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COUNTING RATIONAL POINTS ON ALGEBRAIC CURVES 

Abstract. We describe recent developments on the problem of finding examples of 
algebraic curves of genus at least 2 having the largest possible number of rational 
points. This question is related to the Conjectures of Lang on the distribution of 
rational points on the varieties of general type. 

1. The question 

To formulate our main question let us fix the field K and consider curves (that 
is, smooth, irreducible, projective, algebraic curves) having given genus g > 2, then our 
challenge is 

How many K-rational points con a curve of genus g defined over K have? 
This very naive question was asked by J. Harris, B. Mazur and myself for the first 

time during the Summer of 1993, for the reasons explained in the following section. At that 
time, as we found out, there were very few examples of curves with many rational points. 
The record holding curves in low genus over the rational numbers had been discovered by 
Brumer, they had 144 points in genus 2 and 72 points in genus 3. This paper will report 
on the progress that has been made on this and on other related subjects. 

2. Motivation: Lang conjectures and Uniformity conjectures 

Special interest in the question described above is a consequence of results obtained 
in [2]. One goal of such a paper is to prove that the Lang Diophantine conjectures are 
directly related to the Uniformity conjectures. 

The Lang conjectures try to generalize Faltings' Theorem (that a curve of genus at 
least 2 has finitely many rational points) to varieties of higher dimension. Here are the 
statements of two of them (maybe the best known among ali). 

WEAK LANG CONJECTURE. Let X be a variety of general type defined over 
K. Then the set of K-rational points of X is not dense in X with respect to the Zariski 
topology. 
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Of course for the above statement not to be obviously false, we must assume that 
X has positive dimension. Also we use the terminology "variety of general type" for 
irreducible and reduced varieties only. Recali that a smooth variety X is of general type if 
some power of its canonical bundle has enough sections to effect an embedding of some 
open subset of X in projective space. A general variety is said to be of general type if 
some desingularization of it is of general type. For example, a smooth curve is of general 
type if and only if it has genus greater than 1. Therefore the Weak Lang conjecture is true 
in dimension 1. 

STRONG LANG CONJECTURE. Let X be a variety of general type defined over 
K. Then there exists a proper closed (in the Zariski topology) subvariety E of X such that 
for any number field L containing K ali of the L-rational points of X are contained in E 
with the exceptionof' finite ly many of them. 

The only reason why we mentioned these two conjectures in this note, is that they 
imply two "Uniformity" conjectures about the distribution of rational points on curves. 
This is proved in [2], Theorems 1.1 and 1.2, the statements of which we recali: 

UNIFORM BOUND THEOREM. The Weak Lang Conjecture implies that, for every 
number field K and for every g > 2, there exists a number B(K,g) such that no curve of 
genus g defined over K has more than B(K, g) points defined over K. 

We remark that the result of this theorem has been improved by D. Abramovich 
and P. Pacelli (see [1] and [7]) who showed that if such a bound B(K,g) exists, then it 
only depends on the degree of the field extension (over the rational numbers, for example, 
or over any fixed base field), rather than the field itself. The second implication between 
Lang conjectures and Uniformity conjectures is stated in thè following theorem: 

UNIVERSAL GENERIC BOUND THEOREM. The Strong Lang Conjecture implies 
that, for every g > 2, there exists a number N(#) such that for any number field K there 
are only finitely many K-isomorphism classes of curves of genus g defined over K havihg 
more than N(g) K - rational points. 

In [3] we therefore asked: How many rational points can an algebraic curve have? 
Having those two results in mind, the goal is to obtain lower bounds on B(K, g) and 
N(#). In [3] we described a number of methods to approach such questions; some of these 
methods (and in fact the most efficient of them) are due to A. Brumer, N. Elkies and J.F. 
Mestre. This report can be viewed as an update of [3]; it will contain, among other things, a 
list of new and old but standing records, together with a description of a beautiful technique 
due to A. Brumer, that, to my knowledge, has not been described in any paper. The spirit 
with which this paper (as well as [3]) is thought, is to present the various approaches that 
have been used, to stimulate more research on the subject. It is fair to say that the results 
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obtained so far fai! to shed much light on the main questions: how does the number of 
rational points that a curve has vary, as we vary the curve? Is it bounded once we fìx the 
genus and the number fìeld? What if we fìx the genus only? 

We will soon give a better picture of what the state of the knowledge is, regarding 
to these questions. Before doing that, I will explain the reason why the Lang conjectures 
imply the Uniformity conjectures. This will be the content of the coming section; those 
who are only interested in the arithmetic aspect can just skip it. 

3. The Correlation Theorem and its implications in arithmetic geometry 

The two theorem s stated before, that is, the fact that the Lang conjectures imply 
certain Uniformity conjectures, are really corollaries of what we cali the "Correlation" 
Theorem (Theorem 1.3 in [2]), the proof of which occupies most of [2]. This is a purely 
algebro-geometric result, but we gave it such a name because we had in mind to use it 
together with the Lang conjectures. A more detailed explanation of this point of view will 
be given after its statement. 

THEOREM (Correlation). Let X —* B be a proper morphìsm of reduced and 
irreducible varieties whose general fiber is a curve of genus at least 2. Then for n big 
enough, the n-th fiber product of X over B admits a dominant rational map h to a positive 
dimensionai variety of general type W. If X is defined over the fìeld K, then W and h 
are also defined over K. 

Now let us see what is the idea to show, for example, that the Correlation Theorem 
together with the Weak Lang conjecture imply the existence of a (finite) bound on the 
number of rational points that any curve of fìxed genus can have. Let us look at a family 
X —* B of curves of genus 2 or more (we might very well view this as a family containing 
ali isomorphism classes of such curves). Faltings Theorem tells us that each fiber has 
fìnitely many rational points; the "problem" is that, as we vary the fiber, these finite sets 
seem to be completely unrelated and we do not have any control over their cardinality, 
which we consider as a function on the base B. But, if the Lang conjecture holds, we can 
apply it to the variety W of the Correlation Theorem, whose rational points will then ali 
be contained in a proper closed subvariety Z. This will give us in turn that the rational 
points of the n-th order fiber product of X over B are also ali contained in a proper closed 
subvariety Z'. Finally, the algebraic equations defining Z' can then be viewed as functions 
"co-relating" n-uples of rational points of the curves of our family. In this way we get a 
hold of how the sets of rational points vary when varying the fiber, and we can show that 
their cardinality is a bounded function. 
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4. Counting rational points: an update on current records. 

It is clear what the strategy should be to find lower bounds on the numbers B(K, g) 
(the uniform bound) and N(g) (the universal bound). For the first, one simply has to 
eonstruct examples of curves over a certain fìeld, in a way that there are many visible 
rational points. For the second, one has to produce families of non-isomorphic curves, 
(that is, infinitely many curves that are not isomorphic over the algebraic closure of Q) of 
given genus, defined over some number fìeld, with as many rational points as possible. 

First of ali we notice that, as of today, nobody was able to disprove any of the above 
conjectures, that is, nobody could prove that B(K,g) and N('</) are infinite. On the other 
hand, almost ali the results of [3] nave been significantly improved. Now the readers could 
find this either good or bad, depending on their faith in the Lang conjectures! In any case, 
here is the state of the art. 
Bounds on B(K,g) 

B(Q, 2) > 588 (L. Kulesz) 
improving the 144 appearing in [3]. This record holding curve is given by the equation 

y2 =. 278271081<c2(a:2 - 9)2 - 229833600(.r2 - l)2 . , 

It has at least 12 automorphisms (notice that 588 = 12 • 49). It is also of interest to look at 
curves without extra automorphisms, for the case of genus 2 the record is held by C.Stahlke 
with the curve 

y2 = 9703225z6 - 9394700z5 + 152200*4 •+ 1124745z3 + 119526*2 - 42957* + 2061 

which has at least 306 rational points. 
B(Q,3)>112 (W. Keller-L. Kulesz) 

which imprpves a long standing record of 72. The curve is 

y
2 zr 48397950000(.i'2 + l ) 4 - 939127350499(*3 - xf, 

having at least 16 automorphisms. 
B(Q,4)> 126 (N. Elkies) 
B(Q,g) > &g + 12 (LF. Mestre) 

The results above are obtained by a method of J.F. Mestre, for a partial description 
of which the reader can read Section 5.3 of [3]. Also, people used a C-program due to 
N.Elkies to quickly find rational points on curves. 
Bounds on N(g) 

With the exception of the genus 2 case, the bounds in the list below are obtained with 
families defined over cyclotomic extensions of the rationals. For a completely geometrie 
proof of the fact that N(2) > 128, see Section 4 of [3]. 
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N(flf) > 128 > 100 > 126 > 146 > 180 > 192 > 781 

Except for the first one ali these bounds are due to N. Elkies. We also have in 
general 

NO) > 16(g + 1) (A. Brumer) 
This last result will be proved in the next section. Before doing that, I want to 

express my gratitude to Noam Elkies, for his valuable help in compiling the list of records 
above. 

5. The method of A. Brumer 

The result that one obtains using this technique is 

PROPOSITION (Brumer). Let ( be a primitive (g + ì)-th mot of 1, then 

(i)B(Q(<),0)> 16(flr + l) 
(ii) NO) > 16(0 + 1). 

Proof. These bounds are obtained with hyperelliptic curves having big 
automorphism group. Consider the following family of hyperelliptic curves: 

Catb = V(y2-a(xn+.l)2-bxn) 
where a and b are nonzero numbers varying in the chosen base fìeld. (The above notation 
means that Ca,b is given as the locus of points in the piane satisfying the equation 
j / 2 = a(a;n + l ) 2 -6a;n . ) 

The curves Ca,b are therefore hyperelliptic of genus g = n - 1 . The first observation 
is that Ca>b is given as a doublé cover of the projective line IP1, with ramification points lying 
on two concentric rings. Therefore, the curves have two naturai types of automorphisms, 
besides the hyperelliptic involution. Namely, we have the involution that exchanges the 
two rings, which is given by 

X Xn 

and we have the rotations that leave the ramification locus invarianti there are n of them, 
given by 

(x,y)-+(Cx,y) 
where ( is a primitive n-th root of 1. We can therefore conclude that 

|Aut(Ca.6)|> 4(0 + 1) 

and these automorphisms are ali defined over the fìeld Q((). 
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After this preliminary analysis, we start looking for rational points. If we find a 
number m of them (defìned over the rationals, say), by looking at their orbits under the 
automorphism group, we should get 4m(g -f 1) points defìned over Q(£). And now, here 
is the way we approach this problem: for every fixed m — 1,2,3... we want to find a and 
6 in Q such that Ca>b contains m points defìned over Q. 

Now, for each m, our question translates into a linear problem having a and b as 
unknowns, ali we will have to do is to find nontrivial solutions for m as large as possible. 
In fact, if (XÌ, yi) is a rational point of Ca,b for i = 1,...., m, we get a system of m linear 
equations in a and b: 

ijf = a(x? + l)2 + bx? i = 1,...., m. 

Let A be the m x 3 matrix of the coeffìcients of the system: 

I'• :-
A= yf (xf + lf x 

\ ; ; 

then the system has non-trivial solutions if and only if the the rank of A is less than 3. 
Hence the cases m = 1,2 are easily seen to have infinitely many solutions. The 

first interesting case is m = 3; actually, we might very well skip to the case m — 4, which 
gives the proof of the Proposition. The only reason to write down the case m = 3 is 
that it is quite simple and it makes a useful warm-up. We have the condition detA = 0, 
which can be viewed as the equation of a conic in the projective piane PF over the field 
F = K(xi,x2,X3). It is easy to find a Q-rational point on such a conic: just take the 
point yi — x™ + 1 with i = 1,2,3. Such an obvious rational point corresponds of course 
to the uninteresting solution 6 = 0, but its existence guarantees that the conic has infinitely 
many other rational points. This shows that for a generic choice of X\ÌX2ÌXQ in Q there 
exist infinitely many pairs of rational numbers (a, b) such that the curve Ca,b contains 3 
rational points. In fact one can see that there are infinitely many isomorphism classes of 
such curves, so that a first result is that 

NGz)>12G/ + l) 
but one can do better, let us in fact treat the case m — 4 in a similar fashion. 

Now, to impose that the rank of the matrix A be equal to 2, gives two equations in 
J/i > Vi, 1/3, VA that we interpret as two quadrics in the projecti ve space Pj», where F is the 
field F — K(xiìx2ìx3ìX4). In other words, the locus of points (2/1,2/2,2/3,2/4) for which 
rkA < 2 is a curve E obtained as the intersection of two quadrics in projective space; 
this is an elliptic curve (provided that the pair of quadrics is general), and this particular 
curve E has some obvious rational points (in fact 8 of them), namely yi = ±(x™ + 1) with 
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i = 1,2,3,4. Just as in the case ???. = 3, the fact that there are some obvious rational points 
on E (corresponding to degenerate curves Ca,b) implies the existence of other rational 
points, which are obtained by adding the obvious ones on E. We can then conclude that 
for a generic choice of four rational numbers a?i, #2, a?3, x$ there exist rational numbers a 
and b such that the curve Ca& contains at least four rational points {xì^yi) and hence at 
least 16(<7 + 1) points defìned over the fìeld Q(C). This proves the first statement in the 
Proposition. To finish the proof of (ii) we have to show that this method yields infìnitely 
many curves that are not isomorphic over the algebraic closure of Q. For that, notice that 
this construction shows that given 4 generic points a?i, #2, x3 and x± in P Q we can find 
a hyperelliptic curve of type Ca,b having 4 rational points lying over the ajj. Therefore as 
Ca,b varies we find infìnitely many values of the cross-ratio of the set £i,£2,£3,«4- But 
now, if there were only finitely many Q-isomorphism classes of these curves, we would 
only find a finite number of values for the cross-ratio of their rational points, and this is 
impossible, as we have just observed. 
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