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For a semistable curve X of genus g, the number h0(X, L) is studied for line bundles L

of degree d parameterized by the compactified Picard scheme. The theorem of Riemann

is shown to hold. The theorem of Clifford is shown to hold in the following cases: X

has two components; X is any semistable curve, and d= 0 or d= 2g − 2; X is stable, free

from separating nodes, and d≤ 4. These results are shown to be sharp. Applications to

the Clifford index, to the combinatorial description of hyperelliptic curves, and to plane

quintics are given.

1 Introduction and Preliminaries

The dimension of complete linear series on singular curves is, in general, quite difficult

to control. This is one of the reasons why several interesting degeneration problems

about line bundles and linear series remain unsolved. For singular curves, the Riemann–

Roch theorem does not yield as strong information as for smooth curves, and several

other classical theorems fail, as we shall illustrate.

On the other hand, it is well known that the Picard scheme of a singular

curve tends to be too large, so that any good compactification of the generalized

Jacobian parameterizes only a distinguished subset of line bundles. At present, the
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2 L. Caporaso

geometric and functorial properties of the compactified Picard scheme are rather well

understood, making it a natural place to study limits of line bundles and related

problems.

This is the main theme of this paper, which investigates the dimension of com-

plete linear series parameterized by the compactified Picard scheme of stable curves.

They correspond to the so-called “balanced” line bundles on semistable curves (defined

in Section 2.1.1).

There exist other approaches to this type of questions. Some of them are by

now considered classical, such as the theory of admissible covers, of Harris and Mum-

ford [12], and the theory of limit linear series, of Eisenbud and Harris [9]. Although

these techniques have been successfully applied by their creators to solve important

problems, and they have been further studied by others ([3, 10, 14] for example), several

questions, some considered in the present paper, remain open. Our method, applied also

in [6], is different as it departs from the compactified Picard scheme and does not use

degeneration techniques.

We proceed in analogy with the classical theory of Riemann surfaces. Our first

result is Theorem 2.3, generalizing a theorem of Riemann, computing h0(X, L) for a bal-

anced line bundle L of large degree on a semistable curve X. Although this theorem fails

on infinitely many components of the Picard scheme of a reducible curve (see Exam-

ple 2.6), we prove that, quite pleasingly, it does hold for every balanced line bundle, that

is for every element of the compactified Picard scheme of X.

We then turn to study the theorem of Clifford. The situation is much more com-

plex, as this theorem turns out to fail, even for balanced line bundles, in certain situa-

tions. Nonetheless, we prove that Clifford’s theorem does hold in several cases. Namely,

it holds for all degrees on curves with two components (Theorem 3.3). Also it holds for

all stable curves if the degree is 0 or 2g − 2 (Theorems 4.2 and 4.4). Finally, it holds for

degree at most 4, for all stable curves free from separating nodes (Theorem 4.11). Some

counterexamples are exhibited to show that the result is sharp: the Clifford inequality

fails for all positive degrees for curves with separating nodes; furthermore, if d≥ 5, then

it fails even for curves free from separating nodes (see Example 4.17).

The last section is devoted to applications. For curves with two components Clif-

ford’s theorem is valid, it is thus interesting to study their (suitably defined) Clifford’s

index and its connection with the gonality; we do that in Proposition 5.4, stating that a

curve is weakly hyperelliptic (i.e., it admits a balanced g1
2) if and only if its Clifford index

is 0. Next, we focus on weakly hyperelliptic curves, give a combinatorial characterization

of them (Theorem 5.9) and use it to describe the combinatorics of hyperelliptic curves
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Linear Series on Semistable Curves 3

(Proposition 5.11). We conclude the paper with a classification of g2
5’s on two-component

curves of genus 6 (Theorem 5.12).

1.1 Conventions

We work over any algebraically closed field. The following notation and terminology will

be used throughout the paper. The word “curve” stands for reduced projective scheme

of pure dimension 1. X is a connected curve, having at most nodes as singularities. g

is the arithmetic genus of X. The irreducible component decomposition of X is written

X =
⋃γ

i=1 Ci, and gi is the arithmetic genus of Ci. We usually denote by Z a (complete,

reduced, of pure dimension 1) subcurve of X, by gZ its arithmetic genus, and by Zc =
X ! Z its complementary curve.

Given a line bundle L ∈ Pic X we denote by L Z its restriction to Z ⊂ X.

Given two subcurves Z and Z ′ of X with no components in common, we denote

Z · Z ′ := #Z ∩ Z ′ and δZ := Z · Zc = #Z ∩ Zc. (1)

We often write Z ∩ Z ′ ⊂ Z to denote the set of points where Z intersects Z ′ and OZ (Z ∩
Z ′) ∈ Pic Z to denote the corresponding line bundle.

The formula g = gZ + gZc + δZ − 1 will be used several times.

Whenever we decompose a curve as a union of subcurves, for example, X = Z ∪ Y,

it will be understood that Z and Y have no components in common.

d= (d1, . . . , dγ ) will always be an element of Zγ and |d| =
∑γ

1 di. By d≤ 0 (resp.

d≥ 0) we mean that di ≤ 0 (resp. di ≥ 0) for every i. We denote by PicdX, the set of line

bundles L on X having multidegree di = degCi
L for i = 1, . . . , γ , and, for any integer r ≥ 0

we set Wr
d(X) := {L ∈ PicdX : h0(L) ≥ r + 1}.

1.2 Gluing global sections

In this section, we collect several technical results needed in the sequel.

1.2.1

Let ν : Y → X be some partial (possibly total) normalization of X; consider the (surjective)

morphism ν∗ : Pic X → Pic Y. For every M ∈ Pic Y we will denote the fiber of ν∗ over M as

follows:

FM(X) := {L ∈ Pic X : ν∗L = M}. (2)
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4 L. Caporaso

Let δ be the number of nodes normalized by ν : Y → X. For each of such node, ni,

let {pi, qi} = ν−1(ni) be its branches. We represent the above data by the self-explanatory

notation

Y −→ X = Y/{pi=qi , i=1,...,δ}. (3)

Fix M ∈ Pic Y such that h0(Y, M) ,= 0. Pick L ∈ FM(X); then (cf. [5, 2.1.1])

h0(Y, M) − δ ≤ h0(X, L) ≤ h0(Y, M). (4)

To study when h0(X, L) = h0(Y, M) we introduce a convenient notation.

Definition 1.1. Let Y be a curve, M ∈ Pic Y and p and q nonsingular points of Y. We say

that p and q are a neutral pair of M, and write p∼M q, if

h0(Y, M − p) = h0(Y, M − q) = h0(Y, M − p− q). (5)

!

Remark 1.2. Notation as in Definition 1.1.

(A) The relation p∼M q is an equivalence relation.

(B) If p and q lie in different connected components of Y, p∼M q if and only if p

and q are base points of M.

(C) p∼OY q if and only if p and q lie in the same connected component of Y.

(D) If M is very ample, then M has no neutral pair. !

Lemma 1.3. Let Y = Z1
∐

Z2/{pi=qi , i=1,...,β}, where Z1 and Z2 are two nodal curves, and

p1, . . . , pβ (respectively, q1, . . . , qβ ) smooth points of Z1 (resp. of Z2). Let M ∈ Pic Y and let

p∈ Z1 and q ∈ Z2 be smooth points of Y. If p∼M q then p is a base point of MZ1(−
∑β

i=1 pi)

(and q is a base point of MZ2(−
∑β

i=1 qi)). !

Proof. Suppose that p is not a base point of MZ1(−
∑β

i=1 pi). Then there exists s1 ∈
H0(Z1, MZ1(−

∑β
i=1 pi)) such that s1(p) ,= 0. Since s1 vanishes at pi for i ≤ β, s1 can be

glued to the zero section in H0(Z2, MZ2), to give a section s ∈ H0(Y, M). By construction,

s(p) ,= 0 and s(q) = 0. Therefore p ,∼M q. "

The next lemma follows trivially from [5, Lemmas 2.2.3 and 2.2.4].
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Linear Series on Semistable Curves 5

Lemma 1.4. Let Y be a nodal curve, p and q be two nonsingular points of Y and Y →
X = Y/{p=q}. Let M ∈ Pic Y be such that h0(Y, M) ,= 0.

There exists L ∈ FM(X) such that h0(X, L) = h0(Y, M) if and only if p∼M q. If Y is

connected, such an L is unique (if it exists) if and only if p and q are not base points

for M. !

Lemma 1.5. Let Y = Z1
∐

Z2 → X = Y/{pi=qi , i=1,...,δ}, where p1, . . . , pδ (respectively,

q1, . . . , qδ) are nonsingular points of Z1 (resp. of Z2). Let M = (M1, M2) ∈ Pic Z1 × Pic Z2 =
Pic Y; assume h0(Y, M) ≥ 2, and pi ,∼M qi ∀i. Then there exists L ∈ FM(X) such that

h0(X, L) = h0(Y, M) − 1 if and only if

pi ∼M1 pj and qi ∼M2 qj ∀i, j. !

Proof. If δ = 1, then we have FM(X) = {L} and our assumption p1 ,∼M q1 implies, by

Lemma 1.4, that h0(X, L) = h0(Y, M) − 1. From now on we let δ ≥ 2. Assume first δ = 2.

Write Y′ = Y/{p1=q1}, and let M′ ∈ Pic Y′ be the (unique) line bundle corresponding to M.

As we just said, Lemma 1.4 yields

h0(Y′, M′) = h0(Y, M) − 1.

Suppose p2 ,∼M1 p1. Then there is s1 ∈ H0(Z1, M1) vanishing at p1 but not at p2. Hence p2

is not a base point of M1(−p1). By Lemma 1.3, we have p2 ,∼M′ q2,, hence by Lemma 1.4,

for every L ∈ FM′(X) we have h0(X, L) ≤ h0(Y′, M′) − 1 = h0(Y, M) − 2.

Conversely, assume p2 ∼M1 p1 and q2 ∼M2 q1. We claim that p2 ∼M′ q2. Indeed, pick

s ∈ H0(Y′, M′) such that s(p2) = 0. Let si be the restriction of s to Zi. Then s1 ∈ H0(Z1, M1),

hence s1(p1) = 0 by hypothesis. Therefore, s2(q1) = 0. Finally, as q2 ∼M2 q1, we get s2(q2) =
0, hence s(q2) = 0. So p2 ∼M′ q2.

By Lemma 1.4, this implies that there exists L ∈ FM′(X) such that h0(X, L) =
h0(Y′, M′) = h0(Y, M) − 1, so we are done.

If δ ≥ 3, we just apply the previous argument by replacing p2 and q2 with pi, qi,

i ≥ 3, and use Remark 1.2(A). "

Fact 1.6. Let X be connected, and assume d= 0 = (0, . . . , 0). Then for every L ∈ Pic0 X

we have h0(X, L) ≤ 1 and equality holds if and only if L =OX [5, Corollary 2.2.5]. !

The following easy observation will be applied several times.
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6 L. Caporaso

Remark 1.7. Let X = V ∪ Z and L ∈ PicdX; assume that dZ = (0, . . . , 0). Then h0(X, L) ≤
h0(V, LV ).

Indeed, let Z = Z1
∐

· · ·
∐

Zc be the connected component decomposition of Z .

Then, by Fact 1.6, h0(Zi, L Zi ) ≤ 1 and equality holds if and only if L Zi =OZi , in which

case L Zi has no base point. Set X1 = V ∪ Z1 ⊂ X; if h0(Z1, L Z1) = 0 then, obviously,

h0(X1, L X1) ≤ h0(V, LV ). If instead L Z1 =OZ1 , by Lemma 1.4 applied to X1 we obtain

h0(X1, L X1) ≤ h0(V, LV ) + 1 − 1 = h0(V, LV ). Iterating, we are done. !

Recall the notational conventions of Section 1.1.

Lemma 1.8. Let X = C ∪ Z with C irreducible, set δC = C · Z . Let L ∈ Pic X be such that

deg LC = 2gC + eC for some eC ≥ 0. Then

(i) h0(X, L) ≤ h0(C , LC ) + h0(Z , L Z ) − min{δC , eC + 1}.
(ii) If eC ≥ δC − 1, then h0(X, L) = h0(C , LC ) + h0(Z , L Z ) − δC .

(iii) If eC ≤ δC − 2, then equality holds in (i) for at most one L. !

Proof. We simplify the notation setting δ = δC . Let X0 := C
∐

Z and ν0 : X0 → X be the

natural map (the normalization of X at C ∩ Z ). Write M0 = (LC , L Z ) ∈ Pic X0 = Pic C ×
Pic Z . We can factor ν0 by normalizing one node in C ∩ Z at the time, as follows. Write

ν0 : X0
ν0

1−→ X1
ν1

2−→ · · · −→ Xδ−1
νδ−1
δ−→ Xδ = X,

so that

νi
i+1 : Xi −→ Xi/{pi=qi} = Xi+1

is the normalization of exactly one node of Xi+1, the branches pi and qi of which satisfy

pi ∈ C and qi ∈ Z . For all i < δ, denote νi : Xi −→ X the composition, and Mi := ν∗
i L. We

have, of course,

h0(X, L) ≤ h0(Xi, Mi). (6)

Note that h0(X0, M0) = h0(C , LC ) + h0(Z , L Z ).

We claim that, for every e ≤ min{δ − 1, eC }, we have

h0(Xe+1, Me+1) = h0(C , LC ) + h0(Z , L Z ) − e − 1. (7)
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Linear Series on Semistable Curves 7

By induction on e. If e = 0, then deg LC ≥ 2gC , therefore LC has no base points. By

Lemma 1.4 we obtain

h0(X1, M1) = h0(X0, M0) − 1 = h0(C , LC ) + h0(Z , L Z ) − 1.

As induction hypothesis, assume h0(Xe, Me) = h0(C , LC ) + h0(Z , L Z ) − e. Now

deg LC



−
e∑

j=1

pj



 = deg LC − e ≥ 2gC ,

therefore LC (−
∑e

j=1 pj) does not have base points; in particular, pe+1 is not a base point.

By Lemma 1.3 we have pe+1 ,∼Me qe+1. By Lemma 1.4, this implies

h0(Xe+1, Me+1) = h0(Xe, Me) − 1 = h0(C , LC ) + h0(Z , L Z ) − e − 1

proving (7), which, combined with (6), proves (i).

From (7) we also immediately derive (ii).

Finally, for (iii) it suffices to apply the uniqueness part of Lemma 1.4. "

1.3 Clifford index of a line bundle

The Clifford index of a line bundle on a curve X is the number Cliff L := deg L −
2h0(X, L) + 2. If X is irreducible and 0 ≤ deg L ≤ 2g, then Cliff L ≥ 0, by Clifford’s theorem

([7]); in fact, the extension to irreducible nodal curves of the classical Clifford’s theorem

for smooth curves is well known, and easy to prove by induction on the genus. Note

also that if Cliff L = 0, then L has no base points, and if Cliff L = 1, then L has at most

one base point. Indeed, for nonsingular points this is a formal consequence of Clifford’s

theorem; for singular points it is easily proved by induction on the genus.

The next lemma relates Cliff L to the equivalence ∼L of Definition 1.1.

Lemma 1.9. Let C be an irreducible curve of genus g; fix L ∈ PicdC with h0(C , L) ≥ 2 and

d≤ 2g. Let E be a set of nonsingular points of C such that p∼L q for all p, q ∈ E . Then

#E ≤ Cliff L + 2. !
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8 L. Caporaso

Proof. Let p1, . . . , pe ∈ E ; for every i = 1, . . . , e we have

1 ≤ h0(C , L − pi) = h0



C , L −
e∑

j=1

pj



 ≤ d− e
2

+ 1

(by Clifford’s theorem). On the other hand, h0(C , L) = d/2 + 1 − Cliff L/2, hence

h0(C , L − pi) ≥ d− Cliff L
2

.

Therefore

Cliff L − d
2

≥ e − d
2

− 1 ⇒ Cliff L + 2 ≥ e. "

Corollary 1.10. Let X = (C1
∐

C2)/{pi=qi , i=1,...,δ}, with C1 and C2 irreducible, and

p1, . . . , pδ (resp. q1, . . . , qδ) nonsingular points of C1 (resp. of C2). Pick L1 ∈ Pic C1 glob-

ally generated, such that h0(C1, L1) ≥ 2 and Cliff L1 + 2 < δ. Then for any L2 ∈ Pic C2 and

any L ∈ F(L1,L2)(X) we have h0(X, L) ≤ h0(C1, L1) + h0(C2, L2) − 2. !

Proof. Since δ > Cliff L1 + 2, Lemma 1.9 yields that there exists at least a pair pi and

pj such that pi ,∼L1 pj. As L1 is globally generated, by Remark 1.2(B) we have pi ,∼L qi for

any L as above; hence Lemma 1.5 applies, giving the statement. "

In what follows we shall frequently use, without mentioning it, the obvious fact

that Cliff L and deg L have the same parity.

Proposition 1.11. Let X = C1 ∪ C2 with Ci irreducible of genus gi. Assume δ := C1 · C2 ≥
2. Let L ∈ PicdX, set Li = LCi , di = degCi

Li and assume 0 ≤ di ≤ 2gi for i = 1, 2.

(i) If Cliff L = 0, then Cliff L1 = Cliff L2 = 0; moreover, if d ,= 0 then δ = 2.

(ii) If Cliff L = 1 we may assume d1 odd and d2 even. Then Cliff L1 = 1 and

Cliff L2 = 0. Moreover, if d1 ≥ 3, then δ ≤ 3; if d2 ≥ 2, then δ = 2.

(iii) If 0 ≤ Cliff L ≤ 1, then

h0(X, L) ≤ h0(C1, L1) + h0(C2, L2) − 1 ≤ d
2

+ 1. !
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Linear Series on Semistable Curves 9

Proof. Write l = h0(X, L) and li = h0(Ci, Li). Let p1, . . . , pδ ∈ C1 and q1, . . . , qδ ∈ C2 be the

points corresponding to the nodes of X, so that

X =
(
C1

∐
C2

)/

{pi=qi , i=1,...,δ}
.

Now, as l ≤ l1 + l2 we always have

Cliff L = d− 2l + 2 ≥ d− 2l1 − 2l2 + 2 = Cliff L1 + Cliff L2 − 2. (8)

Moreover, if either L1 does not have a base point at some pi or L2 does not have a base

point at some qi, we have l ≤ l1 + l2 − 1, by Lemma 1.4. Therefore

Cliff L = d− 2l + 2 ≥ d− 2l1 − 2l2 + 2 + 2 = Cliff L1 + Cliff L2. (9)

Recall that if Cliff Li ≤ 1, then Li has at most one base point. Therefore, as δ ≥ 2, (9)

applies if either Cliff L1 ≤ 1 or Cliff L2 ≤ 1.

Assume Cliff L = 0. Then (8) yields Cliff Li ≤ 2 for i = 1, 2 (as Cliff Li ≥ 0 by Clif-

ford’s theorem for irreducible curves). If Cliff L1 = 0, then we can apply (9), obtain-

ing Cliff L2 = 0. Moreover, we have equality occurring in (9), hence l = l1 + l2 − 1. By

Lemma 1.5 we obtain that pi ∼L1 pj and qi ∼L2 qj for all i, j. If d ,= 0 and δ ≥ 3, then this

is impossible by Lemma 1.9. We conclude that δ = 2.

By switching roles between L1 and L2 this argument together with (8) shows that

Cliff L = 0 implies Cliff Li ≤ 1 for i = 1, 2. If Cliff L1 = 1 applying (9) gives 0 ≥ 1 + Cliff L2,

which is impossible. (i) is proved.

Now assume Cliff L = 1; (8) yields Cliff L1 + Cliff L2 ≤ 3. If Cliff L1 = 1, then (9)

applies; we get 1 ≥ 1 + Cliff L2, hence Cliff L2 = 0. Similarly, if Cliff L2 = 0 by (9) we get

Cliff L1 = 1. We thus have that Cliff L1 = 1 if and only if Cliff L2 = 0. As d1 is odd, the only

remaining case is Cliff L1 = 3; this would imply Cliff L2 = 0 which implies Cliff L1 = 1,

a contradiction. Therefore, the case Cliff L1 = 3 does not occur. In a similar way, we

see that the case Cliff L2 = 2 cannot occur (it would imply Cliff L1 = 1 which implies

Cliff L2 = 0).

Finally, equality holds in (9), so that l = l1 + l2 − 1. Hence pi ∼L1 pj and qi ∼L2 qj

for all i and j (by Lemma 1.5 as before). Now, if either d1 ≥ 3 and δ ≥ 4, or if d2 ≥ 2 and

δ ≥ 3, this is impossible by Lemma 1.9. (ii) is proved.
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10 L. Caporaso

Part (iii) follows from the previous ones, observing that in both cases L2 has

no base points. Therefore, by Lemma 1.4 we have l ≤ l1 + l2 − 1. Finally, if Cliff L = 0

we have l1 + l2 − 1 = d1/2 + 1 + d2/2 + 1 − 1 = d/2 + 1. If Cliff L = 1 we have l1 + l2 − 1 =
(d1 + 1)/2 + d2/2 + 1 − 1 = d/2 + 1/2; so we are done. "

2 Riemann’s Theorem for Semistable Curves

The well-known Riemann’s theorem for a smooth curve C of genus g states that, if d≥
2g − 1 and L ∈ PicdC , then h0(C , L) = d− g + 1. More generally, using the normalization

and induction on the number of nodes, it is easy to prove the following:

Fact 2.1. Let X be a nodal irreducible curve (of genus g) and L ∈ PicdX. Then

(1) If d≥ 2g − 1, then h0(X, L) = d− g + 1.

(2) If d≥ 2g, then L is free from base points.

Part (1) follows from Riemann–Roch and Serre duality, (2) follows from (1). !

By contrast, if X is reducible, Riemann’s theorem trivially fails. In fact, for every

fixed d≥ 2g − 1 there exist infinitely many multidegrees d, with |d| = d, such that for any

L ∈ PicdX we have h0(X, L) > d− g + 1 (see Example 2.6).

On the other hand, it is well known that, for every d, there exists a well-defined

finite set of multidegrees, of total degree d, which appear as the multidegrees of all line

bundles parameterized by the compactified Picard variety of a stable curve X. More pre-

cisely, for any stable curve X, we shall denote by P d
X the compactified Picard scheme con-

structed (independently) in [4, 13, 15, 16] (known to be all isomorphic by [1, 15]). Recall

that P d
X is a reduced scheme of pure dimension g, which appears as the specialization

of the degree-d Picard varieties of smooth curves specializing to X. There are several

modular descriptions of P d
X; the one we shall use interprets its points as equivalence

classes of balanced line bundles on curves stably equivalent to X.

The main result of this section, Theorem 2.3, states that if L is a line bundle

on a semistable curve X, having degree at least 2g − 1, and balanced multidegree, then,

just as for smooth curves, we have h0(X, L) = d− g + 1. Therefore, if X is stable, every

line bundle parameterized by the compactified Picard scheme P d
X satisfies Riemann’s

theorem.

 at UniversitÃ  Rom
a Tre - Biblioteca di area scientifico-tecnologica on January 31, 2011

im
rn.oxfordjournals.org

Downloaded from
 

http://imrn.oxfordjournals.org/


Linear Series on Semistable Curves 11

2.1 Balanced line bundles

Let X be fixed. For every subcurve Z ⊂ X with δZ := Z · Zc, we set

wZ := degZ ωX = 2gZ − 2 + δZ and w := wX = 2g − 2. (10)

Recall that a (nodal connected) curve X of genus g ≥ 2 is stable if for every subcurve

Z ⊂ X we have 0 < wZ < w. X is semistable if for every Z ⊂ X we have

0 ≤ wZ ≤ w, (11)

and wZ = 0 if and only if Z is a union of exceptional components of X (a component

E ⊂ X is called exceptional if E ∼= P1 and if δE = 2).

We say that a semistable curve X is stably equivalent to a stable curve X if X is

the curve obtained from X by contracting all of its exceptional components. X is called

the stabilization of X.

2.1.1

Let d∈ Zγ with d= |d|; also fix g ≥ 2. Assume that X is stable. We say that d is balanced

if for every (connected) subcurve Z ⊂ X we have

d
wZ

w
− δZ

2
≤ dZ ≤ d

wZ

w
+ δZ

2
. (12)

More generally, if X is semistable, we say that d is balanced if (12) holds, and

if for every exceptional component E of X we have dE = 1 (note that if a semistable

curve admits some balanced multidegree, then it is quasistable, that is, two exceptional

components do not intersect). Set

Bd(X) := {d : |d| = d, d is balanced}. (13)

A line bundle on a semistable curve is balanced if its multidegree is balanced.
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12 L. Caporaso

Example 2.2. Let X = C1 ∪ C2 with C1 · C2 = 1 and 1 ≤ g1 ≤ g2. Pick d= 2.

B2(X) =






{(0, 2)} if g1 <
g + 1

4
,

{(0, 2); (1, 1)} if g1 = g + 1
4

,

{(1, 1)} if g1 >
g + 1

4
. !

The terminology “balanced” was introduced in [4] to indicate that balanced mul-

tidegrees are closely related to the topological characters of the curve. Indeed, the bal-

anced multidegrees of total degree d∈ Z are as close as they can be to the multidegree

d/(2g − 2)degωX. The word balanced is sometimes replaced by the word “semistable”. As

we mentioned, if X is stable its compactified Picard scheme parameterizes equivalence

classes of balanced line bundles on semistable curves having X as stabilization. If X is

semistable, then its compactified Picard scheme turns out to coincide with the compact-

ified Picard scheme of its stabilization. Here we do not need to be more precise about

this point; see [4] for details.

2.2 Positivity properties of balanced line bundles

We denote

Xsep := {n∈ Xsing : n is a separating node of X} ⊂ X. (14)

Theorem 2.3 (Balanced Riemann). Let X be a semistable curve of genus g ≥ 2, dan inte-

ger and d∈ Bd(X). Let L ∈ PicdX.

(i) If d≥ 2g − 1, then h0(X, L) = d− g + 1.

(ii) If d≥ 2g and Xsep = ∅, then L has no base points.

(iii) If d≥ 5(g − 1), then L has no base points. !

Remark 2.4. Part (i) may fail if d is not balanced; see Example 2.6. Part (ii) may fail if

Xsep ,= ∅; see Example 2.7. !

Proof. Let Z " X be a connected subcurve. We claim that, if d≥ 2g − 1, then we have

dZ ≥ 2gZ − 1 (15)
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Linear Series on Semistable Curves 13

and, if d≥ 2g and Xsep = ∅, we have

dZ ≥ 2gZ . (16)

To prove this, set d= 2g − 2 + a= w + a with a> 0. As d is balanced, we have

dZ ≥ d
wZ

w
− δZ

2
= 2gZ − 2 + δZ

2
+ a

wZ

w
.

Now, δZ ≥ 1 and wZ ≥ 0 (cf. (11)). Therefore, the above inequality yields dZ ≥ 2gZ − 1, as

claimed in (15).

To prove (16), assume Xsep = ∅. Then δZ ≥ 2, so the previous inequality yields dZ ≥
2gZ , unless wZ = 0, that is, unless Z is a chain of exceptional components (recall that

X is semistable). If that is the case, dZ = 1 and gZ = 0. So we have dZ = 2gZ + 1 > 2gZ .

Equation (16) is proved.

Now, part (i) of the theorem follows from Lemma 2.5.

We shall apply Lemma 2.5 also for part (ii). If dZ ≥ 2gZ for every Z , then for

any nonsingular point p∈ X we obviously have degZ L(−p) ≥ 2gZ − 1, hence Lemma 2.5

applies to L(−p), yielding h0(X, L(−p)) = h0(X, L) − 1. Now let n∈ Xsing. Let ν : Y → X be

the normalization of X at n, M := ν∗L and ν−1(n) = {q1, q2}. To prove that L has a section

not vanishing at n, it suffices to prove that

h0(Y, M(−q1 − q2)) = h0(Y, M) − 2. (17)

Let Z ′ ⊂ Y be a connected subcurve and Z := ν(Z ′). Then

degZ ′ M = degZ L ≥ 2gZ ,

also gZ ≥ gZ ′ and strict inequality holds if and only if both q1 and q2 lie on Z ′, in which

case gZ = gZ ′ + 1. Therefore

degZ ′ M(−q1 − q2) ≥





2gZ − 2 = 2gZ ′ if q1, q2 ∈ Z ′,

2gZ − 1 ≥ 2gZ ′ − 1 otherwise.

We can thus apply Lemma 2.5, proving (17) as follows:

h0(Y, M(−q1 − q2)) = deg M − 2 − gY + 1 = h0(Y, M) − 2.
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14 L. Caporaso

By the same argument, to prove (iii) it suffices to show that dZ ≥ 2gZ for every Z ⊂
X. Now, d≥ 5(g − 1) implies d≥ 2g, so by the previous parts it suffices to consider sub-

curves Z having δZ = 1. Let Z be such a subcurve of X; note that gZ ≥ 1 (X is semistable)

hence wZ = 2gZ − 2 + δZ ≥ 2 − 2 + 1 = 1. As d is balanced, and d≥ 2(g − 1) + 3(g − 1) =
w + 3(g − 1), we have

dZ ≥ dwZ

w
− 1

2
≥ wZ + 3(g − 1)wZ

2(g − 1)
− 1

2
= 2gZ − 3

2
+ 3wZ

2
≥ 2gZ .

Hence we are done. "

Lemma 2.5. Let Y be a (possibly disconnected) curve of genus g and L ∈ PicdY. If

degZ L ≥ 2gZ − 1 for every connected subcurve Z ⊆ Y, then h0(Y, L) = d− g + 1. !

Proof. Let X1, . . . , Xc be the connected components of Y. Then g =
∑c

i=1 gXi − c + 1 and

h0(Y, L) =
∑c

i=1 h0(Xi, L Xi ); therefore it suffices to prove the lemma for a connected curve

X of genus g.

We shall use induction on the number of irreducible components of X. The base

case, X irreducible, is known (cf. Fact 2.1). Assume X reducible. We begin by showing

that there exists an irreducible component, C1, of X such that

d1 ≥ 2g1 + δ1 − 1. (18)

By contradiction, assume the contrary. Then

d=
γ∑

i=1

di ≤
γ∑

i=1

(2gi + δi − 2) = 2
γ∑

i=1

gi +
γ∑

i=1

δi − 2γ.

Now,
∑γ

i=1 δi = 2δ and g =
∑γ

i=1 gi + δ − γ + 1. Therefore

d≤ 2

(
γ∑

i=1

gi + δ − γ

)

= 2(g − 1),

contradicting the assumption d≥ 2g − 1. This proves (18).
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Linear Series on Semistable Curves 15

Let us write X = C1 ∪ Z with Z = C c
1. Let Z = Z1

∐
· · ·

∐
Zc, with Zi connected. We

use induction and get

h0(Zi, L Zi ) = dZi − gZi + 1. (19)

Now, by (18) we can apply Lemma 1.8(ii) and obtain

h0(X, L) = h0(C1, L1) + h0(Z , L Z ) − δ1 = d−
(

g1 +
c∑

i=1

gZi

)

+ c + 1 − δ1

(using h0(C1, L1) = d1 − g1 + 1 and (19)). Now g = g1 +
∑c

i=1 gZi + δ1 − c, hence h0(X, L) =
d− g + δ1 − c + c + 1 − δ1 = d− g + 1. "

Example 2.6. Fix X having γ ≥ 2 components and genus g; let d≥ 2g − 1. The theorem

of Riemann fails for all but finitely many d with |d| = d. To prove that it will be enough

to show the following. For every fixed i ∈ {1, . . . , γ } there exists mi such that for every d

such that di ≥ mi and for every L ∈ PicdX we have h0(X, L) > d− g + 1.

So, pick i = 1, let m1 := d+ g1 + δ1 + 1 (δ1 = C1 · C c
1). If d1 ≥ m1, then we have

d1 ≥ d+ g1 + δ1 + 1 ≥ 2g − 1 + g1 + δ1 + 1 ≥ 2g1 + g1 + δ1 = 3g1 + δ1 ≥ 2g1 + 1;

hence h0(C1, L1) = d1 − g1 + 1. Now, for any L ∈ PicdX such that d1 ≥ m1 (we can adjust

the remaining d2, . . . , dγ however we like so that |d| = d)

h0(X, L) ≥ h0(C1, L1) − δ1 = d1 − g1 + 1 − δ1 ≥ d+ g1 + δ1 + 1 − g1 + 1 − δ1

hence h0(X, L) ≥ d+ 2 > d− g + 1 as wanted. !

Example 2.7. If X has a separating node, then part (ii) of Theorem 2.3 may fail. Let

X = C1 ∪ C2 with C1 · C2 = 1. Assume g1 = 1 and g2 = g − 1 and d= 2g + b with b ≥ 0. Let

d= (1, d− 1) = (1, 2g + b − 1) = (1, 2g2 + b + 1), if g ≥ b + 3 one checks that d is balanced.

Set L = (OC1(p), L2) such that p ,= C1 ∩ C2. Assume for simplicity that L2 has no base

point in C1 ∩ C2. Then

h0(X, L) = h0(C1,OC1(p)) + h0(C2, L2) − 1 = h0(C2, L2).
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16 L. Caporaso

Now, L has a base point in p, indeed

h0(X, L(−p)) = h0(C1,OC1) + h0(C2, L2) − 1 = h0(C2, L2).
!

3 Clifford’s Theorem for All Degrees

In this section, we prove the following cases of Clifford’s theorem: Theorem 3.3, for

curves with two components and every balanced multidegree; Proposition 3.1 for all

curves and all degrees, provided the hypothesis that the degree be at most twice the

genus is “uniformly” satisfied on all irreducible components.

3.1 Uniform extension

Proposition 3.1 (Uniform Clifford). Let X be a connected curve of genus g. Let d=
(d1, . . . , dγ ) ∈ Zγ be such that 0 ≤ di ≤ 2gi for every i = 1, . . . , γ .

(i) Then |d| ≤ 2g and for every L ∈ PicdX we have h0(X, L) ≤ deg L/2 + 1.

(ii) If equality holds and |d| ≤ 2g − 2, then L has no nonsingular base points

(i.e., if L admits a base point, then this point is a node of X). !

Proof. As we said in Section 1.3, we may assume X reducible. Set |d| = d.

Let us prove that d≤ 2g. We have d=
∑γ

i=1 di ≤
∑γ

i=1 2gi. Let δ be the number of

nodes of X that lie in two different irreducible components. Then g =
∑γ

i=1 gi + δ − γ + 1.

On the other hand, as X is connected, we have δ ≥ γ − 1. Therefore, 2g − d≥ 2g −
2

∑γ
i=1 gi = 2(δ − γ + 1) ≥ 0, as claimed.

We continue using induction on the number of irreducible components.

We decompose X = Z1 ∪ Z2 so that the Zi are connected. We set li := h0(Zi, L Zi );

by the induction assumption, li ≤ dZi /2 + 1 and if equality holds, L Zi has no nonsingular

base points. We distinguish three cases.

Case 1. li < dZi /2 + 1 for both i = 1, 2.

If dZ1 and dZ2 are even, then li ≤ dZi /2. Hence h0(X, L) ≤ l1 + l2 ≤ d/2.

If dZ1 is even and dZ2 is odd, then l1 ≤ dZ1/2 and l2 ≤ (dZ2 + 1)/2. Hence h0(X, L) ≤
l1 + l2 ≤ (d+ 1)/2 < d/2 + 1.

Finally, assume dZ1 and dZ2 odd. Then li ≤ (dZi + 1)/2 hence

h0(X, L) ≤ l1 + l2 ≤ d
2

+ 1.
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If equality holds, then we get li = (dZi + 1)/2 for i = 1, 2, and h0(X, L) = l1 + l2. Therefore,

L Z1and L Z2 have a base point over every node in Z1 ∩ Z2. This implies that Z1 · Z2 = 1.

Indeed, by induction, the Clifford inequality holds on Zi, yielding that L Zi can have at

most one base point (indeed, if L Zi had two base points, p and p′, then h0(L Zi (−p− p′)) =
h0(L Zi ) = (dZi + 1)/2 > (dZi − 2)/2 + 1).

Let qi ∈ Zi be the branch of the node n= Z1 ∩ Z2. Let p∈ X be a point with p ,= n,

say p∈ Z1. If p is a base point for L, then it is also a base point for L Z1 , but this is not

possible as we just proved that the only base point of L Z1 is q1.

The proof of (i) and (ii) in Case 1 is complete.

Case 2. l1 = dZ1/2 + 1 and l2 < dZ2/2 + 1.

By induction, L Z1 has no nonsingular base point. Therefore, by Lemma 1.4

h0(X, L) ≤ l1 + l2 − 1 <
dZ1

2
+ 1 + dZ2

2
+ 1 − 1 = d

2
+ 1.

So, in this case strict inequality always holds and we are done.

Case 3. li = dZi /2 + 1 for both i = 1, 2.

By induction L Zi is free from nonsingular base points. We get, again by

Lemma 1.4,

h0(X, L) ≤ l1 + l2 − 1 = dZ1

2
+ 1 + dZ2

2
+ 1 − 1 = d

2
+ 1.

Now equality holds if and only if h0(X, L) = l1 + l2 − 1. Let p∈ X be a nonsingular point,

say p∈ Z1. As p is not a base point of L Z1 , we have

h0(X, L(−p)) ≤ h0(Z1, L Z1(−p)) + l2 − 1 = l1 − 1 + l2 − 1 = h0(X, L) − 1

hence p is not a base point of L, so we are done. "

Corollary 3.2. Assumptions as in Proposition 3.1. Assume 0 < |d| < 2g − 2. If there

exists L ∈ PicdX such that Cliff L = 0, then for every decomposition X = Z1 ∪ Z2 with

Z1 connected and Z2 irreducible, we have

(a) Z1 · Z2 ≤ 2.

(b) If dZ1 and dZ2 are even, then Cliff L Zi = 0 and h0(Zi, L Zi (−Z1 ∩ Z2)) =
h0(Zi, L Zi ) − 1, for i = 1, 2.

(c) If dZ1 and dZ2 are odd, then Z1 · Z2 = 1 and Cliff L Zi (−Z1 ∩ Z2) = 0

for i = 1, 2. !
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18 L. Caporaso

Proof. We use the proof of Proposition 3.1. In Case 1, Cliff L = 0 exactly when the dZi

are both odd, Z1 and Z2 intersect in only one point, and

h0(Zi, L Zi ) = h0(Zi, L Zi (−qi)) = dZi + 1
2

= dZi − 1
2

+ 1.

So Cliff (L Zi (−qi)) = 0. Observe that we did not use the irreducibility of Z2.

In Case 2, equality never holds.

In Case 3, we have Cliff L = 0 exactly when the dZi are even, Cliff L Zi = 0 for

i = 1, 2, and h0(X, L) = h0(Z1, L Z1) + h0(Z2, L Z2) − 1. Note that by Lemma 1.5 this implies

that for every pair of points q, q′ ∈ Z1 ∩ Z2 ⊂ Z2 we have q ∼L Z2
q′ (and similarly for Z1).

To complete the proof, we need to show that Z1 · Z2 ≤ 2. By contradiction, assume

Z1 · Z2 ≥ 3; then a relation q ∼L Z2
q′ ∼L Z2

q′′ holds on Z2. Observe also that L Z2 has no

nonsingular base points, as Cliff L Z2 = 0. Therefore

h0(Z2, L Z2(−q − q′ − q′′)) = h0(Z2, L Z2(−q)) = l2 − 1 = dZ2

2
.

But Z2 is irreducible, hence Clifford applies to L Z2(−q − q′ − q′′), and we get

h0(Z2, L Z2(−q − q′ − q′′)) ≤ dZ2 − 3
2

+ 1 <
dZ2

2
,

a contradiction. "

3.2 Curves with two components

Clifford’s inequality holds for curves with two irreducible components, by the following

result.

Theorem 3.3. Let X = C1 ∪ C2 be a semistable curve of genus g ≥ 2. Let 0 ≤ d≤ 2g and

d∈ Bd(X). Then for every L ∈ PicdX we have

h0(X, L) ≤ d
2

+ 1. (20)

!

Addendum 3.4. Let ε := 1 + max{d1 − 2g1, d2 − 2g2, 0}, and β := min{C1 · C2, ε}. If C1 ·
C2 ≥ 2, then h0(X, L) ≤ h0(C1, L1) + h0(C2, L2) − β ≤ d/2 + 1. !
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Linear Series on Semistable Curves 19

Proof. Set l := h0(X, L), and for i = 1, 2, Li := LCi , li := h0(Ci, Li). As usual, set δ := C1 · C2.

By Theorem 2.3 we can assume d≤ 2g − 2. We begin with

Case 0. If d1 < 0 then (20) holds, with strict inequality if d≤ 2g − 2.

As d1 < 0 we have d2 > 0. Since d is balanced,

d1 ≥ dw1

w
− δ

2
≥ − δ

2
(21)

(w1 ≥ 0 as X is semistable). Of course l1 = 0, therefore, denoting by G2 ∈ Div C2 the degree

δ divisor cut on C2 by C1, a section of L has to vanish on G2, that is,

h0(X, L) = h0(C2, L2(−G2)). (22)

Note that deg L2(−G2) = d2 − δ. If d2 − δ < 0, then we get h0(X, L) = 0 and we are done. If

0 ≤ d2 − δ ≤ 2g2, then we can use Clifford on C2 and obtain

h0(C2, L2(−G2)) ≤ d2 − δ

2
+ 1 = d− d1 − δ

2
+ 1 ≤ d+ δ/2 − δ

2
+ 1

(using (21)). Combining the above with (22) yields

h0(X, L) ≤ d
2

+ 1 − δ

4
<

d
2

+ 1

as stated. Finally, it remains to treat the case d2 − δ ≥ 2g2, that is,

l = h0(C2, L2(−G2)) = d2 − δ − g2 + 1.

We argue by contradiction; assume l ≥ d/2 + 1. That is to say

d2 − δ − g2 + 1 ≥ d
2

+ 1,

hence (using d= d1 + d2)
d2 − d1

2
− δ − g2 ≥ 0,

equivalently

d2 − d1 − 2δ − 2g2 ≥ 0. (23)
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On the other hand, as d is balanced, we have

d2 ≤ dw2

w
+ δ

2
and d1 ≥ dw1

w
− δ

2
.

Using these two inequalities we get

d2 − d1 − 2δ − 2g2 ≤ dw2

w
+ δ

2
− dw1

w
+ δ

2
− 2δ − 2g2 = d

w
(w2 − w1) − δ − 2g2.

Now, w2 − w1 = 2g2 − 2g1 and d/w ≤ 1 (as d≤ 2g − 2 = w). We obtain

d2 − d1 − 2δ − 2g2 ≤ d
w

(2g2 − 2g1) − δ − 2g2 ≤ −2dg1

w
− δ < 0

contradicting (23). This finishes Case 0.

For the rest of the proof, we can restrict to di ≥ 0 for i = 1, 2. By Propositions 3.1

and 1.11(iii), we can assume that di ≥ 2gi + 1 for at least one i, so let d1 ≥ 2g1 + 1. Then

l1 = d1 − g1 + 1.

Case 1. If d1 ≥ 2g1 + δ − 1, then (20) holds, with strict inequality if d≤ 2g − 1.

By Lemma 1.8(ii),

l = l1 + l2 − δ. (24)

Subcase 1a. d2 ≥ 2g2. Hence l2 = d2 − g2 + 1. Combining with (24) we have

l = d1 − g1 + 1 + d2 − g2 + 1 − δ = d− (g1 + g2 + δ − 1) + 1 = d− g + 1.

Now d≤ 2g, hence

l = d− g + 1 ≤ d− d
2

+ 1 = d
2

+ 1.

So we are done. Note that equality holds if and only if d= 2g.

Subcase 1b. d2 < 2g2. By Proposition 3.1, l2 ≤ d2/2 + 1. Set

d1 = 2g1 + δ − 1 + a

so that a≥ 0 and

g1 = d1 − δ + 1 − a
2

. (25)

 at UniversitÃ  Rom
a Tre - Biblioteca di area scientifico-tecnologica on January 31, 2011

im
rn.oxfordjournals.org

Downloaded from
 

http://imrn.oxfordjournals.org/


Linear Series on Semistable Curves 21

Using (24) and (25) we get

l ≤ d1 − g1 + 1 + d2

2
+ 1 − δ = d1 − d1 − δ + 1 − a

2
+ 2 + d2

2
− δ,

hence

l ≤ d
2

+ 1 + 1 − δ + a
2

.

The subsequent Lemma 3.5 yields

a≤






δ

2
− 1 if δ is even,

δ − 1
2

− 1 if δ is odd.

Hence 1 + a≤ δ/2, so that 1 + a − δ ≤ −δ/2 < 0. We conclude h0(X, L) < d/2 + 1 and we are

done.

Case 2. Assume 2g1 + 1 ≤ d1 < 2g1 + δ − 1.

Set d1 = 2g1 + e1 where 1 ≤ e1 ≤ δ − 2. Hence

g1 = d1 − e1

2
. (26)

By Lemma 1.8 we have

l ≤ l1 + l2 − e1 − 1. (27)

If d2 ≤ 2g2, then l2 ≤ d2/2 + 1. Using (26) we have

l ≤ d1 − g1 + 1 + d2

2
+ 1 − e1 − 1 = d1 − d1 − e1

2
+ d2

2
+ 1 − e1 = d

2
+ 1 − e1

2
.

Now e1 ≥ 1 hence l < d/2 + 1 and we are done. Also, strict inequality holds.

If d2 ≥ 2g2 + 1, then set d2 = 2g2 + e2 with e2 ≥ 1. We can also assume e2 ≤ δ − 1,

otherwise we are done by Case 1 (interchanging C1 with C2).

Now the situation is symmetric between C1 and C2, so up to switching them we

may assume e1 ≥ e2. By Lemma 1.8 we have,

l ≤ l1 + l2 − e1 − 1 = d1 − g1 + 1 + d2 − g2 + 1 − e1 − 1.
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Now, using (26) applied also to C2

l ≤ d1 − d1 − e1

2
+ 1 + d2 − d2 − e2

2
+ 1 − e1 − 1 = d

2
+ 1 + e2 − e1

2
.

As e1 ≥ e2 we conclude l ≤ d/2 + 1. Moreover, equality holds if e1 = e2 and

l = l1 + l2 − e1 − 1. "

Lemma 3.5. Let X be a semistable curve of genus g ≥ 2, d≤ 2g − 2, and d∈ Bd(X). Let

Z ⊂ X be a subcurve, set dZ = 2gZ + δZ − 1 + aZ . Then

aZ ≤






δZ

2
− 1 if δZ is even,

δZ − 1
2

− 1 if δZ is odd. !

Proof. We just need to apply (12) and compute, using d≤ 2g − 2 = w:

dZ ≤ dwZ

w
+ δZ

2
≤ wZ + δZ

2
= 2gZ − 2 + δZ + δZ

2
.

Now the statement follows at once from

dZ = 2gZ + δZ − 1 + aZ ≤ 2gZ + δZ − 2 + δZ

2
. "

4 Clifford’s Theorem in Special Degrees

4.1 Line bundles of degree 0 and 2g − 2

Let X be a fixed curve. For any d= (d1, . . . , dγ ) ∈ Zγ , we denote

Z−
d :=

⋃

i:di<0

Ci ⊂ X. (28)

Remark 4.1. Let X be a curve, and let d be such that |d| < 0 and d≤ 0. Then, for every

L ∈ PicdX we have h0(X, L) = 0.

Indeed h0(Z−
d , L Z−

d
) = 0, of course. Now, for any connected component, Y, of

X ! Z−
d , we have dY = (0, . . . , 0), hence h0(Y, LY) ≤ 1 with equality if and only if LY =OY,

in which case LY has no base points. So the remark follows from Lemma 1.4. !
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Theorem 4.2 (Clifford for d= 0). Let X be a curve of genus g ≥ 2. Let d be such that

|d| = 0. Assume that one of the following conditions hold.

(1) dZ ≤ δZ − 1 for every subcurve Z " X.

(2) X is semistable and d is balanced.

(3) δi − 2 ≤ di ≤ 2gi − 2 + δi for every i = 1, . . . , γ .

Then h0(X, L) ≤ 1 for every L ∈ PicdX.

Moreover, let L ∈ PicdX be such that h0(X, L) = 1. If (1) or (2) holds, or if (3) holds

with Xsep = ∅, then L ∼=OX. !

Proof. If d= (0, . . . , 0) the entire statement follows from Fact 1.6; hence we can assume

d ,≥ 0.

Let us assume (1). We will show that h0(X, L) = 0. By contradiction, suppose there

exists a nonzero section s ∈ H0(X, L); we let Ys be the subcurve of X where s does not

vanish, and Ws its complementary curve:

Ys :=
⋃

i:s|Ci ,=0

Ci ⊂ X, Ws := Yc
s . (29)

With the notation introduced in (28) we have Z−
d ⊂ Ws; note also that dYs

≥ 0. Therefore,

as Z−
d is nonempty, Ws is nonempty. Since s vanishes on Ws ∩ Ys we have dYs ≥ δYs . This is

a contradiction, since by assumption we must have dYs < δYs .

Now, let us show that assumption (2) implies assumption (1). As d is balanced,

for every subcurve Z ⊂ X we have

dZ ≤ δZ

2
;

hence dZ < δZ , as claimed. Therefore if (2) holds we are done.

Finally, let us assume (3). We must prove that h0(X, L) ≤ 1 and that strict inequal-

ity holds if Xsep = ∅. By Riemann–Roch and Serre duality, h0(X, L) ≤ 1 if and only if

h0(X, ωX ⊗ L−1) ≤ g.

Now, for every i = 1, . . . , γ assumption (3) implies

0 ≤ degCi
ωX ⊗ L−1 = 2gi − 2 + δi − di ≤ 2gi.

We can hence apply Proposition 3.1 getting h0(X, ωX ⊗ L−1) ≤ g, as wanted.
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Now, suppose Xsep = ∅. Then (3) implies d≥ 0; by the observation at the beginning

of the proof we are done. "

Example 4.3. The hypothesis Xsep = ∅ is necessary in the last part of Theorem 4.2,

as the present example shows. Let X = C1 ∪ C2 with C1 · C2 = 1 and Ci smooth. Let

L = (OC1(−p1),OC2(p2)), where pi = C1 ∩ C2 ∈ Ci. If g2 ≥ 1 then (3) is satisfied. It is clear

that h0(X, L) = 1. !

By Riemann–Roch and Serre duality, any statement about sections of line bun-

dles of degree 2g − 2 has a dual statement about sections of line bundles of degree 0.

The following is the dual of Theorem 4.2 (it suffices to check the arithmetic).

Theorem 4.4. Let X be a connected curve of genus g ≥ 2. Let d be a multidegree such

that |d| = 2g − 2. Assume that one of the following conditions hold.

(1) dZ ≥ 2gZ − 1 for every subcurve Z " X.

(2) X is semistable and d is balanced.

(3) 0 ≤ di ≤ 2gi, for every i = 1, . . . , γ .

Then h0(X, L) ≤ g for every L ∈ PicdX.

Moreover, let L ∈ PicdX be such that h0(X, L) = g. If (1) or (2) holds, or if (3) holds

with Xsep = ∅, then L ∼= ωX. !

4.2 Clifford’s theorem in degree at most 4

The main result of this section is Theorem 4.11, stating the Clifford inequality in degree

at most 4 for balanced line bundles on semistable curves free from separating nodes. In

Lemmas 4.6, 4.7, and Proposition 4.8, we study Clifford’s inequality for d≥ 0, without

assuming that d is balanced. The proof of Theorem 4.11 is thus reduced to the case that

d has some negative entry. Quite interestingly, if d≥ 5 Clifford’s theorem fails even when

X has no separating nodes. See Example 4.17.

4.2.1

Let n∈ Xsep be a separating node of X; then there exist two subcurves Z1 and Z2 of X

such that X = Z1 ∪ Z2 and n= Z1 ∩ Z2. Such curves Z1 and Z2 are called the tails of X

generated by n. So, a subcurve Z ⊂ X is called a tail if Z · Zc = 1. As X is connected, its

tails are connected.
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Let C ⊂ X be a subcurve. C is called a separating line if C ∼= P1 and if C meets

its complementary curve C c only in separating nodes of X. Equivalently, a separating

line C ⊂ X is a smooth rational component such that C c has a number of connected

components equal to C · C c.

If X ∼= P1, then X is a separating line of itself.

If Y is a disconnected curve and C ⊂ Y, then we say C is a separating line of Y if

it is so for the connected component of Y containing C .

Observe that if C is a separating line, then we have

Z · C ≤ 1 for every connected Z ⊂ C c. (30)

Remark 4.5. Assume Xsep = ∅ (i.e., X has no tails). Let Z be a subcurve of X.

(A) If m is the number of connected components of Z , then m ≤ δZ/2.

(B) Let X = D ∪ Y with D connected. If C ⊂ Y is a separating line of Y, then X ! C

is connected.

The only statement that is not obvious is (B). Let Y1, . . . , Ym be the connected components

of Y and suppose C ⊂ Y1. We can assume C ,= Y1, otherwise we are done. Thus, every con-

nected component of Y1 ! C is a tail of Y1; as X has no tails D intersects every connected

component of Y1 ! C . On the other hand, D obviously intersects Yi for all i ≥ 2, therefore

X ! C is connected. !

Lemma 4.6. Let L ∈ PicdX with d= (1, 0, . . . , 0). Then either h0(X, L) ≤ 1, or C1 is a sep-

arating line, h0(X, L) = 2 and LC c
1
=OC c

1
. !

Proof. Write Y = C c
1 and let Y =

∐m
i=1 Yi be the decomposition into connected compo-

nents. Of course C1 must intersect every Yi.

If g1 ≥ 1 we have h0(C1, LC1) ≤ 1 hence the lemma follows from Remark 1.7 (with

V = C1). So it suffices to assume C1 ∼= P1. If C1 is not a separating line, then there exists

at least one connected component of Y, Y1 say, such that C1 · Y1 ≥ 2. Set X1 = C1 ∪ Y1, then

by Remark 1.7 and Lemma 1.8 we conclude as follows:

h0(X, L) ≤ h0(X1, L X1) ≤ h0(C1, L1) + h0(Y1, LY1) − 2 ≤ 2 + 1 − 2 = 1.

If C1 is a separating line and for some component of Y, Y1 say, we have LY1 ,=OY1 , then
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every section of L has to vanish on Y1, hence not every section of OC1(1) extends to a

section of L.

Conversely, if LYi =OYi for all i, then it is obvious that h0(X, L) = 2. "

Lemma 4.7. Let L ∈ PicdX. Assume that |d| = 2 and d≥ 0. Then either h0(X, L) ≤ 2, or

h0(X, L) = 3 and one of the following cases occurs.

(i) d= (2, 0, . . . , 0) with C1 a separating line.

(ii) d= (1, 1, 0, . . . , 0), with C1 and C2 separating lines. !

Proof. Assume h0(L) ≥ 3. For every nonsingular point p of X we have

h0(L(−p)) ≥ h0(L) − 1 ≥ 2. (31)

Of course, deg L(−p) = 1 and, if p lies in a component C1 such that d1 > 0 we have

degL(−p) ≥ 0. By Lemma 4.6 we get h0(L(−p)) ≤ 1, unless X has a separating line E

with degE L(−p) = 1. If X does not have such a separating line we got a contradiction

to (31). Now, X admits such a separating line E if and only if either d1 = 2 and E = C1,

or d1 = 1, hence d2 = 1, and C2 is a separating line. By placing p∈ C2 we get that both

C1 and C2 are separating lines. By Lemma 4.6 h0(L(−p)) = 2, so h0(L) = 3 by (31) and we

are done. "

Proposition 4.8. Let X be a stable curve free from separating nodes. Let d be such that

d≥ 0 and |d| = 3, 4. Then h0(X, L) ≤ |d|/2 + 1 for every L ∈ PicdX. !

Remark 4.9. The hypotheses X stable and Xsep = ∅ are needed, as shown by Examples

4.15 and 4.16. !

Proof. We first treat the case |d| = 3. Consider the irreducible component C1 of X; we

shall denote C c
1 = Y1

∐
. . .

∐
Ym the connected component decomposition. Observe that

for every Yi we have Yi · C1 ≥ 2. We set

X1 := C1 ∪ Y1 ⊂ X.

We shall repeatedly apply Lemma 1.8 and Remark 1.7.

Case 1. d= (3, 0, . . . , 0). We have h0(X, L) ≤ h0(X1, L X1) by Remark 1.7. Hence it

suffices to assume that C1 has genus g1 ≤ 1.
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If g1 = 1, by the initial observation and Lemma 1.8 we have h0(X1, L X1) ≤ 3 + 1 −
2 = 2 and we are done.

If C1 ∼= P1 we have h0(C1, L1) = 4 and C1 · C c
1 ≥ 3. Suppose C c

1 has a connected

component, Y1, such that C1 · Y1 ≥ 3. Then by Lemma 1.8, as h0(Y1, LY1) ≤ 1, we get

h0(X1, L X1) ≤ 4 + 1 − 3 = 2, as wanted.

Let now C1 · Yi = 2 for all i = 1, . . . , m. Set X2 = Y1 ∪ Y2 ∪ C1 ⊂ X. Then C1 · (Y1 ∪
Y2) ≥ 4 = d1 + 1, hence by Lemma 1.8,

h0(X2, L X2) ≤ h0(C1, L1) + h0(Y1, LY1) + h0(Y2, LY2) − 4 ≤ 4 + 2 − 4 = 2.

By Remark 1.7 we are done.

Case 2. d= (1, 2, 0, . . . , 0).

Write li = h0(Ci, Li). Assume C c
1 connected; by Lemma 4.7, h0(C c

1, LC c
1
) ≤ 3 and

equality holds if and only if C2 is a separating line of C c
1. If this is not the case, then

by Lemma 1.8 and δ1 ≥ 2, we get h0(X, L) ≤ l1 + 2 − 2 ≤ 4 − 2 = 2, as wanted.

If C2 is a separating line of C c
1, then l2 = 3, and C c

2 is connected, by Remark 4.5(B);

hence h0(C c
2, LC c

2
) ≤ 2. Since δ2 ≥ 3 (as d2 = 2) we obtain

h0(X, L) ≤ l2 + h0(C c
2, LC c

2
) − 3 ≤ 5 − 3 = 2

and we are done. This last paragraph works regardless of C c
1 being connected.

Now let C c
1 have m ≥ 2 connected components. We can assume that C2 is not

a separating line of C c
1. Let C2 ⊂ Y1; we have h0(Y1, LY1) ≤ 2. By Lemma 1.8 we get

h0(X1, L X1) ≤ h0(C1, L1) + h0(Y1, LY1) − 2 ≤ 2. By Remark 1.7 we are done.

Case 3. d= (1, 1, 1, 0, . . . , 0). By Proposition 3.1 we may assume that C1 ∼= P1.

Moreover, by Lemma 4.10, up to permuting the first three components, we can assume

that C2 and C3 are not separating lines of C c
1. If C c

1 is connected, by Lemma 4.7 we

have h0(C c
1, LC c

1
) ≤ 2 (as C2 and C3 are not separating lines of C c

1). By Lemma 1.8 we have

h0(X, L) ≤ h0(C1, L1) + h0(C c
1, LC c

1
) − 2 ≤ 2 + 2 − 2 ≤ 2 and we are done.

Now assume C c
1 has m ≥ 2 connected components. If C2 ∪ C3 lies in one connected

component, Y1, then h0(Y1, LY1) ≤ 2 (just as above). Therefore, h0(X, L) ≤ h0(X1, L X1) ≤ 2 +
2 − 2 = 2. If instead C2 lies in Y1 and C3 lies in Y2, then for i = 1, 2 we have h0(Yi, LYi ) ≤ 1

by Lemma 4.6 (C2 and C3 are not separating lines of, respectively, Y1 and Y2). We conclude

h0(X1, L X1) ≤ 2 + 1 − 2 = 1. Now, let X2 = X1 ∪ Y2, then

h0(X, L) ≤ h0(X2, L X2) ≤ h0(X1, L X1) + h0(Y2, LY2) ≤ 2.

The proof for d= 3 is complete.
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Now let |d| = 4. By contradiction, suppose that h0(X, L) ≥ 4. As d≥ 0, there exists

a component, C1 say, such that d1 ≥ 1. Let p∈ C1 be a nonsingular point of X, then

h0(L(−p)) ≥ h0(L) − 1 ≥ 3. Now, deg L(−p) = 3 and degL(−p) ≥ 0. By the previous part,

h0(L(−p)) ≤ 2; impossible. "

In the proof we used the following combinatorial lemma.

Lemma 4.10. Let X be stable, Xsep = ∅, and C1 and C2 be two irreducible components of

X. Assume C2 is a separating line of C c
1, and C1 is a separating line of C c

2 (i.e., (C1, C2) is

a B-pair, see Definition 5.7). Then for every other component D of X, C1, and C2 are not

separating lines of Dc. !

Proof. Note that by Remark 4.5(B), C c
1 and C c

2 are connected. Let T1, . . . , Tt be the tails

of C c
1 generated by C2. Thus C c

1 = C2 ∪ T1 ∪ · · · ∪ Tt, with Ti ∩ Tj = ∅ and Ti · C2 = 1. As C c
2

is connected, C1 must intersect every Ti. As C1 is a separating line of C c
2, we have

C1 · Ti = 1 ∀i. (32)

Let D be another component of X, assume D ⊂ T1. Set Z = C2 ∪ T2 ∪ · · · ∪ Tt, so that

C c
1 = Z ∪ T1, hence δC1 = Z · C1 + T1 · C1 = Z · C1 + 1 ≥ 3, by (32) and the stability of X. We

conclude Z · C1 ≥ 2. This implies that C1 cannot be a separating line of Dc, as Z is con-

nected and Z ⊂ Dc (cf. Section 4.2.1, (30)). The same argument with C1 and C2 switching

roles yields that C2 is not a separating line of Dc. "

Theorem 4.11. Let X be a stable curve free from separating nodes. Let d be balanced

with 0 < |d| ≤ 4; let L ∈ PicdX. Then

(i) h0(X, L) ≤ |d|/2 + 1.

(ii) If |d| = 1, 2 and h0(X, L) = |d|, then d≥ 0. !

If |d| = 1, 2, then the hypotheses on X can be weakened as follows.

Addendum 4.12. If |d| = 1 the same holds if X is semistable and has no separating

lines. If |d| = 2 the same holds if X is semistable and Xsep = ∅. !

Proof. If d≥ 0 the statement follows from Lemmas 4.6, 4.7 and Proposition 4.8. So,

assume d ,≥ 0; set d= |d|. We shall inductively define a useful subcurve V ⊆ X. Let
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V0 := Z−
d (see (28)). Now define V1 ⊂ X

V1 := V0 ∪
⋃

Ci ·V0>di=0

Ci,

that is, V1 is the union of V0 with all components of degree 0 which intersect V0. Next

V2 := V1 ∪
⋃

Ci ,⊂V1 ,di≤1,

Ci ·V1>di

Ci.

Iterating

Vh+1 := Vh ∪
⋃

Ci ,⊂Vh,di≤h,

Ci ·Vh>di

Ci ⊂ X.

Of course, V0 ⊆ V1 ⊆ · · · ⊆ Vh ⊆ Vh+1 ⊆ · · · ⊆ X, therefore there exists an m ≥ 0 min-

imum for which Vn = Vm for every n≥ m. We set V := Vm.

We claim that every s ∈ H0(X, L) vanishes identically on V . It is clear that s van-

ishes on V0; let us prove the claim inductively. Let h≥ 0 be such that Vh+1 is not equal to

Vh; by induction s vanishes identically on Vh. Let C ⊂ Vh+1 be such that C is not contained

in Vh. Then s vanishes on C ∩ Vh. Now, Vh+1 is constructed so that C · Vh > degC L > 0,

therefore s vanishes on C . The claim is proved.

If V = X, then we have H0(X, L) = 0 and we are done. So assume that Y := Vc is

not empty. Denote by GY ∈ Div Y the divisor cut out by V , so that

deg GY = δY. (33)

Note that

H0(X, L) ∼= H0(Y, LY(−GY)). (34)

By construction we have

dY − degGY ≥ 0. (35)

We claim that

0 ≤ dY − δY ≤ d− 2. (36)

Set a= dY − δY. That 0 ≤ a follows from (33) and (35). Now, note that wY < w. Indeed,

as dV ,≥ 0 by construction, V = Yc is not a union of exceptional components. Hence
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(cf. Section 2.1) wV > 0 and wY = w − wV < w. As d is balanced, we obtain

δY + a= dY ≤ δY

2
+ dwY

w
<

δY

2
+ d. (37)

Therefore δY ≤ 2d− 2a − 1. As Xsep = ∅ we have δY ≥ 2. We obtain

2d− 2a − 1 ≥ 2

hence a≤ d− 3
2 , so that a≤ d− 2. Equation (36) is proved.

We continue the proof with a case-by-case analysis.

Case d= 1. The inequality (36) makes no sense, hence Y is empty, that is, h0(L) =
0. We conclude that if h0(L) ,= 0, then d≥ 0, a case treated in Lemma 4.6. The assump-

tions X stable and Xsep = ∅ can clearly be weakened by, respectively, X semistable, and

containing no separating line (needed for Lemma 4.6). If d= 1, then the theorem and the

addendum are proved.

Case d= 2. By (36) we have dY = δY, hence deg LY(−GY) = 0. Now, using (37) we

get δY = dY < δY/2 + 2, hence δY ≤ 3. This yields that Y is connected, by Remark 4.5(A). We

can apply Fact 1.6 to LY(−GY), obtaining, with (34),

h0(X, L) = h0(Y, LY(−GY) ≤ 1.

This concludes the proof if d= 2. We also showed that if h0(X, L) = 2, then d≥ 0. Observe

that the argument works if X is semistable, so the theorem and the addendum are

proved. The remaining cases will be treated similarly.

Case d= 3. By (36) we have two possibilities: either δY = dY or δY + 1 = dY. If

δY = dY we have, using (37), δY = dY < δY/2 + 3, hence δY ≤ 5. Therefore Y has at most two

connected components (by Remark 4.5(A)). Let Yi be a connected component of Y, then,

by (35), dYi = δYi , and we can apply Fact 1.6 to LYi (−GYi ) (with self-explanatory notation).

Hence h0(Yi, LYi (−GYi ) ≤ 1; now Y has at most two connected components, hence by (34)

we obtain h0(X, L) ≤ 2.

If dY = δY + 1, by (37) δY + 1 = dY < δY/2 + 3, hence δY ≤ 3, so Y is connected. By

(35) and (36) we can apply Lemma 4.6 to LY(−GY); we get

h0(X, L) = h0(Y, LY(−GY) ≤ 2.

This finishes the proof in case d= 3.
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Fig. 1. Dual graph of the curve in Example 4.13.

Case d= 4. By (36) we have three possibilities: dY = δY, dY = δY + 1, or

dY = δY + 2.

If dY = δY, we get δY = dY < δY/2 + 4, hence δY ≤ 7. Therefore, Y has at most three

connected components (again by Remark 4.5(A)). Arguing as in the analogous case when

d= 3 (dY = δY) we see that h0(X, L) ≤ 3, so we are done.

If dY = δY + 1, by (37) δY + 1 = dY < δY/2 + 4, hence δY ≤ 5 and Y has at most two

connected components. If Y is connected arguing as in the analogous case when d=
3 we conclude h0(X, L) ≤ 2 and we are done. If Y has two connected components, Y1

and Y2, then we have dY1 = δY1 and dY2 = δY2 + 1. We can therefore apply Fact 1.6 to get

h0(Y1, LY1(−GY1)) ≤ 1, and 4.6 to get h0(Y2, LY2(−GY2)) ≤ 2. Summing up we obtain

h0(X, L) = h0(Y1, LY1(−GY1)) + h0(Y2, LY2(−GY2)) ≤ 3

and we are done. Finally, if dY = δY + 2, by the usual argument we get δY ≤ 3 hence Y is

connected. By Lemma 4.7 we have 3 ≥ h0(Y, LY(−GY)) = h0(X, L) and we are done. "

4.3 Counterexamples

Example 4.13. Failure of Clifford’s theorem: d= 1, d≥ 0 balanced (X contains a sep-

arating line). Let X = C1 ∪ C2 ∪ C3 ∪ C4 with, for i, j ≥ 2, Ci ∩ C j = ∅ and C1 · Ci = 1 (the

dual graph of X is in Figure 1). Assume C1 = P1 (hence C1 is a separating line) and

gi = h≥ 1 (hence X is stable). Thus, g = 3h and w = 6h − 2. Set d= (1, 0, 0, 0), one checks

that d∈ B1(X). Let

L := (OC1(1),OC2 ,OC3 ,OC4).

Then, as all Li are free from base points, we get h0(X, L) =
∑4

1 h0(Ci, Li) − 3 = 2. !

Example 4.14. Cliff L = 0 with degL ∈ B1(X), degL ,≥ 0 (Xsep ,= ∅). Let X = C1 ∪ C2 ∪ C3

with, C1 · C2 = 2, C2 · C3 = 1, and C1 ∩ C3 = ∅ (see Figure 2). Thus, n= C2 ∩ C3 is a sep-

arating node; for i = 2, 3, write qi ∈ Ci the point corresponding to this node. Assume

g1 = g2 = 1 and g3 = 4, thus g = 7. Set d= (1,−1, 1); one checks that d∈ B1(X). Write
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Fig. 2. Dual graph of the curve in Example 4.14.

Z = C1 ∪ C2 ⊂ X and let L1,2 ∈ Pic(1,−1)Z be arbitrary. Note that h0(Z , L1,2) = 0. Set

L := (L1,2,OC3(q3)). Then, as L1,2 and OC3(q3) both have a base point in the respective

branch (q2 and q3) of n, we get h0(X, L) = h0(Z , L1,2) + h0(C3,OC3(q3)) = 1. !

Example 4.15. Failure of Clifford’s theorem: d≥ 3, d balanced, Xsep = ∅ (X strictly

semistable). For d≥ 3 consider the curve X = C1 ∪ · · · ∪ C2d the dual graph of which is

a 2d-cycle, that is, a closed polygon with 2d vertices, C1, . . . , C2d. We set Ci · Ci+1 =
C2d · C1 = 1 for all i ≥ 1 and Ci · C j = 0 for all other intersections. So X has 2d nodes. Let

C2i−1 ∼= P1 for all i, so that the odd indexed components are exceptional; now let all the

even indexed components be smooth of genus 1. Therefore, g = d+ 1. Now choose the

multidegree d= (1, 0, 1, . . . , 1, 0) and set LC2h
∼=OC2h for all h (of course LC2h+1

∼=OP1(1)).

One easily checks that d is balanced. It is also clear that for any L ∈ Pic X the restric-

tions to the Ci of which are as above, we have h0(X, L) ≥ 2d+ d− 2d= d. So Clifford’s

inequality fails. !

Example 4.16. Failure of Clifford’s theorem: d≥ 3, d≥ 0, Xsep ,= ∅. Let X = C1 ∪ C2 ∪ C3

with C1 of genus 1 and gi ≥ 1. Let C1 · C2 = C1 · C3 = 1, and C2 · C3 = 0 (the dual graph of X

is obtained from the graph in Figure 1 by removing the vertex C4 and the edge adjacent

to it). Let L = (L1,OC2 ,OC3) ∈ PicdX with deg L1 = d. Then h0(L) = d. !

Example 4.17. Failure of Clifford’s theorem: d= 5, d balanced and Xsep = ∅. Let X =
C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 with, for i, j ≥ 2, Ci ∩ C j = ∅ and C1 · Ci = 2 for all i ≥ 2. So every

node of X lies on C1, and δ = 8 (the dual graph of X is in Figure 3). Now let h be any

nonnegative integer. Let C1 be of genus g1 = h, and let Ci have genus h + 3 for every

Fig. 3. Dual graph of the curve in Example 4.17.
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i ≥ 2. Hence g = 5h + 16. We now pick d= 5 and d= (−3, 2, 2, 2, 2). It is straightforward

to check that d is balanced.

Now for i ≥ 2, set {pi, qi} = C1 ∩ Ci ⊂ Ci. Let L be any line bundle the restrictions

(L1, . . . , L5) of which are as follows. L1 ∈ Pic−3C1 is arbitrary, while Li =OCi (pi + qi), for

i = 2, 3, 4, 5.

Now every section s of L vanishes identically on C1, hence s vanishes on pi and

qi. Conversely, any quadruple of sections si ∈ H0(Ci, Li(−pi − qi)), for i = 2, . . . , 5, glues to

a section of L. We conclude h0(X, L) =
∑5

i=2 h0(Ci, Li(−pi − qi)) = 4. So L violates Clifford

inequality. Similar examples exist for higher degree d. !

5 Applications

If g ≥ 3 we denote by H g ⊂ Mg the closure of the locus of hyperelliptic curves. Recall that

H g is an irreducible subscheme of dimension 2g − 1. Following a common practice (see

[11]), we say that a stable curve X is hyperelliptic if [X] ∈ H g.

Definition 5.1. We call a stable curve X weakly hyperelliptic, if there exists a balanced

line bundle L ∈ Pic2 X such that h0(X, L) ≥ 2. !

Lemma 5.2. If X is hyperelliptic, then X is weakly hyperelliptic. !

Remark 5.3. The converse is false, see Remark 5.6. !

Proof. As [X] ∈ H g there exists a one parameter smoothing of X, f : X → SpecR, the

generic fiber of which is a smooth hyperelliptic curve. We can also assume that X is

regular, and that there exists L ∈ PicX such that the restriction of L to the generic fiber is

the hyperelliptic bundle. Set L =L|X. Up to tensoring L with a divisor supported entirely

on the closed fiber X we can assume that L is balanced. By uppersemicontinuity of h0

we have h0(X, L) ≥ 2, so we are done. "

5.1 Clifford index of two-components curves

Smooth hyperelliptic curves can be characterized using Clifford’s inequality; the same

holds for irreducible curves (see [5, Section 5]). We shall generalize this to stable curves

having two components, for which we proved that Clifford’s inequality holds.

The Clifford index of a line bundle has been introduced in Section 1.3. Now, if

X is irreducible, its Clifford index is defined as Cliff X = min{Cliff L} where L varies in
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the set of line bundles on X such that h0(X, L) ≥ 2 and h1(X, L) ≥ 2. By Clifford’s theorem,

Cliff X ≥ 0; moreover, Cliff X = 0 if and only if X is hyperelliptic. We extend the definition

of the Clifford index to a semistable curve X as follows.

Cliff X = min{Cliff L | degL ∈ Bd(X), h0(X, L) ≥ 2, h1(X, L) ≥ 2}. (38)

By Theorem 3.3, Cliff X ≥ 0 if X = C1 ∪ C2. We now ask: when is Cliff X = 0? To

answer this question we use the following terminology. As in [6], a curve X (reduced,

nodal, of genus g) is called a binary curve if it is the union of two copies of P1 meeting

transversally in g + 1 points.

Proposition 5.4. Let X = C1 ∪ C2 be semistable.

(1) Cliff X = 0 if and only if X is weakly hyperelliptic.

(2) If X is weakly hyperelliptic, then C1 · C2 ≤ 2 unless X is a hyperelliptic

binary curve. !

Proof. As we said, Theorem 3.3 yields Cliff X ≥ 0. Therefore if X is weakly hyperelliptic,

then Cliff X = 0.

Conversely, suppose Cliff X = 0; let L ∈ Picd(X) with d∈ Bd(X), such that h0(L) =
d/2 + 1. If d= 2 there is nothing to prove, so assume d> 2. As usual, set δ = C1 · C2. We

must prove that there exists a J ∈ Pic2 X such that h0(J) = 2 and degJ ∈ B2(X).

• Assume first di ≤ 2gi for i = 1, 2. By Corollary 3.2 we have δ ≤ 2.

Suppose δ = 2; again by Corollary 3.2 we have Cliff L1 = Cliff L2 = 0 and, if di ≥ 2,

then Cliff Li(−C1 ∩ C2) = 0.

If d1 = 0 then L1 =OC1 and L2 = Hd/2
2 for some H2 ∈ W1

2 (C2) (see [5, Section 5.2]). By

hypothesis (0, d) ∈ Bd(X), which easily implies that g2 > g1, and hence that multidegree

(0, 2) is balanced. Consider the line bundle M := (OC1 , H2) on the normalization Xν of X;

as Cliff Hd/2
2 (−C1 ∩ C2) = 0 we have h0(C2, H2(−C1 ∩ C2)) = 1, hence by Lemma 1.4 there

exists J ∈ FM(X) such that h0(X, J) = h0(Xν, M) − 1 = 2. Since degJ = (0, 2) is balanced,

we are done.

If di > 0 for i = 1, 2, then there exists Hi ∈ W1
2 (Ci) such that Li = Hdi/2

i , for both

i. Suppose g1 ≤ g2; arguing as above we see that (0, 2) is balanced and that there exists

J ∈ W1
(0,2)(X) such that the pull-back of J to the normalization of X is (OC1 , H2). Up to

switching C1 and C2, we are done.
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Suppose δ = 1. If (1, 1) is balanced, then X is (trivially) weakly hyperelliptic (see

Lemma 5.5). So assume (1, 1) not balanced. By Example 2.2 we may assume g1 < g2 and

B2(X) = {(0, 2)}. By Corollary 3.2, Cliff L2 = 0, therefore C2 is hyperelliptic. Let HC2 be its

hyperelliptic bundle, and set J = (OC1 , H2); it is clear that h0(X, J) = 2.

• Now assume that d1 = 2g1 + e with e ≥ 1. We will prove that X is a binary curve.

In this case , the result is known: a binary curve is hyperelliptic if and only if it is weakly

hyperelliptic [6, Section 3].

We are in the situation treated in the proof of Theorem 3.3, from which we now

use the notation. We saw there that the Clifford inequality can be an equality only in

Case 2, at the very end. More precisely, in order for Cliff L = 0 we must have d2 = 2g2 + e

(so that d= 2g1 + 2g2 + 2e) and

l = l1 + l2 − e − 1. (39)

Now, as d< 2g − 2 and g = g1 + g2 + δ − 1 we have 2(g1 + g2 + e) < 2(g1 + g2 + δ − 2),

hence

e ≤ δ − 3. (40)

Now let β := e + 1, so that β ≤ δ − 2. Set

Y =
(
C1

∐
C2

)/

{pi=qi , i=1,...,β}

ν−→ X,

that is, ν is the normalization of X at δ − β nodes. Let M = ν∗L; we have, by Lemma 1.8(ii),

h0(Y, M) = l1 + l2 − e − 1 = l = h0(X, L)

using (39). Therefore for all i = β + 1, . . . , δ, we have pi ∼M qi, by Lemma 1.4. This implies

that, for all i ≥ β + 1, pi is a base point of L1(−
∑β

j=1 pj) and qi is a base point of

L2(−
∑β

j=1 qj) (by Lemma 1.3). Now

deg L1



−
β∑

j=1

pj



 = 2g1 + e − β = 2g1 − 1, deg L2



−
β∑

j=1

qj



 = 2g2 + e − β = 2g2 − 1.

If X is not a binary curve, we may assume g2 ≥ 1. Then, L2(−
∑β

j=1 qj), having degree

2g2 − 1, can have at most one base point. Therefore δ − β ≤ 1, that is, δ − e ≤ 2, which is

in contradiction with (40). We conclude that X is a binary curve. "
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5.1.1 Curves of compact type

For any integer h with 1 ≤ h≤ g/2, let ∆h be the divisor in Mg the general point of which

represents a curve X = C1 ∪ C2 with Ci smooth, C1 · C2 = 1 and g1 = h. Fix such an X; for

i = 1, 2 we shall denote by qi ∈ Ci the branches of the node of X. We computed B2(X) in

Example 2.2.

Lemma 5.5. Let X = C1 ∪ C2 with C1 · C2 = 1 and 1 ≤ g1 ≤ g/2.

Let g1 ≥ (g + 1)/4. Then X is weakly hyperelliptic; more precisely, (1, 1) is bal-

anced and W1
(1,1)(X) = {(OC1(q1),OC2(q2)}.

Let g1 < (g + 1)/4. Then X is weakly hyperelliptic if and only if C2 is hyperelliptic,

if and only if W1
(0,2)(X) = {(OC1, HC2)}. !

Proof. Set L = (OC1(q1),OC2(q2)) ∈ Pic X. It is clear that h0(X, L) = 2. If g1 ≥ (g + 1)/4,

then L is balanced. Conversely, let L ′ ∈ W1
(1,1)(X); by Corollary 3.2 we have L ′ =

(OC1(q1),OC2(q2)), so the first part is proved.

Now suppose g1 < (g + 1)/4, then (0, 2) is the unique balanced multidegree. If C2

is hyperelliptic, the balanced line bundle L = (OC1 , HC2) ∈ Pic X has, of course, h0(X, L) =
2. So, X is weakly hyperelliptic. Conversely, if there exists L ∈ Pic(0,2) X such that h0(L) =
2, we can apply Corollary 3.2 (we necessarily have g2 ≥ 3 by hypothesis) and conclude

that h0(C2, L2) = 2, so we are done. "

Remark 5.6. The previous result shows that there exist (plenty of) weakly hyperelliptic

curves that are not hyperelliptic. Indeed, it is well known that a curve of compact type

X = C1 ∪ C2 is hyperelliptic if and only if both C1 and C2 are hyperelliptic, and the two

branches, q1 and q2, are Weierstrass points (cf. [8] for example). Also, there exist globally

generated balanced line bundles L ∈ W1
2 (X) which are not limits of hyperelliptic bundles

of smooth curves (indeed (OC1 , HC2) is always globally generated). !

5.2 Hyperelliptic and weakly hyperelliptic curves

The next definition will be used only when Xsep = ∅.

Definition 5.7. A pair (C , D) of smooth, rational components of X is called a binary-

pair, or a B-pair for short, of X if C is a separating line of Dc and D is a separating line

of C c. Abusing terminology, the subcurve C ∪ D ⊂ X will be also called a B-pair. !
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Example 5.8. Let X be a binary curve (defined before Proposition 5.4); then its irre-

ducible components form a B-pair. Also, if X′ = C ∪ D ∪ E1 ∪ · · · ∪ Es is a semistable

curve the stabilization of which is a binary curve X = C ∪ D, then (C , D) is a B-pair

of X′. !

Let (C , D) be a binary pair of X. Set C ∩ D = {n1, . . . , nl}, with l ≥ 0, and qi
C ∈ C ,

qi
D ∈ D the two branches of ni. If C ∪ D ,= X, there is a decomposition X = (C ∪ D) ∪

(Z1
∐

. . .
∐

Zm) where Z j are connected and Z j · C = Z j · D = 1 for all j. Write pj
C = C ∩ Z j

and pj
D = D ∩ Z j. Let n= l + m (m ≥ 0); now the ordered n-tuples

GC := (q1
C , . . . , ql

C , p1
C . . . , pm

C ) ⊂ C , G D := (q1
D, . . . , ql

D, p1
D . . . , pm

D ) ⊂ D (41)

give a structure of n-marked curve on C and D. We say that (C , D) is a special B-pair if

(C ; GC ) and (D; G D) are isomorphic as n-marked curves.

The next theorem is already known for irreducible curves; see [5, Proposition

5.2.1].

Theorem 5.9. Let X be semistable with Xsep = ∅; let d be such that |d| = 2. Assume

that d is balanced, or that X is stable and d≥ 0. Suppose there exists L ∈ PicdX with

h0(X, L) = 2.

Then L is globally generated, and one of the two cases below occurs.

(1) d= (1, 1, 0, . . . , 0) and (C1, C2) is a special B-pair of X. Also, the restriction

of L to X ! (C1 ∪ C2) is trivial.

(2) d= (2, 0, . . . , 0) and, denoting C c
1 = Z1

∐
· · ·

∐
Zm, with Zi connected, ∀i =

1, . . . , m we have

C1 · Zi = 2, LC1
∼=OC1(C1 ∩ Zi), LC c

1
∼=OC c

1
and h0(C1, LC1) ≥ 2.

Furthermore, if C1 ∼= P1, then we have m ≥ 2 and, setting {pi, qi} = Zi ∩ C1 ⊂
C1, there exists a g1

2, Λ, on C1 such that pi + qi is a divisor in Λ for every

i = 1, . . . , m (of course, Λ ⊂ |OC1(2)|).

Conversely, if X and d satisfy either (1) or (2) above, there exists a unique line bundle

L ∈ PicdX such that W1
d(X) = {L}. !
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Proof. Assume that there exists L ∈ W1
d(X); by Theorem 4.11(ii) and its addendum we

obtain d≥ 0, that is, d is as in (1) or (2). We will prove that L is globally generated as a

consequence of (1) and (2). To ease the notation, we write C = C1 and D = C2.

Case 1. d= (1, 1, 0, . . . , 0).

Suppose that C is a nondisconnecting component; set Z = C c. We first prove that

(C , D) is a special B-pair of X.

By contradiction, suppose D is not a separating line of Z ; by Lemma 4.6 we

have h0(Z , L Z ) ≤ 1. Let C ,∼= P1, then h0(C , LC ) ≤ 1. So, in order to have h0(X, L) = 2 we

must have h0(C , LC ) = h0(Z , L Z ) = 1 and every point in Z ∩ C ⊂ C must be a base point

for LC (by Lemma 1.4). This is impossible, as Z · C ≥ 2 and dC = 1. Now let C ∼= P1, hence

h0(C , LC ) = 2. By Lemma 1.8 we have

h0(X, L) ≤ h0(C , LC ) + h0(Z , L Z ) − 2 ≤ 2 + 1 − 2 = 1,

a contradiction.

Therefore, D is a separating line of Z and h0(Z , L Z ) = 2. By Remark 4.5(B), D is a

nondisconnecting component of X. Hence we can apply the previous argument replacing

C by D; this yields that C is a separating line of Dc. In other words, (C , D) is a B-

pair of X.

We claim that the restriction of L to (C ∪ D)c is trivial. By contradiction, suppose

(C ∪ D)c has a connected component, W, such that h0(W, LW) = 0. As (C , D) is a B-pair

we have #(W ∩ C ) = #(W ∩ D) = 1; set pC = C ∩ W and pD = D ∩ W; every section of L van-

ishes at pC and pD. On the other hand, LC and L D are free from base points, of course;

hence, writing X′ = C ∪ W ∪ D, we have h0(X′, L X′) ≤ h0(C , LC ) − 1 + h0(D, L D) − 1 = 2 =
h0(X, L). Therefore h0(X′, L X′) = 2, which yields that C ∩ D = ∅. Also, by Lemma 1.4 we

easily get that X = X′; this is impossible, as Xsep = ∅ whereas X′ has separating nodes at

W ∩ C and W ∩ D. Our claim is proved.

Therefore, L determines a map ψ : X → P1 such that ψ(pj
C ) = ψ(pj

D) for all j (nota-

tion as in (41)). Hence ψ induces an isomorphism of the n-marked curves C and D with

the same n-marked P1. This shows that the B-pair (C , D) is special.

Suppose now that both C and D disconnect X. We will prove that this case does

not occur. Denote by Dc = Y1
∐

· · ·
∐

Ym the connected components decomposition, so

that m ≥ 2. Let Y1 be such that C ⊂ Y1, so that dY1 = 1. Note that C is not a separat-

ing line of Y1. Indeed, if C were a separating line of Y1, then every connected compo-

nent, V , of Y1 ! C must intersect D, for otherwise X has a separating node at V ∩ C . But
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then C is a nondisconnecting component of X, contradicting our assumption. Therefore

h0(Y1, LY1) ≤ 1, by Lemma 4.6.

Set X1 = D ∪ Y1 ⊂ X; note that D · Y1 ≥ 2.

If D ∼= P1, by Lemma 1.8 we have h0(X1, L X1) ≤ 2 + 1 − 2 = 1 < h0(X, L). By

Remark 1.7, this is a contradiction.

If D ,∼= P1, then h0(D, L D) ≤ 1 and if equality holds L D has at most one base

point. It is clear that h0(X, L) = 2 forces h0(D, L D) = 1 We, therefore, have h0(X1, L X1) ≤
h0(D, L D) + h0(Y1, LY1) − 1 = 1 + 1 − 1 < h0(X, L) (by Remark 1.2(B) and Lemma 1.4); a

contradiction. Case 1 is complete.

Case 2. d= (2, 0, . . . , 0).

Recall that C ⊂ X is the component such that dC = 2; set Z = C c. Suppose first

that Z is connected. Assume C ,∼= P1. So h0(C , LC ) ≤ 2 with equality only if LC has no base

point; also, h0(Z , L Z ) ≤ 1 with equality if and only if L Z =OZ (by Fact 1.6). It is clear that,

for h0(X, L) = 2, we must have equality in both cases. Hence h0(C , LC ) = 2 and L Z =OZ . If

C · Z ≥ 3, by Lemma 1.5 there exist three points p, q, r ∈ C ∩ Z ⊂ C such that p∼LC q ∼LC r.

Now LC has no base points, hence we get

1 = h0(C , LC ) − 1 = h0(C , LC (−p)) = h0(C , LC (−p− q − r))

which is impossible, as deg LC (−p− q − r) = −1. We thus proved that C · Z = 2;

set C ∩ Z = {p, q} ⊂ C , arguing similarly we see that h0(C , LC (−p− q)) = 1, that is,

LC =OC (p+ q). Observe that Lemma 1.4 yields that L is unique.

Now let us prove that C ,∼= P1. By contradiction, suppose C ∼= P1. Note that X is a

stable curve (an exceptional component must have degree 1), hence δC ≥ 3. By Lemma 1.8

we obtain (Z is connected)

h0(X, L) ≤ h0(C , LC ) + h0(Z , L Z ) − 3 ≤ 3 + 1 − 3 = 1 (42)

which is impossible.

Suppose now that Z = Z1
∐

· · ·
∐

Zm with Zi connected and m ≥ 2. For every i =
1, . . . , m set Xi = C ∪ Zi. If C ,∼= P1, then we argue as in the previous part with Xi playing

the role of X and Zi (which is connected) playing the role of Z . This shows that L is

unique and that for every i, C intersects Zi in two points pi, qi ∈ C , that LC ∼=OC (pi + qi),

and that L Zi
∼=OZi . If C ∼= P1, then we have (Xsep = ∅) C · Zi ≥ 2 for every i. We must prove

that equality holds for every i. Indeed, if C · Zi ≥ 3 we can argue as we did in (42), with

Z replaced by Zi and X replaced by Xi. We obtain h0(Xi, Li) ≤ 1, which is impossible, by
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Remark 1.7. We clearly have LC ∼=OC (C ∩ Zi); now, the fact that as i varies from 1 to m,

the divisors pi + qi move in the same g1
2, Λ ⊂ |OC (2)|, follows easily from Lemma 1.4 (or,

from [5, Proposition 5.2.1] using the map σ described below). The remaining assertions

of the theorem are clear, so Case 2 is proved.

It remains to show that L is globally generated. Let X′ ⊂ X be the maximal sub-

curve where L X′ ∼=OX′ . By what we proved above, it is clear that L has no base point at

smooth points of X, or along X′. We need to show that L has no base point in C ∩ D in

case (1), or in singular points of C in case 2. The latter case is clear, as C is irreducible

and LC is globally generated because h0(C , LC ) ≥ 2 (see the beginning of Section 1.3 for

the case C ,∼= P1). In case (1), if L has a base point n∈ C ∩ D we get, denoting by pC ∈ C

and pD ∈ D the branches of n,

h0(C ∪ D, LC∪D) ≤ h0(C , LC (−pC )) + h0(D, L D(−pD)) = 2 = h0(X, L),

which is easily ruled out using Lemmas 1.3 and 1.4.

Now the converse. In case 1 the statement holds if X = C ∪ D (i.e., X is a binary

curve) by Lemma 1.4 (existence) and [6, Lemma 15] (uniqueness). In the general case,

let σ : X → X be the morphism contracting every connected component of (C ∪ D)c to a

node of X and mapping C and D isomorphically onto their image, so that X is a binary

curve. The pull-back map σ ∗ : Pic X → Pic X induces a bijection between line bundles

on X and line bundles on X that are trivial on (C ∪ D)c. It is clear that this bijection

preserves h0. So the statement holds on X because it holds on X. In case 2, existence

follows from Lemma 1.4, and uniqueness has already been proved when C ,∼= P1. If C ∼=
P1, then we proceed as before: let σ : X → X be the map contracting every connected

component of C c to a node, and mapping C birationally onto its image, so that X is an

irreducible nodal curve. Since for X the statement holds, it also holds for X. The proof

is complete. "

Let X be a curve free from separating nodes. By Lemma 4.10, every irreducible

component of X belongs to at most one B-pair. Therefore we have the following.

Remark 5.10. Let X be a stable curve such that Xsep = ∅. Then X admits a decomposi-

tion, unique up to the order, X = A1 ∪ · · · ∪ Aα such that every Ai is either a B-pair or an

irreducible component of X not part of any B-pair. !
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We shall now apply the previous theorem to describe the combinatorics of hyper-

elliptic stable curves.

Proposition 5.11. Let X be a hyperelliptic stable curve such that Xsep = ∅. Consider the

decomposition X = A1 ∪ · · · ∪ Aα defined in Remark 5.10. Then for every i ,= j we have

either Ai ∩ Aj = ∅, or

Ai · Aj = 2 and h0(Ai,OAi (Ai ∩ Aj)) ≥ 2. !

Proof. We begin as in the proof of Lemma 5.2. Let f : X → B be a one-parameter

smoothing of X with X regular and hyperelliptic generic fiber. Let L ∈ PicX be a bal-

anced line bundle such that the restriction of L to the generic fiber is the hyperelliptic

bundle, set L|X = L. By assumption d := degL is balanced; moreover h0(X, L) ≥ 2 hence

we may apply Theorem 5.9 to L. This enables us to write X = A∪ (Z1
∐

· · ·
∐

Zm), where

either A is an irreducible component with dA = 2 or A is a special B-pair with dA = (1, 1).

By Theorem 5.9 we have

dZi
= 0, Zi · A= 2, h0(A,OA(A∩ Zi)) ≥ 2 ∀i = 1, . . . , m;

moreover, if A is a B-pair we have degAZi = (1, 1). Comparing with the decomposition in

Remark 5.10, we may set A= A1.

Now, for any divisor T ∈ DivX supported on X, we set LT :=L ⊗ OX (T) ⊗ OX. We

have deg LT = 2 and, by uppersemicontinuity of h0, h0(X, LT ) ≥ 2.

Consider LT with T = −Z1. We claim that degLT ≥ 0. Indeed, let C ⊂ X be an irre-

ducible component (or a subcurve); by the previous discussion,

degC LT =





− degC Z1 = C · A1 ≥ 0 if C ⊂ Z1,

0 if C ⊂ Zc
1.

We can now apply Theorem 5.9 to LT . Since degA1
LT = 0 and degZi

LT = 0 for all

i ,= 1, we derive that Z1 contains one of the subcurves, A2 say, of the decomposition in

Remark 5.10. So, A2 is either irreducible or a B-pair, and degA2
LT = 2; therefore, by the

above discussion, A1 · A2 = 2. Hence A1 ∩ Z1 = A1 ∩ A2 and h0(A1,OA1(A1 ∩ A2)) ≥ 2. Thus,

the part of the statement concerning A1 and A2 is proved. If A2 = Z1, we pick Zi with

i ≥ 2 and repeat the procedure with T = −Zi. If A2 " Z1, we iterate the procedure with A2
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playing the role of A1 and with T = −W, where W is a connected component of Z1 ! A2.

Obviously this iteration stops after finitely many steps, after which we are done. "

5.3 Curves of genus 6 admitting a g2
5

5.3.1

Throughout this section we shall consider curves X = C1 ∪ C2, of genus 6, such that C1

and C2 are smooth, of respective genus g1 and g2; we set δ = C1 · C2. For any L ∈ Pic X we

write Li = L |Ci and li = h0(Li) = h0(Ci, Li). We fix points p1, . . . , pδ ∈ C1 and q1, . . . , qδ ∈ C2

so that X = (C1
∐

C2)/(pi=qi , i=1,...,δ) and set

G1 :=
δ∑

i=1

pi, G2 :=
δ∑

i=1

qi. (43)

Finally, we set g := (g1, g2), and we always assume g1 ≤ g2.

Theorem 5.12. With the above set-up, let X = C1 ∪ C2 be semistable of genus 6, and let

d∈ B5(X). Assume there exists a globally generated L ∈ W2
d(X). Then

(I) If δ = 1, C2 is not hyperelliptic and one of the following cases occurs.

(a) g = (1, 5), d= (0, 5), L1 =OC1 , and h0(L2) = 3.

(b) g = (2, 4) or g = (3, 3), d= (2, 3), and h0(L1) = h0(L2) = 2.

(II) If δ = 2 one of the following cases occurs.

(a) g = (0, 5), d= (1, 4), C2 hyperelliptic, L2 = H⊗2
C2

.

(b) g = (1, 4), d= (0, 5), L1 =OC1 , C2 not hyperelliptic, h0(L2) = 3.

(c) g = (2, 3), d= (2, 3), L1 = HC1 =OC1(G1), C2 not hyperelliptic,

L2 =OC2(G2 + q) and h0(L2) = 2.

(d) g = (1, 4) or g = (2, 3), d= (2, 3), L1 =OC1(G1), C2 not hyperel-

liptic, L2 =OC2(G2 + q) and h0(L1) = h0(L2) = 2.

(III) If δ = 3 then g = (1, 3) and one of the following cases occurs.

(a) d= (3, 2), L1 =OC1(G1), C2 is hyperelliptic, L2 = HC2 .

(b) d= (0, 5), L1 =OC1 , and h0(L2) = 3.

(IV) If δ = 4, then g = (0, 3), d= (1, 4) and L2 = KC2 =OC2(G2).
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(V) If δ = 6, then g = (0, 1), d= (2, 3). !

Remark 5.13. The cases (I) and (II), that is, δ ≤ 2, are contained in Propositions 5.15 and

5.16, where a more precise statement is proved. !

Proof. Our curve X has a priori δ ≤ 7 nodes. The case that δ = 7, that is, X is a binary

curve, is ruled out as follows. Proposition 12 in [6] implies degL = (2, 3); by [6, Propo-

sition 19 and Lemma 20] the curve X must be hyperelliptic. Therefore, the canonical

morphism maps X two-to-one onto a rational normal quintic in P5. Now, we argue as for

smooth curves (cf. [2, Ex. D-9, p. 41]): we have h0(X, ωX ⊗ L−1) = 3, hence (as points on a

rational normal curve are in general linear position) we easily get L ∼= H⊗2
X (p) with p∈ X

a base point of L. So L is not globally generated, and we are done.

From now on, by Remark 5.13, we assume 3 ≤ δ ≤ 6.

Pick d and L ∈ W2
d(X) as in the statement. The fact that d is balanced means

gi − 1 ≤ di ≤ gi − 1 + δ, i = 1, 2, (44)

and di = 1 if Ci is an exceptional component.

First of all, let us show that d≥ 0. If d1 < 0 we must have d= (−1, 6), and g1 = 0.

We have h0(X, L) = h0(C2, L2(−
∑δ

i=1 qi)) ≤ 2, because deg L2(−
∑δ

i=1 qi) = 6 − δ. This con-

tradiction shows that di ≥ 0 for i = 1, 2.

For i = 1, 2 we set ei := di − 2gi. Let

ε := max{e1, e2, 0} + 1 and β := min{ε, δ}.

From Addendum 3.4 we have

h0(X, L) ≤ l1 + l2 − β ≤ 3. (45)

Step 1. We exclude all the cases for which l1 + l2 − β ≤ 2. This only requires a

trivial checking. To begin with, the following cases are all excluded:

δ = 6, g = (0, 1), d∈ {(0, 5), (3, 2), (4, 1), (5, 0)}. (46)
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Let us just show how to treat d= (0, 5). We have l1 = 1, l2 = 5, ε = e2 + 1 = 4, and β =
min{4, 6} = 4. Hence h0(X, L) ≤ 2. All other cases are treated in the same way. If δ = 6,

then we are left with d= (1, 4) and d= (2, 3) (of course g = (0, 1)).

Let δ = 5, by the same argument, we exclude

δ = 5, g = (0, 2), d∈ {(2, 3) (3, 2), (4, 1), (5, 0)} (47)

and we exclude

δ = 5, g = (1, 1), d∈ {(0, 5), (1, 4)}. (48)

Let δ = 4. We exclude

δ = 4, g = (0, 3), d∈ {(2, 3), (3, 2)}. (49)

and

δ = 4, g = (1, 2), d= (4, 1). (50)

Finally, this method applies to exclude

δ = 3, g = (0, 4), d= (2, 3). (51)

This finishes the list of cases for which l1 + l2 − β ≤ 2.

From now on we always have l1 + l2 − β = 3 (by (45)).

Step 2. To exclude another group of cases we now use Lemma 1.3 and its conse-

quence, Lemma 5.14. Let us begin with case δ = 6, hence g = (0, 1) and d= (1, 4). In this

case β = 3, so that we obviously have

3 = β < d2 = 4 < δ = 6. (52)

Let X′ = (C1
∐

C2)/{pi=qi , i=1,...,3}, let ν : X′ → X be the same map as in Lemma 5.14 and let

M = ν∗L. Then h0(X′, M) = 3 (by Lemma 1.8(ii), or by Clifford). By (52) Lemma 5.14 applies,

yielding that h0(X, L) < 3, a contradiction.

• By (46) if δ = 6 the only remaining case is d= (2, 3). (V) is proved.

The previous argument can be repeated every time we have β < di < δ for some i,

enabling us to exclude the following cases.

δ = 5, g = (0, 2), and d= (1, 4). (Here 2 = β < d2 = 4 < δ = 5.)

δ = 5, g = (1, 1), and d= (2, 3). (Here 2 = β < d2 = 3 < δ = 5.)
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δ = 4, g = (1, 2), and d∈ {(2, 3, )(3, 2)} (if d= (2, 3) then 1 = β < d2 = 3 < δ = 4; if d=
(3, 2) then 2 = β < d1 = 3 < δ = 4.)

We shall now exclude the two equal multidegree cases

δ = 5, g = (0, 2), d= (0, 5) and δ = 4, g = (1, 2), d= (0, 5),

with l1 + l2 = 5. Let X′ = (C1
∐

C2)/(pi = qi, i = 1, 2) so that X′ has two nodes. Let L ′ ∈
Pic X′ be the pull back of L. Then h0(X′, L ′) = 3, so, for h0(X, L) = 3 we must have qi ∼L ′ pi

for i ≥ 3. Now, by Lemma 1.3, this implies that L2(−q1 − q2) has at least two base points,

which is clearly impossible.

• By Step 2, (47), and (48) there are no more cases with δ = 5.

Step 3. Now we shall use Corollary 1.10 to exclude all the cases for which l1 + l2 =
4 and there is i ∈ {1, 2} such that li ≥ 2 and δ > Cliff Li + 2. This amounts to the following

list of cases.

δ = 4, g = (0, 3), and d= (0, 5). l2 = 3, and Cliff L2 = 1.

δ = 4, g = (1, 2), and d= (1, 4). l2 = 3, and Cliff L2 = 0.

By the previous step and (49) the only case left with δ = 4 is g = (0, 3) and d=
(1, 4). Now β = 2, therefore (as l1 + l2 − 2 = 3 by (45)) we have l2 = 3, that is, L2 is the

canonical bundle of C2. To prove that L2 =OC2(
∑4

1 qi) it suffices to prove that L2(−q1 − q2)

has q3 and q4 as base points (and note that we are free to permute the qi). We argue as at

the end of Step 2: let X′ = (C1
∐

C2)/(pi=qi ,i=1,2) and let L ′ be the pull back of L to X′. Then

h0(X′, L ′) = 3 = h0(X, L), so, L2(−q1 − q2) has q3 and q4 as base points.

• (IV) is proved.

δ = 3, g = (1, 3). We exclude d= (1, 4) (as l2 = 3 and Cliff L2 = 0), and d= (2, 3) (as

l1 = 2 and Cliff L1 = 0).

δ = 3, g = (2, 2). We exclude d= (1, 4) (as l2 = 3 and Cliff L2 = 0), and d= (2, 3) (as

l1 = 2 and Cliff L1 = 0).

Step 4. From now on we assume δ = 3.

Let g = (2, 2) and d= (2, 3). Now l1 + l2 = 4 if and only if L2 = HC2(p). So L2 has

a base point, which is impossible by hypothesis. By Step 3, there are no more balanced

multidegrees to treat when g = (2, 2).

Let g = (0, 4). By (49) there are two cases to rule out: d= (0, 5) and d= (1, 4).

Let d= (0, 5). As l = 3 we have l1 + l2 = 1 + 3 = 4. It is clear that Lemma 1.5

applies, giving q1 ∼L2 q2 ∼L2 q3. Therefore, if 1 ≤ i ,= j ≤ 3, we have

2 = h0(C2, L2(−qi)) = h0(C2, L2(−qi − qj)) = h0(C2, L2(−q1 − q2 − q3)).
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But then C2 is hyperelliptic (deg L2(−q1 − q2 − q3) = 2), which implies that L2 has a base

point. A contradiction.

Let d= (1, 4). As β = 2 and l = 3 we have l1 + l2 = 2 + 3, so C2 is hyperelliptic and

L2 = H⊗2
C2

. Consider X′ = (C1
∐

C2)/(pi=qi , i=1,2)
ν−→ X and let M = ν∗L. Then h0(X′, M) = 3,

therefore p3 ∼M q3. By Lemma 1.3 we obtain that q3 is a base point of L2(−q1 − q2), hence

(permuting the gluing points) HC2 ,=OC2(qi + qj) for all i ,= j. So, L2(−q1 − q2) =OC2(q
′
1 +

q′
2) where q′

1 is conjugate to q1 under the hyperelliptic series, and the same for q′
2 and

q2. But then, as q3 is a base point of L2(−q1 − q2) =OC2(q
′
1 + q′

2), we get that (say) q3 = q′
1,

which is a contradiction.

• By Step 3, the remaining cases with δ = 3 have g = (1, 3) and either d= (3, 2) or

d= (0, 5). This is (III). "

Lemma 5.14. Let δ and β be two positive integers with δ > β. Consider the partial nor-

malization of X defined as follows:

X′ =
(
C1

∐
C2

)/

{pi=qi , i=1,...,β}

ν−→ X =
(
C1

∐
C2

)/

{pi=qi , i=1,...,δ}
.

For i = 1, 2, pick Li ∈ Pic Ci and M ∈ Pic (X′) such that M|Ci = Li.

If β < deg Li < δ for some i, then h0(X, L) < h0(X′, M) for every L ∈ FM(X). !

Proof. We argue by contradiction, as follows. We prove that if β < deg L1, and if there

exists L ∈ FM(X) such that h0(X, L) = h0(X′, M), then deg L1 ≥ δ.

Let such an L be fixed. By Lemma 1.4 we have pi ∼M qi for all i = β + 1, . . . , δ. Now

Lemma 1.3 yields that, for all i ≥ β + 1, pi is a base point of L1(−
∑β

j=1 pj).

As deg L1 > β, deg L1(−
∑β

j=1 pj) ≥ 1. Now, a line bundle of positive degree can

have at most as many base points as its degree. We just proved that L1(−
∑β

j=1 pj) has

δ − β base points, hence deg L1 − β ≥ δ − β, that is, deg L1 ≥ δ. We are done. "

Proposition 5.15. With the set up of Section 5.3.1, let X = C1 ∪ C2 be semistable of

genus 6, with C1 · C2 = 1, and let d∈ B5(X).

There exists a globally generated L ∈ W2
d(X) if and only if C2 is not hyperelliptic

and one of the following cases occurs.

(1) g = (1, 5), d= (0, 5), and L = (OC1 , L2) for some L2 ∈ W2
5 (C2).

(2) g = (2, 4) or g = (3, 3), d= (2, 3), C1 is hyperelliptic and L = (HC1 , L2) for some

L2 ∈ W1
3 (C2). !
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Proof. As X is semistable we have g1 ≥ 1. If L is globally generated, so are L1 and L2;

hence if h0(X, L) = 3 we have 3 = l1 + l2 − 1 by Lemma 1.4. Therefore, l1 + l2 = 4.

Case g = (1, 5). The balanced multidegrees are (0, 5) and (1, 4). If d= (1, 4) and

l1 = 1 then L1 has a base point, which is not possible. If l1 = 0, then h0(X, L) ≤ 2. So

d= (1, 4) is ruled out.

Assume d= (0, 5). By the initial observation, we must have L1 =OC1 , l2 = 3, and

L2 free from base points, hence C2 is not hyperelliptic. Conversely, if L2 ∈ W2
5 (C2) then

L2 is globally generated, because C2 is not hyperelliptic; let L = (OC1 , L2), then obviously

h0(X, L) = 3.

Case g = (2, 4). The balanced multidegrees are (1, 4) and (2, 3). We rule out d=
(1, 4) just as in the previous case. Assume d= (2, 3); as li ≤ 2 we have l1 = l2 = 2 and C2

cannot be hyperelliptic (for otherwise L2 has a base point). The converse is easily proved

as before.

Case g = (3, 3). This case is symmetric, so it suffices to consider the balanced

multidegree d= (2, 3). We will show that C1 is hyperelliptic and that C2 is not. If C1 is

not hyperelliptic, then l1 ≤ 1; as l2 ≤ 2 to have h0(X, L) = 3 both L1 and L2 must have a

base point at the attaching point, which is not possible. So C1 must be hyperelliptic. The

rest of the argument is exactly as in the previous case. "

Proposition 5.16. With the notations of Section 5.3.1, let X = C1 ∪ C2 be of genus 6 with

C1 · C2 = 2, and let d∈ B5(X). There exists a globally generated L ∈ W2
d(X) if and only if

one of the following cases occurs.

(1) g = (0, 5), d= (1, 4), C2 hyperelliptic and L2 = H⊗2
C2

.

(2) g = (1, 4), d= (0, 5), C2 non-hyperelliptic, L1 =OC1 , h0(L2) = 3 and

h0(L2(−G2)) = 2.

(3) g = (1, 4), d= (2, 3), L1 =OC1(G1), C2 non-hyperelliptic, L2 =OC2(G2 + q),

h0(L2) = 2.

(4) g = (2, 3), d= (2, 3), HC1 =OC1(G1) = L1, C2 non-hyperelliptic and L2 =
OC2(G2 + q), h0(L2) = 2. !

Proof. Note that, as L has no base points, L1 and L2 have no base points.

Let g = (0, 5) and d= (1, 4) (X is strictly semistable and C1 its exceptional com-

ponent). By Lemma 1.8 we have h0(X, L) ≤ l1 + l2 − 2 ≤ 2 + 3 − 2 = 3, and equality holds

if and only if l2 = 3, if and only if C2 is hyperelliptic and L2 = H⊗2
C2

, as stated. It is clear

that every L pulling back to (O(1), H⊗2
C2

) on the normalization of X has h0(X, L) = 3.
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If g1 ≥ 1, one checks easily (by Proposition 1.11 and the fact that L1 and L2 have

no base points) that l1 + l2 = 4. Hence by Lemma 1.5 we have

p1 ∼L1 p2 and q1 ∼L2 q2 (53)

and L is uniquely determined by its pull-back to the normalization, by Lemma 1.4.

• Assume g = (1, 4). If d= (0, 5), by Proposition 1.11(ii) we obtain L1 =OC1 and

Cliff L2 = 1 so h0(L2) = 3. C2 cannot be hyperelliptic, for otherwise L2 will have a base

point. Moreover, as q1 ∼L2 q2, we have

h0(L2(−q1 − q2)) = h0(L2(−q1)) = h0(L2(−q2)) = 2

as claimed. The converse follows easily from Lemma 1.5. Suppose now d= (1, 4). As

p1 ∼L1 p2, we have L1 =OC1(p) with p ,= pi. So, L1 has a base point in p, which is not

possible. This case does not occur. Finally, let d= (2, 3). We must have l1 = l2 = 2 (as C2

cannot be hyperelliptic, as before). By (53) we obtain L1 =OC1(p1 + p2) and L2 =OC1(q1 +
q2 + q) for a (uniquely determined) q ∈ C2. The converse follows from Lemma 1.5.

• Now assume g = (2, 3). If d= (2, 3), then we argue exactly as in the previous

case (g = (1, 4), d= (2, 3)). If d= (1, 4), then we have l1 = 1 so that L1 =OC1(p) with p ,= pi

for i = 1, 2 (as p1 ∼L1 p2). So L has a base point in p; this case is excluded. Finally, if

d= (3, 2), arguing as before one obtains that L1 has a base point in p∈ C1, which is

impossible. This finishes all the possible cases, so we are done. "
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