Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2009/2010

Ge110, Geometria 1: Algebra Lineare Prof.ssa L. Caporaso

Tutorato 7 - 26 Aprile 2010

Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

1. Determinare, utilizzando il metodo di Cramer, l'eventuale intersezione tra i seguenti iperpiani o la relativa posizione:

(a)
$$\alpha: x - y + z = 6$$
, $\beta: 2x + y - z = -3$, $\gamma: x - y - z = 0$

(b)
$$\alpha: 2x - y + 3z = 1$$
, $\beta: x + y - z = -3$, $\gamma: x - y = 2$

(c)
$$\alpha: x-y+2z=-1, \quad \beta: x+2y-z-w=-2, \quad \gamma: -y+w=2, \quad \delta: x+y+3z=1$$

(d)
$$\alpha: 2x + y + z = -1$$
, $\beta: x + y - z - w = -2$, $\gamma: -y + w = 2$, $\delta: x - y + 2z + 2w = 1$

2. Trovare per ogni coppia di punti $A, B, C \in \mathbb{A}^3(\mathbb{R})$ la retta passante per essi, trovare poi il piano in cui sono contenuti, cosa posso osservare? Quando c'è un parametro, discuterlo.

(a)
$$A = (1, 1, 0)$$
 $B = (1, 0, 1)$ $C = (1, 0, 0)$.

(b)
$$A = (2,1,2)$$
 $B = (1,0,-1)$ $C = (1,3,2)$.

(c)
$$A = (0,0,0)$$
 $B = (1,2k,k)$ $C = (k,k,2)$

(d)
$$A = (1, k, k)$$
 $B = (2, 2k, 2)$ $C = (k, 1, 1)$.

3. Determinare le equazioni delle rette di $\mathbb{A}^2(\mathbb{R})$ parallele a v e passanti per P:

(a)
$$P = (0,0)$$
 $v = (2,4)$

(b)
$$P = (1,0)$$
 $v = (1,-1)$

(c)
$$P = (1, -1)$$
 $v = (2, 0)$

(d)
$$P = \begin{cases} x - y = -1 \\ x - 2y = 1 \end{cases}$$
 $v = (3500, 10500)$

- 4. (a) Scrivere l'equazione della retta r passante per P(1,1) e Q(-1,6)
 - (b) Sia s la retta passante per(-4,3) e (4,1), Trovare le rette r' e s' tali che $r' \cap s' = (2,1)$ con r' e s' parallele rispettivamente a r e s
- 5. In \mathbb{A}^3 :
 - (a) Scrivere l'equazione del piano α passante per i punti A=(1,0,0), C=(2,1,1) e D=(0,1,1)
 - (b) Scrivere l'equazione del piano β contentente le rette r: $\begin{cases} x-z+4=0\\y+11=0\end{cases}$ e s: $\begin{cases} 2x-y+2z=0\\\frac{1}{4}y-z=-2 \end{cases}$
 - (c) Determinare se i due piani sono paralleli o incidenti