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1. Rational points on curves

In this short survey, written for a general mathematician rather than a
specialist, some progress about the distribution of rational points on alge-
braic varieties will be described by focusing on curves.

Algebraic varieties will always be defined over Q, and hence over any field,
F , in the following chain of extensions

Q ⊂ Q(a) ⊂ Q ⊂ C,

where Q(a), for some a ∈ Q, is a number field. Equivalently, a number field
is a finite extension of Q.

A (algebraic) variety, V , over F is a topological space endowed with a
certain sheaf of functions with values in F . As F lies in C one can also view V
over C, as a complex variety with the standard analytic topology. A variety
has thus an intrinsic double nature, an arithmetic one when considered over
Q, and a geometric one when considered over C; the interplay between the
two is a constant source of wonder.

Here V will always be projective, connected and smooth, this means that,
as a complex variety, it is compact, connected, and its tangent space at every
point is isomorphic to Cm, for a fixed m equal to the dimension of V . If
m = 1 then V is a curve.

The set of F -rational points of V is written V (F ). What is V (F )?
Suppose that V lies in some projective space Pn, so that V is given “con-

cretely” as the zero locus of some homogeneous polynomials in Q[x0, . . . , xn],
and its points have n + 1 homogeneous coordinates (determined up to a
nonzero multiplicative constant). Then V (F ) is the set of points of V
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all of whose coordinates can be chosen in F ; if V = Pn then Pn(F ) =
(Fn+1 r {0})/ ∼.

Now suppose, instead, that V is given abstractly, not in any projective
space. Notice first that, quite naturally, a “point over F” is a basic alge-
braic variety: its underlying topological space is a point, and its sheaf of
functions is F ; this variety is denoted by SpecF . Now V (F ) is defined
as the set of of morphisms of algebraic varieties from SpecF to V , i.e.
V (F ) = Hom(SpecF, V ); hence rational points can be studied from the
abstract point of view. Of course, this is consistent with the previous defi-
nition: if V is realized concretely in some projective space by an embedding
φ : V ↪→ Pn, then φ(V (F )) = φ(V )(F ). One thinks of φ(V ) as a “model” of
the abstract variety V in projective space, and plenty of such models exist.

It is a fact that the set V (Q) is often difficult to describe, even in the
concrete, and seemingly easier, set up. Let us illustrate this phenomenon on
a prominent example.

For any integer d ≥ 1 consider the curve Cd ⊂ P2 given as the zero locus
of the polynomial xd0 + xd1 − xd2. The set of Q-rational points of Cd is, by
definition,

Cd(Q) = {(x0 : x1 : x2) ∈ P2(Q) : xd0 + xd1 − xd2 = 0}.

It is clear that Cd(Q) contains the two points (1 : 0 : 1), (0 : 1 : 1), trivial
zeroes of the polynomial defining Cd. If d = 1 the curve is a line, and it is
easily seen to have infinitely many Q-rational points. If d = 2, one easily
checks that C2(Q) contains all the pythagorean triples, so it is, again, a
countably infinite set. If d ≥ 3 the trivial solutions turn out to be the only
ones; this simple statement, however, has been surprisingly hard to prove.
Indeed, P. Fermat claimed it in 1637, but a much celebrated proof was
obtained only in 1995 by A. Wiles, using modern methodologies and ideas,
partly in collaboration with R. Taylor; see [W95], [TW95]. Summarizing

Theorem 1. (1) If d = 1, 2 then Cd(Q) is infinite.
(2) (Wiles) If d ≥ 3 then #C(Q) = 2.

What about the geometric properties of Cd? The set Cd(C) has the same
cardinality of C for every d ≥ 1. When Cd is viewed as a complex space with
the standard topology, it turns out to be a compact, connected, orientable
real surface (having dimension 1 over C it has dimension 2 over R); its
topological genus is equal to (d−1)(d−2)/2. Therefore, by Wiles Theorem,
Cd(Q) is infinite if and only if the genus of Cd is equal to zero. This is an
instance of the interaction between geometry and arithmetic.

Let now C be an abstract curve. The associated curve over C is, again,
a compact, connected, orientable real surface having a certain genus g ≥ 0;
the genus of C is then defined as g(C) = g. The genus of a curve is its most
important geometric character. If C has a model as a plane curve of degree
d, we have g(C) = (d− 1)(d− 2)/2, consistently with the previous example.
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What can we say about the Q-rational points of an arbitrary curve C? To
have a more complete picture, we extend the question to any number field F ;
notice that, obviously, C(Q) ⊂ C(F ). The following statement is an answer
to our question and illustrates, again, the interplay between geometry and
arithmetic.

Theorem 2. Let C be a curve of genus g over Q.
(1) If g = 0, 1 then there exists a number field F such that #C(F ) =∞.
(2) (Faltings) If g ≥ 2 then #C(F ) is finite for any number field F .

It is hard to over-estimate the importance of the second part, which is a
famous Theorem of G. Faltings, known also as the Mordell Conjecture; see
[F83]. After Faltings’s original proof several methods have been applied in
the search for an effective bound on the cardinality of C(F ). Among such
methods, the approach of E. Bombieri and P. Vojta, [B90], [V91], will play
a role later. The departure point here is to place the abstract curve C of
genus g ≥ 2 in a suitable ambient space, other than the projective space,
where some extra structure can be used. Such an ambient space is provided
by the Jacobian variety, JC , of C. Set-theoretically, JC can be defined as
follows

JC = free abelian group generated by the points of C
∼

where “∼” is the linear equivalence, generated by setting equivalent two lin-
ear combinations of points with positive coefficients if there exists a function
on C having one as set of zeroes, and the other as sets of poles (the multi-
plicities of zeroes and poles are the coefficients in the linear combination).
Hence JC(F ) is the free abelian group over C(F ), modulo linear equivalence.

The curve C can be placed in JC via an Abel-Jacobi embedding, as follows.
Fix a point p0 of C, then the Abel-Jacobi embedding, αp0 , maps a point p
of C to the class of p− p0 in JC ,

αp0 : C ↪→ JC ; p 7−→ [p− p0]

and this map is injective (as g ≥ 2). Of course, if p and p0 are F -rational
points of C, the image of p is an F -rational point of JC ,

It is clear from the definition that JC is an abelian group, it is less clear,
but true, that it is a projective variety over Q, whose associated complex
variety has the form Cg/Z2g. This type of projective variety is called an
abelian variety. Its rich geometric structure (where arithmetic, algebraic
and analytic properties are intertwined) has been studied extensively, and
notable results have been obtained about its rational points. Among them
is the famous theorem of Mordell-Weil (1921-1928), which establishes that,
for any number field F , the abelian group JC(F ) has finite rank, denoted by
ρC , so that

JC(F ) ∼= ZρC ⊕ torsion subgroup
and the torsion subgroup is finite. For more on these topics see [HS].
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2. Moduli spaces and uniform boundedness

Faltings theorem is about all curves of genus g ≥ 2. Now, the set of
all such curves turns out to have, itself, a remarkably interesting geometry.
There exists, in fact, a notable algebraic variety, the moduli space of smooth
cures of genus g, denoted by Mg, whose Q-rational points are in bijection
with curves of genus g over Q, up to isomorphism, and the same holds for
its C-rational points. Although the geometric structure of Mg is canonical,
in that it is dictated by how curves vary in families, there is an issue that
makes Mg not the best tool in some applications. Namely, it is not a fine
moduli space.

To explain this point it is better to describe a fine moduli space which
sometimes, as here, replaces Mg for practical purposes. This is the moduli
space, M `

g , of curves of genus g, enriched by a “level-`” structure, with `
some large integer. There is no need to define curves with level-` structures,
it suffices to know they have a fine moduli space, M `

g , defined over Q. This
means that there is a “universal family of curves”, u : Cg → M `

g , and a
morphism onto Mg

Cg
u−→M `

g
p−→Mg,

such that the map p has finite, non-empty fibers, and the fiber of u over every
point x ∈ M `

g(Q) is a curve, Cx := u−1(x), defined over Q and isomorphic
to the curve over Q corresponding to the point p(x) ∈ Mg. The morphism
u : Cg → M `

g is called “universal family of curves” because every family of
curves of genus g with level-` structure can be reconstructed from it by base
change. In particular, every curve of genus g over any field F appears as
some fiber of Cg →M `

g .
Over the original moduli space Mg there cannot possibly exist such a uni-

versal family, because some curves have non-trivial automorphisms (which
disappear when adding a level-` structure); this justifies the need to intro-
duce M `

g .
Apart from its being a fine moduli space, M `

g is similar to Mg as algebraic
variety: they are both connected (and irreducible), have dimension 3g − 3,
and are not projective (not compact in the complex topology); but they
admit a compactification which is itself a fine moduli space for curves with
mild singularities. There is no need to further describe it here.

The general theory of moduli spaces provides also a “universal Jacobian
variety”, v : Jg →M `

g , whose fiber over the point x is the Jacobian, JCx , of
the fiber, Cx, of u over x. There is even a universal Abel-Jacobi mapping,
expressed as follows

αg : Cg ×M`
g
Cg −→ Jg.

The morphism αg glues together all the Abel-Jacobi maps of the single
curves; in other words, if Cx is the fiber of u over the point x, and p0 ∈ Cx,
then the restriction of αg

(αg)|p0×Cx
: {p0} × Cx −→ JCx
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is the Abel-Jacobi map, αp0 , of the curve Cx with fixed point p0, defined
earlier. More details can be found in [GIT].

The fact that all curves of genus g ≥ 2, over all our fields, are so well or-
ganized in a unique algebraic variety elicits the question on whether rational
points on curves be also well organized. If F is a number field, by Faltings
Theorem every such curve has only a finite set of F -rational points; if these
sets were well organized, they might even have bounded cardinality. The
following is a well known, open conjecture addressing this type of problems.

Conjecture 1 (Strong Uniformity Conjecture). For every g ≥ 2 there exists
a number N(g) such that, for every number field F ,

#C(F ) ≤ N(g)
for all but finitely many curves C of genus g over F .

Notice that the conjecture will be trivially false without the last phrase
allowing finitely many exceptions, which must depend on the field F .

The last years have seen important advances around these issues; see
[G21] for a survey with an exhaustive bibliography. Most recently, some
remarkable breakthroughs have been obtained by V. Dimitrov, Z. Gao, P.
Habbegger and L. Khüne; see [DGH21] and [K21]. The next theorem sum-
marizes them together.

Theorem 3 (Dimitrov-Gao-Habbegger, Khüne). For every g ≥ 2 there
exists a number c(g) ≥ 1 such that for every curve C of genus g over a
number field F the set of its F -rational points satisfies

#C(F ) ≤ c(g)1+ρC ,

where ρC = rkJC(F ).

The number c(g) depends only on g. By the Mordell-Weil theorem, ρC
is finite, but it may depend on F , or on the degree of F ove Q. The proof
is based on extending over the moduli spaces the approach described ear-
lier to prove the Mordell conjecture. As illustrated, the theory of moduli
spaces provides universal families of curves, universal Jacobians, and uni-
versal Abel-Jacobi maps, and hence a unified setting to treat rational points
simultaneously for all curves of given genus, over any field. There is much
more to the proof in terms of new tools and ideas which is not described here,
an important example is the Betti map for abelian varieties, of [ACZ20]; a
detailed expository account is in [G21].

3. Varieties of higher dimension and uniformity

Not much is known about rational points over number fields of varieties
of higher dimension. But there is a connection between their distribution
and their uniform boundedness on curves.

To be able to illustrate this connection, the property ensuring that a
curve has only finitely many rational points, i.e. having genus at least 2,
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needs to be generalized to arbitrary dimension. This requires looking at
the cotangent bundle of the variety V , a vector bundle of rank equal to the
dimension of V ; its determinant is a line bundle called (for good reasons)
the canonical bundle of V .

A curve has genus at least 2 if and only if its canonical bundle is “big”,
in the sense that some high power has enough sections to realize a model
of the curve in projective space. This concept can be defined for varieties
of any dimension: a variety V is of general type if some high power of its
canonical bundle has enough sections to realize a model for a dense open
subset of V in projective space. A curve is of general type if and only if its
genus is at least 2.

For example, projective spaces and abelian varieties are not of general
type. On the other hand, if V ⊂ Pn is the zero locus of a polynomial of
degree d, then V is of general type if and only if d > n+ 1.

The topology of a variety V is the Zariski topology, where the closed
subsets are exactly the algebraic subvarieties of V . The analytic topology
is thus finer than the Zariski’s, it has more closed subsets. On a curve, the
only proper Zariski-closed subsets are the finite ones, so one may rephrase
Faltings theorem by saying that if a curve is of general type, then its set
of F -rational points is not Zariski-dense, for any number field F . In these
terms it makes sense to ask whether the same holds for varieties of higher
dimension, and conjecture that the set of F -rational points on a variety of
general type is not Zariski-dense, for any number field F . This conjecture,
attributed to E. Bombieri, S. Lang and P. Vojta, is open in all dimensions
greater than 1, and so is the following, stronger conjecture

Conjecture 2 (Strong Lang Conjecture). Let V be a variety of general type
over Q. Then there exists a Zariski closed subset Z ( V such that for any
number field F the set of F -rational points of V not lying in Z is finite.

The connection mentioned at the beginning can now be described. Loosely
speaking, it is the fact that if rational points are not Zariski-dense in vari-
eties of general type, then they are unformly bounded on curves of genus at
least 2. More precisely, Conjecture 2 implies Conjecture 1, as stated in the
following Theorem.

Theorem 4. If the Strong Lang Conjecture holds, then for every g ≥ 2
there exists a number N(g) such that for every number field F , the set of of
curves C of genus g over F such that #C(F ) > N(g) is finite.

This theorem is proved in [CHM97] and [CHM22], using, again, moduli
spaces of curves. The first paper actually stated the theorem, but the proof
only gave, as pointed out by J. Stix, the following weaker result. Assume
the Strong Lang Conjecture, then for every g ≥ 2 there exists a number
N(g) such that, for every number field F , the set of Q-isomorphism classes
of curves of genus g having more that N(g) F -rational points is finite. Now,
two curves may be isomorphic over Q but not over Q and, as illustrated,
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the rational points of the moduli spaces Mg and M `
g parametrize only Q-

isomorphism classes. Therefore, in [CHM22], another type of moduli spaces
of curves had to be introduced to account for this elusive arithmetic issue.
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