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NÉRON MODELS AND COMPACTIFIED PICARD SCHEMES
OVER THE MODULI STACK OF STABLE CURVES

By LUCIA CAPORASO

Abstract. We construct modular Deligne-Mumford stacks Pd,g representable overMg parametriz-
ing Néron models of Jacobians as follows. Let B be a smooth curve and K its function field, let
XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model
N(PicdXK ) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.:

N(PicdXK ) ∼= Pd,g×Mg
B. Moreover Pd,g is compactified by a Deligne-Mumford stack overMg,

giving a completion of Néron models naturally stratified in terms of Néron models.
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1. Introduction.

1.1. Problems and results. The first goal of this paper is a parametrization
result for Néron models of Jacobians of stable curves (Theorem 6.1). A technical
part of the argument that yields results of independent interest is the strengthening
of a construction of the compactified Picard variety over Mg. A further outcome
is a geometrically meaningful compactification of such Néron models. We proceed
to discuss all of that more precisely.

Let K = k(B) be the field of rational functions of a nonsingular one-dimen-
sional scheme B defined over an algebraically closed field k. Let XK be a nonsin-
gular connected projective curve of genus g ≥ 2 over K whose regular minimal
model over B is a family f : X −→ B of stable curves.
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For any integer d, denote by Picd
K := Picd XK the degree-d Picard variety of

XK (parametrizing line bundles of degree d on XK), and let N( Picd
K) be its Néron

model over B. It is well known that (since the total space X is nonsingular)
the fibers of N( Picd

K) −→ B over the closed points of B depend only on the
corresponding fibers of f .

It makes therefore sense to ask the following question: does there exist a
space over Mg, such that, for every K and XK as above, N( Picd

K) is the base
change of such a space via the moduli map B −→Mg associated to the family f ?

In this paper we give a positive answer to this question for every g ≥ 3 and
for every d such that (d − g + 1, 2g− 2) = 1. Let us first state a result in scheme
theoretic terms, postponing the stack-theoretic generalization for a moment (cf.
Theorem 6.1). We construct a separated scheme Pd

g over the moduli scheme of
stable curves Mg, having the following property: for any family f : X −→ B of
automorphism-free stable curves with X regular, there is a canonical isomorphism
of B-schemes

N( Picd
K) ∼=B B×Mg

Pd
g

where B is viewed as an Mg- scheme via the moduli map of the family f .
Working within the category of schemes, the restriction to automorphism-free

curves is necessary: if X is a stable curve, Aut (X) injects into the automorphism
group of its generalized Jacobian (Theorem 1.13 [DM69]), hence there cannot
possibly exist a universal Picard scheme over the whole of Mg (for the same
reason why there exists no universal curve).

The stack theoretic approach is thus necessary to answer the above question in
general; the corresponding result is the following: there exists a smooth Deligne-
Mumford stack Pd,g, with a natural representable morphism to the stack Mg,
such that for every family f : X −→ B of stable curves with X regular, the
Néron model of Picd

K is the fiber product Pd,g ×Mg
B.

The stack Pd,g has a geometric description, as it corresponds to the “bal-
anced Picard functor”, which is a separated partial completion of the degree-d
component of the classical Picard functor on smooth curves (cf. 4.15 and 5.11).
Similarly the scheme Pd

g is the fine moduli space for such a functor restricted to
automorphism-free curves (5.3).

The requirement (d − g + 1, 2g − 2) = 1 is well known (by [MR85]) to be
necessary and sufficient for the existence of a Poincaré line bundle for the uni-
versal Picard variety Picd

g −→ M0
g (associated to the universal family of smooth

curves); we extend such a result as follows. Our scheme Pd
g will be constructed

as a dense open subset of the compactification Pd, g of Picd
g obtained in [C94];

we prove that the above Poincaré line bundle extends over Pd, g. More precisely,
we prove that such a numerical condition characterizes when the balanced Picard
functor is representable (and separated), and when the corresponding groupoid
is a Deligne-Mumford stack, representable over Mg (cf. chapter 5). Thus the
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hypothesis that (d−g + 1, 2g−2) = 1 plays a crucial role in various places of our
argument; we are therefore led to conjecture that without it the parametrization
result (6.1) would fail.

A consequence of the construction is a modular completion Pd,g of Pd,g by
a smooth Deligne-Mumford stack representable over Mg, which enables us to
obtain a geometrically meaningful compactification of the Néron model for every
family f as above.

We prove that our compactification of the Néron model is endowed with a
canonical stratification described in terms of the Néron models of the connected
partial normalizations of the closed fiber of f (Theorem 7.9). Moreover, in 8.5,
we exhibit it as a “quotient” of the Néron model for a ramified degree 2-base
change of f .

Notice that as d varies, the closed fibers of Pd
g −→ Mg do not, hence the

question naturally arises as to how many isomorphism classes of these spaces
there are; the exact number of them is computed in 6.9.

1.2. Context. The language and the techniques used in this paper are mostly
those of [BLR] for the theory of Néron models, and of [GIT] for Geometric
Invariant Theory and its applications to moduli problems.

As we said, we use the compactification Pd, g −→ Mg of the universal Picard
variety; however such a space existed only as a scheme, not as a stack. To
answer our initial question about the parametrization of Néron models, we need
to “stackify” such a construction and to build the standard universal elements for
it (the universal curve and the Poincaré bundle). This occupies most of section
5. We are in a lucky position to apply the theory of stacks as was developed in
recent years, in fact Pd, g and Pd

g are geometric GIT-quotients hence our stacks
are “quotient stacks”, which have been carefully studied by many authors. In
particular, we use [AV01], [ACV01], [E00], [LM] and [Vi89], together with the
seminal paper [DM69].

Why should Pd,g be a good candidate to glue Néron models together over
Mg? The initial observation, already at the scheme level, is that if the condition
(d− g + 1, 2g− 2) = 1 holds every closed fiber of Pd, g over Mg contains the fiber
of the corresponding Néron model as a dense open subset.

Néron models provide the solution for a fundamental mapping problem (see
the “Néron mapping property” in 2.5) and are uniquely determined by this. Their
existence for abelian varieties was established by A. Néron in [N64]; the theory
was developed by M. Raynaud (in [R70]) who, in particular, unraveled the con-
nection with the Picard functor in a way that will be heavily used in this paper.
Néron models have been widely applied in arithmetic and algebraic geometry;
a remarkable example is the proof (valid in all characteristics) of the stable re-
duction theorem for curves given in [DM69]. Nevertheless they rarely appear
in the present-day moduli theory of curves, where their potential impact looks
promising (see Section 9).
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Néron models are well known not to have good functorial properties: their
formation does not commute with base change, unless it is an étale one. However
there are advantages in having a geometric description for them (and for their
completion), such as the possibility to interpret mappings in a geometric way
(note that their universal property gives us the existence of many such mappings,
some arising form remarkable geometric settings). This may be fruitfully used to
study problems concerning limits of line bundles and linear series, as we briefly
illustrate in 9.

We mention one further motivating issue; that is the problem of comparing
various existing completions of the Picard functor and of some of its distinguished
subfunctors (such as the spin-functors or the functor of torsion points in the
Jacobian). It is fair to say that our understanding of the situation is insufficient,
a clear picture of how the various compactifications mentioned above relate to
each other is missing. An overview of various completions of the generalized
Jacobian with some comparison results is in [Al04] (more details in 6.4); the
interaction between compactified spin schemes and Picard schemes is studied
in [F04] and [CCC04]; various basic questions remain open. Understanding the
relation with Néron models can be used for such problems, thanks to the Néron
mapping property (see 6.3).

1.3. Summary. The paper is organized as follows: Section 3 recalls some
basic facts about our Néron models, Sections 4 and 5 are about the “balanced
Picard functor” and the corresponding stack; in 6 the connection with Néron
models is established, together with some comments and examples. The last two
sections are devoted to the completion of the Néron model, which is described
in 7 with focus on the stratification, and in 8 as a quotient of a Néron model
of a certain base change. In the Appendix some comments about applications,
together with some useful combinatorial facts, are collected.

Acknowledgments. I wish to express my gratitude to Dan Abramovich and
Angelo Vistoli for their kind explanations of crucial help for Section 5, and to
Cinzia Casagrande and Eduardo Esteves for various useful comments.

2. Notation and terminology.

2.1. All schemes are assumed locally of finite type over an an algebraically
closed field k, unless otherwise specified. R denotes a discrete valuation ring
(a DVR) with algebraically closed residue field k and quotient field K. For
any scheme T over Spec R we denote TK the generic fiber and Tk the closed
fiber.

If φ: W −→ B is a morphism and T −→ B is a B-scheme we shall denote
WT := W ×B T and φT : WT −→ T the projection.
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2.2. X will be a nodal connected curve projective over k; C1, . . . , Cγ its
irreducible components.

For any complete subcurve Z ⊂ X, gZ is its arithmetic genus, Z′ := X � Z its
complementary curve and kZ := #(Z ∩ Z′). Then

wZ := degZ ωX = 2gZ − 2 + kZ .

For a line bundle L ∈ Pic X its multidegree is deg L := ( degC1
L, . . . , degCγ L).

We denote d = (d1, . . . , dγ) elements of Zγ (or in Qγ) and |d| :=
∑γ

1 di. We
say that d is positive (similarly, non-negative, divisible by some integer, etc.) if
all di are. If d ∈ Zγ (or in Qγ) we denote the “restriction of d to the subcurve
Z” of X by dZ =

∑
Ci⊂Z di.

We set Picd X := {L ∈ Pic X: deg L = d}. In particular, the generalized
Jacobian of X is Pic0 X := {L ∈ Pic X: deg L = (0, . . . , 0)}. There are (non-
canonical) isomorphisms Pic0 X ∼= Picd X for every d ∈ Zγ . Finally we set
Picd X := {L ∈ Pic X: deg L = d} =

∐
|d|=d Picd X.

2.3. f : X −→ B will denote a family of nodal curves; that is, f is a proper
flat morphism of schemes over k, such that every closed fiber of f is a connected
nodal curve.

Picf denotes the Picard functor of such a family (often denoted PicX/B; see
[GIT] chapter 0 part (d) and [BLR] chapter 8 for the general theory). Picd

f is the
subfunctor of line bundles of (relative) degree d.

We shall often consider B = Spec R; in that case the closed fiber of f will be
denoted by X; let us assume that for the rest of the section. Picf (and similarly
Picd

f ) is represented by a scheme Picf (due to D. Mumford, see [BLR] Theorem
2 in 8.2 and [M66]) which may very well fail to be separated: if all geometric
fibers of f are irreducible, then Picf is separated (due to A. Grothendieck [SGA],
see also [BLR] Theorem 1 in 8.2) and conversely (see 3.1).

The identity component of the Picard functor is well known to be represented
by a separated scheme over B (the generalized Jacobian, see [R70] 8.2.1), which
we shall denote Pic0

f (denoted by P0 in [R70] and by Pic0
X/B in [BLR]).

For any d ∈ Zγ consider Picd
f ⊂ Picd

f , parametrizing line bundles of degree

d whose restriction to the closed fiber has multidegree d. Just like Pic0
f , these are

fine moduli schemes; Picd
f is a natural Pic0

f -torsor.

The generic fiber of Pic0
f and of Pic0

f coincide and will be denoted by Pic0
K ;

similarly Picd
K denotes the generic fiber of Picd

f (and of Picd
f ).

2.4. A stable curve is (as usual) a nodal connected curve of genus g ≥ 2
having ample dualizing sheaf. The moduli scheme (respectively stack) for stable
curves of genus g is denoted by Mg (resp. Mg). If g ≥ 3 the locus M0

g ⊂ Mg of
curves with trivial automorphism group is nonempty, open and nonsingular.
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A semistable curve is a nodal connected curve of genus g ≥ 2 whose dual-
izing sheaf has non-negative multidegree. A quasistable curve Y is a semistable
curve such that any two of its exceptional components do not meet (an ex-
ceptional component of Y is a smooth rational component E ∼= P1 such that
#(E ∩ Y � E) = 2).

If Y is a semistable curve, its stable model is the stable curve obtained by
contracting all of the exceptional copmonents of Y . For a given stable curve X
there exist finitely many quasistable curves having X as stable model; we shall
call such curves thet quasistable curves of X.

2.5. Let B be a connected Dedekind scheme with function field K. If
AK is an abelian variety over K, or a torsor under a smooth group scheme, we
denote by N(AK) the Néron model of AK , which is a smooth model of AK over
B uniquely determined by the following universal property (the Néron mapping
property, cf. [BLR] definition 1): every K-morphism uK : ZK −→ AK defined on
the generic fiber of some scheme Z smooth over B admits a unique extension to
a B-morphism u: Z −→ N(AK).

Recall that N(AK) may fail to be proper over B, whereas it is obviously
separated. Although N(AK) is endowed with a canonical torsor structure, induced
by the one of AK , we shall always consider it merely as a scheme.

3. The Néron model for the degree-d Picard scheme. We begin by intro-
ducing Néron models of Picard varieties of curves, following Raynaud’s approach
([R70]). Most of the material in this section is in chapter 9 of [BLR] in a far more
general form (also in sections 2 and 3 of [E98], which is closer to our situation);
we revisit it with a slightly different terminology, suitable to our goals.

3.1. Let f : X −→ B = Spec R be a family of curves and denote XK

the generic fiber, assumed to be smooth. To construct the Néron model of the
Picard variety Picd

K := Picd XK of XK , it is natural to look at the Picard scheme
Picd

f −→ B of the given family, which is smooth and has generic fiber equal to
Picd

K . The problem is that Picd
f will fail to be separated over B as soon as the

closed fiber X of f is reducible.
From now on we assume that X is a reduced curve having at most nodes as

singularities. Its decomposition into irreducible components is denoted X = ∪γ1 Ci.
One begins by isolating line bundles on X that are specializations of the trivial
bundle (so called twisters).

Definition 3.2. (i) Let f : X −→ Spec R be a family of nodal curves. A line
bundle T ∈ Pic X is called an f -twister (or simply a twister) if there exist integers
n1, . . . , nγ such that T ∼= OX (

∑γ
1 niCi)⊗OX

(ii) The set of all f -twisters is a discrete subgroup of Pic0 X, denoted Twf X.
(iii) Let L, L′ ∈ Pic X. We say that L and L′ are f -twist equivalent (or just

twist equivalent) if for some T ∈ Twf X we have L−1 ⊗ L′ ∼= T
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The point is: every separated completion of PicXK over B must identify twist
equivalent line bundles.

Remark 3.3. Notice that the integers n1, . . . , nγ are not uniquely determined,
as X is a principal divisor (the base being Spec R) and we have for every integer n,
OX (nX)⊗OX

∼= OX

We need the following well known (6.1.11 in [R70] and [BLR], lemma 10,
p. 272) list of facts (recall that kZ := #Z ∩ X � Z)):

LEMMA 3.4. Let f : X −→ Spec R be a family of nodal curves with X regular.
(i) deg (OX (

∑γ
1 niCi)⊗OX) = 0 if and only if ni = nj for all i, j = 1 . . . γ.

(ii) Let T be a non-zero twister. There exists a subcurve Z ⊂ X such that

degZ T ≥ kZ

(iii) There is a natural exact sequence

0 −→ Z −→ Zγ −→ Twf X −→ 0.

Proof. For (i), set T = OX (
∑γ

1 niCi)⊗OX . One direction follows immediately
from (3.3). Conversely assume that deg T = 0. Define for n ∈ Z the subcurve Dn

of X by

Dn = ∪ni=nCi

(If n = 0 the curve D0 is the union of all components having coefficient ni equal
to zero.) Now X is partitioned as X = ∪n∈ZDn and every irreducible component
of X belongs to exactly one Dn. By construction

T = OX

∑
n∈Z

nDn

⊗OX

and our goal is to prove that there is only one nonempty Dn appearing above.
Let m be the minimum integer such that Dm is not empty, thus Dn = ∅ for all
n < m. We have

degDmT = −mkDm +
∑
n>m

n(Dn · Dm)(1)

≥ −mkDm + (m + 1)
∑
n>m

(Dn · Dm)

≥
∑
n>m

(Dn · Dm) = kDm ≥ 0
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where in the last inequality we have equality if and only if all Dn are empty for
n > m (so that X = Dm). On the other hand the hypothesis was deg T = 0 and
hence equality must hold above, so we are done. This also proves (ii) by taking
Dm = Z.

Now we prove (iii). The sequence is defined as follows

0 −→ Z
σ−→ Zγ

τ−→ Twf X −→ 0
1 �→ (1, . . . , 1)

(n1, . . . , nγ) �→ OX (
∑γ

1 niCi)⊗OX

The map τ defines a Cartier divisor because X is regular. The injectivity of σ
and the surjectivity of τ are obvious. The fact that Imσ ⊂ ker τ was oserved
before (in (3.3)). Finally, suppose that (n1, . . . , nγ) is such that the associated
f -twister T := OX (

∑γ
1 niCi)⊗OX is zero. Then T must have multidegree equal

to zero, therefore, by the first part, we obtain that (n1, . . . , nγ) = (m, . . . , m) for
some fixed m and hence (n1, . . . , nγ) ∈ Imσ.

3.5. Twisters on a curve X depend on two types of data: (1) discrete data,
i.e. the choice of the coefficients n1, . . . , nγ , (2) continuous data, namely the
choice of f : X −→ B = Spec R. More precisely, while twisters may depend
on f : X −→ B, their multidegree only depends of the type of singularities of
X (see 6.6). Let us assume that X is regular. For every component Ci of X
denote, if j �= i, ki,j := #(Ci ∩ Cj) and ki,i = −#(Ci ∩ C \ Ci) so that the matrix
MX := (ki,j) is an integer valued symmetric matrix which can be viewed as
an intersection matrix for X. It is clear that for every pair i, j and for every
(regular) X , degCj

OX (Ci) = ki,j. We have that
∑γ

j=1 ki,j = 0 for every fixed i.
Now, for every i = 1, . . . , γ set ci := (k1,i, . . . , kγ,i) ∈ Zγ and

Z := {d ∈ Zγ : |d| = 0}

so that ci ∈ Z and we can consider the sublattice ΛX of Z spanned by them

ΛX :=< c1, . . . , cγ > .

Thus, ΛX is the set of multidegrees of all twisters and has rank γ−1 (by 3.4(iii)).

Definition 3.6. The degree class group of X is the (finite) group ∆X := Z/ΛX .
Let d and d′ be in Zγ ; we say that they are equivalent, denoting d ≡ d′, iff their
difference is the multidegree of a twister, that is if d − d′ ∈ ΛX

3.7. The degree class group is a natural invariant to consider in this setting,
it was first (to our knowledge) defined and studied by Raynaud (in 8.1.2 of [R70],
denoted kerβ/ Imα). We here adopt the terminology and notation used in [C94]
section 4.1, which is convenient for our goals.
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∆X is the component-group of the Néron model of the Jacobian of a family
of nodal curves X −→ Spec R with X nonsingular (see thm.1 in 9.6 of [BLR]
and also 3.11). The group of components of a Néron model, in more general
situations than the one studied in this paper, has been the object of much research.
In particular, bounds for its cardinality have been obtained by D. Lorenzini in
[L90]; see also [L89], [L93] and[BL02] for further study and applications. It is
quite clear that ∆X is a purely combinatorial invariant of X, a description of it in
terms of the dual graph (due to Oda and Seshadri [OS79]) is recalled in 9.10.

3.8. The group ∆X parametrizes classes of multidegrees summing to zero.
More generally, let us denote ∆d

X the set of classes of multidegrees summing to d:

∆d
X := {d ∈ Zγ : |d| = d}/≡

(where “≡” is defined in 3.6). We shall denote the elements in ∆d
X by lowercase

greek letters δ and write d ∈ δ meaning that the class [d] of d is δ. Of course,
there are bijections ∆d

X ↔ ∆X .

3.9. Let f : X −→ Spec R = B with X regular and, as usual, assume
that the closed fiber has γ irreducible components. Let d and d′ be equivalent
multidegrees, then there is a canonical isomorphism (depending only on f )

ιf (d, d′): Picd
f −→ Picd′

f

which restricts to the identity on the generic fiber. To prove that, recall that by
3.4 part (i) there exists a unique T ∈ Twf X such that deg T = d′ − d and that
there is a unique line bundle T ∈ PicX such that T is trivial on the generic fiber
and T ⊗ OX

∼= T; in fact T must be of the form OX (
∑

niCi) and the ni are
determined up to adding a multiple of the closed fiber (see 3.3), which does not
change the equivalence class of T , as X is a principal divisor on X (Pic B = 0).
The isomorphism ι = ιf (d, d′) is thus given by tensor product with T , so that if

L ∈ Picd
k we have ι(L) = L⊗ T , whereas if L ∈ Picd

K then ι(L) = L.

We shall therefore identify Picd
f with Picd′

f for all pairs of equivalent d, d′.

Thus for every δ ∈ ∆d
X we define for every d ∈ δ

Picδf := Picd
f .(2)

The schemes Picδf for a fixed total degree d all have the same generic fiber,
Picd

K ; we can then glue them together identifying their generic fibers. We shall



10 LUCIA CAPORASO

denote the so obtained scheme over B

∐
δ∈∆d

X
Picδf

∼K

(where ∼K denotes the gluing along the generic fiber) so that its generic fiber is
Picd

K . We have:

LEMMA 3.10. Let f : X −→ Spec R be a family of nodal curves withX regular.
Then we have a canonical B-isomorphism

N( Picd
K) ∼=

∐
δ∈∆d

X
Picδf

∼K
.

Proof. We may replace B by its strict henselization, in fact all the objects
involved in the statement are compatible with étale base changes (of course X
remains regular under any such base change, and ∆X does not change). Recall
also that Néron models descend from the strict henselization of B to B itself
([BLR] 6.5/3).

Assume first that d = 0. The Néron model of Pic0
K is proved in [BLR]

(Theorem 4 in 9.5) to be equal to the quotient Pic0
f /E where E is the schematic

closure of the unit section Spec K −→ Pic0
K (so that E is a scheme over B, see

[BLR] p. 265).
We can explicitly describe the closed fiber of E: Ek = Twf X. In fact if

L belongs to the closed fiber of E, then L is a line bundle on X which is a
specialization of the trivial line bundle on XK ; thus there exists a line bundle L
on the total space X which is trivial on the generic fiber of f and whose restriction
to X is L. Therefore L is of the form L = OX (D) with D supported on X, hence
L ∈ Twf X. The converse, i.e. the fact that Twf X is in Ek, is obvious. Now we
have

Pic0
f =

∐
|d|=0 Picd

f

∼K
,

where ∼K denotes (just as above) the gluing of the schemes Picd
f along their

generic fiber (which is the same for all of them: Pic0
K).

We obtain that the quotient by E identifies Picd
f with Picd′

f for all pairs of
equivalent d and d′, and this identification is the same induced by ιf (d, d′) which
was used to define Picδf in 3.9 formula (2). Hence we have canonical isomorphisms

Pic0
f /E ∼=

∐
|d|=0 Picd

f

∼K

∼=
∐
δ∈∆X

Picδf
∼K

.
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For general d, we have that Picd
K is a trivial Pic0

K-torsor (in the sense of
[BLR] 6.4) and we can reason as we just did to obtain

N( Picd
K) = Picd

f /Ed =

∐
|d|=d

Picd
f

 /Ed ∼=

 ∐
δ∈∆d

X

Picδf

 / ∼K ,

where Ed denotes the analog of E, that is the schematic closure of a fixed section
Spec K −→ Picd

K (which exists because, R being henselian, f has a section).

Remark 3.11. The lemma clarifies 3.7: the degree class group ∆X is the group
of connected components of the closed fiber of N( Pic0

K). In fact (recalling 3.8)
for the closed fiber we have

(N( Picd
K))k

∼= Picd X/Twf X ∼=
∐
δ∈∆d

X

Picδ X.

4. The balanced Picard functor As stressed in 3.11, the scheme structure
of the closed fiber of the Néron model does not depend on the family f (the
hypothesis that X is a nonsingular surface is crucial, see 6.6). We shall now
ask whether, for a fixed d, our Néron models “glue together” over Mg. From
the previous section, a good starting point would be to find a “natural” way of
choosing representatives for multidegree classes.

Example 4.1. Let d = 0 and consider the identity in ∆X; then (0, . . . , 0) is a
natural representative for that. It is then reasonable to choose representatives for
the other classes so that their entries have the smallest possible absolute value.

For example, let X = C1 ∪C2 with C1 ∩C2 = k and k odd. Then ∆X
∼= Z/kZ

and our choice is:

(0, 0), (± 1,∓1), . . . ,
(
±k − 1

2
,∓k − 1

2

)
.

Another natural case is d = 2g − 2; here the class [ degωX], represented of
course by degωX , plays the role of the identity. Therefore, as before, the other
representatives should be chosen as close to degωX as possible. For X as above
the representatives would be (recalling that wCi := degCi

ωX)

(wC1 , wC2 ), (wC1 ± 1, wC2 ∓ 1), . . . ,
(

wC1 ±
k − 1

2
, wC2 ∓

k − 1
2

)
.

In what follows we use the notation of 2.2.
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Definition 4.2. Let X be a nodal curve of any genus.
(i) The basic domain of X is the bounded subset BX ⊂ Zγ made of all d ∈ Zγ

such that |d| = 0 and such that for every subcurve Z ⊂ X we have

−kZ

2
≤ dZ ≤

kZ

2
.

(ii) For any b ∈ Qγ such that b := |b| ∈ Z denote BX(b) the subset of Zγ

made of all d ∈ Zγ such that |d| = b and such that for every subcurve Z ⊂ X we
have

bZ −
kZ

2
≤ dZ ≤

kZ

2
+ bZ

Remark 4.3. Note that BX (and similarly BX(b)) is the set of integral points
contained in a polytope of Qγ , whose boundary is defined by the inequalities
in 4.2. We shall refer to BX(b) as a translate of BX , although this is is slightly
abusive.

In the definition one could replace “every subcurve Z of X” with “every
connected subcurve Z of X” but not with “every irreducible component of X”. In
other words the basic polytope of X is not in general, a product of γ−1 intervals
(it is, of course, if X has only two components, in which case it is an interval).

To connect with the previous discussion, we have:

LEMMA 4.4. Let X be a nodal (connected) curve of any genus. Fix any b ∈ Qγ
with b := |b| ∈ Z. Then every δ ∈ ∆b

X has a representative contained in BX(b).

Proof. The proof of proposition 4.1 in [C94], apparently only a special case
of this lemma (namely X quasistable (cf. 2.4) and b = bd

X as in (3) below), carries
out word for word.

4.5. We shall choose a special translate of Bd
X , according to the topological

characters of X. Let g ≥ 2, set

bd
X :=

(
wC1

d
2g− 2

, . . . , wCγ
d

2g− 2

)
and Bd

X := BX(bd
X).(3)

Then:

Definition 4.6. Let X be a semistable curve of genus g ≥ 3 and L ∈ Picd X.
Let d be the multidegree of L, We shall say that:

(i) d is semibalanced if for every subcurve Z of X the following (“Basic
Inequality)” holds

mZ(d) := d
wZ

2g− 2
− kZ

2
≤ degZ L ≤ d

wZ

2g− 2
+

kZ

2
=: MZ(d)(4)
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(equivalently, if d ∈ Bd
X) and if for every exceptional component E of X

0 ≤ degE L ≤ 1( = ME(d)).(5)

(ii) d is balanced if it is semibalanced and if for every exceptional component
E ⊂ X

degE L = 1.(6)

(iii) d is stably balanced if it is balanced and if for every subcurve Z such
that dZ = mZ(d) we have that X � Z is a union of exceptional components.

If X −→ B is a family of semistable curves and L ∈ PicX of relative degree
d, we say that L is (respectively stably, semi) balanced if for every b ∈ B the
restriction of L to Xb has (stably, semi) balanced multidegree.

4.7. In particular if X is a stable curve the set Bd
X (cf. 4.5) equals the set

of balanced multidegrees of total degree d.
The inequality (4) was discovered by D. Gieseker in the course of the con-

struction of the moduli scheme Mg. Proposition 1.0.11 in [Gie82] states that (4) is
a necessary condition for the GIT-semistability of the Hilbert point of a (certain
type of) projective curve; it was later proved in [C94] that it is also sufficient.
We mention that there exist other interesting incarnations of that inequality, for
example in [OS79] and [S94] ([Al04] connects one to the other). The terminology
used in Definition 4.6 was introduced in [CCC04] (cf. Theorem 5.16 therein) to
reflect the GIT-behaviour of Hilbert points.

Example 4.8. The representatives in 4.1 (for d = 0 and d = 2g − 2) are
all stably balanced and they are all the balanced multidegrees for that X and
those d’s.

Remark 4.9. It is easy to check (combining (4) and (6) of 4.6) that balanced
line bundles live on quasistable, rather than semistable curves, and hence on a
“bounded” class of curves. In analogy with semistable curves, while semibalanced
line bundles do not admit a nice moduli space (just like semistable curves) they
do admit a “balanced line bundle model” (by contracting all of the exceptional
components where the degree is 0, see 9.1).

Remark 4.10. Assume that d is very large with respect to g, then a balanced
line bundle L on a quasistable curve X of genus g is necessarily very ample. In
fact if Z ⊂ X, it suffices to show that the restriction of L to Z is very ample; if Z
is exceptional then degZ L = 1, otherwise we have degZ L ≥ mZ(d) = d wZ

2g−2 −
kZ
2

and, since wZ ≥ 1 and kZ ≤ g + 1, the claim follows trivially.
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Remark 4.11. Notation as in 4.6.
(a) Set Z′ := X � Z. Then d = mZ(d) + MZ′(d), in particular dZ = mZ(d) if and

only if dZ′ = MZ′(d).
(b) Let X be stable; then d is stably balanced if and only if strict inequality

holds in (4) for every Z � X.
(c) Let X be quasistable. Then a balanced d is stably balanced if and only if the

subcurves where strict inequality in (4) fails are all the Z′ unions of exceptional
components (in which case dZ′ = MZ′(d)) and (by (a)) their complementary
curves Z (in which case dZ = mZ(d)).

PROPOSITION 4.12. Fix d ∈ Z and g ≥ 2.
(i) Let X be a quasistable curve of genus g and δ ∈ ∆d

X. Then δ admits a
semibalanced representative.

(ii) A balanced multidegree is unique in its equivalence class if and only if it is
stably balanced.

(iii) (d− g + 1, 2g− 2) = 1 if and only if for every quasistable curve X of genus
g and every δ ∈ ∆d

X, δ has a unique semibalanced representative.

Proof. (i) By 4.4 we know that every δ has a representative d in Bd
X; if X

is stable this is enough. Assume that X has an exceptional component E, notice
that mE(d) = −1 thus we must prove that a representative for δ can be chosen so
that its restriction to E is not −1. Assume first that E is the unique exceptional
component. Observe that for any subcurve Z ⊂ X and every decomposition
Z = A ∪ B into two subcurves having no component in common and meeting in
kA,B points, we have (omitting the dependence on d to simplify the notation)

MZ = MA + MB − kA,B.(7)

Now let d ∈ Bd
X and suppose that dE = −1 = mE, denote Z = E′ the comple-

mentary curve and note that by 4.11(a) we have that dZ = MZ . Let e ∈ ΛX be
the multidegree associated to E (notation of 3.5), we claim that d′ := d − e is
semibalanced. We have that d′E = (d− e)E = −1 + 2 = 1 so we are OK on E, now
it suffices check every connected subcurve A ⊂ Z which meets E. Suppose first
that E �⊂ A, then d′A = dA − kA,E, where kA,E = #(A ∩ E) > 0. By contradiction
assume that d′ violates (4) on A, then, as dA satisfies (4) and d′A < dA we must
have that

d′A = dA − kA,E < mA = MA − kA.

Now let Z = A ∪ B as above, so that kA,B = kA − kA,E, hence

dA < MA − kA,B.
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We conclude with the inequality

MZ = dZ = dA + dB < MA − kA,B + MB

contradicting (7). Now let E ⊂ A; if E ∩ B = ∅ then dA = d′A and we are done.
Otherwise E meets A in one point and one easily cheks that the basic inequality
for A is exactly the same as for A� E, so we are done by the previous argument.

Since X is quasistable, two of its exceptional components do not meet and
hence this argument can be iterated; this proves (i).

For (ii), begin with a simple observation. For every subcurve Z of X, the
interval allowed by the basic inequality contains at most kZ + 1 integers and the
maximum kZ + 1 is attained if and only if its extremes mZ(d) and MZ(d) are
integers.

Let now d be stably balanced and t ∈ ΛX (that is, t = deg T for some
twister T); then, by 3.4 part (ii) there exists a subcurve Z ⊂ X on which (d+ t)Z ≥
dZ + kZ . This implies that d + t violates the Basic Inequality, in fact either dZ lies
in the interior of the allowed range and hence dZ + kZ is out of the allowed range;
or dZ is extremal, and we use 4.11(c). Therefore a stably balanced representative
is unique. Conversely, by what we said, two equivalent multidegrees that are
both balanced must be at the extremes of the allowed range for some curve Z,
so neither can be stably balanced (by 4.11).

Now part (iii). As explained above, it suffices to prove that (d−g+1, 2g−2) =
1 if and only if for every X quasistable of genus g and every subcurve Z ⊂ X
such that neither Z nor Z′ is a union of exceptional components, mZ(d) is not
integer. Suppose that (d−g+1, 2g−2) = 1 holds, then (d, g−1) = 1 (the converse
holds only for odd g). By contradiction, let X be a quasistable curve having a
subcurve Z as above for which mZ(d) is integer; thus

dwZ

2g− 2
=

n
2

where n ∈ Z: n ≡ kZ mod (2),(8)

hence g−1 divides wZ . Then (by 4.11(a)) MZ′ and mZ′ are also integer, therefore
arguing as for Z, g − 1 divides wZ′ . Now notice that 2(g − 1) = wZ + wZ′ and
that wZ and wZ′ are not zero (because Z and Z′ are not union of exceptional
components). We conclude that

g− 1 = wZ = wZ′ so that g = 2gZ + kZ − 1.(9)

Thus by the (8)

dwZ

g− 1
= d = n hence d ≡ kZ mod (2).
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On the other hand the second identity in (9) shows that

(g− 1) ≡ kZ mod (2), hence d ≡ (g− 1) mod (2).

The latter implies that 2 divides (d − g + 1, 2g− 2), a contradiction.
Conversely: suppose that for some X and Z ⊂ X we have (see (8))

dwZ

g− 1
= n with n ∈ Z: n ≡ kZ mod (2).

If (d, g− 1) �= 1 a fortiori (d− g + 1, 2g− 2) �= 1. Suppose then that g− 1 divides
wZ; we have just proved that this implies g− 1 = wZ , that d = n and that

d ≡ (g− 1) mod (2)

hence 2 divides (d − g + 1, 2g− 2), and we are done.

A weaker version of this result is proved in [C94] Section 4.2, where the
assumption that d be very large is used. Despite the overlapping, we gave here
the full general proof to stress the intrinsic nature of definition 4.6 and contrast
the impression, which may arise from [Gie82] and [C94], that it be a technical
condition deriving from Geometric Invariant Theory.

A consequence of 4.12 and its proof is the following useful:

COROLLARY - Definition 4.13. Let d be an integer and X a stable curve, we
shall say that X is d-general if the following equivalent conditions hold.

(i) A multidegree on X is balanced if and only if it is stably balanced.
(ii) The natural map sending a balanced multidegree to its class

Bd
X −→ ∆d

X , d �→ [d]

is a bijection.
(iii) For every quasistable curve Y of X, every element in ∆d

Y has a unique
semibalanced representative.

Remark 4.14. The assumption (d− g + 1, 2g− 2) = 1 in part (iii) of 4.12 is a
uniform condition ensuring that every stable curve of genus g is d-general. The
terminology is justified by the fact that the locus in Mg of d-general curves is
open (see 5.6).

At the opposite extreme is the case d = (g − 1) (and, more generally, d =
n(g − 1) with n odd), which is uniformly degenerate in the sense that for evey
X ∈ Mg there exists δ ∈ ∆d

X having more than one balanced representative.

We shall now define the moduli functor for balanced line bundles on stable
curves.
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Definition 4.15. Let f : X −→ B be a family of stable curves and d an integer.
The balanced Picard functor Pd

f is the contravariant functor from the category
of B-schemes to the category of sets which associates to a B-scheme T the set of
equivalence classes of balanced line bundles L ∈ PicXT of relative degree d. We
say that L and L′ are equivalent if there exists M ∈ Pic T such that L ∼= L′⊗f ∗T M.

A B-morphism φ: T ′ −→ T is mapped by Pd
f to the usual pull-back morphism

from Pd
f (T) to Pd

f (T ′).

It is clear that Pd
f is a subfunctor of Picd

f . The point is that, in some “good”
cases, Pd

f is representable by a separated scheme.

Example 4.16. Consider the “universal family of stable curves” of genus g

fg: Cg −→ M0
g ⊂ Mg.

(cf. 2.4). In this case we shall simplify the notation and set

Pd
g := Pd

fg .

Observe that if Pd
g is representable by a separated scheme Pd

g, then for every
family of automorphism-free stable curves f : X −→ B, the functor Pd

f is rep-
resentable by the scheme µ∗f Pd

g = B ×Mg
Pd

g where µf : B −→ Mg is the moduli
morphism of f .

5. Balanced Picard schemes and stacks. The purpose of this section is
to build the “representable stack version” of the compactified universal Picard
variety constructed in [C94] simply as a coarse moduli scheme. From now we
fix integers d and g ≥ 3 and set r := d − g.

5.1. We begin by recalling some facts about the restriction of the balanced
Picard functor Pd

g (cf. 4.16) to nonsingular curves, which we denote Picd
g. It is a

well known fact that Picd
g is coarsely represented by the the so called “universal

degree-d Picard variety”, Picd
g −→ Mg, over the moduli scheme of nonsingular

curves (we use here the notation “Picd
g” in place of “Pd,g” used in [C94] and

in [HM98]). The existence of the variety Picd
g follows from general results of

A. Grothendieck ([SGA] and [M66], see [GIT] 0.5 (d) for an overview). As we
already mentioned, for arbitrary values of d the functor Picd

g is only coarsely
represented by Picd

g, in fact a Poincaré line bundle does not always exist. More
precisely, by a result of N. Mestrano and S. Ramanan, a Poincaré line bundle
exists if and only if (d−g + 1, 2g−2) = 1 (in chark = 0, see Cor. 2.9 of [MR85]).

5.2. To deal with singular stable curves we shall use the compactification
Pd, g −→ Mg of Picd

g −→ Mg constructed in [C94], from which we need to recall
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and improve some results. Assume that d is very large (which is irrelevant, see
below); such a compactification is the GIT-quotient Pd, g = Hd/G of the action of
the group G = PGL(r + 1) on the locus Hd of GIT-semistable points in the Hilbert
scheme Hilbdt−g+1

Pr (for technical reasons concerning linearizations, one actually
carries out the GIT-construction using the group SL(r +1), rather than PGL(r +1);
since the two groups have the same orbits this will not be a problem).

(1) Denote by Zd the restriction to Hd of the universal family over the Hilbert
scheme

Pr × Hd ⊃ Zd −→ Hd,

for h ∈ Hd let Zh be the fiber of Zd over h and Lh = OZh(1) the embedding
line bundle. Zh is a nondegenerate quasistable curve in Pr and Lh is balanced in
the sense of 4.6 (by [Gie82]); conversely, every such a curve embedded in Pr

by a balanced line bundle appears as a fiber over Hd (by [C94]). The point h is
GIT-stable if and only if Lh is stably balanced.

(2) For h ∈ Hd denote Xh ∈ Mg the stable model of the quasistable curve Zh.
If Xh is d-general (see 4.13) the point h is GIT-stable, which in turn implies that
there is a natural injection (by [C94] Section 8.2)

StabG (h) ↪→ Aut (Xh).

Conversely, if X ∈ Mg is not d-general, there exists a (strictly semistable) h ∈ Hd

lying over X having dim StabG (h) > 0.
(3) Hd is regular and irreducible (by Lemma 2.2 and Lemma 6.2 in [C94]).
(4) The GIT-quotient Hd/G is geometric (i.e. all semistable points are stable)

if and only if d is such that (d − g + 1, 2g− 2) = 1 ([C94] Prop. 6.2).
(5) For every pair of integers d and d′ such that d±d′ = n(2g−2), for n ∈ Z,

there are natural isomorphisms Pd, g
∼= Pd′,g ([C94] Lemma 8.1). This allows us

to define Pd, g for every d ∈ Z, compatibly with the geometric description. That
is, for d ∈ Z, pick n such that d′ = d + n(2g − 2) is large enough, the above
isomorphism Pd, g

∼= Pd′,g is constructed by tensoring with the nth power of the
relative dualizing sheaf. It is easy to verify that a line bundle L on a curve X is
balanced if and only if L⊗ ω⊗n

X is balanced.
We begin with a scheme-theoretic result that will be generalized later on.

PROPOSITION 5.3. Let g ≥ 3 and d be such that (d − g + 1, 2g− 2) = 1.
(i) The functor Pd

g is representable by a separated scheme Pd
g.

(ii) Pd
g is integral, regular and quasiprojective.

(iii) Let [X] ∈ M0
g and denote Pd

X the fiber of Pd
g over it. Then Pd

X is regular of

pure dimension g. In particular Pd
g is smooth over M0

g.

Proof. Assume first that d is very large (d ≥ 20(g − 1) will suffice). We
use the notation and set up of 5.2 above. Denote by Hst

d the open subset of Hd
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parametrizing points corresponding to stable curves, that is

Hst
d := {h ∈ Hd: Zh is a stable curve}.

By 5.2(1) there is a natural surjective map µ: Hst
d −→ Mg. Set H := µ−1(M0

g) so
that H parametrises points h such that Zh is a projective stable curve free from
automorphisms, Lh is a degree-d stably balanced line bundle on Zh (by 5.2(4))
and StabG (h) ∼= Aut (Zh) = {1} (by 5.2(2))

We have that H and Hst
d are G-invariant integral nonsingular schemes (by

5.2(3)). We shall denote fH: Z −→ H the restriction to H of the universal family
Zd and define Pd

g := H/G, so that H −→ Pd
g is the geometric quotient of a free

action of G. Moreover, G acts naturally (and freely) also on Z so that the quotent
CPd

g
:= Z/G gives a universal family on Pd

g. Let us represent our parameter

schemes and their families in a diagram

Pr π←− Pr × H ⊃ Z q−→ CPd
g

p−→ Cg

↓ fH ↓ ↓
H −→ Pd

g = H/G
φ−→ M0

g ⊂ Mg.

(10)

Notice that all squares are cartesian (i.e., fiber products) so that all vertical arrows
are universal families.

Now let us consider the natural polarization L := OZ (1) = π∗OPr (1) ⊗ OZ .
As we said in 5.2, L is stably balanced and, conversely, every pair (X, L), with X
an automorphism free stable curve and L ∈ Picd X a stably balanced line bundle,
is represented by a G-orbit in H. More generally, in Prop. 8.1(2) of [C94] it is
proved that Pd, g is a coarse moduli scheme for the functor of stably balanced
line bundles on quasistable curves.

In diagram (10) we have exhibited a universal family CPd
g
−→ Pd

g, to complete

the statement we must show that there exists a universal or Poincaré line bundle
L over CPd

g
(determined, of course, modulo pull-backs of line bundles on Pd

g).

This follows from lemma 5.5, with T = Pd
g, E = H and ψ the inclusion, so that

X = CPd
g
.

We have so far proved that, if d is large, the functor Pd
g is represented by

the scheme Pd
g equipped with the universal pair (CPd

g
,L). The same result for all

d is obtained easily using 5.2(5).
Now we prove (ii) and (iii). We constructed Pd

g as the quotient H/G obtained
by restricting the quotient Pd, g = Hd/G, that is, we have a diagram

H ⊂ Hd

↓ ↓
Pd

g ⊂ Pd, g.
(11)
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Thus Pd
g is quasiprojective because H is open and G-invariant. Pd

g is integral and
regular because H is irreducible and regular (5.2(3)) and G acts freely on it. This
concludes the second part of the statement.

The fact that Pd
X is smooth of pure dimension g follows immediately from

Cor. 5.1 in [C94], which implies that Pd
X is a finite disjoint union of isomorphic

copies of the generalized Jacobian of X.
Finally, Pd

g is flat over M0
g (a consequence of the equidimensionality of the

fibers) and, moreover, smooth because the fibers are all regular.

5.4. Some notation before establishing the existence of Poincaré line bun-
dles and thus complete the proof of 5.3. If ψ: E −→ Hd is any map we denote
by fE: ZE = Zd ×Hd E −→ E and by LE ∈ PicZE the pull back of the polar-
ization OZd (1) on Zd, so that LE is a balanced line bundle of relative degree
d. If, furthermore, π: E −→ T is a principal G-bundle and the above map ψ is
G-equivariant, we can form the quotient

ZE −→ E
↓ ↓

X = ZE/G
f−→ E/G = T

(12)

so that f is a family of quasistable curves.
The proof of the next Lemma applies a well known method of M. Maruyama

[M78]; we shall make the simplifying assumption that d be large, which will later
be removed.

LEMMA 5.5. Notation as in 5.4. Assume d # 0 and (d− g + 1, 2g− 2) = 1. Let
π: E −→ T be a principal PGL(r + 1)-bundle and ψ: E −→ Hd be an equivariant
map. Then there exists a balanced line bundle L ∈ PicX of relative degree d such
that for every e ∈ E we have (LE)|Ze

∼= L|Xπ(e)
.

Proof. The statement holds locally over T , since E −→ T is a PGL(r + 1)-
torsor. Thus we can cover T by open subsets T = ∪Ui such that, denoting the
restriction of f to Xi := f−1(Ui) by

fi: Xi −→ Ui,

there is an Li ∈ PicXi for which the thesis holds. We now prove that the Li can
be glued together to a line bundle over the whole of X , modulo tensoring each
of them by the pull-back of a line bundle on Ui.

By hypothesis there exist integers a and b such that

a(d − g + 1) + b(2g− 2) = −1



NÉRON MODELS AND COMPACTIFIED PICARD SCHEMES 21

which we re-write as

(a− b)(d − g + 1) + b(d + 2g− 2− g + 1) = −1.(13)

Observe that, denoting by χfi the relative Euler characteristic (with respect to the
family fi) we have that χfi(Li) = d− g + 1 and χfi(Li ⊗ ωfi) = d + 2g− 2− g + 1.
Note also that Li and Li ⊗ ωfi have no higher cohomology (d is very large) and
hence their direct images via fi are locally free of rank equal to their relative
Euler characteristic. Define now for every i

Ni := f ∗i
(

det ( fi∗Li)
⊗a−b ⊗ det ( fi∗Li ⊗ ωfi)

⊗b
)

.

Now look at the restrictions of the Li’s to the intersections Xi ∩ Xj, we

oviously have isomorphisms εi,j: (Li)|Xi∩Xj

∼=−→ (Lj)|Xi∩Xj
and hence for every

triple of indeces i, j, k an automorphism

αijk: (Li)|Xi∩Xj∩Xk

∼=−→ (Li)|Xi∩Xj∩Xk

where αijk = εk,iεj,kεi,j; thus αijk is fiber multiplication by a nonzero constant
c ∈ O∗X (Xi ∩ Xj ∩ Xk).

The automorphism αijk naturally induces an automorphism βijk of the restric-
tion of Ni to Xi ∩ Xj ∩ Xk, where

βijk = f ∗i
(

det ( fi∗αijk)⊗a−b ⊗ det ( fi∗αijk ⊗ idωfi
)⊗b
)

and one easily checks that, by (13), βijk is fiber multiplication by c−1. We conclude
that the line bundles Li ⊗Ni ∈ PicXi can be glued together to a line bundle L
over X . It is clear that L satisfies the thesis (since the Li’s do so).

Remark 5.6. If the condition (d−g+1, 2g−2) = 1 is not satisfied the scheme
Pd

g can still be constructed (as in the first part of the proof of 5.3). By 5.2(4)
Pd

g is a geometric GIT-quotient if and only if (d − g + 1, 2g − 2) = 1; if such a

condition does not hold, there exists an open subset Md
g of Mg over which Pd

g

(and Pd, g) restricts to a geometric quotient. Such a nonempty open subset Md
g is

precisely the locus of d -general curves by 5.2(2).

5.7. An application of Lemma 5.5 gives the existence of the analog
of a Poincaré line bundle for the compactified Picard variety of a family of
automorphisim-free stable curves. More precisely, let f : X −→ B be such a fam-
ily and let µ: B −→ M0

g be its moduli map; assume that (d − g + 1, 2g− 2) = 1.



22 LUCIA CAPORASO

Then we can form the compactified Picard scheme

Pd
f := B×

M
0
g

Pd, g −→ B.

Now, on the open subset of Pd, g lying over M0
g there is a tautological curve D

which is constructed exactly as CPd
g

over Pd
g (cf. proof of 5.3). Observe that D is

a family of quasistable (not stable) curves. We can pull back D to Pd
f and obtain

a tautological curve Df := B×
M

0
g
D −→ Pd

f .

Lemma 5.5 yields the analog of the Poincaré line bundle on D and hence on
Df ; some care is needed as the boundary points of Pd, g correspond to equiva-
lence classes of line bundles that disregard the gluing data over the exceptional
component (see 7.2 and 7.3 for the precise statement).

The construction of Poincaré line bundles over compactified Jacobians is an
interesting problem in its own right; a solution within the category of algebraic
spaces was provided by E. Esteves in [E01] applying different techniques from
ours.

As we indicated, our method allows us to construct Poincaré bundles for
automorphism-free curves. Rather than providing the missing details, we “stack-
ify” the construction of [C94] so that some of our results will generalize to all
stable curves (with or without automorphisms).

5.8. Let us introduce the stacks defined by the group action used above:

Pd,g := [Hd/G] and Pd,g := [Hst
d /G].

When are they Deligne-Mumford stacks (in the sense of [DM69] and [Vi89])?
Do they have a modular description? We begin with the first question, adding
to the picture the “forgetful” morphisms to Mg. To define it, pick a scheme T
and a section of Pd,g (or of Pd,g) over T , that is a pair (E −→ T ,ψ) where E
is a G-torsor and ψ: E −→ Hd is a G-equivariant morphism. Then we apply
5.4 to obtain a family X −→ T of quasistable curves; the forgetful morphism
maps (E −→ T ,ψ) to the stable model of X −→ T (the reason why we call it
“forgetful” will be more clear from 5.11).

A map of stacks P −→ M is called representable (respectively, strongly
representable) if given any algebraic space (respectively, scheme) B with a map
B −→M, the fiber product B×MP is an algebraic space (respectively, a scheme).

THEOREM 5.9. The stacks Pd,g and Pd,g are Deligne-Mumford stacks if and
only if (d − g + 1, 2g − 2) = 1. In that case the natural morphisms Pd,g −→ Mg

and Pd,g −→Mg are strongly representable.

Proof. As already said in 5.2 and in the proof of 5.3, Hd/G and Hst
d /G are

geometric GIT-quotients (equivalently all stabilizers are finite and reduced) if and
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only if (d − g + 1, 2g − 2) = 1. Hence the first sentence follows from the well
known fact that a quotient stack like ours is a Deligne-Mumford stack if and only
if all stabilizers are finite and reduced.

For the second sentence, we first apply a common criterion for representability
(see for example [AV01] 4.4.3): our morphisms are representable if for every
algebraically closed field k′ and every section ξ of Pd,g (respectively of Pd,g)
over Spec k′ the automorphism group of ξ injects into the automorphism group
of its image X in Mg. This follows from 5.2(2): ξ is a map onto a G-orbit in
Hd and Aut (ξ) the stabilizer of such orbit (up to isomorphism, of course); the
curve X is the stable model of the projective curve Z corresponding to such orbit,
hence 5.2(2) gives us the desired injection.

We obtained that the two forgetful morphisms in the statements are repre-
sentable, hence if B is any scheme and B −→ Mg the map corresponding to a
family of curves f : X −→ B, the fiber product

Pd
f := B×Mg

Pd,g

is an algebraic space; it remains to show that Pd
f is a scheme (the fact that

B×Mg
Pd,g is also a scheme follows in the same way, or observing that it is an

open subspace of Pd
f ). To do that, fix µf : B −→ Mg the moduli map of f and

consider the scheme

Qf := B×Mg
Pd, g,

which is projective over B (if the fibers of f are free from automorphisms then
Qf = Pd

f ). We shall prove that there is a (natural) finite projective morphism

ρ: Pd
f −→ Qf ;

hence Pd
f is a scheme (cf. [Vie91] 9.4) projective over B.

To define ρ we use [Vi89] section 2 (in particular 2.1 and 2.11), which gives
us that Mg and Pd, g are the coarse moduli schemes of Mg and Pd,g respectively
and that we have a canonical commutative diagram where π and π′ are proper

Pd,g
π−→ Pd, g

↓ ↓
B −→ Mg

π′−→ Mg.

(14)

The two above maps from B to Mg and Mg are the same defining Pd
f and Qf ;

we let ρ to be the base change over B of π: Pd,g −→ Pd, g, so that ρ is proper.
Now let λ ∈ Qf be a closed point. Two different points in ρ−1(λ) correspond

to two different maps ψ,ψ′: G −→ Hd mapping onto the orbit determined by λ,
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hence (just as before) ψ and ψ′ correspond to a nontrivial element in the stabilizer
of a point in that orbit. Since stabilizers are finite ρ has finite fibers; as ρ is proper
we are done.

5.10. Geometric description of Pd,g and Pd,g. The modular description of
Pd,g and Pd,g can be given by directly interpreting the quotient stacks that define
them; what we are going to obtain is a rigidified “balanced Picard stack”. The
definition of the Picard scheme as a moduli scheme representing a certain functor,
or a certain stack, is well known to require care, in fact a subtle “sheafification”
procedure is needed to achieve representability. The crux of the matter is that line
bundles always possess automorphisms that fix the scheme they live on, namely,
fiber multiplication by nonzero constants; see for example [BLR] chapter 8 and
[ACV01] section 5. We are here in a fortunate situation as the stacks already
exist and have some good properties (by 5.9), all we have to do is to give them
a geometric interpretation.

By 5.2(5) we are free to assume that d is very large.
Begin with an object in Pd,g (respectively in Pd,g), so let E −→ T be a

principal PGL(r + 1)-bundle and ψ: E −→ Hst
d (respectively ψ: E −→ Hd) an

equivariant map. Pulling back to E the universal polarized family over the Hilbert
scheme we obtain a polarized family of stable (respectively quasistable) curves
over E, denoted as in 5.4 by (fE: ZE −→ E,LE). By construction G = PGL(r +1)
acts freely and we can form the quotient f : X = ZE/G −→ E/G = T which
is a family of stable (respectively quasistable) curves. Applying lemma 5.5 we
obtain a balanced line bundle L ∈ PicX of relative degree d. Notice that L is
determined up to tensor product by pull-backs of line bundles on T , note also
that, using 4.10, we have a natural isomorphism E ∼= PGL(P( f∗L)).

Conversely let ( f : X −→ T ,L) be a pair consisting of a family f of stable
(respectively quasistable) curves and a balanced line bundle of relative degree
d on X ; we now invert the previous construction by producing a principal G-
bundle E −→ T and a G-equivariant map E −→ Hst

d (resp. E −→ Hd). We argue
similarly to [E00] 3.2. By 4.10 L is relatively very ample and f∗L is locally free of
rank r + 1 = d− g + 1; let E −→ T be the principal PGL(r + 1)-bundle associated
to the Pr-bundle P( f∗L) −→ T . To obtain the equivariant map to the Hilbert
scheme consider the pull-back family fE: XE = E ×T X −→ E polarized by the
balanced, relatively very ample line bundle LE (pull-back of L). By construction
P( fE∗LE) ∼= Pr × E so that XE is isomorphic over E to a family of projective
curves in Pr × E embedded by the balanced line bundle LE. By the universal
property of the Hilbert scheme this family determines a map ψ: E −→ Hilbdt−g+1

Pr

whose image is all contained in Hst
d (respectively in Hd). It is obvious that ψ is

G-equivariant.

5.11. Let us summarize the construction of the previous paragraph, assume
that (d − g + 1, 2g− 2) = 1, then:
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(1) The stack Pd,g is the “rigidification” (in the sense of [ACV01] 5.1, see 5.12
below) of the category whose sections over a scheme T are pairs ( f : X −→ T ,L)
where f is a family of stable curves of genus g and L ∈ PicX is a balanced
line bundle of relative degree d. The arrows between two such pairs are given
by cartesian diagrams

X h−→ X ′
↓ ↓
T −→ T ′

(15)

and L ∼= h∗L′ ⊗ f ∗M for M ∈ Pic T .
(2) The stack Pd,g is the rigidification of the category whose sections over a

scheme T are pairs ( f : X −→ T ,L) where f is a family of quasistable curves
of genus g and L ∈ PicX is a balanced line bundle of relative degree d. Arrows
are defined exactly as in (1).

Remark 5.12. The rigidification procedure removes those automorphisms of
an L that fix X ; this is necessary for representability overMg (cf. 5.9 and [AV01]
4.4.3).

In [P96] section 10, the scheme Pd, g was given a geometric description in
terms of rank-one torsion free sheaves rather than line bundles. This should enable
one to obtain an alternative geometric description of the stacks Pd,g, Pd,g (and,
obviously, of the scheme Pd

g).

5.13. Assume that (d − g + 1, 2g− 2) = 1 and let f : X −→ B be a family
of stable curves of genus g; consider the schemes (cf. 5.9)

Pd
f = B×Mg

Pd,g and Pd
f = B×Mg

Pd,g.

If (d − g + 1, 2g− 2) �= 1 the two schemes Pd
f and Pd

f can be defined in exactly the
same way, provided that every singular fiber of f is d-general.

In fact, by 5.2(2), the points in Hd lying over the open subset Md
g of Mg,

parametrizing d-general curves, are all GIT-stable. Therefore the analogue of 5.9
holds, simply by restricting the quotient groupoids over Md

g (the proof is the
same).

In the special case B = Spec k, so that the family f reduces to a fixed stable
curve X, we naturally change the notation and denote by Pd

X (respectively by Pd
X)

the fiber of Pd,g (respectively of Pd,g ) over X as above.
Pd

X is a finite disjoint union of isomorphic copies of the generalized Jacobian
of X; the union is parametrized by the set of stably balanced multidegrees. Since
X is d-general a multidegree is balanced if and only if it is stably balanced and
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every δ ∈ ∆d
X has a unique balanced representative (by 4.13). Therefore

Pd
X
∼=
∐

d∈Bd
X

Picd X ∼=
∐
δ∈∆d

X

Picδ X.(16)

The next result generalizes 5.3.

COROLLARY 5.14. Let f : X −→ B be a family of stable curves and d an integer.
Assume that every singular fiber of f is d-general. Then the functor Pd

f is coarsely

represented by the separated scheme Pd
f ; if B is regular, Pd

f is smooth over B.

Remark 5.15. Under the assumption that (d − g + 1, 2g − 2) = 1 the proof
shows that Pd

f is a fine moduli scheme.

Proof. If we assume (d − g + 1, 2g − 2) = 1 the statement follows from 5.9
and 5.11 and we obtain (as stated in 5.15) that Pd

f is a fine moduli space. If, more
generally, the singular fibers of f are d-general, we are still in the locus where
the quotient defining Pd,g is geometric (cf. 5.13). Then the statement follows as
before (the reason why we get only a coarse moduli space is that the Poincaré
line bundle has been constructed only under the hypothesis (d−g+1, 2g−2) = 1).
Pd

f −→ B has equidimensional nonsingular fibers (cf. (16) above), hence Pd
f is

smooth over B.

6. Néron models and balanced Picard schemes. With the notation intro-
duced in 5.13, we are ready to prove our parametrization result.

THEOREM 6.1. Let f : X −→ B be a family of stable curves of genus g ≥ 3
such that X is regular and B is a one-dimensional regular connected scheme with
function field K. Let d be such that every singular fiber of f is d-general (for example,
assume that (d − g + 1, 2g− 2) = 1).

(i) Then Pd
f is the Néron model of Picd

K over B.

(ii) If f admits a section, Pd
f is isomorphic to the Néron model N( Pic0

K) of the
Jacobian of the generic fiber of f .

Proof. If f admits a section then Picd
K
∼= Pic0

K hence N( Picd
K) ∼= N( Pic0

K).
Thus the second part of the statement is an immediate consequence of the first.

By 5.14 Pd
f is a smooth separated scheme of finite type over B; by [BLR]

1.2/Proposition 4 it suffices, for part (i), to prove that Pd
f is a local Néron model,

that is, we can replace B by Spec R where R is the local ring of B at a closed
point (hence a discrete valuation ring of K). Thus, we shall assume that f : X −→
Spec R with X regular. By 3.10 we have

N( Picd
K) =

∐
δ∈∆d

X
Picδf

∼K

(where “∼K” denotes gluing along the generic fiber).
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Since the closed fiber X is d-general, a multidegree d is balanced if and only
if it is stably balanced and there is a natural bijection betweed the set of balanced
multidegrees Bd

X and ∆d
X (cf. 4.13). Therefore we have a canonical B-isomorphism

N( Picd
K) ∼=

∐
d∈Bd

X
Picd

f

∼K
.

We now claim that there is canonical B-isomorphism

Pd
f
∼=
∐

d∈Bd
X

Picd
f

∼K
(17)

which, comparing the last two identities, concludes the proof.
To prove (17) it suffices to observe that the both schemes represent the

balanced Picard functor for the given family f : for Pd
f this follows from 5.14, for

the right-hand side this is clear.

Remark 6.2. In 6.1 the hypothesis that X is regular is necessary; see 6.7 for
an example illustrating why.

We can apply the previous result to compare at least birationally different
completions of the generalized Jacobian.

COROLLARY 6.3. Under the same hypotheses of 6.1(ii), let Pic
0
K be any comple-

tion of Pic0
K over B. Then there exists a regular map (canonical for any fixed group

structure on Pd
f ) from the smooth locus of Pic0

K −→ B to Pd
f , which restricts to an

isomorphism on the generic fiber.

Proof. Apply the Néron mapping property to Pd
f (which we can do by 6.1)

and the unicity of the Néron model.

Remark 6.4. It has been known for a long time that there is more than one
good way of completing the generalized Jacobian of a family of nodal (reducible)
curves. To our knowledge, the first to observe and study this phenomenon were
T. Oda and C. S. Seshadri in [OS79]; their paper only dealt with a fixed curve and
not with a family, nevertheless the insights contained there have deeply influenced
the subsequent work of many authors.

Since then, diverse techniques have led to different models of compactified
Jacobians. The problem remains as to which completions are more suitable for
the miscellany of mathematical problems in which a compactified Picard variety
is needed; the previous result may be viewed in this perspective, offering a way
of comparing different constructions in different degrees.

A remarkable case is d = g−1, which has been particularly studied (partly in
relation with the problem of extending the theta-divisor). Some correlation results
have been proved by V. Alexeev in [Al04] where there is also an overview of
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the various existing constructions. As mentioned in 4.14, the d = g − 1 case is
“degenerate” from our point of view (arguing as 6.5, the compactified Picard
variety is seen to have fewer components than the Néron model). For some
aspects, however, it turns out to be easier to handle precisely because of certain
degeneracy phenomena.

Example 6.5. The previous corollary applies to the compactified Jacobians
given by the fibers of Pd, g over curves that that are not d -general. For any family
f : X −→ B of (automorphism-free) stable curves of genus g denote, as usual,
Pd

f := Pd, g ×Mg
B and note that Pd

f depends on d, in fact the fibers of Pd, g over

Mg depend on d, as we are going to illustrate. If X is a singular fiber of f , the

fiber of Pd, g over X is denoted Pd
X .

The simplest case in which we find a “degenerate” compactification of the
generalized Jacobian is d = 0 (this example works similarly if d = g − 1). Let
X = C1 ∪ C2 with #(C1 ∩ C2) = k and assume, which is crucial, that k is even.
Now, ∆X = Z/kZ and the class

δ :=
[(
−k

2
,

k
2

)]
=
[(

k
2

,−k
2

)]

has two balanced representatives (the ones above). Correspondingly, in P0
X ⊂ P0,g,

line bundles having such multidegrees are strictly GIT-semistable and get identi-
fied to points having a stabilizer of positive dimension (the so-called “ladders”,
curves obtained by blowing up all the nodes of X, see [C94] 7.3.3 for details).
Therefore the corresponding component of the Néron model, Picδ X (cf. 3.10),
does not appear as an irreducible component of P0

X , where it collapses to a positive
codimension boundary stratum.

In fact P0
X has k − 1 irreducible components, each of which corresponds to

one of the remaining classes in ∆X . Thus 6.3 implies that if f and d are as in 6.3,
with X as closed fiber, there is a diagram of birational maps

f : P0
f ��� Pd

f

↑ ↑
P0

f ↪→ Pd
f

(18)

and the lower horizontal arrow is not an isomorphism.

6.6. Let f : X −→ Spec R be a family of generically smooth curves with
closed fiber X reduced, nodal and connected (not necessarily stable). Let N( Pic0

K)
be the Néron model of its Jacobian; then its special fiber N( Pic0

K)k only depends
on the geometry of X , or, which is the same, on the intersection form defined
on the minimal desingularization of X (see [L90], [E98] and [BL02] for explicit
details and computations). More precisely, the total space X can only have rational
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singularities of type An (i.e., formally equivalent to xy = un+1) at the nodes of
X, and the singularities that will interfere with the structure of N( Pic0

K)k are
those occurring at the external nodes of X (i.e. nodes lying on two different
components). Let δ be the number of external nodes of X and suppose that X has
a singularity of type Ani at the ith external node. Then the structure of N( Pic0

K)k

only depends on n = (n1, . . . , nδ) so that we can denote Nn
X the special fiber of a

Néron model of this type.
We need the case where X is nonsingular, so that n = (0, . . . , 0); then we

denote the special fiber of the Néron model of the Jacobian of f by

NX := N(0,...,0)
X

We have for any nodal (connected) curve X (see 3.10)

NX
∼=
∐
δ∈∆X

Picδ X.(19)

Example 6.7. We now exhibit an example showing that the assumption that
X be regular in 6.1 cannot be weakened by assuming X normal. Let f : X −→
Spec R having as closed fiber X = C1 ∪C2 with k = #(C1 ∩C2) ≥ 2. Assume that
X has a singularity of type An at one of the nodes of X and it is smooth otherwise.
Then the twister group Twf X of f is generated by T1 := OX ((n + 1)C1) ⊗ OX

which has multidegree deg T1 = ( − (nk + k − n), nk + k − n). Thus the group
of multidegree classes for such an f will be (using a notation similar to the one
introduced in 6.6)

∆(n,0,...,0)
X

∼= Z/(nk + k − n)Z,

which is bigger than ∆X (if n ≥ 1 of course). The closed fiber N(n,0,...,0)
X of the

Néron model of the generalized jacobian of f has component group isomorphic to
Z/(nk+k−n)Z, whereas the components of the closed fiber of Pd

f are parametrized
by ∆X (if X is d- general).

Finally, if X is not d- general so that we are in a degenerate case as described
in 6.5, the number of components of the special fiber of Pd

f is smaller than #∆X

and hence also smaller than #∆(n,0,...,0)
X .

6.8. A natural side question is: when are Pd, g and Pd′,g isomorphic? Similar
question for the stacks. This is easy to answer, we do it for the schemes but it
is obvious that the same answer holds for the stacks. By 5.2(5) we have that
Pd, g

∼= Pd′,g if and only if d ± d′ ≡ 0 mod (2g − 2) and these isomorphisms are
canonical. Then we just need to count; denoting “Φ” the Euler φ-function on
natural numbers we have:
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LEMMA 6.9. The number of nonisomorphic Pd, g for which (d−g+1, 2g−2) = 1
is equal to Φ(g− 1) if g is odd and to Φ(g−1)

2 if g is even.

Proof. As we said, there are exactly g non isomorphic models for Pd, g. We
choose as representatives for each class of such models the values for d given
by d = 0, 1, . . . , g− 1 so that we have

P0,g
∼= P2g−2,g, P1,g

∼= P2g−3,g, . . . , Pg−2,g
∼= Pg,g

and for any d′ ≥ 2g− 2

Pd′,g
∼= P−d′,g

∼= Pe,g,

where 0 ≤ e < 2g− 2 and d′ = n(2g− 2) + e. Now (d− g + 1, 2g− 2) = 1 implies
(d, g− 1) = 1; if g is odd, one immediately sees that the converse holds, and we
are done.

If g is even, the condition (d − g + 1, 2g − 2) = 1 is equivalent to d even
and coprime with g− 1. So the values of d that we are counting are the positive
even integers d coprime with g− 1 and smaller than g− 1. This number equals
Φ(g−1)

2 (just notice that for any odd m ∈ N, the Euler function φ(m) counts an
equal number of odd and even integers; in fact if r is odd and coprime with
m, the even number m − r is also coprime with m; same thing starting with
r even.)

7. Completing Néron models via Néron models.

7.1. From now on we shall assume that the stable curve X is d-general
(4.13). For example, one may assume that (d − g + 1, 2g− 2) = 1.

Fix f : X −→ B = Spec R a family of stable curves with smooth generic fiber
and regular total space X . In 5.13 we introduced the scheme Pd

f , projective over
B which, by 6.1, is a compactification of the Néron model of the Picard variety
Picd

K (by 6.1); recall that Pd
X denotes its closed fiber. In the present section we

shall exhibit a stratification of Pd
X in terms of Néron models associated to all the

connected partial normalizations of X (Theorem 7.9). In section 8 we shall prove
that Pd

f is dominated by the Néron model of a degree-2 base change of Picd
K . See

[An99] for a different approach to the problem of compactifying Néron models
of Jacobians.

7.2. With the notation introduced in 5.13, we shall refer to the points in
Pd

X � Pd
X as the “boundary points of Pd

X”. To describe them precisely we need
some simple preliminaries.

Let X be a stable curve, the quasistable curves of X (cf. 2.4) correspond
bijectively to sets of its nodes: let S be a set of nodes of X, we shall denote
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νS: XνS −→ X the normalization of X at the nodes in S and

YS := XνS ∪
(

#S⋃
1

Ei

)

the quasistable curve of X obtained by joining the two points of XνS lying over
the ith node in S with a smooth rational curve Ei

∼= P1 (so that one may call YS

the blow up of X at S).

7.3. A point of Pd
X corresponds to an equivalence class of pairs (YS, L)

where S ⊂ Xsing and L ∈ Picd YS is a balanced line bundle. Two pairs (YS, L) and
(Y ′S, L′) are equivalent if and only if YS = Y ′S and L|XνS

∼= L′|XνS
.

The boundary points are those for which S �= ∅.

Remark 7.4. Notice that a quasistable curve YS of X admits a (stably) bal-
anced line bundle (of degree d) if and only if the subcurve XνS (obtained by
removing all of the exceptional components) is connected.

In fact if XνS = Z1∪Z2 with Z1∩Z2 = ∅ then a stably balanced d has to satisfy
dZ1∪Z2 = mZ1∪Z2 , on the other hand dZ1∪Z2 = dZ1 + dZ2 and hence dZ1 = mZ1 (and
dZ2 = mZ2 ). This is impossible as the complementary curve of Z1, containing Z2,
is not a union of exceptional components (cf 4.11).

7.5. Fix the quasistable curve YS and consider ∆d
YS

; recall that a balanced
multidegree must have degree 1 on all exceptional components of YS, so that not
all elements in ∆d

YS
have a balanced representative. Denote

∆d,1
YS

:= {δ ∈ ∆d
YS

: δ has a balanced representative}.

Thus for every δ ∈ ∆d,1
YS

there exists a unique (by 7.1) balanced representative
which we shall denote

(dδ1, . . . , dδγ , 1, . . . , 1)(20)

so that [(dδ1, . . . , dδγ , 1, . . . , 1)] = δ and
∑γ

1 dδi = d − s, where s := #S.

By 7.4 we have that ∆d,1
YS

is empty if and only if XνS is not connected.
The next lemma will be used in the proof of Theorem 7.9.

LEMMA 7.6. Using the above notation, assume XνS connected. Then the map

ρ: ∆d,1
YS
−→ ∆d−s

XνS
, [(dδ1, . . . , dδγ , 1, . . . , 1)] �→ [(dδ1, . . . , dδγ)]

is bijective.
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Proof. As we said ρ is well defined because of the assumption 7.1. We shall
use the notation of 4.4 and 4.5, together with the following: let Z ⊂ XνS ⊂ Y , set
kS

Z := #(Z∩XνS � Z) and denote by eZ the number of points in which Z meets the
the exceptional components of YS so that

kZ = eZ + kS
Z .(21)

The map ρ can be factored as follows:

ρ: ∆d,1
YS

−→ BYS(bd
YS

) π−→ BXνS
(b) σ−→ ∆d−s

XνS

δ �→ (dδ1, . . . , dδγ , 1, . . . , 1) �→ (dδ1, . . . , dδγ) �→ [(dδ1, . . . , dδγ)]
(22)
where b = (b1, . . . , bγ) with

bi :=
d

2g− 2
wCi −

eCi

2

and wCi = 2gCi − 2 + kCi .
To prove that ρ is surjective, first of all observe that, by 4.4, σ is surjective.

Now we claim that given d = (d1, . . . , dγ , 1, . . . , 1) ∈ Zγ+s such that |d| = d, we
have that d is balanced if and only if for every Z ⊂ XνS we have

mZ(d) ≤ dZ ≤ MZ(d)− eZ ,(23)

where MZ(d) = d
2g−2 wZ + kZ

2 and mZ(d) = MZ(d)− kZ as usual. In fact for every
exceptional component E of YS we have wZ = wE∪Z and hence the basic inequality
on Z ∪ E gives

dZ + 1 = dZ∪E ≤


MZ(d) + 1 if (E · Z) = 0
MZ(d) if (E · Z) = 1
MZ(d)− 1 if (E · Z) = 2.

Iterating for all E we get the claim.
Therefore d is balanced if and only if (using (21))

d
2g− 2

wZ −
kS

Z

2
− eZ

2
≤ dZ ≤

d
2g− 2

wZ +
kS

Z

2
− eZ

2

if and only if

(d1, . . . , dγ) ∈ BXνS
(b).

This shows that ρ is surjective; to prove that it is injective it suffices to show that



NÉRON MODELS AND COMPACTIFIED PICARD SCHEMES 33

σ is (the other two arrows of diagram (22) are obviously injective). If BXνS
(b)

contains two equivalent multidegrees, then, using (23), we would get that there
exists a subcurve Z � XνS for which mZ(d) is integer, which is impossible (as
usual, by assumption 7.1).

7.7. By 5.9 and 5.11, Pd
f is a coarse moduli scheme for the functor from

B-schemes to sets which associates to a B-scheme T the set of equivalence classes
of pairs (h: Y −→ T ,L) where h: Y −→ T is a family of quasistable curves
having XT as stable model; and L is a balanced line bundle on Y . The equivalence
relation is the same as in 4.15.

7.8. The structure of the closed fiber Pd
X of Pd

f does not depend on d (by
7.1) and is a good compactification of NX (see 6.6). Therefore we shall introduce
the notation

NX := Pd
X .

Such a completion can be described by means of the Néron models of the Jaco-
bians of all connected partial normalizations of X:

THEOREM 7.9. NX has a natural stratification as follows

NX
∼=

∐
S⊂Xsing:

XνS connected

NXνS
.(24)

Denote QS ⊂ NX the stratum isomorphic to NXνS
under the decomposition (24);

then
(i) QS has pure codimension #S.
(ii) QS ⊂ QS′ if and only if S′ ⊂ S.
(iii) The smooth locus of NX is NX.

Proof. As we explained in 7.2, the points of Pd
X = NX parametrize pairs (YS, L)

in such a way that for every S ⊂ Xsing we have a well defined locus QS in Pd
X ,

corresponding to balanced line bundles on YS. For example, Pd
X corresponds to

the stratum S = ∅ (isomorphic to NX).
In turn, QS is a disjoint union of irreducible components isomorphic to

the generalized Jacobian of XνS (cf. 7.3 and 5.13); there is one component for
every (stably) balanced multidegree on YS. More precisely, for any balanced
d = (d1, . . . , dγ , 1, . . . , 1) on YS let us denote dS = (d1, . . . , dγ) its restriction to
XνS . Then the moduli morphism

Picd YS −→ Pd
X
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(associated to the universal line bundle on Picd YS × YS, see 7.7) factors through
a surjective morphism followed by a canonical embedding

Picd YS � PicdS
XνS ↪→ QS ⊂ Pd

X(25)

(see 7.3) whose image is open and closed in QS.
Set δS := [dS] ∈ ∆d−s

XνS
. We shall now see that the components of QS are in

one-to-one correspondence with the elements of ∆d−s
XνS

. The balanced multidegrees

on YS are bijectively parametized by ∆d,1
YS

(cf. 7.5); by 7.6 the restriction to XνS
of a balanced multidegree induces the bijection

ρ: ∆d,1
YS
↔ ∆d−s

XνS

of 7.6, so we are done. In other words we obtain the stratification in the statement
of our Theorem

QS
∼=

∐
δS∈∆d−s

Xν
S

Picδ
S

XνS ∼= NXνS
,(26)

where the second isomorphism is (19).
Part (i) is a simple dimension count. We already know that each irreducible

component of QS is isomorphic to the generalized Jacobian of XνS ; the genus of
XνS is equal to g− s hence we are done.

By the previous results, part (ii) follows from Proposition 5.1 of [C94] (see
below for more details).

Now (iii); quite generally, the Néron mapping property applied to étale points
implies that any completion N of a Néron model N over B must be singular along
N � N (If N � N contained regular points one would use 2.2/14 of [BLR] and
find an étale point of NK which does not come from an étale point of N). We
include a direct proof to better illustrate the structure of NX .

It suffices to prove that every component of every positive codimension
stratum is contained in the closure of more than one irreducible component of
NX = Pd

X . This also follows from Proposition 5.1 of [C94]. Let us treat the case
#S = 1; then YS has only one exceptional component E intersecting (say) C1

and C2 (viewed now as components of XνS by a slight abuse of notation). If
the point (YS, L) belongs to the component of QS corresponding to the multide-
gree (d1, d2, . . . , dγ , 1), we have that (YS, L) is contained in the closure of the
two components of Pd

X that correspond to multidegrees (d1 + 1, d2, . . . , dγ) and
(d1, d2 + 1, . . . , dγ).

7.10. Let X be a stable curve; as we have seen, NX has a stratification (by
equidimensional, possibly disconnected strata) parametrized by the sets of nodes
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of X which do not disconnect X, denote by GX this set:

GX := {S ⊂ Xsing: XνS is connected}.

For some more details on the stratification of Theorem 7.9, introduce the dual
graph ΓX of X, (cf. 9.5) and recall the genus formula g =

∑γ
1 gi +b1(ΓX) where gi

denotes the geometric genus of Ci and b1(ΓX) is the first Betti number (see 9.6).

COROLLARY 7.11. Let X be a stable curve and S ∈ GX; let QS ⊂ NX be a
stratum as defined in Theorem 7.9. Then

(i) dim QS ≥
∑γ

1 gi

(ii) dim QS =
∑γ

1 gi ⇐⇒ XνS is of compact type⇐⇒ QS is irreducible.
(iii) The number of minimal strata of NX (in the stratification of Theorem 7.9)

is equal to #∆X.

Proof. (i) is equivalent to dim QS ≥ g − b1(ΓX), hence, by 7.9(i), it suffices
to show that #S ≤ b1(ΓX). Thus we must prove that the maximum number of
nodes of X that can be normalized without disconnecting the curve is b1(ΓX).
Equivalently, that the maximum number of edges of ΓX that can be removed
without disconnecting ΓX is b1(ΓX). This follows from 9.6.

Now we prove (ii). dim QS =
∑γ

1 gi if and only if QS is a minimal stratum of
NX (by 7.9 and part (i)), if and only if all the nodes of XνS are separating (i.e. any
partial normalization of XνS fails to be connected), if and only if XνS is if compact
type (by definition, cf. 9.8). This proves the first double arrow of part (ii).

XνS is if compact type if and only if its dual graph is a tree, if and only if
∆XνS

= {0} (this can be easily shown directly or it follows from 9.10), if and only
if QS has only one irreducible component (by 7.9 QS

∼= NXνS
whose components

correspond to elements in ∆XνS
). This concludes (ii).

Now (iii). The strata of minimal dimension (equal to
∑γ

1 gi) correspond bi-
jectively to the connected partial normalizations of X that are of compact type
which, in turn, correspond (naturally) to the spanning trees of the dual graph of
X (cf. 9.7). Now, the number of spanning trees of ΓX (the so called “complexity”
of the graph) is shown to be equal to the cardinality of ∆X in 9.10. So we are
done.

Example 7.12. Let X = C1∪C2 with Ci nonsingular and #(C1∩C2) = k; then
the set GX is easy to describe: GX = {S ⊂ Xsing: S �= Xsing}. Given S ∈ GX let
#S = s so that XνS = C1 ∪ C2 with #(C1 ∩ C2) = k − s.

The connected components of NX , each isomorphic to the generalized jaco-
bian of X, are parametrized by Z/kZ.

The strata QS of codimension 1 of NX are parametrized by the nodes of X,
denoted n1, . . . , nk. If S = {ni}, Qni is the special fiber NXνS

of the Néron model
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of the Jacobian of a family specializing to the normalization of X at ni; hence it
is made of k − 1 connected components of dimension g− 1.

And so on, going down in dimension till the minimal strata, which correspond
to the k curves of compact type obtained from X by normalizing it at k − 1
nodes. Each of these strata is isomorphic to the closed fiber of the Néron model
of the Jacobian of a specialization to a curve of compact type having C1 and
C2 as irreducible components; therefore it is an irreducible projective variety
(isomorphic to Pic0 C1 × Pic0 C2) of dimension g− k + 1.

8. The compactification as a quotient. We begin with some informal re-
marks to motivate the content of this last section; consider a family of nodal
curves f : X −→ B = Spec R having regular X and singular closed fiber X. Let
p ∈ X be a nonsingular point, then p corresponds to a degree-1 line bundle of
X which, up to an étale base change of f (ensuring the existence of a section
through p) is the specialization of a degree 1 line bundle on the generic fiber. So
p corresponds to a unique point in N( Pic1

K).
What if p is a singular point of X? Of course (intuitively) p can still be viewed

as a limiting configuration of line bundles on X. On the other hand there will
never be a section passing through p (not even after étale base change of f ). What
is needed to have such a section is a ramified base change, in fact a degree-2
base change will suffice (because X has ordinary double points). If f1: X1 −→ B1

is the base change of f under a degree-2 ramified covering B1 = Spec R1 −→ B,
then X1 has a singularity of type A1 at each node of the closed fiber X1

∼= X.
If p1 ∈ X1 is the point corresponding to p, then f1 (or some étale base change)
does admit a section through p1 , therefore p1, and hence our original point p,
corresponds to a unique point of N( Pic1

K1
).

All of this suggests that to complete the Néron model of the Picard variety
of XK we could use the Néron model of the the Picard variety of a ramified
base change of order 2. To better handle the Néron models N( Picd

K1
) we shall

introduce and study the minimal desingularization of X1, whose closed fiber is
the quasistable curve Y of X obtained by blowing up all the nodes of X.

8.1. Let X be a stable curve; consider the quasistable curve Y obtained
by blowing up all the nodes of X so that, with the notation of 7.2, Y := YXsing .
Denote

σ: Y −→ X

the morphism contracting all of the exceptional components of Y .
Recall now that, by 7.9, NX has a stratification labeled by GX . We shall exhibit

a decomposition of NY labeled by GX and prove that it is naturally related to the
stratification of NX .
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By 4.13 for any δ ∈ ∆d
Y there exists a unique semibalanced representative dδ.

Fix now a set S of nodes of X and define

∆d
Y ,S := {δ ∈ ∆d

Y : dδE = 1 ⇔ σ(E) ∈ S}.

Let γ be the number of irreducible components of X and let s = #S; order the
exceptional components of Y so that the first s are those corresponding to S (i.e.
mapped to S by σ). Connecting with 7.5 we can partition the component group
∆Y of NY using GX:

LEMMA 8.2. Let Y = YXsing .
(i) For every S there is a natural bijection

∆d
Y ,S ↔ ∆d,1

YS
, [(dδ1, . . . , dδγ , 1, . . . , 1, 0, . . . , 0)] �→ [(dδ1, . . . , dδγ , 1, . . . , 1)].(27)

(ii)
∐

S∈GX
∆d

Y ,S = ∆d
Y .

Proof. Let d = (d1, . . . , dγ , 1, . . . , 1) a multidegree on YS and denote its “pull-
back” to Y by d∗ = (d1, . . . , dγ , 1, . . . , 1, 0, . . . , 0); to prove that (27) is a bijection
it suffices to prove that d satisfies the basic inequality on YS if and only if d∗

satisfies the basic inequality on Y . Denote σS: Y −→ YS the contraction of
all exceptional components of Y that do not correspond to S. Let Z ⊂ Y be a
subcurve and denote ZS = σS(Z) ⊂ YS. Then it is easy to see that wZ = wZS and
that kZ = kZS + 2tZ where tZ is the number of exceptional components E of Y that
are not contained in Z and such that #(E∩Z) = 2. If we write the basic inequality
for ZS ⊂ YS as usual (omitting the dependence on d which is fixed)

mZS ≤ dZS ≤ MZS(28)

the basic inequality for Z ⊂ Y is

mZS − tZ ≤ d∗Z ≤ MZS + tZ .(29)

Under the correspondence (27) we have dZS = d∗Z , hence it is obvious that, if
d satisfies (28), then d∗ satisfies (29). Conversely, suppose that d∗ satisfies the
basic inequality and let ZS ⊂ YS be a subcurve. Denote by Z = σ−1(ZS) so that
tZ = 0; thus the basic inequality for ZS is the same as for ZS and hence d satisfies
it.

For the second part, recall that, because of 7.4, ∆d,1
YS

is empty if and only if

S �∈ GX (see 7.5). Thus ∆d
Y ,S is empty if S �∈ GX and the second part of the lemma

follows.
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Remark 8.3. As a consequence we get the GX-decomposition of NY men-
tioned in 8.1:

NY =
∐

S∈GX

 ∐
δ∈∆d

Y ,S

Picδ Y

 .

8.4. Let f : X −→ Spec R = B with X regular and assume that f admits a
section. The curve Y (defined in 8.1) is the closed fiber of the regular minimal
model of the base change of XK under a degree-2 ramified covering of Spec R.
More precisely, let t be a uniformizing parameter of R and let K ↪→ K1 be the
degree-2 extension K1 = K(u) with u2 = t. Denote R1 the DVR of K1 lying over
R, so that R ↪→ R1 is a degree 2 ramified extension. Denote B1 = Spec R1 and
consider the covering B1 −→ B. The corresponding base change of f is denoted

f1: X1 := X ×B B1 −→ B1

and X1 its closed fiber. At each of the nodes of X1 the total space X1 has a
singularity formally equivalent to xy = u2, which can be resolved by blowing
up once each of the nodes of X1 (see [DM69] proof of 1.2). Denote Y −→ X1

this blow-up and h: Y −→ B1 the composition; thus h is a family of quasistable
curves having X1 as stable model and Y as closed fiber. We summarize with a
diagram

Y −→ X
h ↓ ↓ f

B1 −→ B.
(30)

Denote Picd
h −→ B1 the Picard variety for h and Picd

K1
its generic fiber.

PROPOSITION 8.5. In the set up of 8.4, let N( Picd
K1

) −→ B1 be the Néron model
of Picd

K1
; then there is a canonical surjective B-morphism

π: N( Picd
K1

) −→ Pd
f .

The restriction of π to the closed fibers is compatible with their GX-stratifications in
the following sense: for any S ∈ GX the restriction πS of π is a surjective morphism

πS:
∐

δ∈∆d
Y ,S

Picδ Y −→ QS
∼= NXνS

(notation of 7.9) all of whose closed fibers are isomorphic to (k∗)s with s = #S.

Remark 8.6. π is described as a quotient by a torus action in 8.7.
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Proof. By 3.10 we have N( Picd
K1

) ∼=
∐
δ∈∆d

Y
Picδh

∼K
. The crux of the proof is to

show that for every δ ∈ ∆d
Y there is a canonical morphism

µδ: Picδh −→ Pd
f .

To do that, let S be the unique element in GX such that δ ∈ ∆d
Y ,S and consider the

unique semibalanced representative dδ of δ (cf. 4.13). Denote by T and identify

(by 3.9) T := Picδh = Picdδ

h . Set

hT : YT = Y ×B1 T −→ T

and let P be the Poincaré line bundle on YT . Now we apply the construction of
8.8 to hT = p and P = N . Thereby we obtain a family, YT −→ T (by contracting
all the exceptional components of the fibers of hT where P has degree equal to
zero) and a line bundle L on YT which pulls back to P . The singular closed
fibers of YT −→ T are all isomorphic to YS and L has balanced multidegree
d = (dδ1, . . . , dδγ , 1, . . . , 1) (the fact that L is balanced follows from the proof of
8.2, whose notation we are here using). It may be useful to sum up the construction
in a diagram where all squares are cartesian:

YT ←− YT −→ Y
↓ ↓ ↓
XT = XT −→ X1 −→ X
↓ ↓ ↓ ↓
T = Picδh −→ B1 −→ B.

(31)

Now the pair (YT −→ T ,L) is a family of quasistable curves with a balanced line
bundle of degree d. The stable model of YT is XT therefore (by 7.7) we obtain
a moduli morphism

µδ: T = Picδh −→ Pd
f .

As δ varies, the morphisms µδ agree on the smooth fibers, that is, away from
the closed point of B. Therefore (as in the proof of 6.1) they glue together to a
B-morphism π: N( Picd

K1
) −→ Pd

f as stated.
To prove the rest of the statement it suffices to look at the closed fiber, as

πK is obviously a surjection, in fact

N( Picd
K1

)K1 = Picd
K ×B Spec K1 = (Pd

f )K ×B Spec K1 = (Pd
f )K ×B Spec K1
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Now by 8.2 and 7.6 (and with the same notation) we have natural bijections

∆d
Y ,S ↔ ∆d,1

YS
↔ ∆d−s

XνS

dδ �→ d = [(dδ1, . . . , dδγ , 1, . . . , 1)] �→ dS = [(dδ1, . . . , dδγ)]

(32)

As we said, the singular fibers of YT −→ T are isomorphic to YS and we proved
above that the restriction of µδ to the closed fibers factors

Picdδ Y
∼=−→ Picd YS � PicdS

XνS ↪→ Pd
X

where we used (25) for the last two arrows; the rest of the proof naturally con-
tinues as that of 7.9.

8.7. Let b = b1(ΓX). It is not difficult at this point to interpret π as a
quotient by a natural action of (k∗)b on NY (extended to a trivial action on
N( Picd

K1
)). Observe that Picd Y ∼= Picd YS

∼= PicdS
X (notation in the proof of 7.9)

and that b− s = b1(ΓXνS
); denote Xν the normalization of X, we have a diagram

of canonical exact sequences

0 0
↓ ↓

0 −→ (k∗)s = (k∗)s −→ 0
↓ ↓ ↓

0 −→ (k∗)b −→ Picd YS
ν∗−→ PicdS

Xν ×∏s
1 Pic1 P1 −→ 0

↓ ↓ ↓
0 −→ (k∗)b−s −→ PicdS

XνS
ν∗−→ PicdS

Xν −→ 0
↓ ↓ ↓
0 0 0

(33)

(where ν∗ always denotes pull-back via the normalization map). The middle verti-
cal sequence describes the restriction of πS to any irreducible component, Picd YS,
as the quotient of the action of (k∗)s on the gluing data over the exceptional com-
ponents of YS.

We applied the following standard fact (included for completeness).

LEMMA 8.8. Let p: Z −→ T be a family of semistable curves of genus at least
2 over a scheme T. LetN ∈ PicZ having non-negative degree on each exceptional
component of the fibers of p. Then there exist

(a) a factorization of p

p: Z ψ−→ Z p−→ T
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via a family of semistable curves p and a birational morphism ψ which contracts
some exceptional components of the fibers of p;

(b) a line bundleN ∈ PicZ having positive degree on all exceptional compo-
nents of the fibers of p and such that ψ∗N ∼= N ⊗ p∗M, where M ∈ Pic T.

Proof. For n high enough (how high depends on N ) we have that ωn
p ⊗ N

is relatively base-point-free and p∗(ωn
p ⊗ N ) is a vector bundle on T (trivial

variation on Corollary to Theorem 1.2 in [DM69] p.78). Moreover ωn
p⊗N defines

a birational morphism ψ: Z −→ Z ⊂ P(p∗(ωn
p⊗N )) contracting the exceptional

components of p where N has degree 0. The line bundle N is given by N =
OZ (1)⊗ ω−n

p .

Remark 8.9. It is clear that Z is uniquely determined (just contract all the
exceptional components of the fibers of p where N has degree 0) whereas N is
determined only up to pull-backs of line bundles on T . More precisely the lemma
gives a map form PicZ/p∗ Pic T −→ PicZ/p∗ Pic T .

Remark 8.10. We conclude by observing that, as a consequence of 8.4, the
completion Pd

f of the Néron model satisfies a mapping property for smooth
schemes defined over quadratic, possibly ramified, coverings of B. This should be
viewed as a strengthening of the mapping property of Néron models with respect
to smooth schemes defined over étale coverings of B. It is in fact well known
(see [A86] section 1) that Néron models are functorial with respect to étale base
changes, but not in general.

To be more precise, let Z be a scheme smooth over Spec R1 (where R ↪→ R1

is a ramified quadratic extension as in 8.4), and let vK : ZK1 −→ Picd
K be a K-

morphism. Then there exists a unique B-morphism v: Z −→ Pd
f extending vK .

Of course v is obtained by first extending the lifting of vK to ZK1

uK1 : ZK1 −→ N( Picd
K1

)K1 = Picd
K ×B Spec K1,

by the Néron mapping property uK1 extends to u: Z −→ N( Picd
K1

); thus v is the
composition of u with π (defined in 8.5).

9. Appendix. This appendix is made of two distinct parts. The first illus-
trates some applications of the results in the paper. The second part summarizes
some well known combinatorial facts which have been used throughout.

Applications: towards Brill-Noether theory of stable curves.

9.1. Let f : X −→ B be a family of stable curves and T a scheme over B.
Let p: Z −→ T be a family of semistable curves having XT as stable model; if
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L ∈ PicZ is balanced of relative degree d, we can associate to L a unique map

µL: T −→ Pd
f , t �→ [L|p−1(t)]

which we call the moduli map of L (note that, L being balanced, Z is a family
of quasistable curves).

More generally, suppose that N ∈ PicZ is semibalanced (cf. 4.6). Apply
the construction of 8.8 to obtain a pair (Z ,N ) (so that Z −→ T has XT as
stable model). Then N ∈ PicZ is a balanced line bundle and its moduli map
µN : T −→ Pd

f can be viewed as induced by N . In summary, to a semibalanced

line bundle on Z we can associate a unique map T −→ Pd
f .

9.2. Let f : X −→ Spec R = B be a family of curves with X regular and
reducible closed fiber X (as usual), denote fd: X d

B −→ B its dth fibered power.
Consider the degree-d Abel map of the generic fiber

αd
K : X d

K −→ Picd XK , (p1, . . . , pd) �→
[
OXK

(∑
pi

)]
;

what is the limit of such a map as XK specializes to X?
Not much is known about defining (and completing) Abel maps for reducible

curves. A geometric construction for irreducible curves has been carried out in
[EGK00] building upon previous well known work of A. Altman and S. Kleiman.
Yet serious difficulties arise when reducible fibers occur (even when restricting,
as we are, to nodal singularities).

As a first step towards understanding Abel maps of reducible curves, we
consider the unique extension of αd

K given by the Néron mapping property

αd
f : Ẋ d

B −→ N( Picd XK)

where Ẋ d
B = X � sing( fd); We refer to αd

f as the degree-d Abel-Néron map of f .
The case d = 1 has been studied by B. Edixhoven in [E98], where there is also
a characterization of when it is a closed immersion (in the example below it is).

The results of our paper enable us, on the one hand, to give a geometric
description of the Abel-Néron map by identifying N( Picd XK) ∼= Pd

f . On the other
hand we have a natural ambient space where one can construct a completion for
it, namely the compactification Pd

f .

Example 9.3. Fix a stable curve X = C1∪C2 with C1 and C2 smooth of genus
equal to h ≥ 1 and #C1 ∩ C2 = 2 (thus g = 2h + 1); let f : X −→ Spec R = B
be a family of curves with X regular and X as closed fiber. Since our X is 1-
general, we can identify N( Pic1XK) = P1

f by (6.1) so that the first Abel-Néron
map becomes

αf : Ẋ −→ P1
f .
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We claim that:
(1) αf can be completed to a map αf : X −→ P1

f ;
(2) αf has a geometric description as the moduli map of a natural line bundle;
(3) the restriction to X of αf does not depend on f .
Consider L = OẊ×BX (∆) ∈ Pic (Ẋ ×B X ), where ∆ ⊂ Ẋ ×B X = X 2

B is the

diagonal. Then, applying the set up of 9.1 with T = Ẋ , we claim that αf is the
moduli map of L (this is obviously true on the generic fiber XK of Ẋ ). For that it
suffices to show that L is balanced, i.e. that for every nonsingular point x ∈ X the
line bundle OX(x) (the restriction of OẊ×BX (∆) to the fiber over x) is balanced.
This follows easily, by checking that for every subcurve Z of our X, we have
mZ(1) < 0 and MZ(1) > 1 so that we have

N( Pic1XK) ∼= P1
f
∼=

Pic(0,1)
f

∐
Pic(1,0)

f

∼K
.

Now let us denote r: Z −→ X 2
B the resolution of singularities. A direct com-

putation shows that Z is obtained by replacing each of the four singular points
of X 2

B by a P1 so that p: Z −→ X = T is a family of quasistable curves;
moreover the proper transform ∆̃ ⊂ Z of ∆ defines a line bundle N = OZ (∆̃)
having non-negative degree on every exceptional component of the fibers of p.
One checks that N is semibalanced hence, applying the construction of 9.1, we
obtain a regular map

µN : T = X −→ P1
f

which defines the extension αf = µN of αf that we wanted.
To show that the restriction αX := αf |X does not depend on f one simply

observes that if x ∈ X is a nonsingular point, then its image is just the class of
OX(x). If x is singular, denote by Yx the quasistable curve obtained by blowing-up
X at x and let q ∈ Yx be any nonsingular point of Yx lying in the unique exceptional
component. Then, as q varies, the line bundles OYx(q) are all identified to the
same point λx in P1

X (by 7.3); then the image αX(x) is exactly the point λx.

9.4. The method of the previous example can be applied to all stable
curves, but nontrivial complications arise. First of all, it is not always true that
the “diagonal” line bundle used above is balanced; a more delicate construction
is needed to prove that the same properties (1)–(3) hold.

The global version of such a morphism (mapping the universal curve over
Mg to P1,g) could also be carried out, as it is reasonable to expect, in view of the
independence on f of the Abel-Néron map (property (3)).

Let us finish with a few words about the Abel-Néron maps for higher degree
d. The problem can be approached similarly to what outlined for d = 1; however
the situation is considerably more subtle. One important difference is that, as soon
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as d ≥ 2, the dth Abel-Néron map will depend on f , for some combinatorially
determined cases. In other words, the analogue of property (3) fails.

Another difficulty is the fact (observed by E. Esteves) that a completion of the

Abel map will not be defined on X d
B , but only on some modification X̃ d

B −→ X d
B

of it.
These hurdles are to be expected, as the set up leads towards a construction

of Brill-Noether varieties for singular curves. As a first step, we can define the
Brill-Noether scheme W0

d (X, f ) (generalizing the Brill-Noether variety of effective
line bundles of degree d on a smooth curve) as follows:

W0
d (X, f ) := Im (αd

f )k ⊂ Pd
X ,

i.e., the closure of the image of the restriction (αd
f )k: Ẋd −→ Pd

X , where Ẋ
denotes the smooth locus of X. The closure symbol is used because such a scheme
parametrizes “boundary points”, that is, line bundles on quasistable curves Y �= X
having X as stable model; we shall denote W0

d (X, f ) its open subset parametrizing
line bundles on X.

The presence of f in the notation is needed for d ≥ 2; although we can prove
that W0

1 (X, f ) never depends on f , for d ≥ 2 this turns out to fail. To be more
precise, denote by X ν

sep the partial normalization of X at its separating nodes (so
that X ν

sep = X if X has no separating node), then we conjecture the following.
The restricted Abel-Néron map (αd

f )k is independent of f if and only if for every
k ≤ d every connected component of X ν

sep admits no disconnecting subset of k
nodes.

Combinatorics of stable curves.

9.5. Some features of stable curves are nicely expressed using graph theory.
Chapter 1 of the article [OS79] contains a thorough study of the combinatorial
aspects of the theory of compactified Jacobians. In the sequel we recall a few
facts that can be found in that paper.

To a nodal curve X having γ irreducible components and δ nodes, one as-
sociates a graph ΓX defined as the symplicial complex (of dimension at most 1)
defined to have one vertex for every irreducible component of C, and one edge
connecting two vertices for every node in which the two corresponding compo-
nents intersect. Thus ΓX has γ vertices, δ edges and among the edges there is a
loop for every node lying on a single irreducible component of X.

9.6. The first Betti number b1(ΓX) (sometimes called the cyclomatic num-
ber) is, for any orientation on ΓX

b1(ΓX) := dimZH1(ΓX ,Z) = δ − γ + 1.
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Recall also that the first Betti number of a connected graph is the maximal number
of one-dimensional open symplices that can be removed from the graph without
disconnecting it.

Another important, somewhat less standard, invariant of a graph is its com-
plexity.

Definition 9.7. Let Γ be a connected graph. A spanning tree of Γ is a subgraph
Γ′ ⊂ Γ which is a connected tree and such that Γ and Γ′ have the same vertices.
The complexity of Γ, µ(Γ), is the total number of spanning trees of Γ.

Example 9.8. Let X be connected. (1) X is of compact type if and only if ΓX

is a tree, if and only if b1(ΓX) = 0, if and only if µ(ΓX) = 1.
(2) By the genus formula g =

∑
gi+b1(ΓX) we get that b1(ΓX) ≤ g. Moreover,

b1(ΓX) = g if and only if all irreducible components of X have geometric genus 0.

9.9. The complexity can be computed cohomologically. Fix an orientation
on Γ and consider the standard homology operators

∂: C1(Γ,Z) −→ C0(Γ,Z), e �→ v − w,(34)

where e is an edge of Γ, starting in the vertex v and ending in the vertex w. And

δ: C0(Γ,Z) −→ C1(Γ,Z), v �→
∑

e+
v −

∑
e−v ,(35)

where e+
v are the edges starting at the vertex v and e−v are those ending in v.

Then introduce the complexity group of the graph Γ

∂C1(Γ,Z)
∂δC0(Γ,Z)

.

The name “complexity group” is due to the theorem of Kirchhoff-Trent ([OS79]
p. 21) stating that such a group is finite and its cardinality is equal to the complexity
of Γ.

The next lemma is Proposition 14.3 in [OS79] (see also [L89]).

LEMMA 9.10. For a nodal connected curve X with dual graph ΓX we have

∆X
∼=

∂C1(ΓX ,Z)
∂δC0(ΓX ,Z)

.

In particular the cardinality of ∆X is equal to the complexity of ΓX.
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vol. 195, Birkhäuser-Basel, 2001, pp. 11–126.
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[R70] M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970),
27–76.

[S94] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety,
Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5–79.

[Vie91] E. Viehweg, Quasi-projective Moduli for Polarized Manifolds, Ergeb. Math. Grenzgeb., vol. 30,
Springer-Verlag, Berlin, 1995.

[Vi89] A. Vistoli, Intersection theory on algebraic stacks and their moduli spaces, Invent. Math. 97 (1989),
613–670.


