbers through-
out. We denote by PV the projective space of all plane curves of degree d
and by V%% c IPY the closure of the subset of PV corresponding to curves
having exactly § nodes as singularities. Also, for any point p € IP? we let
H, C IP" be the hyperplane of curves containing the point p. Our procedure
consists in intersecting the variety V¢ with a succession of hyperplanes of
the form H,,, where the points p; are general points on a fixed line L C P2, At
each stage we are able to describe the irreducible components of the inter-
section; the point is, they all belong to a specific collection of varieties, which
we call generalized Severi varieties. These parametrize plane curves of given
degree and genus satisfying certain tangency conditions with respect to the
line L. More generally, we can express the intersection of any generalized
Severi variety with a hyperplane H, corresponding to a general point p € L
as a union of generalized Severi varieties of dimension one less; counting
multiplicities correctly, this allows us to derive our recursive formula for
their degrees.

Acknowledgements. We would like to thank the referee for a number of helpful comments, and
Daishi Watabe for correcting several mistakes in the original version.

1.1. Notation and definitions
We now introduce the notation and precise definitions that will allow us to
state our formula.

For any sequence a = (o, 02,...) of nonnegative integers with all but
finitely many o; zero, set

#o = #{i:0; #0}
| = oy +op+-+ oy
Too = oq + 20 + -+ - + no,
and
o= 112035

We denote by lem(a) the least common multiple of the set {a; # 0}.
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We denote by ¢, the sequence (0,...,0,1,0,...) that is zero except for a 1
in the k™ term (so that any sequence o = (aj,0,...) is expressible as
o = axer). By the inequality o« > o we mean oy > o) for all k; for such a
pair of sequences we set

(O() B 4] [2%) o3
o)\ ) \dy) \ o4

We now define the main objects of study, the varieties V¢ (o, ) para-
metrizing plane curves of given degree and geometric genus satisfying cer-

tain tangency conditions with respect to a line. Fix a line L C IP?> and a
collection

Q = {pij}hicjes, CL

of |a| general points on L. For any d,d, o and f satisfying Ia + I = d, we
define the generalized Severi variety V¢°(a, B)(Q) to be the closure of the
locus of reduced plane curves X of degree d and geometric genus
g = (“3') — 4, not containing L, with (informally) oy “assigned” points of
contact of order k£ and f;, ““unassigned” points of contact of order k£ with L.
Formally, we require that, if v : X¥ — X is the normalization of X, then
there exist |«| points ¢;; € X', j=1,...,0, and |B| points r;; € X",
j=1,...,p; such that

V(‘Ii,j) = Pij

and

V(L) = deqigt Y iy

Where the dependency on the points p;; is not relevant — for example, in
discussions of the dimension or degrees of generalized Severi varieties — we
will often suppress the Q.

To take some simple cases, taking « = 0 and f = (d,0,...) imposes no
condition at all, that is, ¥¢°((0,0,...), (d,0,...)) is simply the closure V'¢?
of the locus of plane curves of degree d with 6 nodes. Taking o« = (1,0,...)
and f = (d — 1,0,...) we get the closure of the locus of such curves passing
through a single fixed point of Z; and taking « =0 and f = (d — 2,1,0,...)
we get the closure of the locus of such curves tangent to L at a smooth point
of the curve.

Note that we do not require X to be irreducible. Classically, the term
“Severi variety”” means a variety parametrizing irreducible curves of given
degree and genus, so we are somewhat at odds with traditional usage here;
but we will find it much more convenient, in both the statement and proof of
the results below, to include components of V¢ (x, f) whose general mem-
ber is reducible.
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Let V be a possibly reducible variety. We will say that 7 has pure di-
mension if all irreducible components of 7 have the same dimension.
Moreover whenever we make a statement about the general point of V', we
mean that the statement holds for a general point of any irreducible com-
ponent of V.

We will adopt the following convention: we will denote the various types
of Severi varieties by the symbol “V”’ to which we will add certain deco-
rations, and we will correspondingly use the symbol “N” with same deco-
rations to denote the degree of V' as a subvariety of IPY; for example, we
define N9°(a, ) := deg V4°(a, B).

1.2. The formula for the degrees of generalized Severi varieties

As a result of the analysis of hyperplane sections of generalized Severi va-
rieties we have the recursive formula

Theorem 1.1. Let N%%(a, B) be the degree of V¥ («, B). Then

N )= D k-N"(a+ex f—er)
B0

n Zlﬁ’—ﬁ (::/) (/;)Nd—l,?}’(u/7 )

where the second sum is taken over all o, and &' > 0 satisfying

o <o

B >p

d<d
-0 +|f-Bl=d-1.

Taking « =0 and f = (d,0,...), we get the degree of the closure of the
variety of (not necessarily irreducible) plane curves of degree d with  nodes.
We can find the degree of the component parametrizing irreducible such
curves — that is, the classical Severi variety — by subtracting off the degrees of
the others, which we know recursively. Alternatively, we can give a recur-
sion formula to calculate directly the degrees of the varieties parametrizing
irreducible plane curves, and will do so in the last section of this chapter; but
this formula is more complicated.

We now illustrate how the above formula works by computing the de-
gree of the Severi variety of quartics with three nodes (we assume known the
degrees of the generalized Severi varieties parametrizing cubics satisfying
tangency conditions). To shorten notation, we write (d,0,a,f) for
N = N%°(«a, B), and suppress the zeroes at the end of sequences « and f and
the parentheses around sequences o and f of length 1. The result of inter-
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secting the variety V+3(0,4) with five successive hyperplanes of the form H,
is then the following five equations (we denote the contribution of each
component to the degree, where known, in angle brackets).

(4737074) = (4737 173) = (47372)2)
+ (3,0,0,3) (L)

(47 3727 2) = (4’ 3’ 3’ 1)
+ 3(3,1,0,3) (3 x 12 =36)
+2(3,0,1,2) (2x1=2)

(4’ 3’ 3’1) = (47 37470)

+ 3(3,2,0,3) (3 x21=063)
+ 2(3,1,0,(1,1)) (2x36=72)
+ 6(3,1,1,2) (6 x12=72)
+ 3(3,0,2,1) (3x1=3)
and finally
(4,3,4,0) = (3,3,0,3) (15)
+ 4(3,2,1,3) (4x21=284)
+ 2(3,2,0,(1,1)) (2 x30=60)
+ 6(3,1,2,1) (6x12=72)
+ 8(3,1,1,(0,1)) (8 x 16 =128)
+ 3(3,1,0,(0,0,1)) (3 x21=063)
+ 4(3,0,3,0) dx1=4)

Adding it all up, we find that

(4,3,4,0) = 15+ 84+60+72+ 128+ 63 +4 = 426
(4,3,3,1) = 426+ 63 +72+72+3 = 636
(4,3,2,2) = 636+36+2 = 674

and so

(4,3,0,4) = (4,3,1,3) = 674+1 = 675 .

Now, V*+3((0), (4)) has two irreducible components of dimension 11, one
coincides with the classical V43 which parametrizes irreducible quartics with
three nodes; the other parametrizes reducible curves that are the union of a
line and a cubic and has degree (121) = 55 and so we conclude that the degree
of the classical Severi variety is 620.
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R. Vakil has checked the formula in all degrees up to 6, and D. Watabe
in all degrees up to 10; and the results agree with those of Vainsencher for
0 < 6 and with those of Kontsevich-Manin for g = 0. We list below the
numbers obtained (by applying this formula) for the degrees N of the Severi
varieties V%?(0,d) for d = 5 and 6 and all possible values of .

g N

6 1
5 48
4 882
3 7915
2 36975
1 90027
0 109781
-1 65949
-2 26136
-3 6930
0 -4 945

0 1
75

2370
41310
437517
2931831
12597900
34602705
59809860
63338881
40047888
15580020
4361721
918918
135135
10395

— O 00 1N LA W~ O O

[c=BEN Be NNV NS =)

o

10
11
12
13
14
15

| © = N WPk X O —

[
O N R N

1.3. The main results

As we indicated at the outset, what we actually prove is an equality of cycles
rather than of numbers: we show first that for p € L general the intersection
V49 (a, B) N H, is a union of varieties of the form V%% (o, f), and say which
ones occur; and then we will calculate the intersection multiplicity of
V49(a, B) and H), along each such variety.

Remark. Throughout, we will identify the projective space of plane curves of
degree d — 1 with the subspace of plane curves of degree d containing L.
Thus, for example, by V419 (o, f/)(Q') we mean the closure in PV of the
locus of curves Xy = X UL where X is a plane curve of degree d — 1, not
containing L, having ¢ nodes and o/ assigned and f’ unassigned points of
contact with L.
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Theorem 1.2. The intersection V*° (o, B)(Q) N H, is contained in a union of
varieties (without common components) as follows:
a. For each k such that p, > 0, the variety

Vi e+ en, f— et QU {pra1 = p}) 5

and

b. For each o/ <o, B> B and &' < with 6 — & + | — Bl =d — 1, the
union of the varieties

Vd—l‘é’ (OC/, ﬁl>(Q/)

where Q' ranges over all subsets Q' ={p)._._, CQ such that
g ijI1<j<d!
SUEEE 717;,&;} CApits---,Pig ) for each i.

Remarks. 1. We can express the last condition 6 — &' + [ — | =d — 1 on &'
and ' in terms of the geometric genera g = (') —dand ¢’ = (%;%) — &": we

have
(2959
=d-2-(6-9)
= -p-1.

2. Note that there are a total of (*) varieties of the form V' («', f') in
part (b) of this statement, which accounts for the factor (;‘,) in the formula in
Theorem 1.1. The remaining factors will be intersection multiplicities, as
described in Theorem 1.3 below.

3. By the dimension counts of Sect. 2, all the varieties listed in the
statement of Theorem 1.2 have pure dimension dim(V¥?(x, B)) — 1; so it
follows that the intersection V% (a, )(Q) N H, will consist of the union of a
subset of these. In fact the intersection is equal to the union of all of them, as
will follow from the analysis of the local geometry of V¥9(«, f) given in the
proof of Theorem 1.3.

Having described the intersection set-theoretically, we now ask about the
local geometry of the larger variety V*9(«, ) along each component of the
intersection: how many branches it has, and with what multiplicity each
intersects the hyperplane H,. The answer to both (and hence the multiplicity
with which each component of V4?(a, f) N H, appears in the intersection
cycle) is expressed in the following.

Theorem 1.3. a. Let V' = ijvé(oc +ep, f—er)(QU{p}) be as in part (a) of
Theorem 1.2. Then V' C Va9 (a, B)(Q) N H,, and at a general point of V' the
variety V49 (a, B) is smooth and has intersection multiplicity k with H, along
V.
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b. Let V' = V419 (o/ B) Q) be as in part (b) of Theorem 1.2. At a
general point of V', the variety V¥ (x, B) will have ﬁ a /lem(B' — B)
branches, each of which will have intersection multiplicity lcm(ﬁ B) with H,
along V.

The recursive formula for the degrees N%9(x, f) of the generalized Severi
varieties given in Theorem 1.1 follows directly from these two statements.

The proofs of Theorems 1.2 and 1.3 will be given in Chaps 3 and 4,
following some preliminary deformation-theoretic arguments and dimen-
sion counts in Sect. 2. For the most part the proof of Theorem 1.2 follows
the lines of that of Proposition 2.5 of [CH]. To prove it, we will use the
technique of semistable reduction to analyze a family of curves
X € V4(a, B) specializing to a curve X, containing L. This approach yields
a number conditions that the curve X corresponding to a general point of
the intersection V¢?(a, f) N H, must satisfy, some of which are far from
obvious from the point of view of the geometry of plane curves alone. We
then compare these with the dimension estimates of Chap. 2, using the fact
that Xj is a general member of a family of dimension dim(¥?(a, f)) — 1, to
obtain an exact description of the set-theoretic intersection V%% (a, f) N H,.

As for Theorem 1.3, this requires a deeper analysis of the local structure
of the total space of such a family, based on the deformation theory of the
tacnodes of Xj. As in the case of Theorem 1.2, this is based on arguments in
[CH]; but while the proof of Theorem 1.2 is largely parallel to the corre-
sponding argument of [CH], the argument for Theorem 1.3 requires addi-
tional work. Briefly, the proof of Proposition 2.7 in [CH] rests on the
description given there of the deformation space of a single tacnode; this
suffices for the purposes of that paper. Here we do need to consider de-
generations having more than one tacnode, hence we develop an analysis of
the geometry of a product of deformation spaces of tacnodes, building on
the description given in [CH] of the deformation space of a single tacnode.
We should mention that some of the results on deformations of tacnodes
have also been obtained by Ran in [R].

1.4. The formula for irreducible curves

We now give a formula for the degrees of the varieties parametrizing irre-
ducible plane curves of given degree and genus satisfying tangency condi-
tions.

Denote by ¥;4(x, f) the union of the components of V%°(a, f) whose
general point [X] corresponds to an irreducible curve X C IP?>, and by
Nas(o, B) its degree. Now, consider the intersection of a variety Vys(«, f5)
with the hyperplane H,, with p € L, and let [X;] be a general point of a
component V of the intersection. If Xy = X UL and X has irreducible
components Xi, ..., X of degrees di,...,di, then each component X; will
correspond to a general point of a varlety Va,s,(o, f). The part of the



Counting plane curves of any genus 353

intersection ¥ 5(a, f) N H, corresponding to curves containing L will thus be

a Segre image of a product of varieties ¥y, s, («/, B/, and its degree will be the

product of the degrees of the factors Vd 5 (o/, f/), times a multinomial

coming from the formula for the degrees of Segre images. Denote by /’ the

number of free points of i-fold tangency of X; with L that are new, that is,

that are not limits of free points of i-fold tangency of nearby curves X; with L
s [X3] € Vas(a, p) approaches [Xp]; so that for example we have

DB =18l
We arrive in this way at the formula

Nas(o, ) = Y k- Nas(oo+ ex, B — ex)
k:f >0

2d+g—-2+|p| o
+Z ( _ _ k| 1 k
2d) + g, 1+|[3| B A e al, ..., o

k
(") 10 HNM o)

J=1

where the second sum is taken over all collections of integers di, .. .,d; and
31,...,0r and collections of sequences o' kgt pFand pl, .ok
satisfying

/ k

o :ocl—f—...—f—oc
B=p+...+8 =B+ Y

Y o>
d]—l—...—l—dk:d—l and
Sit .4 =0+Y V=D ddi—d+1.

i<j

Here by the symbol (m i ak) we mean the multinomial coefficient

n n!
ai,...,ay alaln—a — - —a)!

k

and correspondingly for a collection of sequences « and o', ..., " we set

( . ) ( ai )
1 k] — ” 1 k)
ol o PN PN

By g; we mean (%)) — 9.
The symbol o is 1 except in rare cases. It is the degree of the map from
the union of the product of varieties of the form ¥, 5 («/, ') to its image in
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IPV: given the integers d, . ..,d; and J,, ..., d; and collections of sequences
o, .ok, B, ..., B and ', ..., 9% we define an equivalence relation on the
set {1,2,...,k} bysayingi ~ jifd; =d;, 0, =0;, 0/ = o/, ' = f/ and y = ¥
and define ¢ to be the product of the factorials of the cardinalities of the
equivalence classes.

This formula follows from Theorems 1.2 and 1.3 in much the same way
as Theorem 1.1. Note that we have here decomposed f into > f/ and the
difference ' — Binto Y 7/, and further specified that |}/| > 0. This is because
(as we will see in Chap. 3) the “‘new’” unassigned points of X N L (that is, the
points of X N L that are not limits of points of intersection of nearby curves
in ¥y (o, ) with L) correspond to points of intersection of the normaliza-
tions of the components X; with L in the nodal reduction of the family. Since
we are only concerned here with curves X arising as limits in families of
irreducible curves, their nodal reductions must be connected; and this cor-
responds to the requirement |}/ > 0.

Using this formula, Watabe has calculated the degrees Ny s(a, ) for all
d < 7; the results agree with known values in case g = 0.

2. Geometry of Severi varieties at a general point
2.1. Statement of results

In this section we will compute the dimensions of generalized Severi varieties
V' and we will describe the geometry of its general points.

A naive reasoning yields a lower bound for the dimension of . Namely,
if we impose no conditions on the intersections of our curves with the
line L, the corresponding locus has codimension ¢ in the space IPY. Re-
quiring that a curve X have intersection multiplicity i with L at a spec-
ified point p;; is i linear conditions on the coefficients of X, which we
would expect to be independent; and if we don’t specify the point, the
codimension of the corresponding locus should be one less, that is, i — 1.
In sum we have

dim(V?°(a, ))

v

(d;z)_l_5_1a_(1ﬁ—lﬂl)

d+1
= -0 .
(“31) -o+im
Or, in terms of the geometric genus of the curves involved,

dim(V°(a, ) > 3d+g—1—To— (I — |B])
=2d+g—14+|p| .

We shall prove that equality holds:
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Proposition 2.1. V¢ (a, B) has pure dimension 2d +g — 1 + |f|.

Likewise, there are no surprises when it comes to the geometry of a general
member X of a generalized Severi variety V4 (a, B). We would expect the
curve X to have only nodes as singularities, to be smooth at its points of
intersection with L, and so on; and this is indeed the case. We list the
relevant facts in the following Proposition.

To do that, fix any curve G C IP? and any finite subset I' C IP?. Let
[X] € V%9(«, B) be a general point of a generalized Severi variety, X C IP? the
corresponding curve, v : X' — X C IP? its normalization. Let {g;;} and
{r:;} C X" be such that v(¢;;) = p;; and

V*L = Zi-q,;j—i—ZimiJ

and let s;; = v(r;;) € L be the image of r;; (that is, {s;;} C L will be the
“unassigned points” of intersection of X with L). We have then the

Proposition 2.2. a. X has only nodes as singularities.

b. X is smooth along X N L.

c. The points {q;;} and {r;;} C X" are all distinct.

d. The points {p;;} and {s;;} C L are all distinct.

e. X intersects G transversely (in particular, X is smooth along X N G) and
is disjoint from T.

To prove these statements, we will need some results about deformations of
maps, which will be the object of the next section.

2.2. Deformations of maps

Throughout, we will assume we are working over a field of characteristic
zero, and will use the analytic topology where necessary.

We will be concerned with families of maps from a possibly variable
smooth domain to a fixed smooth target space. In other words, we will
consider a flat, smooth, proper family f : 2 — B over a smooth connected
base B, a smooth variety % and a morphism ¢y : Z — B x Y of B-schemes.
For each b € B, we let ¥, : X, — Y be the restriction of y to the fiber X; of
Z over b, and

dy, - IXy — Y, TY
the differential of ,. We let .47, be the normal sheaf of ,, that is,
the cokernel of the morphism dy, of sheaves on X,. Equivalently, if

we let

dyy : T#% — y'T(BxY)
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be the differential of ¥ and 4" = Coker(dy/) the normal sheaf of i, then the
normal sheaf A7, of ¥, is the restriction of A" to the fiber X,, that is,
N'p = N ® Oy,. Note that if i, is an immersion, then .4, will be locally
free; more generally, if i, is equidimensional onto its image then the sheaf
A" will have a torsion subsheaf supported exactly on the locus where dy,
fails to be an injective bundle map.

We now describe the Horikawa map of the family i of morphisms. This
is a map x : T,B—H"(Xp, /) that associates to any tangent vector
v € TpB to B a global section ¢ = k(v) of the normal sheaf, in such a way
that the family is trivial (that is, the family 2 = B x X, as B-schemes and the
morphism = idg x V) if and only if x(v) = 0 for every v. To define it, let
m : Bx Y — B be the projection. We have an inclusion of bundles

TC*TB — TBXy .

We let i : Y*'n*TB — y*T(B x Y) be the corresponding inclusion of pull-
backs to 4, and let K : Yy*n*TB — A~ be the composition of i with the
surjection Y*Tpxy — N,

Y*r*Tp

N

0 —— Ty — ¥*Tp,y

N —0
Restricting to X, and taking global sections, we get a map
kp : TyB — HO(Xp, ' Tg) — HO(Xp, N )

which we will call the Horikawa map of the given family at . Equivalently,
we let k¥ be the pushforward of K to B, composed with the inclusion of Tp
into foy*n*Tp: that is,

K = f*;% : TB (—>f*lp*7'[*TB —>f*JV .

We will call x the global Horikawa map of the family; the maps x; are then
the composition of the induced maps I,B — (f../"), on stalks with the
natural maps (fi.A"), — H°(Xy, Np).

The standard applications of this construction rest on two facts. The first
is that if the family  of morphisms is nowhere isotrivial (that is, the
restriction of  to the subfamily 25, = f~'(By) C & is not trivial for any
analytic arc By C B), then at a general point b € B the map x, must be
injective, so that we have an a priori bound on the dimension of the family:

dlm(B) < hO(Xb,./Vb) .
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(If, for general b € B, we had Ker(x;,) # 0, we could in an analytic neigh-
borhood of b restrict to a curve whose tangent space was contained in
Ker(xp) at each point.) Secondly, the chern classes of the normal sheaf are
in general readily calculated, so that in many cases it may be possible to
estimate h°(Xp, A7p).

In the case of plane curves, for example, if X}, is a curve of genus g and
W, : X, — IP? is birational onto a plane curve of degree d, then .4, is a
rank one sheaf on the curve X, the degree of whose chern class is

deg(c1(A73)) = deg(er(Ty2)) — deg(er(T,))

=3d+29-2
> 29—-2 .

We would thus expect that

dlm(B) < hO(Xb,{/Vb)
= deg(ci(A5) —g+1
=3d+g-1.

We cannot, however, conclude this yet. The difficulty arises from the pos-
sibility that ¥, is not an immersion: if the differential dy, vanishes at points
of Xj, the sheaf .47, will have torsion there, and in this case the quotient
N /(N b)ors (and hence A7y itself) may well be special. In such a case, the
dimension /h°(Xp,./"5) will indeed be larger than the naive estimate
3d + g — 1 for the dimension of our family, and the method appears to fail.

Happily, there is a standard result, due to Arbarello and Cornalba [AC],
that deals with this situation. The current version was worked out in con-
versations with Johan de Jong, to whom we are very grateful.

Let & — B be as before and assume that y : £ — B x Y is birational
onto its image. Then we have

Lemma 2.3. If b € B is a general point, then

Im(xp) N H(Xp, (b)) = O -

Remarks. 1. If we do not assume the map  is birational onto its image, the
conclusion of the Lemma may well be false. In fact, it will fail exactly when
the map v, : X, — Y is multiple-to-one, with constant image but variable
branch points.

2. While we will not introduce the definitions needed to make this pre-
cise, another way to express this Lemma is to say that “‘the first-order
deformation of the map y, corresponding to a torsion section of N, can
never be equisingular”. If b € B is general the first-order deformations of
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arising from the family  : £ — B x Y are necessarily equisingular; it
follows that they cannot be torsion.

Proof. Note first that, using the analytic topology, it is enough to prove the
Lemma in case B is one-dimensional: if we had Im(i) N H(Xp, ((A5) 105s)
# 0 at general b € B we could in an analytic neighborhood of 4 restrict to a
curve whose tangent space was contained in (x5) " (H (X, (N3),0r)) at
each point.

We may thus assume that y : £ — B x Y is a one-parameter family of
maps, the image of whose Kodaira-Spencer map x; at a general point is
contained in H(Xp, (N p)ors)- Let Z=y(Z) C B x Y be the image of Z,
p € Z a general point with image ¥(p) = (b,q) € B x Y. We are assuming
that for any v € T;B, the image x;(v) vanishes at p; that is, the tangent space
Tipq)Z is of the form

TpgZ = ToBx A,

for some linear subspace A, C T, Y.

Now, let ¢ be a local analytic coordinate on B near b, and (x,y1,...,¥,)
local coordinates on Y near ¢ such that y;x is a local coordinate on Xj, near p
(so that the pair (¢,x) give local coordinates on the surface 2 near p). We
can write the map y locally as

v = filt,x), i=1,....n.

The tangent space 7(;,)Z is then the zero locus of the linear forms

ofi of;
dy— g i gy
Y o o

and that stdtement that T, ,Z = T,B x A, for some linear subspace
A, C T,Y says that ; vanishes identically near p. We deduce that the image
of V¥, is constant, 1. e that near (b, q) the image Z is equal to the product of a
neighborhood of » € B with a neighborhood of p € Xj.

This being true for general p € Z, it follows that Z =B x y,(X;) ev-
erywhere. Finally, since the map y is assumed birational, it follows that Z" is
the normalization of Z; thus it is likewise a product, the map Y = idz X {1,
and the Kodaira-Spencer map identically zero. O

We now introduce the map
% : TyB — H'(Xp, N5/ (N b)1ors)
defined to be the composition of «, with the natural map

HO(AN) — H°(Xp, N b/ (AN b)iors)- Notice that the Lemma implies that this
map is an injection on the subspace Im(x;).
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As an application, we will fix the argument given above for plane curves.
In fact, we will prove a slightly more general result. Let ¥ be a smooth
surface and D an effective divisor on Y. Let ¥ be an irreducible component
of the Severi variety of curves of given geometric genus g that are linearly
equivalent to D. There is a universal family % C V' x Y of curves over V.
Consider the normalization %" of % and let B C V' be an open subset over
which %" is smooth. Let % — B be the restriction of %" to B and
Y . & — BxY be as usual. Then we obtain the following well known
result (cf. for example [K] and loc. cit.).

Corollary 2.4. If, for general b € B we have degy (Y ,wy) <0 on every
component W of X, then

dimB < —deg(y,wy)+g—1 .
In particular, dim V; 5 = 3d + g — 1.
Proof. We have

dim B < dim(Im(rp)) < 2 (X, A5/ (AN ) ors)
where the last inequality follows from the previous Lemma.
By the definition of .45, we obtain

deg(ci (A7) = —deg(y,0y) + deg(wy,)

hence, by our hypothesis deg(c;(A4"5)) > deg(wy,) on each component of
X,. We now state for both present and future use the following simple
corollary of the Riemann-Roch theorem for curves:

Observation 2.5. Let X be a smooth curve of genus g, and L any line bundle on
X of degree d such that L ® wy' has positive degree on each component of X .
If M is any line bundle on X such that L @ M~ has nonnegative degree on each
component of X, then

RX,M) < i°X,L) =d—g+1 .
If moreover the line bundle L ® wy' has degree 2 or more on each component
of X, then h°(X,M) =d — g+ 1 only if degM = degL.

Applying this to X =X, and the line bundles L =y,m,' ® wy, and
M= Np/(Nb)ors» WE have

tors?

dim B

IN

hO(Xb7 '/Vb/('/Vb)tors)
< hO(Xb, l//;a);l & wX;,) ]
—deg(Y,0y) +pa(Xp) — 1 .

N
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We need now to consider deformations of a map X, — Y that preserve
tangency conditions with a fixed smooth curve G C Y. There are two cases,
depending on whether we require tangency at a fixed point p € G or allow
tangency at a variable point.

So, let Y be a smooth surface, G C Y a curve and p € G a smooth point.
Let  — B be as above a smooth family of curves over a reduced base B,
Y & — B x Y a morphism of B-schemes, and Q C 2 a section such that
the pullback divisor ¥*(G) contains the section Q with multiplicity exactly
m. Let b € B be a general point and ¢ = X, N Q; suppose Y(q) = p. Let
v € T,B and let ¢ = K, (v) € H'(X,, /) the corresponding first-order de-
formation, and & = «,(v) € H*(Xp, N 5/ (AN b)1ors)- Suppose finally that the
differential di, vanishes to order / — 1 at g, so that the image ¥, (A) of a
small neighborhood A of ¢ € X}, will have multiplicity / at p = y(g). We
have then the

Lemma 2.6. G vanishes to order at least m — [ at q, and cannot vanish to order
exactly k for any k withm — | < k < m. Moreover, if we assume that Y(Q) is a
point, @ vanishes to order at least m at q.

Proof. It will be sufficient to do this in case B is one-dimensional. Next, since
B is reduced and b € B is general, we may assume B smooth at b; so that,
restricting to an analytic neighborhood of » € B we may take b the origin in
an open subset B of the affine line A' = Spec k[¢]. Finally, since again b € B
is general we may assume that the divisor ;G on X, contains the point ¢
with multiplicity exactly m as well.

Now, choose coordinates (x,y) in an analytic neighborhood of p = ¥/(g)
so that the curve G is given simply as the zero locus of y. Let then % and ()_ay
be the generators of the rank 2 bundle 7Y at p; we will abuse notation and
write 0‘—1 and éi also for the corresponding sections of /; Ty.

The first thing we will show is that the image of £ in A"/(A})
vanishes to order m — [/ at q.

We treat the case / < m first for simplicity, and leave the case / =m
for later. Let ¢ be an m™ root of ¥}y in a neighborhood of ¢ € %}, then
¢t will be a local coordinate on X, near ¢ and the map , will be given
as

tors

U ot (et 1)

so that the differential dy,, is given by

. o ., 0
— (1! 1+(l+1)01+1tl+---)a+mt la—y

0 0
_ -1 1 m—1
t ((l+(1+ et o) oo+ mt _ay> :

dlﬁbia
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Denote t(¢) == (I+ (I + et + ) 2 + mt’”’l%; we have that the torsion
subsheaf (A7), C A5 is isomorphic to Oy, / mfl’l, generated by the section
7(¢). Moreover, the quotient

ol Wi = On{ g b

is generated for example by the image of the section a%' Note finally that
modulo the subsheaf generated by t,

o o
ox I+ ({+ Vet +--- Oy

so that the image of the section - in .A",/(A "), vanishes to order exactly
m—1[ at q.
Now, a general deformation y of the map y, over the base B C Al may

be given in terms of coordinates ¢ and € on 2 near q as

tors

v(te)= (& t' + et + - +elag+ ot + )
() "+ e(Bo+ Bit+) + (5)2) .

The condition that the divisor ¥*((y)) = mQ near ¢ says that we can take ¢ to
be an m'™ root of the pullback 1/*y not just on Xj, but in a neighborhood of ¢
in Z. This means that a deformation satisfying the hypotheses of the lemma
may be written as

W(te) = (e, +ernt™ 4t e(og +out+ ) + (€)% 7") .

From the definitions, the image r,(Z) € H’(Xp, /") of the tangent vector
% € T,B under the Kodaira-Spencer map will be given as the image in .47
of

0 0
0= Kyl o) = (oc0+oc1t+~~)a ,

whose image @ in A7/ (A75),,> @S We have seen, vanishes to order at least
m — [ at gq. Moreover, since b € B is general, the differential diy, will vanish
to order / — 1 at X, N Q for all € near b; that is, #/~!|di,.. This implies that

op=o0p=---=0y_1 =0 ;

or in other words, @ cannot vanish to order exactly m — [+ 1,...,m — 1 at
p.- To complete the proof in case m > [, the further condition that
W (Q) = p € G says that oy =0, which further implies that ¢ vanishes to
order at least m at q.
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The case m = / is completely analogous. As before we write the map y,,
as

Yy st (et )

where now n > m. We leave it to the reader to check that the same argu-
ment yields that if (Q) = p € G, the section @ vanishes to order at least m
at q. Ol

2.3. Dimension counts and consequences

We will now use the general theory developed above to establish Proposi-
tions 2.1 and 2.2.

Proof of Proposition 2.1. To begin with, it follows from the naive dimension
count at the beginning that the Severi variety ¥¥?(a, ) has dimension at
least 2d + g — 1 + |f].

We thus have to show that dim V4 (a, f) < 2d 4+ g — 1 + | | everywhere.
To do this, let ¥ C V4°(a, ) be an irreducible component, Z C V x IP* the
universal family curve over ¥, and Z" the normalization of the total space.
We will actually restrict our attention to the open subset of V over which 2"
is smooth, which we will still call V.

Let [X] € V be a general point, so that the restriction v = Yy of Y to the
fiber of 2" over [X] is the normalization v : X* — X C IP? of the corre-
sponding curve X C IP?; and let .4 be the normal sheaf of the map v; notice
that this might appear as an abuse of notation, as we have already used the
symbol /" with a different meaning, in the previous chapter; we hope that
this will not create confusion. By the definition of ¥¥?(a, §), we have in an
analytic neighborhood of [X] a collection of |«| and |f| sections {Q;;} and
{Ri;} C " such that

W(0ij) = pij

and

YrL) =Y i Qi+ Y iRy

Let ¢;; = Q;; N X" and r;; = R;; N X". Note that the points {g;;} are nec-
essarily distinct, since they have distinct images p;; € L C P, We may as-
sume as well that the points {r;;} are distinct, and disjoint from the {g; ;}: if
not, [X] being general in ¥, ¥ would be as well a component of a Severi
variety V¥(o/, ') for some (¢/, ') with |f'| < |p|, which we will show has
dimension 2d + g — 1+ |f'| <2d +g— 1+ |p|.
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We need to introduce one more bit of notation. We denote by /; ; — 1 the
order of vanishing of the differential dv at the point 7, ;. We then let D and
Dy € Div (X") be the divisors

D= > igy+ Y (i—1)ry.

1</<o; 1<j<p;

and

Dy = Y (lij—1)-ri; .

1<j<o;
Note that D is a divisor of degree

deg(D) = Iu+ 16— |f
=d—|p .
and that
deg((v'Up:(1))(=D)) = 0 .

Note also that deg(c) (A ors)) > deg(Dy), on every component of X”, with
equality holding if and only if v is an immersion away from {r;;}; so that

deg(ci (N[ N ors)) < deg(e1 (A7) — deg(Dy)
again with equality holding if and only if v is an immersion away from {r;}.
Finally, let D; be the effective part of D — Dy.
Now, applying Lemmas 2.3 and 2.6, we see that
dim V49 (o, B) < BO(X, (N ) N tors)(—D1)) .
We have
deg((A"/ N ors)(=D1)) < deg(er(A7)) — deg(D)
and since
ci(N) = viOp(3) @ wyr
we see that the line bundle
((N)=D) B oy = ((v"Cp(1)(~D)) ® V' Cpa(2)
has strictly positive degree on each component of X”. We may thus apply the

simple Observation 2.5 to the line bundles ¢|(A")(—D) and (A"/ AN ors)
(—Dy) to conclude that
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dim V4 (2, ) < KX, (AN ors)(=D1))
< deg(ci(A)(=D)) —g +1
= (3d+29—2—deg(D)) —g+1

2d+g—-1+1p| . |

Remark. Notice that the argument above implies that the image of the
Horikawa map can be identified as follows:

Imﬁ[)(] = HO(XV, (e/V/e/Vtors)(_Dl))

Proof of Proposition 2.2. We start by establishing what is perhaps the sub-
tlest point: that the map v is indeed an immersion. In fact, much of this has
already been accomplished in the proof of Proposition 2.1. Keeping the
notations introduced there, we see that since the line bundle (c¢;(A")
(—D) ® wy! on X" has degree at least 2 on any component of X”, we may

apply the second part of Observation 2.5 to deduce the equality
(NN iors) (=D1) = e1(AN)(=D)
so that D; = D — Dy and
N[N iors = c1(AN)(=Do)

and hence v is an immersion away from {r;;}.

To see that v is an immersion at the point 7;;, we may assume that the
component X, of XV containing »;; does not map to a line, so that the line
bundle (¢;(A")(—D) ® wy! has degree at least 4 on Xj. It follows that there
exists a section G of ¢;(A)(=D) = (N /N tors)(—D)) vanishing to order
exactly 1 at r;;; and by the previous Remark, this section must be in the
image of the Horikawa map

K ¢ TV — HOX (N ) N tors)) -

But the multiplicity of r;; in the divisor Dy =D—Dy is (i—1)—
(lij—1) =1i—I;;, and it follows that &, viewed as a section of A"/(A"4) s
vanishes to order exactly i — /;; + 1 at ,;. By Lemma 2.6, then, we must
have /;; = 1; that is, v must be an immersion at r; ;. Since we have already
seen that v is an immersion away from {r;;}, we conclude that v is an
immersion.

To show that X has only nodes as singularities, we have to show it has no
triple points and that no two branches are tangent to each other. For the
former, if s,¢,u € X" are points mapping to the same point p € X C IP?, it is
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enough to show that there exists a section of /"(—D) vanishing at s and ¢ but
not at u. This follows immediately from Riemann-Roch: if s and ¢ and u all
belong to the same component of X*, that component must map to a plane
curve of degree at least 4, so that /" ® wy! will have degree at least 8 there;
while if two lie on the same component, /" (—D) ® wy! will have degree at
least 6 there. Similarly, for the latter, it is enough to show that if 5, € X" are
points mapping to the same point p € X C IP?, there exists a section of the
sheaf A"(—D) vanishing at s but not at 7, which follows from the same
argument.

As for parts ¢ and d of 2.2, we have already seen just from the dimension
statement that the points {g;,;} and {r;;} are all distinct, since otherwise ¥
would be a component of a Severi variety V¥%(«/, f') for some (¢/, ) with
IB'| < |B|; and the same logic implies that the points {s;;} are disjoint from
the points {p;;}. To see that the points s; ; are all distinct, on the other hand,
it is sufficient to observe that, by the argument of the preceding paragraph,
for any (7', ) # (i,j) with sy ; = s;;, there is a section of the sheaf 4"(—D)
vanishing at »;; but not at r; 7; by Lemma 2.6 this will correspond to a
deformation of X in which sy ; moves but s;; stays still.

Next, given that v : X' — X is an immersion, part b follows from d; if v
is one-to-one over points of L then X is smooth along L.

Finally, part e: if a branch of X corresponding to a point s € X¥ were
tangent to G, it would be enough to show that there exists a section of
A'(—=D) not vanishing at s, which we know; and likewise if two points
s, t € X' mapped to the same point p € G, it would be enough to show
that there exists a section of .#°(—D) vanishing at s but not at ¢, which
again we know. OJ

The following restatement of Proposition 2.1 will be useful in the ap-
plications in the next section. To set it up, fix a line L C IP? and a finite
subset Q C L. Let ¥ c IPY be any irreducible, locally closed subset of the
space of plane curves of degree d, and [X] € V' a general point. Let
n : W — X C IP?> be any map not constant on any irreducible component
of W, whose degree over each irreducible component X; of X is equal to the
multiplicity of X; in X (so that in particular the pullback n*©p:(1) has degree
d). Let g be the geometric genus of W, and let e be the cardinality of the
intersection #(X N (L \ Q)). We have then

Corollary 2.7.

dmV < 2d4+g—1+e;

and if equality holds and #(X N (L\ Q)) = #n~(L\ Q) then V is a dense
open subset of a generalized Severi variety V% (a, f).

Proof. This follows readily from (2.1), after a few reductions. To begin with,
it is enough to prove this in case W is smooth, since replacing W by its
normalization only strengthens the inequality. Secondly, it is enough to do it
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in case X is irreducible: applying the statement to the inverse image of each
component of X in turn and adding the results yields the desired inequality
in general. (This second reduction is not really essential, but will allow us to
refer to the degree of the map W — X without confusion.)

Now, since W is smooth, the map W — X factors through the nor-
malization X¥ — X4, and we claim that it is enough to prove it in case
W = X". To see this, assume the result proved in case W = X" and consider
what happens if W — X" is a finite map of degree m > 1. In this case the
degree of X,eq is d/m, and the genus & of X" is related to the genus g of W by
Riemann-Hurwitz:

g > mh—m+1

Now, applying (2.1) directly to X;eq, we have

. d
dim(V) < 2—+h—1+e
m
d —1
<2249 4.
m-m

<2d4+g-—-1+e

and we have a contradiction.

We may thus assume that W = X". Now, suppose first that ¢ = 0. In this
case, the statement we want to prove is exactly Proposition 2.1 and we are
done. More generally, consider the map ¢ from a neighborhood of [X] € V
to |0, (e)| sending a point [W] € V to the reduced intersection W N (L \ Q).
Applying the e = 0 case of the statement of the Corollary to the fiber of ¢
over a general point D € |0 (e)| (replacing Q by Q' = QU supp(D)), we
conclude that the fibers of ¢ have dimension at most 2d + g — 1, and hence
that dim(V) <2d+g—1+e. O

Note that, in the case of equality, the map = : W — X is necessarily a
birational isomorphism on each component of W.

2.4. Normal sheaves and normal bundles

Before going on, we should say a few words about the relationship between
the treatment of Severi varieties given here and other possible approaches.
This section will not be logically relevant to the rest of the paper, but should
be of use in relating the results here to those of [CH, DH, H].

Briefly, there are two ways of analyzing the deformations of a plane
curve X satisfying certain geometric conditions. In the approach taken here,
which we may call the ““parametric”” approach, we look at deformations of
the normalization map v : X* — X C IP?; so that the tangent space to the
space of deformations is a priori a subspace of the space of sections of the
normal sheaf ./ of the map. This has the virtue (at least, it is a virtue in our
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present circumstances) of incorporating the condition that the geometric
genus of X is preserved in the deformations. Moreover, the sheaf ./ is a
sheaf on a smooth curve. On the other hand, it has the defect that, until we
know that v is an immersion, the sheaf .4/~ may have torsion.

In the other approach, which we will call the “Cartesian” approach, we
look instead at deformations of X as a subscheme of IP?; so that the tangent
space to the space of deformations is a priori a subspace of the space of
sections of the normal bundle Ny p2 2 Ox(d) of the divisor X C IP?. This is
in some ways more direct — all we are doing, after all, is practicing the time-
honored tradition of varying the coefficients of the defining polynomial of
X —and it is in particular useful when we want to intersect our family with
other subvarieties of the space PV of plane curves of degree d. But it has the
drawback that we have to impose extra conditions to ensure that the
geometric genus of X stays constant. These conditions, moreover, some-
times interact badly with conditions such as tangency with a fixed curve.

What is the relationship between the two? In case v : X' — X is an
immersion, it is reasonably straightforward. To start with, let .# C Oy be the
conductor ideal of X. This may be characterized in several equivalent ways:

e It is the annihilator of the sheaf v.Oy/0Ox;
e On an affine open subset of X with defining equation f(x,y), it is the
ideal of polynomials g(x,y) such that the 1-form

o (g(x,y) dx)
of /0y
is regular on X"; and

e More concretely, in case v : X' — X is an immersion, it is the ideal in
Ox whose restriction to each branch A; of X at each point p € X is equal to
the restriction to that branch of the ideal of the union of all other branches
of X through p. In other words, if p; € X" is the point lying over p in the

branch A;,
Vs = 6)(\' (— Z <Z multp(Ai . A])) pz)

i J#i

However we characterize the conductor, it is not hard to see that, in case
v : X' — X is an immersion, the normal sheaf .4/~ of the map v and the
normal bundle Ny p> 2 Ox(d) of the curve X are related by

N = V(I DN p2)

This is perhaps most easily seen in terms of the last description of the
conductor: if the local defining equation f(x, y) of X at a point p € X factors
in the completion of the local ring Oy , as

fxy) = fAiley)fa(x,y) - fulx,y)
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then a general first-order deformation of the map will simply move each
branch, resulting in a curve given by the equation

fe(xvy) = (fl(xvy)_‘_o‘le)(fz(xvy)+d26)"'( n(x7y)+a"€) .

As a deformation of the map, that is, as a section of .47, this will be nonzero
at the point of X¥ corresponding over the branch A; given by fi(x,y) = 0 if
and only if the coefficient o; # 0. But the corresponding section of the
normal bundle, that is, the restriction to X of the coefficient of € in f,(x,y),
on this branch is o; [, fj(x, »), which vanishes to order }_ ., mult,(A; - A;).

In any event, the conclusion is that the sections of the Ny 52 coming from
deformations of the map are simply those lying in the conductor ideal (or,
classically, “satisfying the adjoint conditions”, in view of the third charac-
terization above). Moreover, if we impose further conditions of tangency
with fixed curves, the allowed deformations of the map correspond to sec-
tions of ./ vanishing to the appropriate order at the points of X" lying over
the points of tangency; and these sections, by the second characterization
above, correspond to sections of ¥ ® Ny jp2 for a unique ideal sheaf ¢ C ..

We thus have a very useful dictionary between the two languages, at least
as long as v is an immersion. Otherwise the correspondence is more com-
plicated. For example, if [X] is a point on the variety of plane curves of given
degree d and genus g, corresponding to a curve with a cusp and
5—1= (‘") —g—1 nodes, then in a neighborhood of [X] we cannot si-
multaneously normalize the fibers of the universal family 2 C ¥ x P> — V;
so deformations of X preserving the geometric genus do not correspond to
deformations of the map.

3. Hyperplane sections of Severi varieties: set-theoretic description

We are now prepared to describe the hyperplane sections of the generalized
Severi varieties. In this chapter we will prove Theorem 1.2, showing that the
intersection ¥4 (a, f) N H, is indeed a union of generalized Severi varieties
of dimension one less, and saying which ones potentially occur. In the fol-
lowing chapter we will prove Theorem 1.3, establishing that all the gener-
alized Severi varieties listed as possible components of V4 (a, ) NH, do in
fact occur, and describing the multiplicities with which they appear.

3.1. The basic setup

Let V7 be any irreducible component of the intersection ¥4 (a, §) N H, and
[Xo] € V" a general point. If X, does not contain L it is easy to see that V'’
must be a component of one of the generalized Severi varieties listed in the
first part of Theorem 1.2, so we will focus on the case L C X;. We then
consider a curve I' = {[X,]} C V%°(a, B) passing through the point [X;], and
the corresponding family of plane curves Z — I'. Applying a variant of
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semistable reduction to this family in a neighborhood of [Xy] € T we arrive
at a family % — B of nodal curves dominating the curves X, in our family.
Analyzing this family, we find a number of geometric conditions that the
curve Xy must satisfy, which limit the number of its degrees of freedom.
Playing these off against the fact that Xj is a general member of a variety of
dimension dim(V9°(a, f)) —1 we are led to our characterization of
Vo (a, B) N H,.

Although the approach is quite simple, the arguments tend to appear
extremely complicated. In fact, there are a priori no restrictions on the
number of components, for example, of the special fiber of the family
Y — B or their configuration, the notation alone can be very cumbersome.
We will therefore proceed in two steps: we will give the analysis first subject
to a number of simplifying assumptions, which will make the logic of the
argument relatively clear (all of these hypotheses, moreover, will in fact turn
out to satisfied in reality). Then we will go back and prove the result without
assumptions. Comparing the argument here with the first should make it
clear why in fact the assumptions hold: if any of them were indeed violated,
we could replace one of the inequalities of the first calculation with a strict
inequality, and so arrive at a contradiction.

We start by defining the families Z — I' and % — B that we will be
working with, and establishing the relevant notation. As above, we let
[Xo] € V' be a general point of a component V' of V¥9(a, ) N H,, and
I C V¥9(a, B) a curve containing [Xy]. We will assume that the general point
[X,] of T is a general point of V¢ (a, B); that is, it satisfies the conclusions of
Proposition 2.1 above.

Now, let v : IV — I' be the normalization of I', and choose a point
by € IV lying over [Xj]. Let 2" be the normalization of the total space of the
pullback X xp I'", so that the family 2" — I'” has as general fiber a smooth
curve of genus g = (/;') — .

Next, we want to carry out a nodal reduction of the family 2" — I'"ina
neighborhood of by to arrive at a family of nodal curves # — B satisfying
the requirements below. (This can be achieved after possibly further base
change and blowing up of the nodal reduction.) Let #* = f~'(B\ {bo})
be the complement of the special fiber Yy = f~'(hy) of # — B. Then we
require that

a. The total space % is smooth.
b. The map carrying a general fiber ¥, of % — B to the corresponding
plane curve X, C IP? extends to a regular morphism

T Y — P

c. The inverse image n~'(L) N #* consists of |«| + |B| disjoint sections
{QIJ}KJ<9£ and {Rl]}l<j<ﬁ’ with n(Ql/) pij and R}, intersecting the gen-
eral fiber in a point r;; of multiplicity i in the d1v1sor (n]y,)"L — that is we
have
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TLOY =Y 00+ Y iR},

d. The closures Q;; and R;; in % of the sections O} and R;; are still
disjoint and they do not pass through any of the singularities of Y.

e. Finally, %/ — B is minimal with respect to these properties. In sum, we
have the following diagram of objects and morphisms:

Qijs Rij <
f
AV

N
\

3.2. Some simplifying assumptions and some corollaries

P2

In order to present as clearly as possible the actual picture of the families
2 — I and % — B, we will first carry out the analysis of the family
% — B under three simplifying assumptions, all of which we will show in
the last part of this section do in fact hold. We will also mention some
interesting facts that will follow as consequences of the proof of Theorem
1.2 (in particular they will not be assumed in the course of the proof).
Since they contribute to the picture of the family # — B we will state
them here.
The first of our assumptions is perhaps the least obvious: it is that

Assumption (a). The curve Xy contains L with multiplicity 1; that is,
Xo =X UL, where X is a plane curve of degree d — 1 not containing L.

(We should remark that this seems to be false in slightly more general
situations, for example if we consider the variety 7 of plane curves of given
degree and geometric genus having a triple point.)

Now, given (a), we see that the special fiber ¥y = /' (by) of # — B will
contain a unique component L such that = maps L onto L, and indeed the
map n|; : L — L will be an isomorphism. We may then group together the
remaining components of ¥ into two sets: we will let ¥ C ¥, be the union of
the irreducible components mapping to X on which = is nonconstant, and
Z C Y, the union of the irreducible components of ¥, on which r is constant.
In these terms, we will assume next that

Assumption (b). The curve Z C Yy consists of a disjoint union of chains of
rational curves joining L to Y.
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Assumption (¢). The sections {Q;;} <<, and {Ri,j}lgjgﬁ. are disjoint from Z.

Note that by the last statement, each such section meets either ¥ or L but not
both. To keep track of how many of the sections O; ; pass through each, we
will introduce some more notation. First, we define two further sequences o/
and o with o + o = a: we let o be the number of the sections {Q;;},_,
passing through Y, and o the number passing through L. We will hkew1se
label the sections passing through Y (respectively, L) as {Ql.‘j}lgjgi (res-
pectively, {Qi’j}qun) their points of intersection with Y, as {qil}]</<(x
(respectlvely, {q: /}1< lq,,) and their 1mage points in L as the subset
Q' = {p;}1<jcn (respectively, {p/;} 1<j<atr)-

As for the sections R; » the situation is a little different, by virtue of the
first of our corollaries:

Consequence 1. Every section R;; passes through Y.

Notice that this means that § < £, so that this statement is actually part
of Theorem 1.2. Thus, we do not introduce a new set of symbols. Rather, we
will provisionally let 5 be the number of the sections {R;,}_, j=1,...p, Passing
through Y, and suppose (after possibly relabeling) that the sectlons R;;
passing through Y are {R;;},. <j<p- We will let ; ; be the point of intersection
of R;; with Y,, and Sij = n(r;;) € L its image point.

Note also that, given (b), we may, at the expense of introducing rational
double points into our surface %, collapse the connected components of Z to
points, so that the fiber ¥, consists simply of L and ¥ (we have done this in
the diagram below for clarity). We will index the points of intersection of L
with Y as follows: for each i, we let »/,..., 1ﬁ” be the points of LNY
appearing with multiplicity i in the d1v1s0r n*L|,. We will also let
s;; = n(r{;) C L be the images of these points.

In sum, we have the following picture of the family # — B and its
sections:

“{
{ o

{wmdl

ﬂ”}ﬁ/
18
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(Note that we have anticipated in this picture the statement (d) that every
section R;; passes through Y.)
We also want to underline two other corollaries of the proof:

Consequence 2. The curve X is reduced, that is, the map |y : ¥ — X is a
birational isomorphism on each component of Y; and

Consequence 3. Y is smooth (though not in general connected).

3.3. Proof of simplified Theorem 1.2

We now prove Theorem 1.2 under assumptions (a), (b) and (c). We do that
by comparing two different relations that the arithmetic genus g of Y has to
satisfy

To begin with, note that the curves ¥ and L intersect in || points, which
are nodes of ¥,. Since the arithmetic genus of L = L = P! is 0, we have the
first relation

g = pa(Xo) = pa(Y)+[B"] 1.

Now we apply Corollary 2.7 to obtain a second relation. We see that the
dimension of the family in which X can move is at most
2(d —1)+g(Y) — 1+ |B|. But X is a general member of the ¥/, which has
dimension

dim(V') = dim(V*(o,)) —1 = 2d+g—2+|p]| .

Thus

2d4+g 241 < 2(d—-1)4+g(Y)—1+|p|
2(d = 1)+ pa(Y) = 1 +|f|
2d =2+g— || +1p]
2d —2+g+|f°

< 2d+g-2+|p .

INIA

We conclude that equality holds throughout, and that V' is therefore a
component of the Severi variety V4= (o, B/)(Q) satisying the equality

g =g9X) =g—Ip—-Bl+1

or equivalently
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(G

Another way to view this situation is via the pullback n*(L) of L to %, and in
particular its restriction to Y. We have

w'L =m-L+D+ Y i-Qy+ Y iRy

1<j<o; 1<j<p;

where D is supported on Z and m is some integer. Restricting to Y we
have

wLly = > deg+ Y it Y, ir,

I<j<o; 1</<p! 1<j<py

In particular, if we set ' = p° + f”, the degree
d—1 = deg(n’Lly) = I +1f .

The point is, of the d — 1 points of intersection of X with L, I/ will occur at
the assigned points p| ;, while the remaining /5’ = / p° + 1p" will occur at the
|f'| unassigned points s; ; and s/’ - The greatest degree of freedom would thus
seem to be attained when o is as small as possible and ' = p° + f” as large
as possible. But £° is bounded above by f, and there is a penalty for taking
B" large: this will decrease the geometric genus of the curve X, which will
drop the dimension of the family which it can move.

Note some additional consequences of this analysis. First, we see from
the fact that equality holds in the last of the series of inequalities above that
B° = B, so that every section R;j passes through Y, as stated, in other words,
B < B'. Statements (e) and (f) above likewise follow from the proof: the fact
that X is reduced is a consquence of the application of Corollary 2.7; while if
Y were singular, we would have ¢(Y) < p,(Y), giving rise to a strict in-
equality in the second of series of inequalities above. This completes the
proof of Theorem 1.2 subject to hypotheses (a)—(c).

3.4. The local picture of the degeneration

Based on the above analysis, we have a complete picture of the behavior of
the family of plane curves X, as they degenerate to Xy. Away from L, there is
no apparent degeneration; the family is equisingular. We will describe the
family near each of the relevant points of L:
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e Ata point pj; — that is, a point of Q\ Q' — the curve Xj is smooth, since
X does not pass through p . Thus, in a neighborhood of p . we see the
curves X, simply “flatten out" to the line L.

e At a point p,,, € Q. the curve X; has an i order tacnode, since X is
smooth at p; ; and has contact of order i with L there. On the other hand, the
inverse image of p in ¥, has two distinct points, one in ¥ and one in L; in
other words, the map Yy — Xp factors through the normalization of X at
pij- Thus, in an analytic neighborhood U of p the curves X, will have two
branches, one tending to a neighborhood of p,j in L and one to a neigh-
borhood of p; ; in X. Moreover, these two branches of X; will have i points
of intersection in U, merging to form the one point of intersection multi-
plicity i; thus, as the curves X, approach X, we see i nodes of the curves X,
approach the point p and coalesce to form the tacnode of Xj. Note ﬁnally
that, of the two branches of X, near p| - 1t is the one tendmg to a neigh-
borhood of p}; in X that has contact of order i with L at p} ;.

7 N

e The picture at a point s;; € L — that is, a limit of an unassigned point of
intersection of X, with L — is exactly the same as the picture above near a
point pf ;+ the nearby curves X; will have two branches in a neighborhood of
s;j, one tending to L and one to X; and correspondingly we will see i nodes
of the curve X, merge to form the i"-order tacnode of X at s;,;. The only
difference, in fact, is that where in the preceding case the curves X, all had a
fixed point of contact of order i with L at p] , in this case the curves X, have
a point of intersection multiplicity i with L at a variable point tending to s; ;.
Note that as in the preceding case, of the two branches of X, near s; ;, it is the
one tending to X that has contact of order i/ with L at s; ;.

e The picture near the “new” tacnodes of X — that is, the points s” of
intersection of X with L that are not limits of points of intersection ofX
with L —is the most interesting. Here, the inverse image of s} ;inYyisa single
point, which is an ordinary node of Y. It follows that in an analytic
neighborhood of s"J the curves X, are irreducible, with i — 1 nodes tending
to the iM-order tacnode s; j of Xo. Local equations for (and another picture
of) such a family will be given in Sect 4.1 below, when we discuss the
geometry of deformations of a tacnode.

2 B

Note that we can now account for all the nodes of the general curve X, of
our family as X, tends to Xj. First, &' of the nodes stay away from L, and

Xy
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become simply nodes of X C Xj. At each point pl ., we see i nodes of X,
absorbed into the tacnode formed by X and L; and s1m11ar1y at s; ;. Flnally,
we see i — 1 nodes absorbed into each point s .. In particular, we see once
more that the number ¢ of nodes of X is

5/

5710(/*]/3*(1[3”*‘[3”‘): (Sfld/*]ﬁ,+|ﬂ”|
=o—(d-1)+|f B .

We can also use the above analysis to give a complete description of the
components of the curve Z. Let us suppose that the curve L appears with
multiplicity m in the pullback divisor 7*L. Since the restriction of 7*L to ¥
has multiplicity i at each point rl’.fj, if i < m it cannot meet L itself: rather, it
must meet a component Z; of Z that appears with multiplicity i in 7*L. Since
the degree of the restriction 7*L| Z is zero and Z; has self-intersection —2, we
see that Z; must meet another component of ¥, that appears with multi-
plicity 2i in 7*L, and so on. Ultimately, we see that i must divide m, and that
Z will include a chain of m/i — 1 rational curves joining r” to L, which
appear with multiplicities #,2i,3i,...,m — 2i,m — i in ©w*L.

The picture of the actual ﬁber Yo of % — B is thus:

L

where the length of the chain of rational curves joining L to a point

LEY IS m/i — 1. Note that the multiplicity m with which curve L ap-
pears in the pullback divisor 7*L must therefore be a multiple of lem(f").
We will see in the following section that for suitably general I', we have

m = lem(B").
3.5. Verifying the assumptions

To complete the proof of Theorem 1.2, we will now go back and justify the
assumptions (a)—(c). This amounts to setting up the same calculation without
any of the hypotheses, and then observing that if any of them were violated
we would have a strict inequality in one of the series of inequalities above.



376 L. Caporaso, J. Harris

To begin with, we extend the definitions of L, |f°|, |#”| and || to the
general setting. First, we take L to be simply the union of the components of
the fiber Yy dominating L. Then, we define /3? to be the number of the
sections {R;;},_; 5 that meet either ¥ or a connected component of Z
meeting ¥ — again, if we consider the limits as y — 0 of the || unassigned
points of intersection of X, with L, | £°| will be simply the number that lie on
X. Similarly, we let |#”| be the number of points of ¥ meeting L, plus the
number of connected components of Z meeting both L and Y, and set
B = 18]+ IB".

A key observation is that no connected component of n~!'(L) can be
contained in Z, since otherwise we could contract it to obtain an isolated
point in the inverse image of L. In other words, every connected component
of Z mapping to a point of L must meet L. Thus, with these definitions, we
have as before

#XN(L\Q) < |B] .
Moreover, the genus satisfies

9="ra(Yo) > pa(L)+pa(Y)+Ip"| -1 .

Now consider the hypothesis (a) that X; contains L simply. If this were not
the case, that is, Xy = m LUX, where X is now a plane curve of degree
d — m. Since the map =n|L : L — L has degree e, we have to replace the

equality p,(L) = 0 with the inequality

pa(L) > —m+1
and correspondingly in place of p,(Y) =g — |B’| + 1 we have

PaY) < g—1|B'|+m .

This appears to work against us. But at the same time, the degree of the
image X of Y is now d — m rather than d — 1, so that the dimension of the
family in which it moves is

2d —m) +p(Y)+|f] =1 < 2(d—=m)+g—|p"| +[B|+m—1
=2d+g+|pl—-m—1
2d+g+|p -2

A

but our hypothesis is that X moves in V' that has dimension
2d + g + |f| — 2, hence we have a contradiction.

Assumption (b) is more intuitively clear, if slightly more cumbersome to
check. The point is, our basic inequality on the genus of ¥ was based on the
fact that
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g = pa(¥o) = pa(Y) +pa(L)+ ||~ 1 .

Now, if any connected component of Z met L twice, or met Y twice, or itself
had strictly positive arithmetic genus, we would have a strict inequality

g > pa(Y) +pa(L) +|B"| - 1

and so would arrive at a contradiction. Thus each connected component
Zy of Z is a tree of rational curves meeting each of L and Y at most
once.

To verify (b), then, we simply have to check that every leaf of this tree
(that is, every irreducible component W of Z meeting at most one other
component of Z) meets either ¥ or L. But, if it did not, by the minimality of
% at least two of the sections Q;; and R;; would have to meet it; otherwise
we could blow down W in % and still satisfy all the conditions imposed on
% . Now, clearly no two of the sections Q; ; can meet the same component of
Z, since they have distinct images in P2. On the other hand, our basic
estimate on the dimension of V' is based on the fact that the curve X = n(Y)
can have at most |f'| = || + |B”"| points of intersection with L outside of Q,
corresponding to the points of intersection of ¥ with the sections R; ; and the
points of intersection of ¥ with the connected components of Z meeting L. If
a section Q;; and a section R;; met the same component of Z, the point
si; = n(r;;) would lie in Q, and there would be strictly fewer than |f'| points
of intersection of X with L\ Q, and by Corollary (2.7) the dimension of ¥’
would be strictly less than 2d + g + || — 2. Likewise, if two of the sections
R;; met the same component of Z, two of the points s;; would coincide, and
X would again have strictly fewer than |f'| points of intersection with L
outside of Q.

Finally, the verification of (c) follows the same pattern as that of (b):
given that Z consists simply of chains joining L to the points ri;j € Y, if any
of the sections Q;; met Z at all, we would have s;; € Q; while if any of the
sections R; ; met Z at all, we would have s;; = s; , for some i, j, 7', /' and once

more X would again have strictly fewer than |f'| points of intersection with
L outside of Q.

4. Hyperplane sections of Severi varieties: local geometry

In this section we describe the geometry of ¥%9(«, ) in a neighborhood of a
general point of a component of its intersection with a hyperplane H,. As
might be expected, this is relatively straightforward for V%% (« + e, B — e;)
(the first possibility described in Theorem 1.2), and substantially more
complex in the case of a component of ¥4~19 (o, /). In the analysis of the
latter case, we will rely heavily on the description given in [CH] of various
loci in the versal deformation space of an mth order tacnode. The arguments
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in this section are based on conversations with Ravi Vakil, and appear as
well in [V].

4.1. Deformation spaces of tacnodes

We start by recalling the relevant results from [CH] (the reader is referred to
Sect. 2.4 of [CH] for details). To begin with, let (C,p) be an m™ order
tacnode, that is, a curve singularity analytically equivalent to the origin in
the plane curve given by the equation

Wy—=x") =0.
The versal deformation space of (C, p) is then the family 7 : ¥ — A, where

A =~ A*"~! with coordinates (a,_2, . ..,a0,bm_1,...,bo), & is the subscheme
of A x A? given by the equation

f'(x’y7am_2?'",a07bm_]7"'7b0)
= V" Fan X" FaxFag)y 4 by X" 4+ bix + by
=0

and w : & — A is the projection & C A x A> — A.

As is clear from the description of the generalized Severi varieties in the
preceding section, we are primarily interested in two loci in the base A of the
versal deformation: the locus A, C A of points (a,b) € A over which the
fiber %, of ¥ — A is reducible — equivalently, the closure of the locus of
(a, b) such that &, has m nodes — and the closure A,,_; of the locus of (a, b)
such that %, ; has m — 1 nodes. Since the defining equation f(x,y,a,b) for
& exhibits . as a double cover of the x-line A x A! over A, we can describe
these two loci in terms of the branch divisor of the cover: the discriminant
0 = 04(x) of the equation f(x,y,a,b) above as a quadratic polynomial in y
is given by

Sap(X) = (X" + ap X" 2+ ax +ag)’ — 4(bp_1xX" 4+ bix+by)

and the loci A, and A,,_; C A are the closures of the loci of (a,b) such that
04, has m double roots and such that d,, has m — 1 double roots, respec-
tively (A,, could also be characterized as the locus of squares). In particular,
we see that A, is simply the (m — 1)-plane A,, = A™! C A given by the

equations b,_; =---=b; = by =0; and that A,_; is an m-dimensional
subvariety of A containing A,, (and having multiplicity m at a general point
of A,).

In these terms, we can now state the results of [CH] that we will use
here:
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Lemma 4.1. Let m > 2, and let W C A be any smooth, m-dimensional sub-
variety containing the (m — 1)-plane A,,, and suppose only that its tangent
plane at the origin is not contained in the hyperplane H C A given by by = 0.
Then we have

WNA,-1 = A,UT

where T is a smooth curve having contact of order exactly m with A,, at the
origin.

There is an alternative way to express this lemma, which is very useful in
both its proof and the present application; it may also provide more geo-
metric insight. Let A be the blow-up of A along the (m — 1)-plane A,,; let
E C A be the exceptional divisor and F 2 IP"~! C E the fiber of E over the
origin in A. Let A,,_; be the proper transform of A,_; in A. Then we can
state the last result as the

Lemma 4.2. The intersection A,_1 NE contains F as a component of multi-
plicity m. Moreover, A,,_y is smooth at any point of F not contained in the
proper transform H in A of the hyperplane H C A given by by = 0.

To see the equivalence of the two statements, note that by the second the
tangent plane to A,_; at any point of F not contained in the proper
transform of the hyperplane 5y = 0 must contain the tangent plane to ' and
be contained in the tangent plane to E. In particular, the proper transform
W of any subvariety W C A satisfying the hypotheses of the first statement
must intersect A,,_; transversely in a smooth curve r having intersection
multiplicity m with E at its point of intersection with F; and the first
statement follows. Conversely, if we apply the first statement just to the
m-planes W, in A containing A,,, we see that A,_; contains F and (away
from the proper transform of the hyperplane by = 0) is swept out by the
smooth curves W;; the second statement follows.

Am-l
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It will be helpful also to recall the steps in the proof of these lemmas in
[CH]. Briefly, the statement of Lemma 4.1 is first verified by direct calcu-
lation in case W is the specific m-plane b,,_| = b,,_» = --- = by = 0. Then the
homogeneity of F \ (F N I:I) under the action of the automorphism group of
the singularity (C, p) allows us to deduce it for W any m-plane containing A,,
and not contained in H. This, as noted, is all we need to deduce the state-
ment of Lemma 4.2, and then Lemma 4.1 in general follows as well.

4.2. Products of deformation spaces of tacnodes

What we have to do now is to use this information to develop an analogous
picture in the product of deformation spaces associated to a collection of
higher-order tacnodes. For what follows, then, we Will let my, my, ... be any
sequence of integers m; > 2, and (C;, p;) be an (m;)™ order tacnode. We will
denote the versal deformation of (Cj,p;) by =; : ¥; — A;, and let
(@jm;—25 -+ +@j0,bjm—1,...,bjo) be coordinates on A; as above. For each j,
we will let Ajm, and A;, 1 C A; be as above the closures of the loci in A;
over which the fibers of =; have m; and m; — 1 nodes respectively. Flnally,
we set

A=A XA %,
A = Aipy X Doy X -+,
and
An—1 = Avm—1 X Agy1 X -+

Note that A, A,, and A,,_; have dimensions ) 2m; — 1, >~ m; — 1 and > m;
respectively.

Our goal now is to describe how a smooth subvariety W C A of di-
mension ) _(m; — 1) + 1, containing A,,, will intersect A,,_;, again with some
hypothesis on its tangent plane at the origin. Specifically, let H C A be the
union of the hyperplanes (b;o = 0) C A, and suppose that the tangent plane
to W is not contained in H. By the dimension count, we would expect W to
intersect A,,_; in the union of A,, and a residual curve I'; we will show that
this is indeed the case, and that the intersection number of I" with A, at the
origin in W is [[m;. (What will be different from the single-tacnode case is
the local geometry of I': as we will see, it may have many branches, each of
which may be singular at the origin.) To make the full statement, let 4 the
the least common multiple of the m;, let u = [[m; and set x = u/1. We will
prove the

Lemma 4.3. With the hypotheses above, in an étale neighborhood of the origin
in A the intersection
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WNA,—1 = A, UlTUuTLU...UT,

where T'y,..., T C W are distinct reduced unibranch curves having intersec-
tion multiplicity exactly 4 with A, at the origin. The curves T, will all be
smooth if .= m; for some j; otherwise they will all be singular, with multi-
plicity 7/ max;{m;}.

As before, it will be helpful to express this in terms of the geometry of a
blow-up: we let A be the blow-up of A along the plane A,, E C A the
exceptional divisor, F C E the fiber of E over the origin in A. Let A,,, | be
the proper transform of A,_; in A. Then we can state the last result as
the

Lemma 4.4. The intersection A,_1 NE contains F as a component of multi-
plicity m. Moreover, in an étale neighborhood of any point p € F not contained
in the proper transform H of H in A, A,,_1 consists of k reduced branches, each
having multiplicity 1/ max;{m;}, intersection number J. with E along F, and
tangent cone at p supported on a linear space contained in E.

Proof. We will prove this in two stages: first, we will verify the statement of
Lemma 4.3 directly in case W is any linear subspace of A; from this we will
deduce the full statement of Lemma 4.4, and hence Lemma 4.3 for arbitrary
W. Note that we can not do this as in the single-tacnode case by giving an
explicit calculation in the case of a particularly simple plane # and then
invoking homogeneity, for one reason: in the single-tacnode case we have an
apriori lower bound of m for the intersection multiplicity of I' with A,,, so
that if we verify that I' is a smooth curve with contact of order m with A,, for
one plane W, we may deduce it for any plane W’ such that W lies in the
closure of the orbit of [W'] € G(m,2m — 1) under the action of the auto-
morphism group of the deformation. Here we do not have the analogous
lower bound (A, -T) > u, and so we have to deal first with an arbitrary
linear space .

So: let W C A be any plane of dimension > (m; — 1) + 1 containing A,,
and not contained in H; W will be spanned by A,, and one additional vector
v € A. Let ¢ be a nonzero linear function on W vanishing on the hyperplane
An. Let p; : A — A; be the projection, and v; = p;(v), so that the image
W; = p;(W) CA,of W in A; will be the plane spanned by the subspace A,
and the vector v;. Since by hypothesis v; does not lie in the hyperplane
bjo =0, by Lemma 2.10 of [CH], we may write the intersection W; N A;,,, as
the union of A;,, and a smooth curve I'; having contact of order m; with
Ajn, at the origin. It follows that in some ¢tale neighborhood of the origin in
W; we may choose coordinates (xj0,%;1,...,X;m-2,%;) so that

(Pj)*tj =1;

and the hyperplane A, is given by #; = 0 and the curve I'; by the equations
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and
)" = x;0 -

We may then take the collection of functions {y;; = (p;)"x;;} <<y, > and ¢
as local coordinates in an étale neighborhood of the origin in W, in terms of
which the hyperplane A,, is given by ¢ = 0 and the residual intersection I" of
W with A,,_; by the equations

y,‘l:(),Vjandllglgm,—Z
and
[n”:yj,(); v]

I" is a curve, since specifying the value of the coordinate ¢ at a point of I"
determines the value of the coordinates y;o (and hence all the coordinates
;i) up to a choice of an (mj)th root. More explicitly, suppose that we choose
for each j an (mj)th root {;. Then we may parametrize a branch I'; of the
curve I' by

Yio =

and of course y;; = 0 Vi > 0. This parametrization is one-to-one, since the
powers of z appearing have no common factor; the multiplicity of the image
at the origin is the smallest power of z appearing, which is 4/ max{m;}; and
since the pullback of ¢ is z*, the intersection multiplicity of the image with
the hyperplane A,, C W defined by t = 0 is 4. Moreover, all branches of I
are parametrized in this fashion; and two collections of roots {; and 7, will
give rise to the same branch if, and only if, for some A" root of unity € we
have

§ = e

for all ;. Since {; = €"{; for all j only if € = 1, the number of such branches
is the number u of collections of roots {; divided by 4, that is, x. Thus the
statement of Lemma 4.3 is established for any linear space W.

The remainder of the argument for Lemmas 4.3 and 4.4 is straightfor-
ward: exactly as before, the statement of Lemma 4.3 for a linear space
W (satisfying the hypotheses of the Lemma) implies the statement of
Lemma 4.4, which in turn implies 4.3 in general. To carry this out, let
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U=P(A/A,) \IP(H) be the complement of the projectivizations of the
hyperplanes b,y = 0 in the projectivization of the quotient A/A,,, so that we
have a morphism

t:V =A\H—U

expressing the complement ¥ of the proper transform H of H in the blow up
A as a projective bundle (with fiber dimension ) m; —1) over U. Let
A?,FI = A,—1 NV be the intersection of the proper transform A,,_; with this
open subset of A, and let ¢ : A’ | — U be the restriction of t to A? . The
statement of Lemma 4.3 for linear spaces W says precisely that the fibers of
o are curves consisting of x reduced branches, each having multiplicity
4/ max;{m;}, intersection number A with E at its unique point p of inter-
section with F, and tangent cone at p supported on a linear space contained
in the tangent space to E. It follows that exactly the same is true of A,,_; in a
neighborhood of any point p € F not in A: it has x reduced branches, each
having multiplicity 2/ max;{m;} and intersection multiplicity 2 with £ along
F, and tangent cone supported on a linear space contained in the tangent
space to E. In other words, we have proved Lemma 4.4; and as before
Lemma 4.3 follows for an arbitrary smooth m-dimensional subvariety
W C A satisfying the hypotheses of the lemma. O

4.3. The local geometry around irreducible curves

In the remaining two parts of this section we will complete the proof of
Theorem 1.3 by analyzing the geometry of a generalized Severi variety
V49 (a, B) in a neighborhood of a general point [Xy] of one of the generalized
Severi varieties V' listed in Theorem 1.2. We will start in this subsection with
the (relatively) simple case of a general point of V4 (x+ e, — er)
(QU {p}); in the following one we will apply the preceding results to carry
out the analysis at a general point of V419 (o, f)(Y).

So: assume that f, >0, and let [Xp] be a general point of
V' = V4 (a+ e, f—er)(QU {p}). We have then the

Proposition 4.5. The variety V% (a, B) contains [Xy|; it is smooth there and has
intersection multiplicity k with H, along V'.

Proof. This follows directly from an analogous statement about the linear
series of divisors on L = IP'. To set this up, consider the rational map

T |Op(d)] = PY — |0, (d)| = P

given by restriction (note that this is a linear projection, with vertex the
subspace in PV of curves containing L). Inside the target space |0 (d)|, we
consider three loci: we let H = {D : D — p > 0} be the hyperplane of divi-
sors containing the point p; and we set
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o = {D€|@L(d)| : D= Z i-pij+ Z i.p;J forsomepl{’jEL}

1<j<o; 1<j<pB;

and similarly, setting ' = B — e;,

Y = D€|€/‘L(d)|:D:k~p+Z i~p,-_,j+zi-p;yjforsomepf’jeL

1<)<0; 1<j<p;

Now, let ¥ = V%9 c PV be the ordinary Severi variety. We have
and if we let

be the restriction of 7w to V,
V(e f) = o (@)
and
V0t e, f—er) = o () .

Proposition 4.5 will thus follow from the combination of the two Lem-
mas

Lemma 4.6. The differential do of o : V — |0,(d)| is surjective at [X].

and

Lemma 4.7. In a neighborhood of the point Dy = X - L € |0,(d)|, the variety
@ is smooth and has intersection multiplicity k with the hyperplane H along
Y.

Proof of Lemma 4.6. Since the map 7 : |Op2(d)| 2 PV — |01(d)| = P! is a
linear projection, we need only check that the projective tangent plane
PTix)V C PY to V at [X] intersects the vertex L + |Up2(d — 1)] =2 PN " of 7
transversely, that is, in codimension d + 1 in PTjxV. But now the projective
tangent space PT[xjV is simply the linear series of curves of degree d passing
through the d nodes of X, and its intersection with the vertex the linear series
of curves of degree d — 1 passing through the nodes; and since the nodes
impose independent conditions on curves of degree at least d — 2 these
will have dimensions @ — 9 and %— o = @ —0—(d+1)
respectively. O
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Proof of Lemma 4.7. We can do this simply in coordinates: let x be an affine
coordinate on L = IP! such that the point p is given by x = 0; let the point Dij
have coordinate 4;; and suppose that the f8; points other than p and {p;;} at
which the divisor Dy has multiplicity i have coordinates g, ; (note that by
Lemma 2.2 the /;; and the g, ; are all distinct). Then we can parametrize a
neighborhood of [Dy] in ® by

(e.6) = @] =[x — ) [Jr = ) T [ (& = iy — €)]

from which we see in particular that @ is smooth at the point [Dy]. Now,
writing a point [f(x)] € |O.(d)| as

Fx) = x4+ b x4+ bix + by

the defining equation of the hyperplane H C |0, (d)| is simply by = 0, which
pulls back via this parametrization to ¢ times a polynomial in the ¢;;
nonzero at the origin; it follows that in a neighborhood of [Dy], the divisor
cut on @ by H is simply k times V. O

4.4. The local geometry around reducible curves

It remains to describe the local geometry of a generalized Severi variety
V49(a, B) in a neighborhood of a point [Xy] , where Xo = X UL and [X] is a
general point of a generalized Severi variety V' = V419 (o, f/)(Q'). Thus,
we will suppose that @ = {p] } ., is any subset of cardinality [o/| of

Qi = {pij}i<j<,, such that {p§,17~~~vl’;,a;} CApirs-..,pig} for each i; and
that there are points {c];j}lg94 and {r/;},.;cp in the normalization
v:X =X CIP? such that  v(q j)=p; and the pullback
V(L) = > ig;;j+ > iri;. With this said, our basic result is the

<j<a

Proposition 4.8. In a neighborhood of [Xy|, the variety V¢ (a, B) will have

( [;’) =5

B lem(' — p)

branches, each of which will have intersection multiplicity lem(f' — B) with H,
along V.

Proof. As in the case of Lemma 4.5, we want to deduce this from a local
calculation, in this case, Lemma 4.3. Before we can do this, we have to
specify which of the points 7;; € X will be limits of points of unassigned
tangency on nearby curves in the family; each such specification will de-
termine a collection of branches of V4°(a, f). So: to start with, choose any
subset A = {ri;};o;cp of the set {r;},;.p such that {ri,...,7ip}
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C {riy,...,7;p} for each i. By way of notation, let B’ = B — B, and label the
complement of the subset {r;;} C {r;;} as {r;},.;cp; and let s;; CL C IP?

(respectively, s; ;, s;;) be the image of the point r;; (respectively, 7 ;, 7/

iyl
Similarly, set o =a — 0o/, and label the complement of the subset

{pz/',j} C{pij} as {pgjhgga;“

Now, in an analytic neighborhood of the point [Xp] = [X + L] € PV, we
will define the relaxed local Severi variety W, to be the closure of the locus of
curves X; satisfying the following six conditions:

i) X; preserves the &' nodes of X; that is, for every node of Xy away from
L, X, will have a node nearby.

i) At each point p;;, X; has contact of order 7 with L.

iii) In a neighborhood of each point pﬁﬂj, X; has i nodes

iv) In a neighborhood of each point s;;, X; has i nodes

To specify the remaining two conditions we need to make one remark.
Conditions iii) requires that, in an étale or analytic neighborhood of a point
pl’.‘ i the deformation X; of X will be reducible; that is, it will continue to have
two branches, one a deformation of a neighborhood of the point p] ;inLand
the other a deformation of a neighborhood of p; ; in X. Similarly, a defor-
mation X; of X satisfying condition iv) will have two branches near each
point s; ;, deformations of the two branches of X; at s;;. In these terms, we
make the further requirements that:

v) In a neighborhood of each point p;j, the branch of X; that is a de-
formation of a neighborhood of p| ; in X has contact of order i with L at p; ;

vi) In a neighborhood of each point s;;, the branch of X; that is a de-
formation of a neighborhood of s;; in X has a point of contact of order i
with L.

Remarks. 1. We are being colloquial here in the definition of the relaxed
Severi variety, using terms like “nearby’ and “in a neighborhood of”’ each
point pf’ ; or s;;. This is to avoid introducing yet more notation. The defi-
nition may be made precise, for example, by specifying in IP?> disjoint ana-
lytic neighborhoods Uy, Vi and W, ..., Wy of the points p; ; and s; ;, and the
nodes up,...,uy of X; or by considering deformations {X;} of Xy having
nodes at deformations {u;(¢)} of the points u;, etc.

2. We remark again that the relaxed local Severi variety W, depends on
the choice of subset {r;;} C {r];}; there are thus (%) such varieties W in a
neighborhood of [Xp].

Note that we are at this point making no requirements about the de-
formations X; in a neighborhood of a point s/ - even though we have seen
that a family of curves X; in ¥%9(a, f) tending to X, will have i — 1 nodes
tending to each point si’ ; (hence the name “‘relaxed™). Thus, in particular, a
general point [X;] € W) will correspond to a curve X, with only
8" =6 — (1" — |B"|) nodes — in other words, W, will be an open subset of
the variety V"*‘Sﬁ(oc, p). In fact, our strategy is exactly this: to consider first
the conditions a curve X, must satisfy away from the points s;’ ; in order to
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belong to a component of V%% (a, p) containing [Xo] in its closure; and then
secondly the conditions around the points s

The point is, the conditions on the curve Xt at the points p and s ; and
the nodes uy,...,uy of X are all essentially linear conditions, and Well be-
haved. Thus, omitting any requirements on the behavior of the curves X;
around s} - will result in a parameter space W, that is smooth with id-
entifiable tangent space at the point [X;]. Once we have described this space,
we will then consider the map ¢, from W, to the product A of the defor-
mation spaces of the tacnodes of X, at the points s/ i ;- In a neighborhood of
[Xo], the Severi variety Vd 9(a, B) will be the union, over all A, of the closures
of the inverse images ¢, ( m—1 \ An). Once we have shown that for each A
the image ¢, (W, ) satisfies the hypotheses of Lemma 4.3, then, Theorem 1.3
will follow.

The first step in carrying out this plan is thus the identification of the
tangent space to Wy at [Xp] (from which it will follow that W, is indeed
smooth at [Xp], once we estimate its dimension). This tangent space, viewed
as a subspace of the tangent space Ty, PY = H°(X,, O(d)), is the subspace
H°(Xy,.#(d)) determined by an ideal sheaf .# C Oy,, which we will describe
in the following lemma.

To do this, we have to introduce some local ideals. Specifically, for each i
and j with 1 <j <o, we let f;_j C Oy, be the sheaf of regular functions in a
neighborhood of p| ; € Xo whose restriction to L C Xy vanishes to order i at
p;; and whose restrlctlon to X C Xp vanishes to order 2i at p| ;- Similarly, for
each i and j with 1 <j<p;, we let #;; C Oy, be the sheaf of regular
functions in a neighborhood of's; ; € Xy whose restriction to L C X, vanishes
to order i at 5;; and whose restriction to X C X, vanishes to order 2i — 1 at
s;j- We have then the

Lemma 4.9. The variety Wy is smooth at [X,], and its tangent space is given by
the linear series

T P = H'(Xo, #(d)) € TP = H' (X, 0(d))

where the ideal sheaf .9 is the product

5
= Hmul H ﬂI no H f H jw‘
i=1

1</<fx” l</<7 1</<B;

Proof. We will first show that the tangent space to W, at [Xp] is contained in
the series H(Xp, .#(d)). We will then argue that the ideal .# imposes inde-
pendent conditions on the series H°(Xy, O(d)), so that we can calculate the
dimension h°(X),.#(d)); comparing this with the actual dimension of W, we
deduce the smoothness of W, at [Xp| and the identification of the tangent
space with H°(Xp, .7 (d)).
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For both parts, it will be useful to introduce a partial normalization X, of
Xo specifically, we let u : X; — X, be the normalization of X; at the points
pl and s; ;, and the nodes uy, ..., uy of X, but not at the pomts st 3 Note that
the normalization X of X is actually a closed subscheme of Xo We will abuse
notation slightly and denote by ¢/ J dnd r;; the points of X c X, lying over
j2 ; and s;;. We will also denote by q € X, the (unique) point of X; lying
over p;/;.

Note that since .# is contained in the conductor # C Oy, of the map
Xy — Xo, the pullback u*.# is locally free on Xy; specifically, it is the
sheaf

v = M*f®%(_z,-.q;d__zi.qgj_Z(i—1).r,.,j) .

Also, because . is contained in the conductor # of the map Xy — X, the
space of sections H(Xy, u*.#(d)) = wH*(Xy, .7 (d)).

Now, to prove the inclusion Ty Wx C H°(Xp,.#(d)), we observe that by
conditions 1), iii) and iv) in the definition of W, any deformation of X in W)
arises from a deformation of the composite map i : Xy — Xo — IP?. Thus,
any tangent vector to W at [Xo] must lie in the subspace

H(Xy, 7(d)) C H’(Xp,0(d))

which we may identify in turn with H°(X,, u* #(d)). Now, as we observed in
Sect 2 above, we may further identify u* #(d) with the normal sheaf N = Ny
of the map 1; and in terms of these identifications conditions ii), v) and vi) of
the definition of W, amount to the assertion that the tangent space to W, at
[Xo] satisfies

Tiy W C HO()?O,N(—Zi-qZ»J—Zi-q§’~—2(i—1)'%‘))
—HO( ( Siegl, = igl = 1)'7”1',1‘))

= H(Xo uf(d))
=H'(X, S (d))

For the second part, to estimate the dimension 4°(Xy,.7(d)), we will
equate this with the dimension 4°(Xy, u*.# (d)) of the space of sections of the
pullback, and apply Riemann-Roch on X;. A key fact is that the line bundle
w*#(d) is nonspecial. In the sequel we will need as well the fact that for
p € L general the bundle p*.#(d)(—p) is nonspecial as well; we will state
these as the

Lemma 4.10. For p € L general,

B (o i #(d)) = ' (Yo, i #(d)(=p) = 0 .
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Proof. First, note that the dualizing sheaf of X; is given by
wg, = W(J(d=3)) .
Thus, we may write
waId) = o3 ®wXO( Zl qll Zl q;; Zl—l) r,-_j).
and correspondingly
w,;()@(u*f(d))* = uo(— (Zl qu-l-Zl q +Z(z’—1)-r,«d~) .

Now, the restriction of this line bundle to X has degree

deg (g, ® (W A(d) " © Og) = =3(d—1)+1 +1p
< =3d-1)+1d +1f
— —2(d—1)
<0

and so every global section ¢ € HO(wX ® (u *J(d))i ) must vanish iden-
tically on X. The restriction of ¢ to the component L of X; lying over L is
then a section of the bundle

wg ® (WId) ' © Iz 0;

and since the restriction .#; ® (; to L of the ideal sheaf of X has degree
—1p", we have

deg(w,go ®(,u*f(d))7l ®f)g®(ﬁi> = I —1B" -3
= Jo—1Id — (If —IB) -3
= (la+1B) — (I +1B) —
d—(d—-1)-3
= 2.

Thus ¢ must vanish identically on L as well, and hence
B (o, 1'9(d) = B (Ko, 05, @ (W0I(d)") = 0.

Finally, if we had started with p*.#(d)(—p) in place of p*.#(d), we would
have wound up with
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deg(w)zo ® (WId)(=p) " ® Iz @ @z) = -1

and we would conclude as before that the line bundle u*.#(d)(—p) is
nonspecial. |

We may now apply the Riemann-Roch formula on Xy to complete the
proof of Lemma 4.9. By Lemma 4.10, we have

W (Xo,.7(d)) = h"(Xo, u"-7(d))

deg(u"-s(d)) — pa(Xo) + 1

Since

deg(u" 7 (d))

deg(,uO ®on< Zz qlJ Zz q Z 1)-ri,j))

3d + 2pa(Xo) — 2 — I — (I — |B])

we can rewrite this as
h(Xo, 7 (d)) =3d+p.(Xo) — 1 —Ta— (If—[B]) .

Now, the arithmetic genus of X is simply the genus of a general member X,

of W; thus
- —1
o) = <d2 )_5” .

Equivalently, we could arrive at this by observing that the arithmetic genus
of Xp is simply the genus of X, plus the degree of the intersection of X C X;
with the component L of X; lying over the line L C IP?, minus 1; thus

dz) — 8 +1p -1

[\

d—-2
—0+d—1—|f - Bl +IB" —

(
Y
:(d 1)—5+1[£” 1B
- (%)

[\

[\

d=1\ _

o

Either way, we have
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dim(Ti, W) < #°(Xo,-7(d))
=3d + pa(Xo) — 1 = I — (I — | )

:3d+<d;1> — 8" —1—Tu— (I —[B])

("3 -

= dim(V (a, )
= dim(WA) ;

so W, must be smooth, with tangent space equal to H°(X,,.#(d)). O

All that remains to complete the proof of Proposition 4.8 is to consider
the map ¢, from W, to the product A of the deformation spaces of the
tacnodes of Xj at the points s; - Note first that the image of ¢, contains the
locus A,, C A, and that the inverse image Wy = (¢,) "' (A,) of this locus is
simply the set of points [X;] € W, corresponding to curves X, containing L.
This has codimension at most one in Wj: if we choose any point p € L not
among the points p;; or s;;, then any curve X; in W, containing p will have a
total of

Io+If+1 = d+1
points of intersection with L, and so will contain L.
On the other hand, under the differential
dpp = TixgWa — ToA

of the map ¢,, the inverse image of the tangent space TyA, C TpA is
simply the subspace of H(Xy,.#(d)) of sections vanishing on L. Now,
the restriction of .#(d) to L has degree d — o — I =0 — that is, it is
trivial — and by Lemma 4.10 not every global section of .#(d) vanishes
on L. Thus

dim((d¢,) " (ToA,)) = dim(¢~'(A,)) = dim(Wy) — 1 .
We may conclude that the image of ¢, is smooth of dimension
dim(g(Wh)) = dim(A,) + 1

with tangent space the image of d¢,. Since again the linear system
H(Xp,.#(d)) has no base points on L, the image W = ¢, (W) satisfies the
hypotheses of Lemma 4.3. Thus we may apply Lemma 4.3 to conclude that
the closure of the inverse image dbxl (A1 \ Ay)  will  have
k =1P~F/lem(f’ — B) reduced branches, each having intersection multi-
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plicity lem(B' — B) with W, and hence with the hyperplane H,. Since in a
neighborhood of [Xy] the Severi variety

V(o B) = quA An—i \ An)

we conclude finally that near [Xp], V4% (x, B) will have (£ )¢~ /lem(p' — )
branches, each of which will have intersection multiplicity lem (" — ) with
H, along V'. This completes the proof of Proposition 4.8 and thereby of
Theorem 1.3. O
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