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1. Lecture 1: Basics on smooth curves

1.1. Smooth curves and their Picard group. Unless otherwise
stated, by curve we mean a reduced, connected projective variety (not
necessarily irreducible) of dimension one, defined over an algebraically
closed field k.

Let C be a smooth curve.
1
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The Picard group of C can be defined in various ways, and we shall
use each time the most convenient version. First, as the set of divisors
on C modulo linear equivalence, in symbols

Pic(C) = Div(C)/ ∼
Next, via isomorphism classes of line bundles (equivalently, of invertible
sheaves)

Pic(C) = {Line bundles on C}/ ∼=
For any D ∈ Div(C) we denote by O(D) the corresponding line

bundle.
Pic(C) is an abelian group, with the trivial bundle, OC , as neu-

tral element. With divisors, for the operation on Pic(C) one uses
the additive notation: [D], [D′] ∈ Pic(C) with D,D′ ∈ Div(C) then
[D] + [D′] := [D+D′] whereas for line bundles one uses the multiplica-
tive notation: L,L′ ∈ Pic(C) we write LL′ = L ⊗ L′. Usually, line
bundles and their isomorphism classes are denoted in the same way.

We have a surjective homomorphism

deg : Pic(C) −→ Z
such that if D =

∑
p∈C npp then deg([D]) = degD =

∑
p∈C np. Its

kernel is a remarkable subgroup

Pic0(C) = {L ∈ Pic(C) : degL = 0},
the Jacobian of C, also denoted as Jac(C).

The following is well known

Theorem 1.1.1.
Pic(C) ∼= Z⇐⇒ C ∼= P1.

For any divisor D ∈ Div(C) the set of effective divisors linearly
equivalent to D is written as follows

|D| := {E ∈ Div(C) : E ≥ 0, E ∼ D}.
If |D| is not empty, then it is identified with a projective space

|D| = Pr(D) = P(H0(C,D))

where H0(C,D) = H0(C,O(D)) is the vectors space of global sections
of O(D). Its dimension is written h0(C,D) and, of course,

r(D) = h0(C,D)− 1

so that
|D| = ∅ ⇐⇒ deg h0(C,D) = 0

If |D| 6= ∅ we have a regular map

φD : C −→ Pr(D)
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and if r(D) ≥ 1 for any hyperplane H ⊂ Pr(D) (an effective divisor on
Pr(D)), the divisor on C given by the pull-back of H, satisfies

φ∗DH ∈ |D|;
conversely, every E ∈ |D| is obtained in this way.

Definition 1.1.2. Let D ∈ Div(C).

(1) D is very ample if the map φD induces an isomorphism between
C and φD(C);

(2) D is ample if there exists n > 0 such that nD is very ample.

Example 1.1.3. For the trivial line bundle, OC , we have degOC = 0
and h0(C,OC) = 1. Moreover, these two conditions characterize OC .

Example 1.1.4. Let us introduce the most important line bundle on
a curve C: the canonical line bundle denoted by KC . This is the dual
of the tangent bundle of C,

KC = T ∗C

and the genus of C is defined as follows

gC := h0(C,KC);

we have
degKC = 2gC − 2

and KC is the unique line bundle on C satisfying these two conditions.

Remark 1.1.5. If k = C the genus defined above is equal to the topo-
logical genus of the surface, SC , over R underlying C. Indeed, SC is a
compact, connected and orientable topological manifold of dimension 2:
compactness and connectedness follow from the definition. Orientabil-
ity follows from the fact that, in the analytic topology, C is covered by
open subsets holomorphic to open subsets of C, and holomorphic maps
are conformal, hence they preserve the orientation. So the orientation
of C induces an orientation on SC .

Theorem 1.1.6. (Riemann-Roch) For any D ∈ Div(C) we have

h0(C,D)− h0(C,KC −D) = degD − gC + 1

equivalently, as by Serre’s duality h0(C,KC −D) = h1(C,D),

h0(C,D)− h1(C,D) = degD − gC + 1.

Corollary 1.1.7. If degD ≥ 2g − 1 then h0(C,D) = degD − gC + 1

Proof. The hypothesis implies deg(KC−D) < 0 hence h0(C,KC−D =
0) (for a divisor of negative degree |D| = ∅) hence by Riemann-Roch
we are done. ♣
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The following is a consequence of Riemann-Roch.

Fact 1.1.8. Let D ∈ Div(C).

(1) If degD ≥ 2g + 1 then D is very ample.
(2) D is ample if and only if degD > 0.

In particular

(1) KC is ample ⇐⇒ gC ≥ 2.

1.2. Moduli spaces in low genus. We will denote by Mg the moduli
spaces of smooth curves of genus g, to be fully defined soon. As a
first approximation, let us view Mg as the set of isomorphism classes
of curves of genus g.
M0 consists of one element, by the following.

Proposition 1.2.1. If C has genus 0, then C ∼= P1.

Proof. If gC = 0 then degKC = −2 and deg TC = 2. Hence TC is very
ample and gives an embedding

φTC : C ↪→ P2

whose image is a smooth conic, C ′, isomorphic to C. It is well known
that any two smooth conics are isomorphic, and that every conic is
isomorphic to P1 (the isomorphism is obtain by considering at the set
of all lines passing through a point of the conic, which is a P1). ♣

Let g = 1, and assume chark 6= 2. The classical j-invariant gives is
a bijectionM1 ↔ k, hence one can endow M1 with the structure of an
algebraic variety, namely the affine line

M1 = A1.

Let g = 2 and chark 6= 2. Now KC has degree 2 and determines a
morphism

φ : C −→ |KC | = P1

necessarily surjective of degree 2. Moreover, up to automorphisms of
P1, the map φ is unique. We say that a point p ∈ P1 is a branch point
if |φ−1(p)| = 1. Since φ has degree 2, the number of ramification points
coincides with the degree of the ramification divisor of φ, which is given
by the Riemann-Hurwitz formula

Theorem 1.2.2. (Riemann-Hurwitz) Assume chark 6= 2. Let ψ :
C −→ D be a finite map of degree d between two smooth projective
curves C and D of respective genus gC and gD. Let R ∈ Div(C) be the
ramification divisor of ψ. Then

degR = 2gC − 2− d(2gD − 2).
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By the Riemann-Hurwitz formula the ramification divisor of our φ
has degree 6, hence φ has exactly 6 branch points.

Conversely, given 6 points in P1 there exists a unique curve C en-
dowed with a degree 2 map to P1, given as follows. Let a1, . . . , a6 ∈ k be
the affine coordinates of the 6 points. Consider the quadratic extension
of the function field, k(x), of P1 given by adding y :=

√
Π6
i=1(x− ai).

Then k(x)(y) has transcendence degree 1 over k, and hence it is the
function field of a unique curve C.

The degree two extension k(x) ↪→ k(C) is easily seen to correspond
to a degree-2 map C → P1 ramified exactly over the 6 given points.

On the other hand, any 6-tuple of points in P1 can be written, up to
a unique automorphisms of P1 as

{0, 1,∞, b1, b2, b3} : bi ∈ k r {0, 1}, i = 1, 2, 3.

Denote by ∆ ⊂ (k r {0, 1})3 the union of all diagonals, then we have
a surjection

(k r {0, 1})3 r ∆ −→M2

which maps (b1, b2, b3) to the curve C which has a degree-2 map to P1

ramified over {0, 1,∞, b1, b2, b3}. Let U := (k r {0, 1})3 r ∆, then one
easily checks that U is an affine variety, hence M2 is the quotient of an
affine variety by a finite group, which is itself an affine variety.

2. Lecture 2

2.1. The moduli scheme of smooth curves. We have seen that the
set of isomorphism classes of genus 1 and 2 is endowed with a natural
structure of algebraic variety, dictated by the geometry of the objects
it parametrizes. On the other hand, this structure tells us something
about the parametrized curves. It tells us that there is a 1-dimensional
(resp. 3-dimensional) family of curves of genus 1 (resp. 2). It also
tells us that such curves do not form a complete space! This will be an
important point in the sequel.

Let us list some properties that one would hope a moduli scheme
Mg, for smooth curves of genus g satisfies.

(1) The (closed) points of Mg are in bijection with isomorphism classes
of smooth curves of genus g. More precisely, Mg(k) is in bijection
with the set of isomorphism classes of smooth curves of genus g
defined over k, where Mg(k) denotes the set of closed points of Mg,
i.e.

Mg(k)↔ Hom(Spec k,Mg).

(2) For every family f : C → B of smooth curves of genus g (i.e. for
every flat proper morphism of schemes such that for every closed
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point b ∈ B the fiber Cb = f−1(b) is a smooth curve of genus g),
the natural map

µf : B −→Mg; b 7−→ µf (b) = [Cb]

is a morphism of schemes. We call µf the moduli map of the family.
(3) Properties (1) and (2) determine Mg up to isomorphism.
(4) For any morphism of schemes φ : B −→ Mg there exists a family

(as defined in (2)) of smooth curves f : C → B such that φ = µf ,
and this family is unique up to B-isomorphisms, i.e. if f ′ : C ′ → B
is another family such that µf ′ = φ then there is an isomorphism
α : C → C ′ such that α ◦ f ′ = f .

Remark 2.1.1. Property (4) is actually a generalization of (1). In-
deed, the closed points of Mg are identified with the set of morphisms
from Spec k to Mg. Hence property (1) is the case B = Spec k in (4).

The first three propeties are satisfied for all g ≥ 0. The case g = 0
is trivial, so we omit it in the next statement

Theorem 2.1.2 (Mumford). For every g ≥ 1 there exists an integral
quasiprojective, non projective, scheme, Mg defined over SpecZ which
satisfies properties (1), (2) and (3), but not (4). Moreover

If g = 1 then dimM1 = 1.
If g ≥ 2 then dimMg = 3g − 3.

Remark 2.1.3. Property (4) cannot possibly be satisfied. In fact, both
the existence part and the uniqueness part can fail, and the obstruction
lies in the existence of curves having non trivial automorphism group.
More precisely, there exists morphisms φ : B → Mg for which there
does not exist a family of smooth curves over B whose moduli map is
φ. And, for every g ≥ 1, there exist families of smooth curves over the
same scheme B which are not isomorphic over B but have the same
moduli map.

Exploring this phenomenon would take us too far from our main goal.
Let us just mention that for a moduli space to satisfy property (4) one
needs to weaken the requirement that it be a scheme, and require that
it be a stack.

We shall limit ourselves to give an example showing the failure of
uniqueness. The failure of uniqueness follows from the existence of
isotrivial families that are not trivial, i.e. they are not of the form
B × C, for a fixed smooth curve, C, of genus g.

Example 2.1.4. (Isotrivial family 1) Consider the following family

by2 = (x− a1)(x− a2) · . . . · (x− a6)
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for a1, . . . , a6 ∈ k with ai 6= aj. This is a family of curves of genus 2
parametrized by b ∈ B = A1r{0}. By what we already said, the fibers
of this family are all isomorphic to the same curve of genus 2, hence
the corresponding moduli map is a constant map to M2. On the other
hand, the total space of this family, C, is birational to a suitable blow-
up of P2, hence it is a rational surface. Therefore it cannot possibly be
isomorphic to C × A1, which is not rational as C is not rational.

On the other hand the trivial family f ′ : C × A1 → A1 has the
constant map as moduli map, which coincides with µf away from 0.

What we will be mostly interested in is the fact that Mg is not
complete. This fact says that there are families of smooth curves which
degenerate to singular ones. So we will study the problem of completing
Mg in a modular way, i.e. by constructing a projective scheme M g

which contains Mg as dense open subset, and which is itself a moduli
space.

A remarkable solution to this problem, provided by Deligne and
Mumford, consists in extending the set of smooth curves to the set
of reduced (possibly reducible) curves having at most nodal as singu-
larities, and having finitely many automorphisms.

Definition 2.1.5. A stable curve is a connected reduced curve X hav-
ing at most nodes as singularities, and such that Aut(X) is finite.

Remark 2.1.6. Smooth curves of genus at least 2 are stable, since
they have finitely many automorphisms.

We shall go back to this definition later. The next goal is to introduce
tropical curves.

2.2. Graphs and contractions. We define graphs in purely combi-
natorial terms.

Definition 2.2.1. A graph G with n legs is the following set of data:

(1) A finite non-empty set V (G), the set of vertices.
(2) A finite set H(G), the set of half-edges.
(3) An involution

ι : H(G) −→ H(G) h 7→ h

with n fixed points, called legs, whose set is denoted by L(G).
(4) An endpoint map ε : H(G)→ V (G).

A pair e = {h, h} of distinct elements in H(G) interchanged by the
involution is called an edge of the graph; the set of edges is denoted by
E(G). If ε(h) = v we say that h, or e, is adjacent to v.
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The valence or degree of a vertex v is the number |ε−1(v)| of half-edges
adjacent to v.

An edge adjacent to a vertex of valence 1 is called a leaf edge.
An edge whose endpoints coincide is called a loop.

Definition 2.2.2. A morphism α between combinatorial graphs G
and G′ is a map α : V (G)∪H(G)→ V (G′)∪H(G′) such that the two
diagrams below are commutative.

(2) V (G) ∪H(G)
α //

(idV ,ε)
��

V (G′) ∪H(G′)

(idV ′ ,ε
′)

��

V (G) ∪H(G)
α // V (G′) ∪H(G′)

(3) V (G) ∪H(G)
α //

(idV ,ι)

��

V (G′) ∪H(G′)

(idV ′ ,ι
′)

��

V (G) ∪H(G)
α // V (G′) ∪H(G′)

Remark 2.2.3. By the first diagram α(V (G)) ⊂ V (G′). On the other
hand the image of an edge e ∈ E(G) is either an edge, or a vertex v′

of G′; in the latter case the endpoints of e are also also mapped to v′,
and we say that e is contracted by α.

We will abuse notation and denote by α : G −→ G′ a morphism as
above. By definition, such a morphism induces the following maps on
the set of vertices, edges and legs of G:

V (G)
αV−→ V (G′), E(G)

αE−→ V (G′)∪E(G′), αL : L(G)
αL−→ V (G′)∪L(G′).

We say that α is an isomorphism if αV is a bijection, and if αE and αL
induce bijections between the set of, respectively, edges and legs.

The genus g(G) is its first Betti number

g(G) = b1(G) := rkZH1(G,Z) = |E(G)| − |V (G)|+ c

where c is the number of connected components of G.
We now describe a type of morphism between graphs, the contraction

of an edge which will play an important role. Let G be graph and
e ∈ E(G). Let G/e be the graph obtained by contracting e to a vertex
and leaving everything else unchanged. Then there is a natural map
G → G/e, called the contraction of e. If v, w ∈ V (G) are the ends of
e, then V (G/E) is obtained from V (G) by identifying v and w:

V (G/e) = V (G)/{v = w}
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and
E(G/e) = E(G) \ {e},

and L(G/e) = L(G).
Notice that if e is a loop, then

g(G/e) = g(G)− 1

hence the contraction does not preserve the genus.

3. Lecture 3

3.1. Pure tropical curves.

Definition 3.1.1. Let n ≥ 0. A n-marked (pure) tropical curve of
genus g ≥ 0 is a pair Γ = (G, `) where G is a graph of genus g with n
legs and ` a length function

` : E(G) ∪ L(G)→ R>0 ∪ {∞}
such that `(x) =∞ if and only if either x ∈ E(G) and e is a leaf-edge,
or x ∈ L(G).

The underlying graph Γ is called the combinatorial type of Γ.

The legs of a tropical curve are sometimes called marked points, and
they are usually labeled (i.e. ordered). This motivates the following
definition of isomorphism between tropical curves.

Let Γ = (G, `) and Γ′ = (G′, `′) be two n-marked tropical curves,
with G = (V,E, L = (x1, . . . , xn)) and G′ = (V ′, E ′, L′ = (x′1, . . . , x

′
n)).

An isomorphism α : Γ → Γ′ is an isomorphism of graphs α : G → G′

(defined earlier) such that α(xi) = x′i for i = 1, . . . , n and such that

`′(α(e)) = `(e), ∀e ∈ E.
Let us now define the notion of equivalence for tropical curves. This

is weaker than isomorphism: equivalent curves need not be isomorphic.
Informally speaking, two tropical curves are (tropically) equivalent if,

up to isomorphism, they can be obtained from one another by adding
or removing vertices of valence 2, or vertices of valence 1 together with
their adjacent leaf-edge. More precisely, if they become isomorphic
after performing the following two moves a finite number of times.
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(1) Addition/removal of a vertex of valence 1 and of of its adjacent
edge (a leaf). The next picture illustrates the removal of the one-
valent vertex u0 and of the leaf e0 adjacent to it. The opposite

• uv e1 •
e0

u0

we2 • −→ • uv e1 • we2 •

•

Figure 1. Removal of the 1-valent vertex u0 and of its
adjacent edge e0.

move is the addition of a leaf, where the length of the added edge
e0 is set equal to ∞.

(2) Addition/removal of a vertex of valence 2. Pick an edge e ∈ E(G)
and denote by v, w ∈ V (G) its endpoints. We can add a vertex
u in the interior of e. This move replaces the edge e of length
`(e) by two edges ev (with endpoints v, u) and ew (with endpoints
w, u), whose lengths satisfy `(e) = `(ev) + `(ew). If one of the two
endpoints of e, say v, has valence 1 we set the length of ev equal
to ∞, whereas the length of ew can be arbitrary. The opposite
procedure, which should be clear, is represented in the figure 2
below:

• uv ev • wew • −→ • wv •e

Figure 2. Removal of a vertex of valence 2.

Obviously, tropical equivalence preserves the number of marked points
and the genus.

Example 3.1.2. Let Γ have one vertex and no edges or legs. Then
Γ is an unpointed tropical curve of genus 0, equivalent to any tropical
curve of genus 0. From the moduli point of view, its equivalence class
is viewed as a trivial one, and will be excluded in future considerations.
By a similar reasoning, if g = 0 we shall always assume n ≥ 3.

Let now G be a graph with only one vertex, v, and one loop attached
to it; so any Γ = (G, `) is an unpointed tropical curve of genus 1. Now
v is 2-valent, hence can be removed, leaving us with something which
is not a tropical curve. For this reason, these curves are viewed as
degenerate, and will also be excluded. Hence if g = 1 we shall always
assume n > 0.
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This motivates the future assumption 2g − 2 + n ≥ 1.

Proposition 3.1.3. Let 2g − 2 + n > 0. Every equivalence class of
n-pointed pure tropical curves of genus g has a unique (up to isomor-
phism) representative, called canonical or stable, having no vertex of
degree less than 3.

Proof. Easy. ♣
Example 3.1.4. Let g = 0 and n = 4. A graph with 4 legs and no
vertex of valence ≤ 2 can have at most 1 edge. The graph with 0 edges
is unique. On the other hand there are three non-isomorphic graphs
with one edge and vertices of degree ≥ 3 according to how the 4 legs
are distributed. They are drawn in the following picture. Each of these
graphs supports a one dimensional family (as the length of their unique
edge varies in R+) of isomorphism classes of stable tropical curves.

It is easy to check that these are all the combinatorial types of the
stable representatives.

◦
x1 x2

◦
x3 x4

◦
x1 x3

◦
x2 x4

◦
x1 x4

◦
x2 x3

Figure 3. The three genus 0, stable graphs with 4 legs.

3.2. (Weighted) tropical curves. Let us now consider families of
pure tropical curves. This can be done quite naturally by varying the
lengths of the edges. Fix a graph G with no vertex of degree less
than 3, and write E(G) = {e1, . . . , e|E(G)|}; now consider the set of all
tropical curves Γ = (G, `) having G as combinatorial type. Now `(ei) is
a positive real number for all i (G has no leaves), this space is identified

with RE(G)
+ as follows: to a point

(l1, . . . , l|E(G)|) ∈ RE(G)
+

there corresponds the tropical curve (G, `) such that `(ei) = li, ∀i. It
is then natural to ask what happens when some of the lengths go to
zero. Let l1, say, tend to 0. How do we give the limit an interpretation?
There is a simple candidate: as l1 tends to zero, (G, `) specializes to
a tropical curve (G, `) where G = G/e1 is obtained by contracting e1,
and `(ei) = `(ei), ∀i ≥ 2. But there is a drawback with this limit: its
genus may be smaller than that of G. Indeed we have

g(G) =

{
g(G)− 1 if e1 is a loop

g(G) otherwise.
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From a geometric perspective this is quite unpleasant. We like the
genus to remain constant under specialization. A solution to this prob-
lem is provided by S. Brannetti, M. Melo and F. Viviani. The idea is
to extend the definition of a tropical curve by adding a weight function
on the vertices.

Definition 3.2.1. A weighted graph (with n legs) is a pair (G,w) where
G is a graph with n legs, and w : V (G)→ Z+ a weight function on the
vertices.

A weighted graph is stable if every vertex of weight zero has degree
at least 3 and every vertex of weight 1 has degree at least 1.

The genus g(G,w) is defined as follows:

(4) g(G,w) = b1(G) +
∑

v∈V (G)

w(v).

Definition 3.2.2. A n-marked tropical curve of genus g ≥ 0 is a triple
Γ = (G,w, `) where (G,w) is a weighted graph of genus g with n legs
and ` a length function

` : E(G) ∪ L(G)→ R>0 ∪ {∞}
such that `(x) =∞ if and only if either x ∈ L(G), or x ∈ E(G) and x
is a leaf-edge whose leaf-vertex v satisfies w(v) = 0.

The genus of Γ is g(G) := g(G,w).
The curve Γ is stable if so is (G,w).
The weighted graph (G,w) is called the combinatorial type of Γ.

To any tropical curve Γ = (G,w, `) as above we can associate an
underlying pure tropical curve Γ0 := (G, `) by disregarding the weight
function w. Two tropical curves are isomorphic if there is an iso-
morphism of the underlying pure tropical curves which preserves the
weights.

Remark 3.2.3. It is easy to check that n-marked stable curves of
genus g exist if and only if g and n satisfy

2g − 2 + n ≥ 1.

As for pure tropical curves, we have an equivalence relation which
is the same as for tropical curves, with the requirement that it be
performed only on vertices of weight zero. I.e. two tropical curves
are equivalent if they become isomorphic after a finite sequence of the
following operations.

(1) Addition/removal of a vertex of weight 0 and degree 1 and of of
its adjacent edge.

(2) Addition/removal of a vertex of weight 0 and degree 2.
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The analog of Proposition 3.1.3, with analogous proof, is the follow-
ing.

Proposition 3.2.4. Assume 2g − 2 + n ≥ 1. Then every equivalence
class of n-pointed tropical curves of genus g has a unique stable repre-
sentative.

Lemma 3.2.5. Let (G,w) be a genus g stable graph with n legs. Then
|E(G)| ≤ 3g − 3 + n and the following are equivalent.

(a) |E(G)| = 3g − 3 + n.
(b) Every vertex of G has weight 0 and degree 3.
(c) Every vertex of G has weight 0 and |V (G)| = 2g − 2 + n.

Proof. Suppose that (G,w) has a vertex, v such that w(v) > 0. Con-
sider the graph (G′, w′) obtained from (G,w) by replacing v with a
vertex, v′ of weight zero and having w(v) loops attached to it. Then it
is easy to check that (G′, w′) is stable, has genus g and n legs. More-
over |E(G′)| = |E(G)| + w(v) > |E(G)|. Hence a graph (G,w) with
maximum number of edges (whose existence has yet to be proved) have
all vertices weight zero. Then, by stability, deg v ≥ 3 for all v ∈ V (G),
hence

|E(G)| = 1/2(
∑

v∈V (G)

deg v − n) ≥ 1/2(3|V (G)| − n),

i.e.
|V (G)| ≤ 2|E(G)|/3 + n/3.

From g = |E(G)| − |V (G)|+ 1 we get

|E(G)| = g − 1 + |V (G)| ≤ g − 1 + 2|E(G)|/3 + n/3

so that
|E(G)| ≤ 3g − 3 + n.

If equality holds, then we necessarily have w ≡ 0 and equality must
hold everywhere above, in particular deg v = 3 for all v ∈ V (G) and
|V (G)| = 2g − 2 + n. The implications (a)=⇒ (b) and (a)=⇒ (c) are
proved.

Assume that G = (E, V, L) has all vertices of degree 3 and weight 0.
Then

|E| = 1/2(
∑
v∈V

deg v − n) = 1/2(3|V | − n)

and
g = |E| − |V |+ 1.

Hence,
|E| = g − 1 + |V | = g − 1 + 2|E|/3 + n/3
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hence |E| = 3g − 3 + n and the implication (b)=⇒ (a) is proved.
If G = (E, V, L) has all vertices weight 0 and |V | = 2g− 2 + n, then

deg(v) ≥ 3, hence

|E| = 1/2(
∑
v∈V

deg v−n) ≥ 1/2(3|V |−n) = 1/2(6g−6+2n) = 3g−3+n.

We already proved that |E| ≤ 3g − 3 + n, hence equality occur. This
proves (c)=⇒ (a). ♣

Example 3.2.6. For g ≥ 3 and n = 0 an example of a graph with
3g − 3 edges is a polygon with 2g − 2 vertices, and edges the 2g − 2
sides and the g− 1 diagonals. We leave the case g = 2 for exercise (or,
see Example 4.1.5).

Definition 3.2.7. A graph (G,w) such that |E(G)| = 3g − 2 + n is
called 3-regular. A tropical curve whose combinatorial type is a 3-
regular graph is called 3-regular.

4. Lecture 4

4.1. Weighted contractions. For any g, n ∈ Z≥0 we denote by Gg,n
the set of all stable weighted graphs of genus g with n legs. Lemma 3.2.5
implies that Gg,n is a finite set, empty if 2g − 2 + n < 1. We shall
introduce a poset structure on Gg,n.

Definition 4.1.1. Fix a set of edges, S ⊂ E(G), of a weighted graph
(G,w). We define the weighted contraction of S as the weighted graph
(G/S,w/S) such that

σ : G −→ G/S

is the contraction of all edges in S (defined earlier for a single edge),
and the weight function w/S is defined, for every v ∈ V (G/S),

(5) w/S(v) := b1(σ−1(v)) +
∑

v∈σ−1
V (v)

w(v)

where σ−1(v) is the subgraph of G spanned by all edges (and vertices)
mapping to v.

Remark 4.1.2. Set T := E(G) \S. We have an obvious identification
E(G/S) = T ; moreover the map σV : V (G) → V (G/S) is surjective
and σV (v1) = σV (v2) if and only if v1 and v2 belong to the same con-
nected component of the graph G− T .

Let S = {e} where e is a loop based at a vertex v, let v ∈ V (G/e)
be the image of v, and also the image of the contracted loop e. Then
w/e(v) = w(v) + 1, whereas u ∈ V (G/e)r {v} we have w/e(u) = w(u).
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Example 4.1.3. In the next picture we have two weighted contrac-
tions; the starting graph (G,w) has all vertices of weight zero, repre-
sented by a “◦”, so that G has genus 3. We first contract the non-loop
edge e1, so that the weighted contraction has again weight function
equal to zero. Then we contract a loop edge, so that the weighted
contraction has one vertex of weight 1, represented by a “•”.

(G,w) = ◦
e1

◦ e2 // ◦ e2 // (G/e1,e2 , w/e1,e2) = •

Remark 4.1.4. It is not hard to check that

g(G/S,w/S) = g(G,w).

and (G/S,w/S) is stable if so is (G,w).

Let (G′, w′) be a weighted graph. We denote

(6) (G,w) ≥ (G′, w′) if (G′, w′) is a weighted contraction of (G,w)

and this is clearly a partial ordering on space of all graphs. This,
of course, induces a poset structure on the set Gg,n. By the previous
remark Gg,n is closed (or down-closed) with respect to this partial order,
i.e. if (G,w) ∈ Gg,n and (G,w) ≥ (G′, w′), then (G′, w′) ∈ Gg,n

Example 4.1.5. The picture of the poset G2,0 is below.

• 2

•[[CC

•
1 1

• • • •
1

•
1

◦ •

OO ??

•

OO

◦

◦ ◦ •

OO ??

•

OO

◦ ◦

Figure 4. The poset G2,0
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4.2. Moduli of tropical curves: fixed combinatorial type.

Notation 4.2.1. From now on we simplify the notation for weighted
graphs as follows:

G = (G,w)

where G = (V,E, L) is a graph with legs and w a weight function on
the vertices. Then a (weighted) n-marked tropical curve is denoted

Γ = (G, `).

The set of equivalence classes of n-marked tropical curves of genus
g ≥ 2 is denoted by

M trop
g,n .

Since every equivalence class has a unique stable representative, M trop
g,n

is partitioned as follows

(7) M trop
g,n =

⊔
G∈Gg,n

M trop
G

where M trop
G denotes the set of all isomorphism classes of tropical curves

whose combinatorial type is G.
We shall give a topological structure to M trop

g and thus make it a
moduli space for tropical curves.

We begin by describing each stratum M trop
G appearing in (5.1.3).

Write G = (V,E, L), fix an ordering E = {e1, . . . , e|E|}, and consider
the open cone

σoG := R|E|+

with its euclidean topology. To every point (l1, . . . , l|E|) ∈ σoG there
corresponds a tropical curve Γ = (G,w, `) such that `(ei) = li.

Now consider the group of leg-fixing automorphisms, Aut(G), of G.
More precisely, Aut(G) is the set of automorphisms of α : G → G
(as defined earlier) such that αL(x) = x for every leg x ∈ L. For
example, Aut(G) is trivial for each of the three graphs in the picture
of Example 3.1.4.

Clearly Aut(G) acts on E by permutations, so that we have a ho-
momorphism from Aut(G) to the symmetric group on |E| elements.
Hence Aut(G) acts on σoG by permuting the coordinates, and it is clear
that the quotient by this action is in bijection with isomorphism classes
of tropical curves having G as underlying graph:

M trop
G = σoG/Aut(G).

We endow M trop
G with the quotient topology induced by the euclidean

topology on the cone σoG.
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Now we consider the boundary of the closed cone R|E|≥0 , i.e.

R|E|≥0 \ R
|E|
+ .

A point in this set has the form l = (l1, . . . , l|E|) ∈ R|E|≥0 such that at
least one li is zero. We interpret this point as a specialization of tropical
curves obtained as a weighted contraction of their underlying graphs.
Indeed, denote by

Sl = {ei : li = 0} ⊂ E

then to the point l we associate the tropical curve

Γl := (G/Sl, w/Sl , `l)

where (G/Sl, w/Sl) is the weighted contraction of Sl and, identifying
E(G/Sl) = E(G) \ Sl we have

`l(ei) = li

for all ei ∈ E(G/Sl). Therefore to every point in R|E|≥0 there corresponds
a tropical curve Γ′ = (G′, w′, `′) such that G′ = (G′, w′) is a (possibly
trivial) contraction of G. By Remark 4.1.4, the tropical curve G′ is
stable, with the same genus and number of legs as G. We denote

σG := R|E|≥0

so that, by what we just said, we have a map

σG −→M trop
g,n ; l 7−→ [Gl].

5. Lecture 5

5.1. Moduli spaces of tropical curves. There are a few equivalent
ways to construct M trop

g as a topological space; we proceed starting
from its “biggest” strata (i.e. strata of maximum dimension). By
Lemma 3.2.5, the maximum number of edges of a stable graph of genus
g is 3g − 3 + n. Such graphs correspond to our biggest strata, and we
proceed by considering the map⊔

G∈Gg,n:

|E|=3g−3+n

σG −→M trop
g,n .

It turns out that the action of Aut(G) on σoG extends to an action on
the closed cone σG. Consider the quotient

qG : σG −→ M̃ trop
G := σG/Aut(G),
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if qG(l) = qG(l′) then the curve Γl is isomorphic to Γl′ (but the converse

may fail outside of σoG). In conclusion, M̃ trop
G maps to M trop

g and we
can factor ⊔

G∈Gg,n:

|E|=3g−3+n

σG −→
⊔

G∈Gg,n:

|E|=3g−3+n

M̃ trop
G −→M trop

g,n

By the following Proposition 5.1.1, this map is surjective, i.e. every
stable tropical curve can be obtained as a specialization of a stable
tropical curve with 3g − 3 + n edges. Therefore we can endow M trop

g

with the quotient topology induced by the space on the left.

Proposition 5.1.1. Let G ∈ Gg,n. Then there exists G′ ∈ Gg,n such
that E(G′) = 3g − 3 + n and such that σ0

G ⊂ σG′.

Proof. It suffices to show that there exists G′ ∈ Gg,n with E(G′) =
3g − 3 + n admitting a weighted contraction G′ → G. We can, of
course, assume |E(G)| < 3g − 3 + n. The proof is illustrated on an
explicit case in Example 5.1.2.

Let V+ ⊂ V (G) be the set of vertices of positive weight; consider the
graph G′′ obtained from G by replacing every v ∈ V+ by a weight-zero
vertex with w(v) new loops attached to it.

By construction, G′′ has all vertices of weight zero, and specializes
to G by contracting every one of the new loops (

∑
v∈V+ w(v) of them).

If every vertex of G′′ has degree 3 we are done by Lemma 3.2.5.
So, suppose G′′ has some vertex, v, of degree d ≥ 4. We shall con-

struct a graph G′′′ which contracts to G′′ by contracting to v one edge
whose ends have both degree less than d. Iterating this construction
until there are no vertices of degree more than 3 we are done.

Let Hv be the set of d half-edges adjacent to v. We partition Hv,
into two subsets, H1

v and H2
v , of respective cardinalities d1 = bd/2c and

d2 = dd/2e. As d ≥ 4 we have

2 ≤ di ≤ d− 2.

Consider the graph G′′′ obtained from G′′ by replacing v by a non-loop
edge e whose ends, u1 and u2, are attached to, respectively, H1

v and
H2
v . As ui has degree di + 1, the graph G′′′ is stable and its vertices ui

have both degree less than d. It is clear that contracting e in G′′′ gives
back our G′′. So we are done. ♣

Example 5.1.2. The following picture illustrates the proof of Proposi-
tion 5.1.1 on the genus-2 graph G consisting of one vertex with weight
2 and no edges. On the right we see the two possible graphs G′, cor-
responding (in the proof) to different distributions in G′′ of the four
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half-edges adjacent to v. Of course, G′′ is obtained from G′ contracting
the edge e, and G is obtained by contracting both loops of G′′.

G G′′ G′

• 2
oo ◦

v
oo ◦

e

u1 u2
◦

ee

◦
e

u1 u2◦

Figure 5. Proof of Proposition 5.1.1

For every G ∈ Gg,n the space M trop
G is the quotient of the topological

manifold σoG by the finite group Aut(G). Its dimension is defined as
the dimension of σoG, hence

(8) dimM trop
G = |E(G)|.

Now, let X be a topological space containing a dense open sub-
set which is an orbifold of dimension n (locally the quotient of an n-
dimensional topological manifold by a finite group); then we say that
X has pure dimension n. We apply this terminology below.

Recall that 3-regular curves Γ = (G, `) are those for which |E(G)| =
3g − 3 + n.

Theorem 5.1.3. Let 2g− 2 +n ≥ 1; consider the stratified topological
space

(9) M trop
g,n =

⊔
G∈Gg,n

M trop
G

Then

(a) The closure of a stratum is a union of strata and

M trop
G′ ⊂M trop

G ⇐⇒ G ≥ G′.

(b) Let M reg
g,n ⊂M trop

g,n be the subset parametrizing 3-regular curves, i.e.

M reg
g,n :=

⊔
G 3-regular

M trop
G ⊂M trop

g,n ,

then M reg
g,n is open and dense.
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(c) Let Mpure
g,n be the subset parametrizing pure tropical curves. Then

Mpure
g,n is open and dense.

(d) M trop
g,n is a Hausdorff topological space of pure dimension 3g−3+n.

5.2. Nodal curves and their dual graph. In definition 2.1.5 we
said that a (connected reduced) curve is stable if it has at most nodes
as singularities and if its automorphism group is finite.

We surveyed the geometry of smooth curves in the firs lecture. We
now need to extend, whenever possible, that theory to singular nodal
curves.

A point p of a curve X is a node if, locally at p, the curve X is
formally analytically isomorphic to a neigborhood of the origin of the
plane curve Y of equation xy = 0, i.e. if the complete local ring of X
at p is isomorphic to the complete local ring of Y at the origin.

Let X be a connected nodal curve, and let Xsing be the set of its
nodes.

The Picard group of X is the abelian group of Cartier divisors modulo
linear equivalence, which will be identified with the set of isomorphism
classes of line bundles

Pic(X) :=
CaDiv(X)

∼
=
{Line bundles on X}

∼=
We use for divisors and linear systems on X the same notation we

used in case X is a smooth curve. Now it is crucial to consider the
normalization (i.e. the desingularization) of X, this is a canonical pair
(Xν , ν)

(10) ν : Xν −→ X

where Xν is a smooth, possibly non connected curve and ν is a bira-
tional morphism which is an isomorphism away from Xsing and satisfies
the following properties. Let

X = ∪γi=1Ci

be the decomposition of X into its irreducible components. Then Ci is
an irreducible nodal curve and Xν is the disjoint union

Xν = tγi=1C
ν
i ,

where Cν
i is a smooth irreducible curve (the normalization of Ci) and

the restriction of ν to Cν
i , written νi, is a birational morphism νi :

Cν
i → Ci. For every node p ∈ Xsing the preimage of p under ν consists

of exactly two points, which are called the branch points of p, denoted
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ν−1(p) = {p+, p−}. We write,

X =
Xν

p+ ∼ p−, ∀p ∈ Xsing

with the understanding that for every p ∈ Xsing the curve X has a node
at p (hence its complete local ring is uniquely determined).

Remark 5.2.1. The data ofXν and the pairs of branch points {p+, p−} ⊂
Xν , determine the curve X uniquely.

Definition 5.2.2. The dual graph of a nodal curve X is the weighted
graph (GX , wX) such that

(1) The set of vertices VX is the set of all irreducible components
of X i.e.

VX = {C1, . . . , Cγ}.
(2) The set of half edges HX is the set of all branch points, i.e.

HX = {p+, p−, ∀p ∈ Xsing}
(3) The involution ιX : HX −→ HX is

ιX(p+) = p−, ∀p ∈ Xsing

(4) The endpoint map εX : HX −→ VX sends p+ (respectively p−),
to the component Ci such that p+ ∈ Cν

i (resp. p− ∈ Cν
i ).

(5) The weight of a vertex/component is the genus of its normal-
ization, i.e.

wX(Ci) = gCνi .

One easily checks that for the set of edges, EX , we have an identification

EX = Xsing.

Remark 5.2.3. Let v ∈ VX and let C ⊂ X be the irreducible com-
ponent corresponding to v. By definition, the half-edges adjacent to v
correspond to points in Cν ; more precisely, if p is a node of X contained
in the intersection of two different components one of which is C, then
Cν contains exactly one branch point of p, whereas if p is a singular
point of C then both branches of p lie in Cν . Hence

deg(v) = |C ∩ (X r C)|+ 2|Csing|
where Csing denotes the set of nodes of C, each of which corresponds
to a loop of GX .

We shall now define the genus of a nodal curve and show it equals
the genus of its dual graph. On a singular curve we cannot talk about
a tangent or cotangent line bundle, since the tangent space of X at
any of its nodes has dimension 2. Nonetheless there does exist a line
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bundle on X which plays the role of the canonical line bundle of a
smooth curve. This line bundle is called the dualizing line bundle, or
dualizing sheaf, and is denoted by

ωX ;

it coincides with the canonical line bundle KX if X is smooth. The
name “dualizing bundle” follows from Serre duality, which holds for
every nodal curve X in the following form: for every L ∈ Pic(X) we
have

h0(X,ωX ⊗ L−1) = h1(X,L).

The (arithmetic) genus of a connected nodal curve X is defined as
follows

gX := h0(X,ωX) = h1(X,OX)

(the second “ = ” follows from Serre duality).

Lemma 5.2.4. The genus of a connected nodal X is equal to the genus
of its dual graph.

Proof. The genus of X is defined as gX = h1(X,OX). Write GX =
(V,E), and consider the normalization

ν : Xν =
⊔
v∈V

Cν
v −→ X.

The associated map of structure sheaves yields an exact sequence

(11) 0 −→ OX −→ ν∗OXν −→ S −→ 0

where S is a skyscraper sheaf supported on the nodes of X; the as-
sociated exact sequence in cohomology is as follows (identifying the
cohomology groups of ν∗OXν with those of OXν as usual)

0 −→ H0(X,OX) −→ H0(Xν ,OXν )
δ̃−→ k|E| −→

−→ H1(X,OX) −→ H1(Xν ,OXν ) −→ 0.

Hence
gX = h1(Xν ,OXν ) + |E| − |V |+ 1

Now,

h1(Xν ,OXν ) =
∑
v∈V

h1(Cν
v ,OCνv ) =

∑
v∈V

gCνv =
∑
v∈V

wX(v)

hence, as |E| − |V |+ 1 = b1(GX) we get

gX =
∑
v∈V

wX(v) + b1(GX) = g(GX , wX).
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♣

6. Lecture 6

6.1. Geometry of stable curves. By definition, a stable curve is a
connected reduced nodal curve with finitely many automorphisms. Let
us translate the stability condition into a combinatorial condition.

Lemma 6.1.1. Let X be a connected nodal curve. Then X is stable if
and only if gX ≥ 2 and the following equivalent conditions hold.

(a) Every irreducible component C ⊂ X such that Cν ∼= P1 satisfies

(12) |C ∩ (X r C)|+ 2|Csing| ≥ 3.

(b) The dual graph of X is stable.

Proof. Let us show that (a) and (b) are equivalent. In (GX , wX), ver-
tices of weight zero correspond to components C such that gCν = 0,
hence Cν ∼= P1. By Remark 5.2.3, condition (12) is equivalent to
the condition that the degree of such vertices be at least 3, i.e. that
(GX , wX) is stable, and we are done.

Assume X is stable, i.e. that Aut(X) is finite. If X has genus ≤ 1
then Aut(X) is necessarily infinite, therefore a stable curve must have
genus at least 2. Let us prove that (a) holds. Let C ⊂ X be a compo-
nent such that Cν ∼= P1; by contradiction, let |C∩(X r C)|+2|Csing| ≤
2, hence |Csing| ≤ 1. If |Csing| = 0 then C ∼= P1 and C intersects the
remaining components of X in one or two points; the curve C has
infinitely many automorphisms fixing the (at most two) intersection
points, and these automorphisms correspond to automorphisms of X
which restrict to the identity on X r C. Hence Aut(X) is infinite, a
contradiction. If |Csing| = 1 then |C ∩ (X r C)| = 0, hence X = C,
but this is impossible because X has genus at least two, while C has
clearly genus 1.

Conversely, assume gX ≥ 2 and the dual graph (GX , wX) of X is
stable; let V and E the set of vertices and edges of GX . For every v ∈
VX let Cv ⊂ X be the component corresponding to v. We must prove
that Aut(X) is finite. Consider the subgroup, Aut#(X) ⊂ Aut(X)
preserving the components of X, i.e.

Aut#(X) := {α ∈ Aut(X) : α(Cv) = Cv, ∀v ∈ V ).

Then we have an exact sequence of groups

0 −→ Aut#(X) −→ Aut(X) −→ Sγ −→ 0

(where γ = |V |). Hence it suffices to prove that Aut#(X) is finite.
By definition, the half-edges adjacent to v correspond to the branch
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points lying in Cν
v ; denote by Bv ⊂ Cν

v the set of such points, so that
|Bv| = deg v. Let α ∈ Aut#(X); then α induces an automorphism of
Cν
v such that α(Bv) = Bv, denote by Aut(Cν

v , Bv) ⊂ Aut(Cv) the group
of such automorphisms. If α is trivial on every Cν

v then α is trivial,
hence we have an injective map

Aut#(X) ↪→
∏
v∈V

Aut(Cν
v , Bv)

(given by restricting α to each Cv and pulling it back to Cν
v ). We claim

that the set on the right is finite. Indeed, let us show that Aut(Cν
v , Bv)

is finite for every v ∈ VX . This is obvious if Cν
v has genus at least 2.

If Cν
v has genus 1 then Bv 6= ∅ (since X has genus at least 2), hence

Aut(Cν
v , Bv) is finite. If Cv has genus zero, the hypothesis implies that

|Bv| ≥ 3, hence Aut(Cν
v , Bv) is finite. ♣

The stability condition on a curve can be seen directly from the
behaviour of its smooth rational components. Indeed, smooth rational
components correspond to vertices of the dual graph having no loop
attached to it. The stability condition is equivalent to requiring that
if C ∼= P1 is any such component, then |C ∩X \ C| ≥ 3.

We say that the curve X is semistable if for every component C ∼= P1

of X we have

|C ∩X \ C| ≥ 2.

Equivalently, X is semistable if its dual graph has no vertex of weight
0 and degree 1.

6.2. Line bundles on nodal curves. Let X = ∪γi=1Ci be a nodal
curve with components C1, . . . , Cγ, and let

ν : Xν = tγi=1C
ν
i −→ X

be its normalization. We said earlier that X has a dualizing bundle,
ωX , which coincides with the canonical bundle when X is smooth. We
want to study the relation between ωX and the canonical bundle of Xν ,
and more generally, between line bundles on X and on Xν . To do that,
consider the pull-back homomorphism

ν∗ : Pic(X) −→ Pic(Xν) =
∏
i

Pic(Cν
i ).

This is surjective; an elementary way to verify this is to observe that
given a line bundle, Lν on Xν we can construct a line bundle on X by
prescribing an isomorphism between each pair of fibers, Lνp+ and Lνp−
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for every p ∈ Xsing. A more complete proof is to recall that we have an
isomorphism (Hartshorne Ex. III.4.5)

H1(X,O∗X) ∼= Pic(X)

hence, similarly to the sequence (11), we have

(13) 1 −→ O∗X −→ ν∗O∗Xν −→ S∗ −→ 1

from which we get, setting δ = |Xsing|
1 −→ k∗ −→ (k∗)γ −→ (k∗)δ −→ H1(X,O∗X) −→ H1(Xν ,O∗Xν ) −→ 0

hence, as δ − γ + 1 = b1(GX), we have the exact sequence

(14) 0 −→ (k∗)b1(GX) −→ Pic(X) −→ Pic(Xν) −→ 0.

For every L ∈ Pic(X) its degree on the component Ci of X is defined
as the degree of ν∗L on Cν

i , in symbols

degCi L := deg(ν∗L)|Cνi .

Now the multidegree of L is defined as

degL = (degC1
L, . . . , degCγ L) ∈ Zγ

and the degree of L is

degL =

γ∑
ı=1

degCi L.

For any d = (d1, . . . , dγ) ∈ Zγ we denote by Picd(X) ⊂ Pic(X) the set
of line bundles of multidegree d, hence we have a surjection

Picd(X) −→ Picd(Xν).

We write |d| =
∑
di and for any d ∈ Z we write Picd(X) ⊂ Pic(X)

for the set of line bundles of degree d. Of course, if X is reducible the
degree is not as fine an invariant as the multidegree. Indeed, for any
fixed d ∈ Z we have

Picd(X) =
∐

d∈Z:|d|=d

Picd(X).

The Jacobian variety of X is defined as the set of line bundles on X
having degree 0 on every irreducible component, i.e.

Jac(X) = Pic(0,...,0)(X).

As for the smooth case, Jac(X) is an abelian group and from (14) we
have an exact sequence of groups

0 −→ (k∗)b1(GX) −→ Jac(X) −→ Jac(Xν) =

γ∏
i=1

Jac(Cν
i ) −→ 0.
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From the above sequence, we get the following

Definition/Lemma 6.2.1. Let X be a nodal curve of genus g. Then
dim Jac(X) = g and the following conditions are equivalent

(a) Jac(X) is projective.
(b) Jac(X) ∼= Jac(Xν)
(c) b1(GX) = 0 i.e. GX is a tree.

If X satisfies such conditions, we say that X is of compact type.

Now, the relation between ωX and the canonical bundle of the nor-
malization ofX is quite explicit. AsXν is smooth, its dualizing/canonical
bundle ωXν = KXν is defined as the canonical bundle of every con-
nected component. Now we have the following fact

ν∗ωX = KXν

( ∑
p∈Xsing

(p+ + p−)
)
.

7. Lecture 7

Lemma 7.0.1. Let X be a nodal curve of genus g. Then

(a) degωX = 2g − 2.
(b) X is stable if and only if for every irreducible component C ⊂ X

we have

(15) degC ωX > 0.

Proof. Set δ = |Xsing|; we have g =
∑γ

i=1 gCνi + δ − γ + 1. Now

degωX = degKXν

( ∑
p∈Xsing

(p+ + p−)
)

=

γ∑
i=1

degCνi KXν + 2δ

and
degCνi KXν = degKCνi

= 2gCνi − 2.

Hence

degωX =

γ∑
i=1

(2gCνi − 2) + 2δ = 2(

γ∑
i=1

gCνi − γ + δ) = 2g − 2

as claimed. By the above discussion we have

degC ωX = degKCν
( ∑
p∈Csing

(p++p−)
)
+|C∩(X r C)| = 2gCν−2+2|Csing|+|C∩(X r C)|.

In the dual graph (GX , wX) of X, let v be the vertex corresponding to
C, then

degC ωX = 2gCν − 2 + deg v = 2wX(v)− 2 + deg v
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(see Remark 5.2.3).
Suppose X is stable. If gCν ≥ 2 then obviously degC ωX > 0. If

gCν = 1 then deg v > 1 (as X has genus ≥ 2), hence degC ωX > 0. If
gCν = 0 then, by stability, deg v ≥ 3 hence again degC ωX > 0.

Conversely, assume (15) holds and let us show that the dual graph
of X is stable. If C ⊂ X is a component such that gCν = 0, then (15)
gives

0 < degC ωX = −2 + deg v

hence deg v ≥ 3, hence X is stable. ♣

The Riemann-Roch theorem holds for nodal curves:

Theorem 7.0.2. (Riemann-Roch) Let X be a nodal curve of (arith-
metic) genus g. For any L ∈ Pic(X) we have

h0(X,L)− h0(X,ωXL
−1) = degL− g + 1

equivalently, by Serre’s duality

h0(X,L)− h1(X,L) = degL− g + 1.

The following is a consequence of Riemann-Roch and Lemma 7.0.1.

Fact 7.0.3. Let X = ∪γi=1Ci be a nodal curve and L ∈ Pic(X).

(1) If degCi L ≥ 2gCi + 1 for every i = 1, . . . , γ, then L is very
ample.

(2) L is ample if and only if degCi L > 0 for every i = 1, . . . , γ.
(3) The curve X is stable if and only if ωX is ample.

7.1. Stabilization and Stable Reduction.
Stabilization. If X is a non-stable nodal curve of genus g ≥ 2, its du-
alizing line bundle ωX is not ample. What happens in this case? Let
C ⊂ X be a destabilizing component of X, i.e. an irreducible com-
ponent such that Cν ∼= P1 and such that the vertex, vC , correspond-
ing to C has degree ≤ 2. Then one easily check that Cν ∼= P1 and
degC ωX ≤ 0. More precisely, if vC is a leaf vertex, then degC ωX = −1
while if deg(vC) = 2 then (ωX)|C = OC . On the other hand, X has
genus at least 2, hence degωX > 0, hence X contains some component
over which the restriction of ωX has positive degree, i.e. it is ample.
Hence there exists some n > 0 such that the restriction of ωnX to ev-
ery non-destabilizing component is very ample. Therefore ωnX induces a
morphism in projective space Pr with r = n(2g−2)−g, which contracts
every destabilizing component

X −→ st(X) ⊂ Pr.
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Such a morphism can be also constructed abstractly, without using the
dualizing sheaf, by contracting all the destabilizing components to a
point. The point to which the component C is contracted is either a
smooth point of st(X), if deg vC = 1, or a node if deg vC = 2.

One easily checks that st(X) is stable of genus g. Its dual graph is
obtained by removing every vertex of weight 0 and degree 1 and its
adjacent edge, and every vertex of weight 0 and degree 2, exactly as
the two removal operations described to define equivalence of tropical
curves, before Proposition 3.2.4

We say that two nodal curves X and X ′ are stably equivalent if
st(X) ∼= st(X ′).

Stable reduction. Why are stable curves so important among all sin-
gular curves? Since every nodal curve has a unique stabilization (up
to isomorphism), the above question is asking why nodal curves are so
important. A simple natural answer is: because nodes are the simplest
type of singularities a curve can have. But there is a deeper fact which
provides a stronger motivation. This is the so-called stable reduction
theorem, which states the following.

Theorem 7.1.1 (Stable Reduction Theorem). Let B be a smooth,
connected, one-dimensional variety and b0 ∈ B a fixed point. Let
f : X → B be a family of curves such that for every b ∈ B r b0 the
fiber, Xb, over b is smooth. Then there exists a finite cover φ : B′ → B
and a map h : Y → B′ all of whose fibers are stable curves and such
that on φ−1(B r b0) ⊂ B′ the restriction of h is the base change of f .
In particular, for every b′ ∈ B′ r φ−1(b0) the fiber Yb′ is isomorphic to
Xφ(b′).

The family h : Y → B′ is uniquely determined by φ.

We will not prove this theorem. We observe that the existence part
still holds if we replace the word stable by the word semistable, or
nodal. One can achieve uniqueness for families of semistable curves
by requiring that the total space Y be a nonsingular minimal surface.
Then uniqueness follows from the uniqueness of minimal models for
surfaces. In such a case the singular fibers will necessarily be semistable
(a rational tail in a fiber would be contractible).

Remark 7.1.2. It is not hard to show that the stable reduction theo-
rem extends to the case where the fibers of f are stable curves (rather
than smooth ones) over B \ {b0}.
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The stable reduction theorem, applied to B = SpecK with K is a
discrete-valued field implies that the moduli space of stable curves (if
it exists) satisfies the valuative criterion for properness.

7.2. The moduli space of stable curves. The original construction
of the (coarse) moduli space M g as a projective variety, is due to D.
Gieseker, and can be can be summarized as follows. Fix g ≥ 2.

(1) The dualizing bundle ωX of a stable curve X of genus g is
ample, hence X can be embedded in a projective space using a
high enough power, ωnX , such that ωnX is very ample. We call
the image of this embedding an n-canonical model of X. The
power n can be chosen to be the same for all stable curves of
fixed genus g, hence all n-canonical models of all stable curves
are in the same projective space Pr and have degree 2n(g − 1).
From now on n and r = 2n(g − 1)− g are fixed with n ≥ 10.

(2) The dualizing bundle is preserved by isomorphisms, hence so
are its powers, hence two n-canonical models are abstractly
isomorphic if and only if they are projectively equivalent, i.e.
conjugate by an element of G := PGL(r + 1).

(3) Let us denote by Kg the set of all n-canonical models of stable
curves of genus g. Then the group G acts on Kg and there
is a bijection between the quotient set Kg/G and the set of
isomorphism classes of genus g stable curves.

(4) The set Kg has a natural an algebraic structure via theory of
Hilbert schemes. The Hilbert scheme, H = Hilbrd,g, we need
here is the fine moduli space for projective curves in Pr of degree
d = n(g − 1) and genus g, and Kg ⊂ H is a quasiprojective
variety; moreover, Kg is smooth and irreducible.

(5) To give the quotient Kg/G the structure of an algebraic variety,
one applies Geometric Invariant Theory. The group G acts on
the Hilbert scheme H by leaving Kg invariant. It turns out
that Kg is made of GIT-stable points for the action of G on
H, and that Kg is closed in set of GIT-semistable points of H.
Therefore the GIT-quotient, denoted by Kg �G, is a projective
irreducible variety, and its points coincide with the orbits of G,
in other words there is a canonical bijection Kg � G = Kg/G
We set

M g := Kg �G.

Now let us illustrate some consequences of the construction.
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(a) Stable and smooth curves are treated at the same time, and the
construction yields together with the moduli space of stable curves,
the moduli space of smooth curves as an open subset Mg ⊂M g.

(b) This construction is purely algebraic and works in any characteris-
tic. Hence one obtains that Mg is irreducible (because so is M g) a
fact that was not known in positive characteristic.

(c) The variety M g is normal because so is Kg (which is even smooth),
and the GIT quotient of a normal variety is normal. Moreover M g

has mild singularties, and can be explicitly described, locally at ev-
ery point. The stabilizers of the action of G are the automorphism
groups of our curves, which are finite. Hence M g has at most finite
quotient singularties, and is smooth at curves having trivial auto-
morphism group (but the smooth locus of M g is bigger than the
locus of curves with trivial automorphism group).

(d) We know that M g is not a fine moduli space, on the other hand the
Hilbert scheme H is, hence so is Kg. Therefore Kg is the base of a
family of stable curves, f : C −→ Kg and the moduli map of this
family, µf : Kg →M g, coincides with the quotient map Kg →M g.

A somewhat different construction of M g has been given later, by
considering the related algebraic algebraic stack,Mg, and then showing
that this stack admits a projective moduli scheme M g. The stackMg,
albeit more sophisticated, is preferable from some points of view, as it
retains more information.

8. Lecture 8

8.1. Stable n-pointed curves.

Definition 8.1.1. Let g, n ≥ 0. A nodal n-pointed curve of genus
g, written (X; p1, . . . , pn) = (X; p), is a (connected) nodal curve X
of arithmetic genus g, together with n distinct nonsingular points pi ∈
X \Xsing. A nodal n-pointed curve is stable if the set of automorphisms
of X mapping pi to pi for all i = 1, . . . , n is finite.

The dual graph, (G(X;p), wX), of the nodal n-pointed curve (X; p) is
the weighted graph with n legs obtained by adding to the dual graph
(GX , wX) of X (in 5.2.2) a leg li at the vertex corresponding to the
component containing pi, for every i = 1, . . . , n.

Notice that (G(X;p), wX) has the same vertices, edges and weights as

(GX , wX), whereas the set, H(X;p), of half-edges is as follows

H(X;p) = {p+, p−, li ∀p ∈ Xsing,∀i = 1, . . . , n},
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now l1, . . . , ln are the fixed points of the involution on H(X;p), which

otherwise swaps p+ with p−. The endpoint map sends li to the vertex
corresponding to the component containing pi, and equals the endpoint
map of (GX , wX) otherwise.

Remark 8.1.2. It is easy to check that if g = 0 and n ≤ 2, or if g = 1
and n = 0, there are no stable curves, and that stable curves exist if
and only if 2g − 2 + n > 0.

On a pointed curve (X; p) the line bundle

ωX(
n∑
1

pi)

plays a fundamental role. For every component C of X we have

degC ωX(
n∑
1

pi) = 2gC − 2 + |C ∩
{
p1, . . . , pn}|+ |C ∩X r C|

= 2gCν − 2 + 2|Csing|+ |C ∩
{
p1, . . . , pn}|+ |C ∩X r C|

Proposition 8.1.3. Assume 2g−2+n > 0 and let (X; p) be a n-pointed
nodal curve of genus g. The following are equivalent

(1) (X; p) is stable.
(2) The dual graph of (X; p) is stable.
(3) The line bundle ωX(p1 + . . .+ pn) is ample

(equivalently, degC ωX(p1 + . . . + pn) > 0 for every component
C ⊂ X).

(4) For every component C ⊂ X such that gC ≤ 1 we have

|C ∩ {p1, . . . , pn}|+ |C ∩X r C| ≥

{
3 if gC = 0

1 if gC = 1.

Proof. Easy generalization of the proofs of the analogous statements
for n = 0. ♣

There are many reasons for extending our field of interest from curves
to pointed curves. Here is one

Remark 8.1.4. Stability of pointed curves is preserved under normal-
ization.

More precisely, let (X; p1, . . . , pn) be an n-pointed stable curve of
genus g. Pick a node q ∈ Xsing, let νq : Xν

q → X be the normalization
at q only; let q+, q− ∈ Xν

q be the two branches of q. Now abuse notation

by setting pi = ν−1
q (pi) for i = 1, . . . , n. Then one easily checks that the

(n + 2)-pointed curve (Xν
q ; p1, . . . , pn, q

+, q−) is either stable of genus
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g − 1 if q is not a separating node of X, or the disjoint union of two
pointed stable curves of genera summing to g if q is a separating node.

8.2. The moduli spaces M g,n.

Theorem 8.2.1. Let 2g − 2 + n ≥ 1. There exists a projective, ir-
reducible, normal, variety of dimension 3g − 3 + n, denoted by M g,n,
which is the coarse moduli space of n-pointed stable curves of genus g.
The moduli space of nonsingular n-pointed curves of genus g is an open
subset Mg,n ⊂M g,n.

Remark 8.2.2. The fact that M g,n is not a fine moduli space follows
from the existence of curves with nontrivial automorphisms (in fact if
g = 0 then M0,n is a fine moduli space for n ≥ 3). On the other hand
there do exist finite covers of M g,n which are fine moduli spaces of
stable curves with some extra structure. In particular, such coverings
are endowed with universal families of stable pointed curves whose
moduli map to M g,n coincides with the covering map.

Recall that we denote by Gg,n the set of all stable graphs with n legs

of genus g. For every G ∈ Gg,n we denote by Malg
G ⊂M g,n the locus of

isomorphism classes of n-pointed curves with G as dual graph:

Malg
G := {(X; p) ∈M g,n : (G(X,p), wX) = G}

hence we have the following combinatorial partition of M g,n

(16) M g,n =
⊔

G∈Gg,n

Malg
G .

In the sequel, we shall identify E(G) with Xsing when no confusion is
likely. Similarly V (G), respectively L(G), will be identified with the
set of components, resp. marked points, of X.

Lemma 8.2.3. Assume 2g − 2 + n > 0 and fix G ∈ Gg,n. Then Malg
G

is an irreducible quasiprojective variety and its codimension in M g,n is
equal to |E(G)|.

Proof. Set G = (G,w) and δ := |E(G)|. If δ = 0 then Malg
G = Mg,n

which is irreducible of codimension 0 by Theorem 8.2.1. Let δ > 0. Pick
a curve (X; p) ∈Malg

G , denote by C1, . . . , Cγ its irreducible components,
by ν : tγ1Cν

i → X its normalization, and set gi = gCν1 = w(vi) where
vi ∈ V (G) is the vertex corresponding to Ci.

Let ni be the number of marked points contained in Ci, so that∑γ
1 ni = n; denote by p

(i)
1 , . . . , p

(i)
ni ∈ Cν

i the preimages via ν of such
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points. Set δi := |ν−1(Ci ∩Xsing) ∩ Cν
i | so that we have

deg(vi) = ni + δi

For every i = 1, . . . , γ we have a nonsingular pointed curve of genus
gi with ni + 2δi marked points in it, (Cν

i ; p(i)), where

{p(i)
j , j = 1, . . . , deg(vi)} := (p

(i)
1 , . . . , p

(i)
ni

) ∪ ν−1(Ci ∩Xsing) ∩ Cν
i

where we fixed an ordering on the δi points in ν−1(Ci∩Xsing). Moreover,
as we observed in Remark 8.1.4, the pointed (smooth) curve (Cν

i ; p(i))
is stable and

(Cν
i ; p(i)) ∈Mgi,deg(vi).

Once we have such γ smooth pointed curves, the gluing data of ν−1(Xsing)
are uniquely determined by the graph G and by the orderings we have
chosen on ν−1((Ci)sing). Therefore we have a surjective morphism

γ∏
v∈V (G

Mw(v),deg(v) =

γ∏
i=1

Mgi,ni+δi −→Malg
G =

γ∏
i=1

Mgi,deg(vi)/Aut(G).

Theorem 8.2.1 implies that Mgi,ni+δi is irreducible of dimension 3gi −
3 + ni + δi for all i = 1, . . . , γ. The above morphism is the quotient
by the action of the finite group Aut(G), hence Malg

G is quasiprojective
and irreducible. Since the above surjection has finite fibers we get

dimMalg
G =

γ∑
i=1

(3gi − 3 + ni + 2δi) = 3

γ∑
i=1

gi − 3γ + n+ 2δ

(since
∑γ

i=1 δi = δ). Now g =
∑γ

i=1 gi + δ − γ + 1 hence

dimMalg
G = 3g − 3δ + 3γ − 3− 3γ + n+ 2δ = 3g − 3 + n− δ.

♣

Example 8.2.4. Let G be the stable graph of genus 2 with n = 3
below. We have

◦
l1

h2 k2

h1 k1

◦
k3 j3

◦
l2

l3

1

i4j4 •

MG
∼= M0,3 ×M0,3 ×M0,4 ×M1,1

since the action of Aut(G) on the product is trivial. Indeed, the
only non-trivial automorphism of G, interchanging the two edges on
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the left, acts trivially on M0,3 which is a point. The stable curve of
genus 2 associated to(

(C0; p1, n1, n2), (D0; q1, q2, q3), (E0; p2, p3, s3, s4), (C1; t4)
)

with C0
∼= D0

∼= E0
∼= P1 and C1 of genus 1, is given by identifying

n1 = q1, n2 = q2, q3 = s3, s4 = t4

so that the legs correspond to p1, p2, p3.

Example 8.2.5. Consider the graph, G, in the picture below, stable
of genus 4 with one leg. We marked the identifications on the edges.
Now Aut(G) is generated by the involution, α, which interchanges the
two edges, i.e. such that

α(h1) = (h2), α(k1) = (k2)

and fixes everything else.

•l1

h2 k2
1 2

h1 k1

•

We have

MG
∼=
M1,3 ×M2,2

Aut(G)

where the action of α on M1,3 ×M2,2 swaps the two marked points of
M2,2 and the last two marked points of M1,3. Indeed, the following two
elements in M1,3 ×M2,2(

(C1; p1, p, p
′), (C2; q, q′)

)
,

(
(C1; p1, p

′, p), (C2; q′, q)
)

are conjugated by Aut(G) and give to the same point of MG. In other
words, they are different presentations for the same curve.

9. Lecture 9

9.1. Partition analogies. We have two similar partitions:

M trop
g,n =

⊔
G∈Gg,n

M trop
G

(see Theorem 5.1.3) and (16)

M g,n =
⊔

G∈Gg,n

Malg
G .
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In the sequel, by dimMalg
G , resp. dimM trop

G , we mean the dimension

as an algebraic variety, resp. as an orbifold, while by codimMalg
G , resp.

codimM trop
G , we mean the codimension in M g, resp. in M trop

g,n .

Theorem 9.1.1. Assume 2g−2+n ≥ 1. Consider the above partitions
and the following bijection between their parts

Malg
G 7→M trop

G ,

where G varies among all stable graphs of genus g with n legs. Then
the following hold.

(a) dimMalg
G = codimM trop

G = 3g − 3 + n− |E(G)|.
(b) With the notation (6),

Malg
G ⊂Malg

G′ ⇐⇒M trop
G′ ⊂M trop

G ⇐⇒ G ≥ G′.

Proof. Set G = (G,w). For (a), we know from Lemma 8.2.3 that

dimMalg
G = 3g− 3 +n− |E(G)|. By (8), we have dimM trop

G = |E(G)|,
hence codimM trop

G = dimM trop
g,n − |E(G)| = 3g − 3 + n− |E(G)|.

Now in (b), the second double implication follows from Theorem 5.1.3.
We give the proof of the remaining part only in case n = 0, leaving the
generalization to the reader.

Fix a stable curve X ∈Malg
G . By the moduli properties of M g,n (see

subsection 7.2), if X lies in the closure of Malg
G′ , there exist families of

curves with dual graph G′ specializing to X. We pick one such family,
f : X → B with a one dimensional base B with a marked point b0, so
that the fiber of f over every b 6= b0 is a stable curve Xb ∈Malg

G′ , while
the fiber over b0 is isomorphic to X.

In such a family, every node of Xb specializes to a node of X,
and distinct nodes specialize to distinct nodes. This singles out a set
T ⊂ E(G) of nodes of X, namely T is the set of nodes that are spe-
cializations of nodes of Xb. Let S = E(G) r T , so S parametrizes the
nodes of X that do not come from nodes of Xb. Consider the graph
(G/S,w/S); we claim that (G/S,w/S) = G′.

By construction we have a bijection

E(G′)←→ E(G/S) = T

mapping an edge of G′, i.e. a node of X ′, to the node in X to which it
specializes.

The total space X of our family of curves is singular along the nodes
of the fibers Xb, for b 6= b0. Let us desingularize X at such |T | loci,
we thus obtain a new family Y → B whose fiber over b 6= b0 is the
normalization of Xb. The fiber over b0 is the partial normalization of
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X at T , which we denote by Y ; so its dual graph satisfies

GY = G− T.

Notice that Y → B is a union of families parametrized by the irre-
ducible components of Xb, i.e. by the vertices of G′. Let us denote
these families by Y(v′)→ B; so if b 6= b0 the fiber of Y(v′) over b is the
smooth irreducible component corresponding to v′ ∈ V (G′). The fiber
over b0 of Y(v′)→ B is a connected component of Y , which we denote
Y (v′), so that the special fiber Y is decomposed as follows

Y =
⊔

v′∈V (G′)

Y (v′)

Now, Y (v′) determines a set of vertices of G (those corresponding to
its irreducible components). Notice that two different vertices of G′

determine in this way disjoint sets of vertices of G. Therefore we
have a surjection φ : V (G) → V (G′) mapping each vertex v to the
vertex v′ such that the component corresponding to v lies in Y (v′).
It is clear that φ(v1) = φ(v2) if and only if v1 and v2 belong to the
same connected component of G− T . Therefore φ is the same map as
the map σV : V (G) → V (G/S) (cf. Remark 4.1.2). This shows that
GY
∼= G/S. Finally, since the arithmetic genus of a family of algebraic

curves is constant, for any v′ ∈ V (G′) we have that the genus of the
component of Y corresponding to v′, i.e. the weight w′(v′), is equal to
the (arithmetic) genus of the limit curve Y (v′). Therefore

w′(v′) = b1(GY (v′)) +
∑

v∈σ−1
V (v′)

w(v) = b1(σ−1(v′)) +
∑

v∈σ−1
V (v′)

w(v).

By (5) the weight function w′ coincides with w/S; so we are done.
Conversely, assume G ≥ G′ with G′ = (G/S,w/S) for some S ⊂

E(G); let T := E(G) r S. Let X ∈ Malg
G . We shall reverse the pro-

cedure we just described to prove that there exists a family of curves
whose dual graph is G′ specializing to X. Let Y → X be the nor-
malization of X at T , so that GY = GX − T . Notice that Y has
|S| nodes and is endowed with |T | pairs of smooth points, namely the
branches over the nodes in T , and it is a disjoint union of stable pointed
curves, by Remark 8.1.4. Therefore, by Theorem 8.2.1, our curve Y
is the limit of smooth, possibly disconnected, curves with 2|T | marked
points; more precisely, there exists a family Y → B over some smooth
curve B, whose fiber over a fixed point b0 ∈ B is Y , and whose fibers
over b ∈ B r {b0} is a smooth, possibly disconnected, curve. Further-
more, this family is endowed with |T | pairs of disjoint sections in such
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a way that every connected component of Y → B is a family of stable
curves, smooth away from b0.

We let X be the surface obtained by gluing together, transversally,
the |T | pairs of sections. Then, by construction, X is a family of nodal
curves over B, whose fiber over b0 is X and whose fiber over b 6= b0 lies
in Malg

G′ . ♣


