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Abstract. A new method to approach enumerative questions about rational curves on algebraic
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1. Introduction

1.1. STATEMENT OF THE PROBLEM

Let be a smooth projective rational surface and let be an effective devisor on
. Let be the closure of the locus of irreducible rational curves. For
general results about the geometry of , we refer to and to .
If has nonnegative self-intersection and is nonempty the dimension of
is known (cf. [K]):

0 : dim 1

The problem that will study here is to compute the degrees

: deg

of these varieties as subvarieties of . Alternatively, is the number
of irreducible rational curves in that pass through 0 general points of . If
is the projective plane 2 and deg , then one also uses the notation

to denote the number of irreducible, rational curves of degree passing through
3 1 general points.
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210 LUCIA CAPORASO AND JOE HARRIS

1.2. TERMINOLOGY AND NOTATION

We will work over the complex numbers. Throughout, the words ‘surface’ and
‘curve’ will refer to projective varieties.
If and are effective divisors (or divisor classes) on a surface, we will say

that if is effective and nonzero.
We will denote by the Hirzebruch surface 1 1 . On each
with 1 there exists a unique curve of negative self intersection, which we

will denote by and refer to as the exceptional curve on . We will denote by
a fiber of the projection 1; the classes of and generate the Picard

group of , with intersection pairing given by

2 ; 1 and 2 0

Another useful divisor class is the class of a complementary section, that is, a
section of the 1-bundle 1 disjoint from . Since 0 and

1, we see that ; so the classes and also generate the
Picard group, with intersection numbers

2 ; 1 and 2 0

For any positive integer , we will denote by the closure
of the locus of irreducible rational curves, having contact of order at least
with at a smooth point of . These varieties will also be referred to a Severi
varieties. We set : deg .

1.3. METHODS AND RESULTS

Until very recently, the basic enumerative problem of determining the degrees
of Severi varieties was unsolved even in the case of 2. In 1989 Ziv Ran [R]
described a recursive procedure for calculating the degrees of the Severi varieties
parametrizing plane curves of any degree and genus (see also [R2]). Recently,
M. Kontsevich discovered a beautiful and simple recursive formula in the case of
rational curves on 2 (see [KM] and [RT] for proofs). Kontsevich’s method was
based on his description of a compactified moduli space for maps of 1 into the
surface 2; others (e.g., [DI], [KP] and [CM]) were able to use the same
method to derive similar formulas in the case of other surfaces for which a
Kontsevich-style moduli space existed, such as 1 1, the ruled surface

1 and del Pezzo surfaces.
It was our feeling that the reliance of Kontsevich’s method on the existence of

a well-behaved moduli space was not essential. We were especially interested in
whether a similar formula might be derived for the Hirzebruch surfaces .
In [CH], we succeeded in recasting the Kontsevich method so as to remove

the apparent dependence on the existence of a moduli space: as we set it up, it
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ENUMERATING RATIONAL CURVES: THE RATIONAL FIBRATION METHOD 211

was necessary only to understand the degenerations of the rational curves in the
one-parameter families corresponding to general one-dimensional linear sections of

. The resulting ‘cross- ratiomethod’ allowed us to derive a complete recursion
for all divisor classes on the ruled surace 2 – that is, a formula expressing

in terms of for - and a closed-form formula for certain divisor
classes on the ruled surfaces for any . (In fact, compactifications of the moduli
space of maps 1 do exist for these surfaces, but they contain in general many
components, only one of which parametrizes generically irreducible rational curves
and the others of which may have strictly larger dimension. Kontsevich’s method
can be carried out in these cases, as was done by Kleiman and Piene [KP]; but at
present we do not see how to use the resulting formulas to enumerate irreducible
rational curves.)
However, we were unable to go significantly beyond this point: a similarly

derived formula in [CH] for the degrees of Severi Varieties on
espresses not solely in terms of for , but also in terms of the
degrees of the Severi varieties parametrizing curves with a point
of -fold tangency with a fixed curve . For example, if 3 , then
is expresses as a function of and of 2 , where 2 is the number
of irreducible rational curves in that are simply tangent to and pass through
the appropriate number (that is, 0 1) of general points of 3 . A complete
recursion in this case would have required a similar analysis of linear sections of
the Severi varieties 2 , which in turn would have necessitated an analysis of
Severi varieties parametrizing curves with more complicated tangency conditions.
In the end, it seems that one way or another we need to deal with the degrees

of these ‘tangetial’ loci as well. This difficulty led us to the discovery of a compu-
tational technique different from and simpler than the cross-ratio method, which
we will describe in the present paper. It involves an analysis of the same basic
object as the cross-ratio method – that is, the one-parameter family of
rational curves through 0 1 general points of and their limits – but extracts
more information from it. It is based on a description of the Néron–Severi group
of a minimal desingularization of (we will therefore refer to it as the ‘rational
fibration method’). The main advantage of this technique for our present purposes
is that we are in fact able to compute the degrees of the tangential loci involved; at
least in all cases that we studied. It also yields other related formulas, such as the
number of irreducible rational curves having a node at a given general point
and passing through 0 2 other general points.

1.4. CONTENTS OF THIS PAPER

In the following section we will describe the rational fibration method in general
setting. In the succeeding sections we will apply it in the cases 2

2
and 3 . In the first of these cases, we obtain another (simpler) proof of
Kontsevich’s formula, as well as some related formulas derived by Pandharipande
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212 LUCIA CAPORASO AND JOE HARRIS

[P]. In the second, we will recover the general recursion formula found originally
in [CH] for degrees of Severi varieties on 2 . Finally, in the last section we derive
a complete set of recursions for 3 , the first case for which the cross-ratio method
does not give a complete answer.
We have tried to keep this paper relatively self-contained; in particular it should

be intelligible to a reader unfamiliar with [CH]. We will, however, have to appeal
to Chapter 2 of [CH] for proofs of some of the basic assertions about the local
geometry of Severi varieties and the families of curves they parametrize.

2. The rational fibration method in general

2.1. OBJECTS AND MORPHISMS

As we indicated in the introduction, the rational fibration method, like the cross-
ratio method, involves studying a suitable general one-parameter family of rational
curves. To set it up, first let be a smooth rational surface and an effective
divisor on . We will assume that has nonnegative self-intersection and that the
Severi variety , so that in particular we have dim 0

1. Now, choose 0 1 general points 1 0 1 and
let be the closure of the locus of points corresponding to
irreducible rational curves passing through these points. Equivalently, if for any
point we let by the hyperplane of points corresponding to curves
passing through , will be the one-dimensional linear section of

0 1

1

Now, let be the family of curves corresponding to .
Consider the normalization of to arrive at a family

over a smooth curve , whose general fiber is isomorphic to 1.
Next, we apply semi-stable reduction (whichwe should rather call ‘nodal reduc-

tion’, since our curves have genus zero): after making a base change and
blowing up the total space of the pullback family , we arrive at a family
: whose total space is smooth, whose general fiber is a smooth rational

curve and whose special fibers are all nodal curves. In fact, a base change will turn
out to be unnecessary in each of the three cases considered below – the minimal
desingularization of the total space already has this property – but this is
not relevant, since even a superfluous base change will not affect the subsequent
calculations. We will denote by : the composite map

:
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ENUMERATING RATIONAL CURVES: THE RATIONAL FIBRATION METHOD 213

Notice that is a generically finite map, whose degree is equal to the product
of the degree of the map times the number of irreducible rational curves
in the linear series passing through the points 1 0 1 and (that is,
the degree of the Severi variety ).
Here is a diagram of the basic objects and morphisms we have introduced:

Figure 1.

2.2. OUTLINE OF THE METHOD

As we indicated, our method involves calculating in the Néron–Severi group of the
total space of our family. This is motivated by a simple observation: given any
two line bundles and on , we have

deg

Thus, in order to derive a formula for , we want to compute intersection
numbers in the Néron–Severi group of . For example, if is the projective plane
2 we can take 2 1 . Then 2 ; so if we can compute

2 we get a formula for .
What makes is possible to perform such calculations is the fact that expresses
as the total space of a one-parameter family of generically smooth rational

curves, so that to determine the class of a given divisor it is enough to know its
degree on each component of each fiber of . More precisely, the Picard group of
will be freely generated by the class of a fiber, the class of any section A of ,

and the classes of all the irreducible curves contained in fibers of and disjoint
from . Moreover, in terms of these generators the intersection pairing on Pic
is (except possibly for the self-intersection of ) easy to describe. This means two
things: first, we can express a given divisor class as a linear combination of these
generators once we know its degree on each component of each reducible fiber and
on ; and second, having expressed two divisor classes as linear combinations of
these generators, we can readily compute their intersection number.
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214 LUCIA CAPORASO AND JOE HARRIS

The method we will apply in each case thus consists of five steps:

First, we need to describe the reducible fibers of ; that is (given that
will be in practice just the normalization of the base of our original

family ), the set of reducible curves in the linear series through the
points 1 0 1 that are limits of irreducible rational curves through
these points, and the branches of at each one. The characterization of such
curves is straightforward in the case of 2 by simple dimension-counting.
In the case of with 2 it is less obvious, since in contrast with the
case of 2 most reducible curves through the points 1 0 1 whose
components are all rational are not limits of irreducible rational such curves;
the answer is worked out in [CH]. In either case the number of such fibers will
be known inductively.
Second, we need to describe the local structure of the family near
each reducible fiber; specifically, we need to know whether is smooth or if
we have to blow up. This likewise is straightforward in the case of the plane,
where in fact is smooth. It is more interesting in the case of the Hirzebruch
surfaces , where for 3 we see that will indeed have singularities;
again, this is worked out in [CH] andwewill refer there for the relevant results.
Third, we choose a basis for the Néron–Severi group of , and calculate the
intersection pairing on these classes.
Fourth, since we know the images in of the components of reducible fibers
of : , we can calculate the degrees on all such components of the
pullback of any line bundle on ; and
Fifth, we are able therefore to express the intersection numbers
for pairs Pic of line bundles on .

Evidently, the particulars of this process will depend on and ; for the moment
we shall just fix some notation and make some preliminary observations. First, for

we use the common notation : 1 to denote the fiber of over .
The class in NS of such a fiber is denoted by .
Secondly, recall that our family parametrizes curves through certain base points.

We pick two of them, and , and we denote by and the corresponding
sections of . The following relations are clear:

2 0 and 1

Notice also that by symmetry 2 1
2

2 which will be useful to compute
the left-hand side. In fact is supported on exactly those fibers where and
lie on different components, the number of which we will be able to count.
One further note: the description above of the Néron–Severi group of as

generated by the classes of and components of reducible fibers assumes that
the base of the family is connected, which we will not always know in practice.
This assumption is not essential, however: in case has irreducible components

comp4059.tex; 8/07/1998; 12:09; v.7; p.6



ENUMERATING RATIONAL CURVES: THE RATIONAL FIBRATION METHOD 215

1 we simply have to replace every multiple of in the formulas below
by a suitable linear combination of fibers lying over points of . As the reader
may verify, this does not alter the outcome of the subsequent calculations.

3. Plane curves

Here we study the cases 2. If and are divisors on 2, we denote their
degrees respectively by and . Since a divisor class in the plane is determined
by its degree, we will introduce the notation : .
We have that 0 3 1, so we choose general points 1 3 2

2,
let be the locus of curves in containing the points , and proceed
as described in the preceding section. To describe the resulting family of curves, let
be the locus of parametrizing degenerate curves (that is, curves that are

reducible or have singularities other than nodes). Since our curve will
intersect only at general points of components of , we may apply the results
of [DH] and [H] to conclude the following
A. Any fiber of is either

1. an irreducible curve with exactly 1 2 2 nodes;
2. an irreducible curve with exactly 1 nodes and a cusp;
3. an irreducible curve with exactly 2 nodes and a tacnode;
4. an irreducible curve with exactly 3 nodes and an ordinary triple point;
or

5. a curve having exactly two irreducible components 1 2, of degrees 1
and 2, with exactly 1 1 1 2 2 and 2 1 2 2 2 nodes
respectively, and intersecting transversally in 1 2 points.

B. In cases 1, 3 and 4, the curve is smooth at and the family is
smooth at the unique point of lying over . In case 2, has a cusp at but
the family is still smooth at the unique point of lying over .

C. In case 5 the curve has 1 2 smooth branches at (corresponding to defor-
mations of smoothing any one of the 1 2 nodes of coming from a
point 1 2 of intersection of 1 and 2). At each point of lying
over the fiber of the family has two smooth rational components
meeting transversally at one point (more precisely, it is the normalization of

at the remaining 1 1 1 2 2 2 1 2 2 2 1 2 1
nodes of ), and smooth total space.

D. Finally, if 2 is any curve of type 1–5 passing through the points
1 3 2, then conversely ; that is, is a limit of irreducible
rational curves through 1 3 2.

We see in particular that the total space is smooth and that the fibers of
are all nodal, so that no further base changes or blow-ups are necessary; that is, we
may take (as we stated earlier) and . Note also that every reducible
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216 LUCIA CAPORASO AND JOE HARRIS

fiber of has precisely two irreducible components, meeting transversally at one
point.
We shall call a reducible fiber of a fiber of type J and we shall denote by
the subset of points of such that the corresponding fiber is of type J, that

is, reducible. (This new piece of terminology probably seems pointless, but it will
be useful in the sequel.) For any , we then denote the two irreducible
components of the fiber over by 1 and 2 . We shall always denote by 1 the
component containing the point 1. The picture of is thus:

Figure 2.

Let be the class of . We denote by 1 2 the number of all such
fibers, for any given decomposition 1 2. To determine 1 2 , note
first that if 1 2 is any reducible curve, the class of , then
can contain at most 0 of the 0 1 3 2 points 1 3 2. Since

0 1 0 2 0 1

it follows that each component must contain exactly 0 of the points
1 3 2. Thus, to specify such a curve,we havefirst to choose a decomposition
of the set 1 3 2 into disjoint subsets 1 2 of cardinality 0 1
and 0 2 respectively, with the point 1 1; and then to choose, for each
, one of the curves containing . The number of such curves
is thus

0 2

0 1 1 1 2

and since we have seen there are 1 2 1 2 points of lying over each
point corresponding to a curve of this type, we have
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ENUMERATING RATIONAL CURVES: THE RATIONAL FIBRATION METHOD 217

1 2 1 2 1 2
0 2
0 1 1

1 2 1 2
3 3
3 1 2

Note that by a simple dimension count, any of the curves passing
through 0 of the points 1 3 2 will be irreducible and nodal. By a
standard further argument as in Lemma 2.1 of [CH], we see that any pair 1 2
of such curves will intersect transversally, so that the union 1 2 will
indeed be a curve as described in (5) above.
This completes the first two steps in the general method. Next, we give a basis

for the Néron–Severi group NS . We now choose as a system of generators
for NS the class of the section of : coming from the base point

1 of our family; the class of a fiber of the map : , and the classes
2 . Most of the pairwise intersection numbers of these classes are readily

given: we clearly have

1
2 0

2 0

2 0

2 2 0 ; and

2 2 1

In fact, there is only one intersection number that is not evident: 2. To compute
it we choose a base point , so that determines a second section of

disjoint from . Since the base points 1 3 2 of our family are
general points in the plane, by symmetry we have 2 2; hence we can write

2 2 2

To compute the right-hand side, let

such that 2

be the collection of points in over which the sections and meet different
components of the fiber; let be the cardinality of . For every
and have the same intersection number with each component of the fiber .
For , on the other hand, we have 1 1 and 2 0, while

1 0 and 2 1. It follows that the classes

and 2
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218 LUCIA CAPORASO AND JOE HARRIS

have the same intersection number with every component of every fiber of ,
and so must differ by a multiple of the class of a fiber: that is ,

2

for some integer . In fact, must be equal to 2 by symmetry, but that is
irrelevant in any case: squaring both sides, we find that

2 2
2

and hence

2
2

Thus, it remains only to determine the number of reducible fibers of
lying over curves in our original family in which the points and lie in different
components. We can do this in exactly the same way as we determined the total
number of reducible fibers: the only difference is that now we want to count only
decompositions 1 2 in which 1 1 and 2 2. We

thus replace the binomial coefficient 0 2
0 1 1 in the formula for 1 2

above with 0 3
0 1 1 and sum over all pairs 1 2 with 1 2 to

obtain

1 2

1 2 1 2
0 3
0 1 1

This completes the third step of the process.
Now let Pic 2 be any line bundle on the plane, and write the class of its

pullback to as a general linear combination of our chosen generators

2

We will denote by the third term on the right, that is, we set

: 2 ;

this is not immediately useful, but will become so in the succeeding calculations.
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We now intersect both sides of the above equivalence with each of our chosen
generators ofNS to determine the coefficients and . First, by intersecting
both sides with we find that

Next we intersect with : we have

0

since is constant on the curve ; and hence

2
2

Finally, to determine we naturally intersect both sides with the class of 2 ; we
find that

2 2

Thus, in sum,

2 2 2

For the final step in the process, we evaluate the self- intersection of : we
find

2
2

2
2
2

1 2

1
2 1 2 1 2

0 3

0 1 1
2

1 2 1 2
0 2

0 1 1
2
2

Applying this in case 2 (1) and recalling that 2 1 2 , we
have

1 2

1 2
2
1 2
2

3 4

3 1 2
2
1
2
2

3 3

3 1 2
;
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and expanding out 2
1 2

2 and using the symmetry with respect to 1 and
2 we get the well known recursive formula of Kontsevich

1 2

1 2
2
1
2
2

3 4

3 1 2
1
3
2

3 4

3 1 3

Remark. In parts (A) and (B) of the statement of results quoted from [H] and
[DH], we describe completely all curves in the family having other than
nodes, and the local geometry of along each. This is in fact necessary

to describe the Néron–Severi group of , since even in those cases where a fiber is
irreducible it is a priori possible that will be singular along such a fiber, giving
rise to a reducible fiber of . Looking back over the preceding calculation,
though, we see that even if this did happen, it would not affect the outcome of the
calculation, as long as the non-nodal singularities did not occur at base points of
the family: while the resolution of the singularities of would create additional
curves on independent in NS , the sections and and any line bundle
pulled back via from 2, would all have degree 0 on these curves, and so the
relations of linear equivalence above would still hold.
Thus it was only necessary to observe that every curve singular at a base point

is an irreducible curve with nodes. Since this statement will also hold for the
families of curves on that we will be considering in the following two sections,
we will in the sequel omit the description of the fibers other than reducible
ones.
As another application, we give a formula for the number 2 of plane,

irreducible, rational curves 2 of degree passing through 3 2 given
general points and tangent to a given general line in the plane. Equivalently,
this is the degree of the subvariety 2 of defined as the closure of the
locus of irreducible rational curves that are tangent to in 2 at a smooth point of
[X] (notice that 2 has codimension 1 in ). To calculate this number, let

1 be the preimage of under . Then is an irreducible smooth
curve, and the morphism : restricts to a finite morphism : of
degree on . Moreover, the set of fibers of tangent to – that is, such
that the intersection has cardinality strictly less than – corresponds to the
set of curves in our original family tangent to . Thus, 2 is equal
to the degree of the ramification divisor of the morphism .
Now, using the adjunction formula, this degree is given by

2 2 1 2
2 1

where is the relative dualizing sheaf of the family. Since we have already
calculated the class of 2 1 above, it remains only to determine the class of

in similar terms, and then we will be able to evaluate this expression. We
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do this as for 2 1 : we first express as a linear combination of the
generators:

2

and then intersect both sides with the generators of NS to determine the coef-
ficients. First, intersecting with , we find that

2

and then intersecting with and using the fact that 2 we find that

2

Finally, we have 2 1 , and it follows that the coefficients
are all 1. Thus, in sum,

2 2
2

We finally obtain a formula first found by Pandharipande [P]:

2
1 2

1 2 1
2
2

3 4

3 1 3

1 2

1 2 1 2 1 2
3 4

3 1 2

2
2 2

3 4

3 1 3

This technique can also be used to recover another formula of Pandharipande,
for the degree of the closure of the locus of irreducible rational curves of degree
having a cusp. To obtain this, we simply apply Porteous’ formula to the differential

: 2

of the map : 2; the classes on involved have already been
calculated. It should also be possible to determine is similar fashion the degrees on
of all the divisor classes introduced in [DH], and in particular obtain formulas

for the number of irreducible rational curves through 3 2 points and having a
tacnode, or the number of irreducible rational curves through 3 2 points and
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having a triple point, etc. At this point, however, we conclude our study of the plane
and turn to the Hirzebruch surfaces.

4. The general recursion for 2

Let now 2 . Let and be the curves on 2 described in Section 1. We
apply our method exactly as before: for any effective divisor class on with

, we choose 0 1 general points 1 0 1 of and consider
the family of curves passing through the points ; we let

and be derived from this family as in the general set-up.
We first describe the various types of reducible fibers that our family

has. The following analysis is based on Propositions 2.1, 2.5, 2.6 and 2.7 of [CH].
In particular, the various types of degenerations can be classified as an application
of Proposition 2.5, and the singularities of at the points corresponding
to each as an application of Proposition 2.6. Moreover, Proposition 2.7 assures us
that, just as in the case of 2, the normalization is smooth and so the total space
coincides with . In particular, we see that no irreducible component of any

fiber of is mapped to a point by .
With that said, we have the following calssification of irreducible fibers of

:

Type J. Fibers having two smooth irreducible components 1 and 2, meeting
transversally at one point, such that with 0 and not equal to
E. We will always assume that 1. For any decomposition 1 2
we have that the number 1 2 of fibers of type J such that is

1 2 1 2 1 2
0 2

0 1 1

The factor 1 2 appears because, just as in the case of 2, if
corresponds to a curve of type J, in the normalization map : the fiber
over contains exactly 1 2 points (here we are using Proposition 2.6
of [CH]).
We let be the subset of points in whose fiber is a curve of

type .

TypeG. Fibers having two smooth irreducible components 1 and , meet-
ing transversally at one point, such that and 1 is simply
tangent to . Clearly 1. The total number of such fibers will not matter
in the subsequent calculation.
We let be the subset of points in whose fiber is a curve of

type G.
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Type H. Fibers having three irreducible components 1 2 , such that
and , with 0 and 1 2 (again, we

will choose the labelling so that 1 always). By Proposition 2.6 of [CH],
if is a point corresponding to this type of curve, then the fiber of
over contains exactly 1 2 points. Hence the total number of
fibers of typeH that correspond to a given decomposition 1 2
is

1 2
1 2

1 2 1 2
0 2

0 1 1

And just like for the other types, we define to be the subset of points of
parametrizing curves of type H.

The picture of thus looks like this:

Figure 3.

Now we choose the following set of generators for the Néron–Severi group of

2 2

The following relations are obvious

2 2
2

2
2 1; 2 2
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and the intersection number of with any generator other than and is zero.
We compute 2 by the same argument as used in the preceding section. We

define

such that 2

and we let . Then we have

1 2

1 2 1 2
0 3

0 1 1

Similarly, we let and to be defined exactly as in the preceding section, and
notice that the value of is expressed by the same formula that we had in the
plane. We obtain

2 2 2

for some integer . Hence

2 2
2

Let now Pic 2 . We want to compute the coefficients of as a linear
combination of the chosen generators of NS . The number of generators being
quite large, it is now convenient to use the following notation: if is any of the
chosen generators, we shall denote by the coefficient of with respect
to . We shall then write

where is defined just as in the preceeding section, and similarly

and

2 2

We could now easily compute all the missing numbers in term of intersection
numbers on 2 ; only we don’t really need it. All we need is the expression for ;
in fact we shall obtain a formula for by using the fact that 2 2 .
The following numbers are obtained in a straightforward way, just as in the case of
2.

2 2
2

0 for any generator of type G

2 2
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And for any curve 1 2 of type H such that we have

2 and 2 2 2

In conclusion, we get the same recursive formula that we obtained in [CH]:

THEOREM. For any effective divisor on 2 with ,

1
2

1 2

1 2 1 2

0 3

0 1 1
1 2

0 3

0 1 2
2

2

1 2

1 2 1 2

0 3

0 1 1
1 2

0 3

0 1 2
2

2

5. The general recursion for 3

Let now 3 and let and be as in 1.2. Let be an effective divisor class
on with . We also introduce in this case two additional subvarieties

of the linear series : the subvariety 2 of defined to be the closure
of the locus of irreducible rational curves tangent to at a smooth point ;
and the closure of the subvariety of parametrizing irreducible curves
having a smooth point of intersection multiplicity 3 with . Their degrees will be
denoted by 2 and 3 respectively.
Nowwe proceed as before:we choose 0 1 general points 1 0 1

of and consider the family of curves passing through the
points ; we let and be derived from this family as in the general
set-up. Our method will again provide us with a recursive formula for the degree
of , but there will be now an important difference: the recursion will involve
as well the degrees 2 and 3 of the varieties 2 and . More
precisely, we are going to obtain three formulas:

(a) A formula expressing in terms of and 2 , where
and ;

(b) A formula expressing 2 in terms of 2 and 3
, where and ; and

(c) A formula expressing 3 in terms of and 2 , where
and .
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We now describe the various reducible fibers of . Again we use the
results of [CH], in particular, Propositions 2.5 and 2.7 for the geometry of the
normalization map and of the total space . By 2.7 we have that
is smooth at points lying on fibers corresponding to types J G and H below; in
other words, no irreducible component of a fiber belonging to one of these types is
mapped to a point of F3.

Type J. (This is the exact analog of the type J for 2 .) Fibers having two
smooth irreducible components 1 and 2, meeting transversally at one point,
such that with 0 and not equal to . We will always assume
that 1. For any decomposition 1 2 we have that the number

1 2 of fibers of type J such that is

1 2 1 2 1 2
0 2

0 1 1

We have the coefficient 1 2 because, just as in the case of 2, if
corresponds to a curve of type J, in the normalization map : the
fiber over contains exactly 1 2 points.
We let be the subset of points in whose fiber is a curve of

type J.

TypeG. Fibers having two smooth irreducible components 1 and , meet-
ing transversally at one point, such that and 1 has a smooth
point of contract of order 3 with . Clearly 1. The total number of such
fibers is 3 .
We let be the subset of points in whose fiber is a curve of type
.

TypeK. Fibers having four irreducible components 1 0 and 2 form-
ing a chain in the given order, that is 1 0 0 2 1
so that 2

1
2
2 1 and 2 2

0 2. As usual, we have that
1 . Moreover, and 1 is tangent to ; 0 is a

point of (namely, the point 2 , in fact the exceptional curve 0
arises from the fact that the surface is singular at the point corresponding
to 2 (cf. Proposition 2.7 in [CH]). Let be the subset of whose
corresponding fiber is a curve of typeK. Finally, for any given decomposition

1 2 we have that the number 1 2 of corresponding
fibers of type K is given by

1 2 2 1 2 2
0 2

0 1 2
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K . These are just like the fibers of type K with the only difference that the
point belongs to the curve that is not tangent to , that is, we have now

2 tangent to . We denote the irreducible components of such a fiber
1 0 and 2, forming a chain in the given order, so that

1 0 0 2 1

and

1
2

2
2 1 and 2

0
2 2

Moreover, and 0 is a point of (namely, the point
1 . We define as usual to be the subset of whose corresponding

fiber is a curve of type K . Finally we see that the number 1 2 of such
fibers is

1 2 1 2 2 1
0 2

0 1 1

TypeH. Fibers having four irreducible components 1 2 3 and , such
that and , with 0 and 1 2 3

. In Proposition 2.6 of [CH] we proved that if is a point
corresponding to this type of curve, then the fiber of over contains exactly

1 2 3 points. Hence the total number of fibers of type H
that correspond to a given decomposition 1 2 3 is given
by

1 2 3

1 2 3 1 2 3

0 2

0 1 2 0 2

And, as usual, we define to be the subset of points of corresponding to
curves of type H.

Here is a picture displaying the various types of reducible fibers in our family:
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Figure 4.

Now we choose the following set of generators for the Néron–Severi group of :

2 2 0

2 0 3 2

The following relations are obvious:
2 2

2
2
2 2

2 2
1

2
2 1;

2 2
0

2
0

2 2;

2 3

and the intersection number of with any generator other than and is zero.
It will also be convenient to have a symbol denoting the class in NS of all

generators of the same type. Therefore we introduce the classes

: 2 : 2

: 0 : 0 2 : 2

: 0 : 0 2 : 2
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and

: 3 : 3 2 : 2

We now use this notation immediately to write the class of the relative dualizing
sheaf of the family : . We have

2 2
2 2 0 3 2

0 2 3 2 2 3 2 2

Nowwe compute 2. Let be a basic point different from , then determines
a section such that 0. As before, we get 2 2 2 and we
can compute the right-hand side by expressing the difference as a linear
combination of components of fibers. So, let be the number of fibers of type J
such that lies on a different component than . We have

1 2

1 2 1 2
0 3

0 1 1

Now let be the number of fibers of type K such that lies on a different
component than ; we have

1 2

2 1 2 2
0 3

0 1 2

We define analogously, and obtain

1 2

1 2 2 1
0 3

0 2 2
;

and similarly , for which we have

1 2 3

1 2 3 1 2 3

0 3

0 1 1 0 2 1

(where we will denote by the multinomial ! ! ! !).

Let be the subset of consisting of those points such that is a fiber
of type J for which and lie on different components. Obviously contains
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points. If we write 1 2 (hence 1 and 2 ).
In a completely analogous fashion we define , and . If then
we write 1 0 2 and similarly if is in or . We
therefore have that if (respectively, and ), then lies on
2 (respectively on 2 and 2 ). Now we have

1 3 1 2 0

3 1 2 0 1 2

where is some integer that is irrelevant for our computation. Finally we obtain

2 2 6
2

Now, for any Pic 3 , we have

2

and

for any in . These are obtained, in the given order, from the products
0 and

Let us fix a fiber of type J which we write as 1 2 as usual; let 2 be the
class in 3 of 2 . From the product 2 2 we see that

2 2

Fix now a fiber of typeK, which we shall write as 1 0 2 ,
such that the image in 3 has corresponding divisor classes 1 for 1 and 2 for
2 . The relation 1 1 implies

1 ;

the above formula together with gives

0 2 1 2 ;

and the two previous formulas combined with 0 0 gives

2 3 1 3 2
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With completely analogous notation and procedure, for a fixed fiber of typeK
we have

0 1

2 1 2

2
3 1 3

Finally, fix a fiber of type H such that the class in F3 corresponding to is ;
again the same procedure yields

1

3 1 3

and

2 1 2

We shall also use the following short notation:

6
2

( )

Now we want to compute the intersection product on of the pull-back of two
line bundles and on 3 . We easily have

2

And now a completely straightforward computation yields

1 2

1 2 2 2

1 2

1 2 1

2 3 2
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1 2

1 2 2 1 2

2 3 2 2

and
1
2

1 2 3

1 2 3

1

1 1 1

2 2 3 3

In the last formula, we divide by 2 because 2 and 3 are not distinguished
from one another.
Now we are ready to write down the three formulas that we mentioned at the

beginning of this chapter. Before we carry out the computation, we can explain
briefly the procedure. We have to look at the relation and keep track of the
Severi degrees on which the characteristic numbers depend.

(a) The first relation we shall use is

3

This will give a formula expressing

in terms of and 2 with

and

This is clear; since 0 if we apply to the Severi
degree 3 disappears.

(b) Now we need a formula for 2 . We will imitate what we did to compute
the degree of the variety of rational curves tangent to a fixed line in the plane. We
define to be the class of the irreducible component of 1 that dominates .
Then we have

3 2 0 2 0

This is obtained as follows: for the coefficient of we notice that for any
we have 0, while on the other hand 3. The same
procedure yields the remaining terms.

2
2
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This will give a recursion expressing

2 in terms of 3 and 2 with

and

(c) The third and last step will be to find a formula for 3 . This will
be done by using

0

which, as one can imply using , will give

3 in terms of and 2 with

and

Example. If 2 we have on one hand that 3 2 , and
on the other hand our formulas give

3 12 2 3 2 25 2

14 2

Here are the relevant numbers for the case 2 .

105 2 14 2 2

7 21 60

2 13

so that

2 49

and we can conclude that 2 69.
We will now state our main result for 3 :

THEOREM. Let Pic 3 . Let be the number of irreducible rational
curves in that pass through 0 general points. Then

1
3

1 2

1 2 1 2

0 3

0 1 1
1 2

0 3

0 1 2
2

2
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1 2

2 1 2 2

0 3

0 1 2
1 2

0 3

0 1 3
2

2

1 2

1 2 2 1

0 3

0 1 1
1 2

0 3

0 1 2
2

2

1
3

1 2 3

1 2 3 1 2 3

0 3

0 1 1 0 2 1

2 1 2 1 3

2 3 3
2

0 3

0 1 2 0 2

2
2

3
2

2 3

Proof. We just have to compute. Applying to gives

2 2 2

1 2

1 2 2
2

1 2

3 1 2 2
2

1 2

3 1 2 2
2

1 2 3

1 2 3 2
2

3
2

2 3
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This gives
1
3

1 2

1 2 1 2

0 3

0 1 1
1 2

0 3

0 1 2
2

2

1 2

2 1 2 2

2
0 3

0 1 2
1 2

0 3

0 1 1
1

2 0 3

0 1 3
2

2

1
3

1 2 3

1 2 3 1 2 3

2 0 3

0 1 1 0 2 1

2
2

3
2

2 3

0 2

0 1 1 0 2

And this concludes the proof.
We will write as well the formulas for the degrees of the other loci that we need.

The first formula is obtained by

2
2

which gives

2 3 9 3
2

1 2

1 2 2

1 2

6 1 2 1 2

1 2 3

1 2 3 2 2 2 3 1
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Finally, the degree of the Severi variety parametrizing rational curves having a point
of contact of order at least 3 with is obtained by 2 0, which translates into

3
2 2

1 2

1 2 2
2

1 2

1 2 1 2 2 3 2
2

1 2

1 2 2 4 2 3 2
2

1 2 3

1 2 3

2 2 1 1
2

2
2

3
2
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