
Compactified Jacobians, Abel maps and Theta divisors
Lucia Caporaso

Contents

1. Introduction 1
2. Compactified Picard schemes 2
2.1. Set up 2
2.2. Relation between Picard scheme and Néron model 4
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1. Introduction

Outline of the paper. This paper is an expository account about compactified
Picard schemes of nodal curves and some related topics. After some preliminaries,
Néron models are used to classify different compactified Picard schemes, Abel maps
are studied accordingly, and finally some recent results on the Theta divisor are
reviewed.

Several examples are included, as an attempt to elucidate some important parts
that require a consistent amount of technical work to be rigorously settled. To fill
out the unavoidable gaps, various references are given throughout the paper.

Aknowledgements. A large part of this paper is based on a talk that I gave at the
conference on Curves and Abelian varieties, held in Spring 2006 to celebrate Roy
Smith’s birthday. I wish to dedicate this paper to him. I also want to warmly
thank Valery Alexeev and Elham Izadi for organizing the conference, and Eduardo
Esteves for carefully reading a preliminary version.

Conventions. We fix an algebraically closed field k and work with schemes locally
of finite type over k, unless differently specified.

X will always be a connected, reduced, projective curve over k, having at most
nodes as singularities. We denote by g the arithmetic genus of X, by δ the number
of its nodes and by γ the number of its irreducible components. The dual graph of
X (having as vertices the γ irreducible components of X and as edges the δ nodes
of X) is denoted ΓX .

0Mathematics Subject Classification (2000): 14H40, 14H51, 14K30.
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X is called of compact type if ΓX is a tree; more generally, X is called tree-like if
ΓX becomes a tree after all loops are removed (in particular every irreducible curve
is tree-like).

By f : X → B we denote a one-parameter smoothing of X. That is, B = Spec R
is the spectrum of a discrete valuation ring R having residue field k and quotient
field K; the closed fiber of f is X and the generic fiber, denoted XK , is a smooth
projective curve over K. Everything we shall say holds (mutatis mutandis) if one
replaces B by any Dedekind scheme.

The total space X is a normal surface with singularities of type An at the nodes
of X ⊂ X . If X is nonsingular, we will say that f is a regular smoothing.

2. Compactified Picard schemes

2.1. Set up.

2.1.1. Jacobians, their torsors and their models. We consider the Picard scheme
of XK

PicXK =
∐
d∈Z

Picd XK

where Picd XK is the variety parametrizing isomorphism classes of line bundles of
degree d on XK . In particular Pic0 XK is an abelian variety over K and Picd XK a
torsor under it.

What about models of Picd XK over B? The analysis of such models (by which we
mean integral schemes over B whose generic fiber is Picd XK) is a key to understand
the properties of any compactified Jacobian or compactified Picard scheme of X,
which is one of the main themes of this paper.

We are going to introduce three different types of models for Picd XK over B.
The first two (the Picard scheme and the Néron model) are uniquely determined
by their defining properties, the third consists of a miscellany of different models
(compactified Picard schemes, see 2.3.1). We shall see how they relate to one
another; in particular, they are all isomorphic if and only if X is nonsingular.

2.1.2. The (relative) Picard scheme. For every f : X → B and for every d there
exists the (relative, degree d) Picard scheme

λd : Picd
f → B

(often denoted Picd
X/B → B). The existence and basic theory are due to A.

Grothendieck, P. Deligne and D. Mumford (see [D79], [SGA], [M66]); we refer
to [BLR] for a unified account. Over every point in B, the fiber of λd is the variety
of isomorphism classes of line bundles of degree d on the corresponding fiber of f .
So, the generic fiber of λd is Picd XK and the closed fiber is Picd X (see (2) for an
explicit description of Picd X).

The moduli property of the Picard scheme is expressed in Proposition 4, section
8.1. p. 204 of [BLR]; loosely speaking it amounts to the following. For every
B-scheme T → B, denote fT : XT := X ×B T → T the base change of f . For every
line bundle L of relative degree d on XT there exists a unique “moduli morphism”
µL : T → Picd

f mapping t ∈ T to the isomorphism class of the restriction of L to
f−1

T (t); for any M ∈ Pic T , we have µL = µL⊗f∗T M . Conversely, given a morphism
µ : T → Picd

f , the obstruction to the existence of a line bundle L on XT having
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µ as moduli map lies in the Brauer group of T . If f has a section, there is no
obstruction.

The union Picf :=
∐

d∈Z Picd
f is a group scheme over B with respect to tensor

product.
An important fact is that Picd

f → B is separated if and only if X is irreducible
(see 2.2.4).

2.1.3. The generalized jacobian. The generalized jacobian of X, denoted J(X),
parametrizes isomorphism classes of line bundles having degree 0 on every irre-
ducible component of X; thus J(X) is a commutative algebraic group with respect
to tensor product. It is well known that J(X) is a semiabelian variety, i.e. there
exists an exact sequence

(1) 0 −→ (k∗)b −→ J(X) ν∗−→ J(Xν) −→ 0

where ν : Xν → X is the normalization of X (hence J(Xν) is an abelian variety)
and

b = δ − γ + 1 = b1(ΓX)

is the first betti number of the dual graph of X, ΓX . As a consequence we see that
J(X) is projective if and only if X is a curve of compact type.

To relate the generalized jacobian to the Picard scheme, note that for every d ∈ Z
we have

(2) Picd X =
∐

d∈Zγ

Picd X

where Picd X parametrizes line bundles of multidegree d on X. For example
Pic(0,...,0) X = J(X). Of course Picd X is, non-canonically, isomorphic to J(X)
for every d.

For every f : X → B there exists the relative jacobian, Jf → B (often denoted
JX/B → B) which is a group scheme over B having fibers the generalized jacobians
of the fibers of f .

The connected component of the identity, (Picf )0 → B, of the group scheme
Picf → B is canonically identified with Jf → B.

2.1.4. The Néron model We here describe some well known results of A. Néron and
M. Raynaud ([N64], [R70]) on the existence of Néron models and on Néron models
of Picard varieties. We refer to [BLR] for all details, and to [A86] for a synthesis
of the basic theory. The Néron model of Picd XK will here be denoted

σd : Nd
f −→ B

(a common notation is N(Picd XK) → B); σd is a smooth, separated morphism of
finite type. If d = 0 then N0

f → B is a group scheme whose identity component is
Jf → B; for a general d, Nd

f → B is a torsor under N0
f → B (the Néron model of

Pic0 XK). The Néron model is uniquely determined by the Néron mapping property
([BLR], Def. 1, p. 12), which is the following. For every scheme Z smooth over
B, every map uK from its generic fiber to Picd XK extends uniquely to a regular
B-morphism N(uK) : Z → Nd

f .
The closed fiber of Nd

f , viewed simply as a scheme (forgetting its torsor struc-
ture), depends only on the type of singularities of the surface X , in particular it



4

does not depend on d. So, if f : X → B is a regular smoothing of X, we denote
the closed fiber of Nd

f → B by Nd
X , or by NX when no confusion is possible.

The scheme NX can be described in various ways; we begin using combinatorics,
as in [OS79] sections 4 and 14, to which we refer for more details. Consider the
dual graph ΓX of X, let c(X) be the complexity of ΓX ; recall that the complexity
of a graph is the number of trees contained in it and passing through all of its
vertices (i.e. the number of so-called “spanning trees”). Now, NX is the disjoint
union of c(X) copies of the generalized jacobian of X. Therefore NX is irreducible
(and isomorphic to J(X)) if and only if X is a tree-like curve. An alternative
description of NX will be given in the sequel.

Example 2.1.5. The curve Xδ. Denote by

Xδ = C1 ∪ C2, δ = #(C1 ∩ C2) = #Xsing

the union of two smooth curves meeting transversally at δ points. We call gi the
genus of Ci so that the genus g of Xδ is g = g1 + g2 + δ− 1. Xδ is sometimes called
a vine curve; it will be our leading example throughout the paper.

ΓXδ
consists of two vertices joined by δ edges; therefore every edge is a spanning

tree and c(X) = δ. We obtain that NX is the disjoint union of δ copies of J(X).

2.2. Relation between Picard scheme and Néron model.

2.2.1. A canonical quotient. Fix f : X → B a regular (for simplicity) smoothing
of X and consider the two models of Picd XK that we have introduced so far: the
Picard scheme λd : Picd

f → B and the Néron model σd : Nd
f → B. The Néron

mapping property yields a canonical regular B-map

(3) qf : Picd
f → Nd

f

extending the identity on the generic fibers (if d = 0 our qf is the map “Ner” in
diagram 1.21 of [A86]); we omit d for simplicity. qf is a surjection, indeed if d = 0
it is a quotient of group schemes. So Nd

f is sometimes called the “largest separated
quotient of the degree-d Picard scheme”. The restriction of qf to the closed fibers
depends on f ; we shall now concentrate on it.

2.2.2. Twisters. To a regular smoothing f of X we can associate a discrete sub-
group Twf X of Pic0 X; Twf X is the set of all line bundles of the form OX (D)|X
where D is a divisor on X supported on the closed fiber X. Elements of Twf X are
called twisters (or f -twisters). The multidegree map

deg : Twf X −→ Zγ

has image a group called ΛX :

ΛX = deg(Twf X) ⊂ {d ∈ Zγ : |d| = 0} ⊂ Zγ .

Remark 2.2.3. Observe that while Twf X depends on f (unless X is tree-like) ΛX

does not. For example, if X = C1 ∪ C2 with #C1 ∩ C2 = δ ≥ 2, for every n 6= 0
we have that there exist regular smoothings f : X → B and f ′ : X ′ → B of
X such that OX (nC1)|X 6∼= OX ′(nC1)|X . On the other hand, for any f we have
degOX (nC1)|X = (−nδ, nδ).

2.2.4. Towards separatedness. Consider for a moment the case d = 0; recall that
N0

f is a separated model of Pic0 XK endowed with a universal mapping property.
Consider the line bundles OX and L := OX (D) for any divisor D on X such that
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SuppD ⊂ X. Suppose that D is not a multiple of X, which is equivalent to ask
that degOX (D)|X 6= (0, . . . , 0). Thus L and OX determine two different sections,
µOX : B → Pic0

f and µL : B → Pic0
f , of the Picard scheme Pic0

f → B (cf. 2.1.2).
These two sections of course coincide on the generic point Spec K.

The generic fiber of N0
f is the same as that of Pic0

f , so we may interpret (µOX )| Spec K =
(µL)| Spec K as a map from Spec K to the generic fiber of N0

f . By the Néron map-
ping property, there exists a unique morphism µ : B → N0

f extending (µOX )| Spec K

and (µL)| Spec K and such that

µ = qf ◦ µOX = qf ◦ µL.

This implies that in the closed fiber of N0
f there is a unique point corresponding

to both (OX )|X = OX and OX (D)|X for any D; in other words qf maps Twf X to
one point. More generally, we have

Lemma 2.2.5. Let L, L′ ∈ Picd X and assume that there exists a smoothing f :
X → B of X and a T ∈ Twf X such that L′ ∼= L⊗ T . Then qf (L) = qf (L′).

Proof. (The lemma and its proof hold for every smoothing f of X, of its being
regular). As T ∈ Twf X there exists a line bundle T = OX (D) on X which
restricts to T on the closed fiber X. Suppose that there exists L ∈ PicX restricting
to L on X; set L′ := L ⊗ T so that L′|X = L′ and L|XK

= L′|XK
. We can argue as

we did in 2.2.4 (with respect to the pair L and OX ) with respect to the pair L and
L′. So we are done.

Now, up to replacing f with an étale base change, we can assume that such a
line bundle L exists. Since the formation of Néron models commutes with étale
base change, we are done. �

2.2.6. Multidegree classes. The previous discussion motivates the following def-
inition (from [C94]). Let d and d′ be two multidegrees (so that d, d′ ∈ Zγ); we
define them to be equivalent if their difference is the multidegree of a twister, i.e.:
d ≡ d′ ⇔ d − d′ ∈ ΛX . Now the quotient of the set of multidegrees with fixed
total degree by this equivalence relation is a finite set ∆d

X :

∆d
X :=

{d ∈ Zγ : |d| = d}
≡

.

It is well known that the cardinality of ∆d
X is independent of d (so that we shall

sometimes simply write ∆X) and it is equal to c(X) (defined in 2.1.4). ∆d
X naturally

labels the connected/irreducible components of Nd
X ; indeed we have

(4) Nd
X =

∐
µ∈∆d

X

NX,µ

with non canonical isomorphisms

NX,µ
∼= J(X), ∀µ ∈ ∆d

X .

Finally, the restriction of qf to the closed fiber Picd X of λd is surjective and
induces an isomorphism of each connected component Picd X of Picd X with the
connected component of Nd

X corresponding to the class µ of d in ∆d
X :

(qf )|Picd X : Picd X
∼=−→ NX,µ, where µ = [d] ∈ ∆d

X

(more details in chapter 9 of [BLR] or in [A86]).
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Example 2.2.7. Structure of ∆d
Xδ

. In the situation of Example 2.1.5, one has that
the group of multidegrees of twisters is

ΛXδ
= {(nδ,−nδ),∀n ∈ Z} ⊂ Z2

(see remark 2.2.3). Hence ∆d
Xδ

has cardinality δ (indeed ∆0
Xδ

∼= Z/δZ).

2.3. Types of Compactified Picard schemes.

2.3.1. A general notion of compactified Picard scheme. In this paper, a (degree-d)
compactified Picard scheme for X is a projective, reduced scheme P d

X such that
for every f : X → B there exists a unique integral scheme P d

f with a projective
morphism

(5) πd : P d
f → B

whose generic fiber is Picd XK and whose closed fiber is P d
X . We call P d

f the (relative,

degree-d) compactified Picard scheme associated to f . We denote by P d
f ⊂ P d

f the
smooth locus of πd.

A compactified Picard scheme is also endowed with some geometric meaning.
More precisely, P d

X and P d
f will be (coarse or fine) moduli schemes for certain

functors strictly related to the Picard functor.

2.3.2. References. In the literature, there exist several constructions of compact-
ified Picard schemes (see for example [I78], [Ds79], [OS79], [AK80], [S94] [C94],
[P96], [E01]) which differ from one another in various aspects, such as the functo-
rial interpretation. A survey may be found in [Al04].

Our goal here is to classify them according to their relation with the Néron
model; see 2.3.5. In doing so we shall not go through the details concerning various
constructions, but we shall focus on their formal properties.

We first describe an apparently simple, yet challenging case.

Example 2.3.3. The following is a special case of Example 2.1.5, whose notation
we continue to use. Let X = Xδ = C1 ∪C2 with δ = 1. So X is a curve of compact
type whose generalized jacobian is projective (cf. 2.1.3):

J(X) = Pic(0,0) X ∼= Pic0 C1 × Pic0 C2 = J(C1)× J(C2).

If f : X → B is a regular smoothing of X, the Picard scheme Picd
f → B is

not separated (cf. 2.1.2). Let us look for a separated, even projective, model for
Picd XK ; in other words, let us look for a compactified Picard scheme. This does
not seem too hard: every connected component of Picd X is projective. Recall also
(see example 2.2.7) that ∆X consists of only one element, so we expect a separated
model of Picd XK to have only one irreducible component.

If d = 0 there is no problem: it suffices to take the generalized jacobian Jf → B
which is certainly projective. In doing so we have made a choice of multidegree for
the closed fiber, namely the multidegree (0, 0).

If d 6= 0 there does not seem to be a canonical choice of multidegree. Indeed,
consider the case d = g − 1 (which will turn out to be quite interesting in the
sequel). Since g = g1 + g2, there exists no natural choice of a multidegree of total
degree g − 1. The lesson we should draw from this is that a compactified degree-d
Picard scheme for X may fail to contain a subset corresponding to line bundles of
degree d on X itself (this does not happen if X is irreducible; see 2.3.6).
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In the present example, we shall see that there exists a canonical compactified
Picard scheme P g−1

X endowed with a canonical isomorphism with Pic(g1−1,g2−1,1) X̂,
where X̂ = C1 ∪C2 ∪C3 is the curve obtained by “blowing-up” X at the node and
calling the “exceptional” component C3.

An equivalent description of P g−1
X is as the moduli space of Euler characteristic

0, rank-1, torsion-free sheaves on X that are not locally free at the node.
In either case, P g−1

X does not parametrize any set of line bundles of degree g− 1
on X. The above description yields an isomorphism

P g−1
X

∼= Pic(g1−1,g2−1) X,

so, an interpretation in terms of line bundles of degree g− 2 rather than g− 1 (see
2.4.6 for more details).

2.3.4. Néron models and compactified Picard schemes. Let X be any curve and
f : X → B a regular smoothing for X. Let us now consider a fixed compactifed
Picard scheme πd : P d

f → B and its closed fiber P d
X (cf. 2.3.1). Recall that we

denote P d
f → B the smooth locus of πd. We apply the Néron mapping property to

obtain a canonical B-morphism

(6) nf : P d
f → Nd

f

extending the indentity map from the generic fiber of πd to the generic fiber of
Nd

f → B.

Definition 2.3.5. We say that P d
X , or P d

f , is of N-type (or of Néron type) if the

map nf : P d
f → Nd

f is an isomorphism. We say that P d
X , or P d

f , is of D-type (or of
Degeneration type) otherwise.

2.3.6. Irreducible curves. If X is irreducible, up to isomorphisms there exists in
the literature a unique compactified Picard scheme P d

X , which is of N-type and does
not depend on d. P d

X is irreducible and reduced; it is singular unless X is smooth.
It is also true that Picd X is naturally isomorphic to an open subset of P d

X (the first
such constructions are [I78], [MM64], [Ds79] and [AK80]).

As we said, if X is reducible and not tree-like, then the structure and the type
of P d

X varies.

Example 2.3.7. Let us consider a curve Xδ = C1 ∪ C2 as in Example 2.1.5, and
assume δ ≥ 2.

The fact that there exist different, non isomorphic, compactified jacobians for
Xδ was first discovered by Oda and Seshadri in their fundamental paper [OS79], the
first paper providing a construction of a compactified jacobian for any reducible,
nodal, fixed (i.e. not moving in a family) curve. They proved that, depending on a
certain choice of polarization, there exists a compactified jacobian of N-type, hence
having δ irreducible components, or a compactified jacobian of D-type, having δ−1
irreducible components (see [OS79] Chapter II, section 13).

The same was later found in [C94] in a different framework. There is no polar-
ization involved in this construction, and the structure of P d

X depends solely on the
degree d. For every curve Xδ both types of compactification appear, and they are
isomorphic to the ones of [OS79]. More precisely, if d = g− 1 then for every δ ≥ 2,
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we have that P d
Xδ

has δ − 1 components (hence it is of D-type). If d = 0 then P d
Xδ

is of N-type (resp. of D-type with δ − 1 components) if δ is odd (resp if δ is even).
See Theorem 2.3.9 for values of d for which P d

Xδ
is of N-type.

2.3.8. Reducible curves. Once we choose the specific construction (so that we
choose a P d

X for every X and d) the following problem arises naturally: for a fixed
d classify all curves for which P d

X is of Néron type. A satisfactory answer to this
question is known if d = g − 1 (and the answer is: only the obvious ones; see
Theorem 2.4.1 below), and in a few other cases. For instance, this issue is rather
well understood for the construction of [C94], or of [P96] (the two are naturally
isomorphic). Here is what is known.

Theorem 2.3.9. For every d there exists an open substack Md

g of Mg, whose mod-

uli scheme M
d

g we call the locus of d-general stable curves, such that the following
holds.

(i) There exists a Deligne-Mumford stack PNer

d,g with a strongly representable mor-

phism onto Md

g, such that for every X ∈ M
d

g and every regular smoothing

f : X → B of X, the base change PNer

d,g ×Mg
B → B is a compactified Picard

scheme of Néron-type.
(ii) M

d

g is open in Mg and contains the locus of irreducible curves.

(iii) Md

g = Mg if and only if (d− g + 1, 2g − 2) = 1.

(iv) If d = g − 1 then M
d

g equals the locus of irreducible curves.

See [C05] for the case described in part (iii) and [M07] for the remaining cases;
in the latter paper there is also a complete description of M

d

g, based on the combi-
natorics of the curves.

Although Theorem 2.3.9 is proved using the [C94] construction, by results of
[Al04] section 1, it applies also for the compactifications of [OS79] and [S94] with
respect to the canonical polarization.

Finally, the construction of [E01] (which concerns curves with singularities more
general than nodes) has been studied in [B07]. It is there shown that the compact-
ified Picard schemes called Jσ

E are of N-type for all regular smoothings (endowed
with a section σ and a polarization E , needed for the construction).

2.4. The case d = g − 1.

As we mentioned, the case d = g− 1 has been studied closely by various authors
and it is thus much better understood. The following is a summary of known
results:

Theorem 2.4.1. For every curve X of genus g ≥ 2 the following facts hold.
(i) The compactified degree-(g − 1) Picard schemes constructed in [OS79], [S94]

and [C94] are all isomorphic to a projective, reduced scheme, denoted P g−1
X

from now on.
(ii) P g−1

X possesses a theta divisor Θ(X) which is Cartier and ample. If X is
smooth, Θ(X) coincides with the classical theta divisor i.e. Θ(X) = Wg−1(X)
in the standard notation (see [ACGH]).
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(iii) The pair (P g−1
X ,Θ(X)) is a semiabelic stable pair in the sense of [Al02].

(iv) If X is not tree-like, P g−1
X has less than c(X) components (hence it is of

D-type).

Parts (i) and (iii) are due to V. Alexeev, [Al04]. Part (ii) is due to A. Soucaris
[So94] and E. Esteves [E97] in case X is irreducible, and to Alexeev if is X reducible,
in which case some results of A. Beauville in [B77] play a key role; see [Al04] for
details. For part (iv) see [C05] Section 4.

2.4.2. The canonical compactified jacobian in degree g − 1. As we said, the above
results, especially part (iii), lead us to regard such compactification P g−1

X as canon-

ical. Throughout this paper, the compactified Picard schemes P g−1
X and P g−1

f will
be the ones of Theorem 2.4.1. We shall give it a more explicit description in the
sequel.

Having Theorem 2.3.9 in mind we now ask: how do these Picard schemes P g−1
X

glue together over Mg, as X varies among all stable curves of genus g? Of course
Theorem 2.3.9 does not tell us much. The following result, answering this question,
is due to M. Melo; see [M07].

Proposition 2.4.3. There exists an Artin stack Pg−1,g with a non representable
morphism to Mg, such that for every X ∈ Mg and every smoothing f : X → B of
it, the stack Pg−1,g ×Mg

B admits a canonical proper B-morphism onto P g−1
f .

Remark 2.4.4. In particular, the stack Pg−1,g is not Deligne-Mumford. We like to
interpret this phenomenon as a reflection of the fact that P g−1

X , being of D-type,
does not have the best moduli properties that one may hope for. Recall in fact that
P g−1

X has fewer components than the Néron model (by 2.4.1 (iv)). This tells us

that some multidegree classes are not “finely” represented by points in P g−1
X (see

Example 2.4.5).
However, if we restrict our attention to the moduli scheme of automorphism-free

stable curves, M
0

g (so that there is a universal family Cg → M
0

g), there does exist
a scheme

(7) Pg−1,g −→ M
0

g

whose fiber over every curve X is the (canonical) P g−1
X .

Example 2.4.5. Consider the curve Xδ = C1∪C2 and assume that δ ≥ 2 (notation
in Example 2.1.5). Then P g−1

X has δ − 1 irreducible components each of which
contains a copy of J(X) as a dense open subset. So, we seem to have lost a
multidegree class (cf. example 2.2.7)!

What actually happens is that there is one multidegree class, call it µ0 ∈ ∆g−1
X ,

such that line bundles having multidegree of class µ0 are represented by points in
the boundary of P g−1

X . Furthermore, different such line bundles get identified.

The simplest case when that happens is δ = 2. P g−1
X is thus irreducible, and

it turns out to contain a dense open subset (equal to its smooth locus) naturally
identified to Pic(g1,g2) X (see Proposition 2.4.9 and Definition 2.4.7). We shall
henceforth identify the smooth locus of P g−1

X with Pic(g1,g2) X.
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The class µ0 (defined above) is thus µ0 = [(g1 − 1, g2 + 1)] = [(g1 − 1− 2n, g2 +
1 + 2n)], n ∈ Z. Now the boundary of P g−1

X is an irreducible (g − 1)-dimensional
closed subscheme which is isomorphic to the jacobian of the normalization of X.
More precisely, we have that the boundary has a canonical isomorphism

(8) P g−1
X r Pic(g1,g2) X ∼= Pic(g1−1,g2−1) Xν = Picg1−1 C1 × Picg2−1 C2

where Xν = C1

∐
C2 is the normalization of X.

Let L ∈ Pic(g1−1,g2+1) X, pick a regular smoothing f : X → B of X such that
there exists a line bundle L on X restricting to L on the closed fiber. Then there is
a map φ : B → P g−1

f such that φ(Spec K) = [LXK
] (of course, φ is regular as B is

a smooth curve and P g−1
f is projective). By what we claimed before, φ must map

the closed point of B to a boundary point of P g−1
X ; which point?

The answer is, using (8), the point of the line bundle (L1, L2(−p2 − q2)) on Xν ,
where Li denotes the restriction of L to Ci, and p2, q2 are the branches of the nodes
of X lying in C2 (see also 2.4.11).

We conclude by noticing that this gives a map from Pic(g1−1,g2+1) X to the
boundary of P g−1

X , which is surjective and has one-dimensional fibers. More details
will be in 2.4.11.

2.4.6. A stratification of P g−1
X . We need to recall what a semistable, equivalently a

balanced, multidegree is. The two notions, “semistable” and “balanced”, coincide;
as the first is more common when the total degree is g − 1, we shall use that one.

Definition 2.4.7. Let d ∈ Zγ be such that |d| = g− 1. Then d is semistable (resp.
stable) on X if for every connected subcurve Z ( X we have dZ ≥ pa(Z)− 1 (resp.
dZ > pa(Z)− 1), where dZ =

∑
Ci⊂Z di denotes the total degree of the restriction

of d to Z and pa(Z) the arithmetic genus of Z.
If Y is a nodal, disconnected curve, we say that a multidegree is semistable or

stable if it is so on every connected component of Y .
We denote by Σss(X) (resp. by Σ(X)) the set of semistable (resp. stable)

multidegrees on X.

If X is irreducible, then of course Σss(X) = Σ(X) = {g − 1}.
It is easy to check that Σss(X) is finite and not empty, whereas Σ(X) may be

empty (see example 2.4.8).
It is known (cf. [C05] Prop. 4.12) that every class in ∆g−1

X has some semistable
representative.

Example 2.4.8. If Xδ is the vine curve of example 2.1.5, then

#Σss(Xδ) = δ + 1 and #Σ(Xδ) = δ − 1.

More precisely

Σss(Xδ) = {(g1 − 1, g2 − 1 + δ), . . . , (g1 − 1 + δ, g2 − 1)}
and Σ(Xδ) = {(g1, g2 − 2 + δ), . . . , (g1 − 2 + δ, g2)}. In particular, Σ(Xδ) is empty
if and only if δ = 1.

If Xν = C1

∐
C2 is the normalization of X (so that Xν is disconnected), one

easily checks that

(9) Σss(C1

∐
C2) = Σ(C1

∐
C2) = {(g1 − 1, g2 − 1)}.
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Here is a coincise way of describing P g−1
X (for the proof, one may choose any

of the constructions [OS79], [C94], [S94] and use their equivalence established in
[Al04] (cf. Theorem 2.4.1).

Proposition 2.4.9. The points of P g−1
X bijectively parametrize all line bundles

having stable multidegree on all partial normalizations of X (including X itself).

More precisely, for every subset S ⊂ Xsing consider the partial normalization
Xν

S → X of X at exactly S. Consider now Σ(Xν
S); if it is nonempty let d be a

multidegree in it (note that |d| = pa(Xν
S) − 1) and consider Picd Xν

S . Then there
exists a canonical injective morphism ε

d
S : Picd Xν

S ↪→ P g−1
X whose image we denote

P
d
S := ε

d
S(Picd Xν

S) ⊂ P g−1
X .

The sets P
d
S form a stratification of P g−1

X in disjoint strata, i.e. we have P g−1
X =∐

S⊆Xsing d∈Σ(Xν
S) P

d
S . More details can be found in [C07].

The explicit description of ε
d
S depends on how we choose to describe P g−1

X func-
torially (whether we use rank-1 torsion free sheaves, line bundles on semistable
curves, cell decompositions...). In the next example we will use line bundles on
semistable curves.

Example 2.4.10. Let X = Xδ = C1 ∪ C2. If we interpret P g−1
X as parametrizing

line bundles on blow-ups of X, then the map ε
d
S is described as follows. If S = ∅

and d is a stable multidegree on S (in particular, δ ≥ 2, by example 2.4.8), then ε
d
S

is the identity map.
If S = {n} is one node, let Xν

S be the normalization of X at n and X̂S = Xν
S∪C3

be the curve obtained by joining the two branches over n by a smooth rational curve
C3. Let d ∈ Σ(Xν

S), so that |d| = pa(Xν
S)− 1 = g − 2. Now ε

d
S maps a line bundle

L ∈ Picd Xν
S to the (unique) point in P

d
S ⊂ P g−1

X corresponding to line bundles on
X̂S whose restriction to Xν

S is L and whose restriction to C3
∼= P1 is O(1).

Finally, if X = Xsing then Xν
S = Xν is the normalization of X. Using Exam-

ple 2.4.8 we see that ε
d
S = ε

(g1−1,g2−1)
Xsing

. With a procedure analogous to the previ-

ous case, we get that the smallest stratum of P g−1
X is isomorphic to Picg1−1 C1 ×

Picg2−1 C2. Call X̂ the (connected, nodal) curve obtained by blowing up every
node of X so that X̂ is the union of Xν with δ copies of P1, one for each node. Now
every point ` of this stratum corresponds to the set of line bundles on X̂ whose
restriction to Xν is a fixed line bundle L of multidegree (g1− 1, g2− 1), and whose
restriction to each of the remaining components is O(1). Thus ` = ε

d
S(L).

2.4.11. Functorial properties of P g−1
f . Fix the curve X and a regular smoothing

f for it. We are going to illustrate some moduli properties of P g−1
f , using the same

notation as for the moduli property of Picf (cf. 2.1.2). For every B-scheme T → B
and every line bundle L on XT , such that for every t ∈ T the restriction Lf−1

T (t)

has semistable multidegree, there exists a canonical morphism

µL : T −→ P g−1
f

having the following properties. The restriction of µL over the generic point is the
usual moduli map to the Picard variety Picg−1 XK . If t lies over the closed point of
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B, then obviously f−1
T (t) = X and we are assuming that degL|f−1

T (t) ∈ Σss(X). We

denote µL(t) = [L|f−1
T (t)] ∈ P g−1

X . What is this class, in terms on the description
given in 2.4.6?

Call L = L|f−1
T (t) and d its multidegree. If d is stable, then there is no ambiguity:

by Proposition 2.4.9 there is a point [L] in P g−1
X corresponding to L.

If d is strictly semistable some cumbersome notation is needed for an arbitrary
curve. Therefore, to give a more efficient explanation, we shall precisely describe
only the case of a curve with two components.

So, let X = Xδ = C1 ∪ C2, recall (cf. example 2.4.8) that there are exactly two
strictly semistable multidegrees, and they are equivalent; namely

(g1 − 1, g2 + δ − 1) ≡ (g1 + δ − 1, g2 − 1).

Call L1 and L2 the restrictions of L to C1 and C2. Denote {p1, . . . , pδ} ⊂ C1 (resp.
{q1, . . . , qδ} ⊂ C2) the δ points of C1 (resp. of C2) lying over the nodes of X.

If deg L = (g1−1, g2+δ−1) then µL(t) is the point in the stratum P
(g1−1,g2−1)
Xsing

∼=
Pic(g1−1,g2−1) Xν given by

[(L1, L2(−
δ∑

i=1

qi)]

(see 9 and example 2.4.8). If instead deg L = (g1 + δ − 1, g2 − 1), then

µL(t) = [(L1(−
δ∑

i=1

pi), L2].

3. Abel maps and Theta divisors

3.1. Preliminary analysis.

3.1.1. The smooth case. Let C be a smooth curve. For every integer d ≥ 1 the
d-th Abel map is defined as follows

αd
C : Cd −→ Picd C; (p1, . . . , pd) 7→ OC(

∑
pi);

αd
C is a regular map. It is well known that Abel maps are defined more generally

for any family of smooth curves over any scheme. Moreover the image of the d-th
Abel map in Picd C is equal to the variety Wd(C) := {L ∈ Picd C : h0(C,L) 6= 0},
(10) Imαd

C = Wd(C), and dim Wd(C) = min{d, g}.
The situation is particularly interesting if 1 ≤ d ≤ g− 1; then Wd(C) is a proper

subvariety of Picd C. Moreover, for any nonnegative integer r, the loci in Wd(C)
where the fiber dimension of the d-th Abel map is at least r are the Brill-Noether
varieties W r

d (C) (so that Wd(C) = W 0
d (C)). The geometry of line bundles and

linear series on a smooth curve C is encoded in the varieties W r
d (C); see [ACGH]

for the general theory, from the time of Riemann to the twentieth century.
How does this picture extend to singular curves?

3.1.2. Naive approach for singular curves. Fix a degree d ≥ 1 and a curve X. One
may define a rational map

(11)
α̃d

X : Xd 99K Picd X

(p1, . . . , pd) 7→ OX(
∑d

1 pi)
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which is regular if all the pi are nonsingular points of X. The above definition
is the simple minded extention of the smooth curve case, and it turns out to be
non-satisfactory, unless X is irreducible (see Proposition 3.1.3). To be more precise,
denote by X = ∪γ

i=1Ci the irreducible component decomposition of X and for any
d = (d1, . . . , dγ) ∈ Zγ such that |d| = d and d ≥ 0 (i.e. di ≥ 0, ∀i), set

(12) Xd := Cd1
1 × . . .× Cdγ

γ ;

more generally, for any permutation σ of the set {1, . . . , γ}, let

(13) Xd
σ := Cd1

σ(1) × . . .× C
dγ

σ(γ).

Thus the X
d
σ are the irreducible components of Xd. If σ is the identity we often

omit it (as in (12)). Now let

(14) α
d
X : Xd 99K Picd X

(respectively, α
d
X,σ : X

d
σ 99K Picd X) be the restriction of α̃d

X to Xd (respectively, to

X
d
σ). These maps are of course defined only if every di is nonnegative. To simplify

matters, whenever they are not defined, we shall set Im α
d
X,σ = ∅.

We define for any curve X and any multidegree d

(15) Wd(X) := {L ∈ Picd X : h0(X, L) ≥ 1} ⊂ Picd X

and Wd(X) =
∐
|d|=d Wd(X). In analogy with 3.1.1 we ask what is the relation

between α
d
X and Wd(X). Here is where the first type of pathologies appears, as the

following result demonstrates.
For any component Ci of X denote by gi its arithmetic genus and by δi =

#(Ci ∩X r Ci). We leave it to the reader to find the analogue for α
d
X,σ.

Proposition 3.1.3. Let X be a curve of genus g ≥ 2 and d ∈ Zγ with |d| = d ≥ 1.

(1) If there exists an i such that di ≥ gi+δi, then dim Wd(X) = g and dim Im α
d
X ≤

d− 1.
(2) Assume that |d| = g − 1.

(a) If d is not semistable, then dim Wd(X) = g and dim Im α
d
X ≤ g − 2.

(b) If d is semistable, then dim Im α
d
X = dim Wd(X) = g − 1.

Proof. Part (a) is a special case of Part (1). Part (b) combines some results of
Beauville, namely Lemma 2.1 and Prop. 2.2 in [B77], with some of [C07] (Prop.
3.6).

Let us prove part (1). Assume that di ≥ gi + δi; then for every Li ∈ Picdi Ci

we have h0(Ci, Li) ≥ δi + 1. Therefore for every L ∈ Picd X, L admits some global
section that does not vanish on Ci. Hence h0(X, L) ≥ 1 and Wd(X) = Picd X.
This proves the first statement of part (1).

For the second, suppose that α
d
X is defined (i.e. that d ≥ 0). Call C ′

i = X r Ci

the complementary curve of Ci and let νi : Ci

∐
C ′

i −→ X be the normalization of
X at Ci∩C ′

i. Let L ∈ Im α
d
X and set M := ν∗i L , so that M is determined by a pair

of line bundles Li ∈ Pic Ci and L′i ∈ Pic C ′
i. We have that h0(Ci, Li) ≥ δi + 1 (by

what we said before) and h0(C ′
i, L

′
i) ≥ 1 because L ∈ Im α

d
X . Therefore h0(M) ≥

δi + 1 + 1 = δi + 2; this implies that

h0(X, L) ≥ h0(M)− δi ≥ 2.
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We conclude that the fibers of the map α
d
X have dimension at least 1, and hence

that dim Im α
d
X ≤ dim Xd − 1 = d− 1 as wanted. �

3.2. Abel maps in degree g − 1.

3.2.1. Defining Abel maps by specialization. Proposition 3.1.3 indicates that deal-
ing with Abel maps of reducible curves is a delicate matter and more sophisticated
tools may be needed. Therefore, we shall now define Abel maps for a curve X
after a smoothing f of X is given, and using compactified Picard schemes. In
other words, we shall add some variational data, defining Abel maps for a so called
“enriched curve”, represented by a pair (X, f). Furthermore we shall use a com-
pactified Picard scheme as the image space of our Abel maps. This will give us a
better behaved object, yet one that may (and will) depend on the the choice of the
smoothing, and on the choice of the compactified Picard scheme.

3.2.2. Abel maps in degree g− 1. We first deal with the case d = g− 1, so that we
have a canonical choice for the compactified Picard scheme (see 2.4.2).

Let X and f : X → B be a curve and a regular smoothing for it. Denote by
X d = X ×B . . .×B X the d-th fibered power over B. Classically, the d-th Abel map
is the moduli map associated to the universal effective divisor on X d ×B X (see
below). We shall approach the problem in the same way. So consider the natural
projection

X g = X g−1 ×B X
π−→ X g−1

(above and throughout this section, all schemes, maps and products are over B).
The map π has g−1 tautological rational sections σi(p1, . . . , pg−1) = (p1, . . . , pg−1; pi)
which determine a line bundle E on the smooth locus of X g, i.e. introducing the
(Weil) divisor

E =
g−1∑
1

σi(X g−1)

we define
E = OXg (E)

which is locally free on an open subset of X g. Now, the π-relative multidegree of E
varies with the irreducible components of Xg−1. Indeed, with the notation of (12),
let Xd ⊂ Xg−1 ⊂ X g−1 be an irreducible component (so that d ≥ 0), then for a
generic point t ∈ Xd we have

deg E|π−1(t) = d.

More generally, if t ∈ X
d
σ we have deg E|π−1(t) = (dσ−1(1), . . . , dσ−1(γ)). Observe

that the restriction of E over Spec K is the so-called universal effective divisor on
X g−1

K × XK , whose moduli map X g−1
K → Picg−1 XK is the g − 1-th Abel map of

XK . So, we would like to complete this, associating to E a map X g−1 99K P g−1
f .

With the functorial description of P g−1
f in mind (see 2.4.11), the question we need

an answer for is: is d semistable?
To better explain how to proceed we concentrate on our leading example.

Example 3.2.3. Assume that X = Xδ (cf. 2.1.5), so that we have a simple
description of Σss(X) and hence of P g−1

X . The irreducible component decomposition
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of Xg−1 is

Xg−1 =
g−1⋃
l=1

(
Cl

1 × Cg−1−l
2 ∪ Cl

2 × Cg−1−l
1

)
so that if t ∈ Cl

1×Cg−1−l
2 , then deg E|π−1(t) = (l, g−1− l) while if t ∈ Cl

2×Cg−1−l
1 ,

then deg E|π−1(t) = (g− 1− l, l). Now we claim that for every l = 0, . . . , g− 1 there
exists an integer a(l) ∈ Z such that

(16) (l, g − 1− l) + (−a(l)δ, a(l)δ) ∈ Σss(X).

Indeed, (−a(l)δ, a(l)δ) ∈ ΛX , so (l, g − 1 − l) + (−a(l)δ, a(l)δ) ≡ (l, g − 1 − l); as
every multidegree class has a semistable representative the claim is proved.

If (l, g − 1 − l) is semistable we choose a(l) = 0. Note that a(l) may not be
unique, but this will turn out to be irrelevant. Indeed, a(l) is not unique if and
only if (l, g − 1− l) + (−aδ, +aδ) is strictly semistable. From the description given
in 2.4.11 one sees that the choice of a(l) plays no role.

Now we define

(17) Lg−1 = E ⊗ OXg

( g−1∑
l=1

a(l)
(
Cl

1 × Cg−1−l
2 × C1 + Cg−1−l

2 × Cl
1 × C1

))
which is locally free over the smooth locus of X g−1. Let t be a smooth point of
Xg−1; by construction, if either t ∈ Cl

1 × Cg−1−l
2 or t ∈ Cg−1−l

2 × Cl
1 we have that

deg(Lg−1)|π−1(t) = (l − a(l)δ, g − 1− l + a(l)δ)

which is semistable, by (16). Therefore there exists a canonical rational map µLg−1
:

X g−1 99K P g−1
f (see 2.4.11).

We denote αg−1
f := µLg−1

and call it the g−1-th Abel map associated to f . The
restriction of αg−1

f to the closed fiber is the rational map

(18) αg−1
f,X : Xg−1 99K P g−1

X .

This is the definition we were aiming at; so we call αg−1
f,X the g − 1-th Abel map

of X associated to f . By construction, αg−1
f,X is regular at (p1, . . . , pg−1) for every

p1, . . . , pg−1 ∈ X r Xsing.

We just gave the definition in the special case of a curve with two components.
The general case can be dealt with using the very same procedure, paying quite a
price in terms of notation. Rather than going through this, we prefer to deal with
a problem that arises immediately.

3.2.4. Naturality. We now consider the following question:
Does αg−1

f,X : Xg−1 99K P g−1
X depend on the choice of the smoothing f?

We shall say that αg−1
f,X is natural if it is independent of the choice of f , i.e. if

for every regular smoothings f and f ′ of X, we have

αg−1
f,X = αg−1

f ′,X .

We have defined αg−1
f,X only for a vine curve X = Xδ (cf. 2.1.5), so we shall focus

on this simple yet interesting case. See [B06] for the general result, valid for all
stable curves. With the notation of Example 2.1.5, we have
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Proposition 3.2.5. Let X = Xδ. If δ = 1 then αg−1
f,X is natural.

Assume δ ≥ 2, then αg−1
f,X is natural if and only if

δ ≥ g − 1 and {g1, g2} 6= {0, 2}.

Equivalently, αg−1
f,X is natural if and only if gi ≤ 1 for i = 1, 2.

Proof. The map αg−1
f is defined as the moduli map µLg−1

, and Lg−1 is a so called
“twist” of E = O(E) (i.e. Lg−1 and E differ only over the closed point of B). It is
clear that the restriction of E to the fibers over Xg−1 is independent of f (indeed
E|π−1(p1,...,pg−1) = OX(p1 + . . . , pg−1)).

Now consider the other factor T := OXg

( ∑g−1
l=0 a(l)

(
Cl

1×Cg−1−l
2 ×C1+Cg−1−l

2 ×

Cl
1×C1

))
= Lg−1⊗E−1 of (17). The restriction of T to the fibers of π is a twister.

Now recall that, if δ ≥ 2, a nontrivial twister on Xδ depends on the choice of X (see
remark 2.2.3). On the other hand if δ = 1, a twister on X is uniquely determined
by its multidegree. Hence if δ = 1 the map αg−1

f,X does not depend on f .
Assume from now on δ ≥ 2. By what we said, αg−1

f,X is natural iff the map is not
twisted, iff T = 0. Now, T = 0 iff the multidegree (l, g − 1 − l) is semistable for
every l = 0, . . . , g − 1 (by 3.2.2).

Assume δ ≥ g − 1. Since g = g1 + g2 + δ − 1, this is equivalent to g1 + g2 ≤ 2.
There are thus four cases to consider:

1: g1 = g2 = 0;
2: g1 = 0, g2 = 1;
3: g1 = g2 = 1 and
4: g1 = 0, g2 = 2.
In the first three cases , i.e. when gi ≤ 1 for i = 1, 2, one checks that (l, g−1− l)

is indeed semistable for every l = 0, . . . , g − 1, so T = 0.
In case 4 the multidegree (g − 1, 0) is unstable, hence T is nontrivial over the

component Cg−1
1 ⊂ Xg−1 ⊂ X g−1 and hence αg−1

f,X is not natural.
Conversely, assume δ ≤ g− 2. We use examples 2.2.7 and 2.4.8. We have that δ

is equal to the number of multidegree classes. Therefore the set {(l, g − 1− l), l =
0, . . . , g− 1}, having cardinality g ≥ δ + 2, contains at least two pairs of equivalent
multidegrees corresponding to two different classes. Hence at least one of such pairs
contains a nonsemistable multidegree, so the map αg−1

f is twisted (i.e. T 6= 0) and
αg−1

f,X does depend on f . �

3.3. Abel maps of arbitrary degree. Now we briefly illustrate what is known
for a general d ≥ 1.

3.3.1. Abel maps of degree 1. If d = 1 the picture is rather well understood by
[AK80], [EGK00] for integral curves, and by [CE07] for reducible ones.

With an approach similar to what we used in case d = g − 1, one constructs a
map α1

X : X → P 1
X which turns out to be natural and, more remarkably, regular. If

X is irreducible the choice of P 1
X is not an issue (see 2.3.6). In case X is reducible

P 1
X can be chosen to be either the compactified Picard scheme constructed in [C94],

or the one constructed in [E01]. We refer to the above mentioned papers for details.
For a smooth curve C (or a family of smooth curves) a fundamental fact is that

the degree-1 Abel map is a closed embedding. Moreover, recall that, after a point
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p0 ∈ C is chosen, we can “translate” α1
C by composing it with the isomorphism

Pic1 C → Pic0 C mapping [L] to [L(−p0)]. In this way we get the “Abel-Iacobi”
map

αp0 : C ↪→ Pic0 C = J(C)

mapping p ∈ C to [O(p − p0)]. Recall that αp0 is a closed embedding, endowed
with a universal property with respect to mappings to Abelian varieties; namely
every map h : C → A of C to an Abelian variety A factors uniquely through αp0 ,
i.e. h = h′ ◦ αp0 for a unique h′ : A → J(C). In particular αp0(C) generates J(C)
as a group.

What if X is singular? Then the degree 1-Abel map of X, and its translates
mapping to the compactified jacobian (see above), turn out to be closed embeddings,
unless it cannot possibly be so for simple reasons. More precisely, it is not hard
to see that if X contains a smooth rational component L that is attached to its
complement only in separating nodes of X, the degree-1 Abel map must contract
L to a point (note that Picd L is a point for all d). These are the only cases where
the map fails to be an embedding. In particular, if X is free from separating nodes,
its degree-1 Abel map is a closed embedding (see [CCE07]).

3.3.2. Abel maps of irreducible curves. The situation is more subtle for higher
d, where not much is known about compactifying Abel maps, even when there is
no problem in defining them simpy as rational maps. For example, for irreducible
curves there exists up to isomorphism a unique compactified Picard scheme and
one can proceed as we did for d = g − 1. Now it is easy to see that naturality is
not an issue (see below). So consider the rational map

αd
X : Xd 99K P d

X

mapping (p1, . . . , pd) to [OX(
∑

pi)] if all the pi are smooth points of X. It is known
that for d ≥ 2 there is no hope that the map be regular; indeed one needs to modify
Xd (blowing it up) to extend it. The explicit description of such a modification is
known in very few cases, for d = 2; see [Co06].

A different approach which replaces Xd with the Hilbert scheme of length d
subscheme on X is pursued in [EK05].

3.3.3. Naturality for arbitary d. Let us now consider reducible curves. In the
previous section we have dealt with the case d = g − 1, considered Abel maps as
rational maps, and have seen that there are very few curves for which this map is
natural (see Proposition 3.2.4)

For arbitrary d ≥ 2, the issue is complicated by the fact that, as we said, there
exist different compactified Picard schemes. Anyways, after some choice for P d

X is
made, one can work by specialization and produce a rational map

(19) αd
f,X : Xd 99K P d

X

similarly to what we did in case g − 1. We omit any explicit definition to avoid
choosing a specific compactified Picard scheme. In fact, the point of this section
is precisely to describe some facts that depend only on the type of compactified
Picard scheme, and that can be proved without using the details of any specific
construction. Namely, what about naturality of αd

f,X?
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We shall concentrate on compactified Picard schemes of N-type. Observe that if
P d

f is of Néron type, the existence of a canonical map

αd
f : X d 99K P d

f

is guaranteed by the Néron mapping property. Indeed, denote by Ẋ d ⊂ X d the
smooth locus of X d → B. The generic fiber X d

K of Ẋ d → B has its own Abel map
αd
XK

: X d
K → Picd XK . The Néron mapping property yields a unique map

N(αd
XK

) : Ẋ d −→ Nd
f .

Now, as P d
f is of Néron type, we can consider the map n−1

f : Nd
f → P d

f (cf. Defini-
tion 2.3.5). Composing, we get a regular map

Ẋ d
N(αd

XK
)

−→ Nd
f

n−1
f−→ P d

f

whose restriction to Xd is the rational map αd
f,X introduced in (19).

We need to introduce a combinatorial invariant:

Definition 3.3.4. Let X be a (connected, nodal) curve and ΓX its dual graph.
The essential graph of X is the graph ΓX obtained from ΓX by eliminating every
loop and by contracting every separating edge to a point.

The “edge connectivity” of ΓX , (i.e. the minimal number of edges that one
needs to remove to disconnect ΓX) will be called the essential connectivity of X
and denoted ε(X).

Example 3.3.5. If X = Xδ with δ ≥ 2 we have that ΓX = ΓX ; if δ = 1 then ΓX

is a point. We have

ε(Xδ) =
{

δ if δ ≥ 2
+∞ if δ = 1.

If X is irreducible, ΓX is a point and ε(X) = +∞.

The following follows immediately from theorem 1.5 in [C06].

Proposition 3.3.6. Let X be a curve and P d
X be a compactified Picard scheme

of Néron-type. Let αd
f,X : Xd 99K P d

X be the Abel map associated to a regular
smoothing f of X. Then αd

f,X is natural only if d < ε(X).

Remark 3.3.7. Using Theorem 2.3.9 (which ensures that every curve admits some
compactified Picard scheme on N-type) one sees that the locus in Mg of curves
that fail to admit a natural Abel map in degree d ≥ 2 is quite large, i.e. it has
codimension equal to 2. Indeed, by Proposition 3.3.6 and Example 3.3.5, the curve
Xδ with δ = 2 does not admit any natural d-th Abel map, unless d = 1.

3.3.8. Abel maps for families over a higher dimensional base. Let h : C → S be a
family of smooth curves over any scheme S. As we mentioned in 3.1.1, for every
d ≥ 1 there exists a (relative) d-th Abel map

αd
h : Cd → Picd

h = Picd
C/S

where Cd denotes the fibered power over S and Picd
h the relative Picard scheme

in degree d (a smooth projective scheme over S, as all fibers of h are smooth).
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In particular we can apply that to the universal family of smooth curves, and ask
whether the construction extends to stable curves.

More precisely, assume g ≥ 3 and let hg : Cg → M0
g (respectively hg : Cg → M

0

g)
be the universal family of smooth (respectively stable) curves of genus g over the
moduli space of automorphism-free curves. Let Cd

g → M0
g and Cg

d → M
0

g be the d-
th fibered powers over the respective bases. Of course hg is not a smooth morphism,
so, let us introduce its smooth locus, denoted h̃g : C̃g → M

0

g and its d-th fibered
power

Cg
d ⊃ C̃g

d
−→ M

0

g.

Consider now the d-th Abel map for the universal smooth curve

(20) αd
hg

: Cd
g −→ Picd

hg
= Picd

g;

where Picd
g = Picd

Cg/M0
g

is a standard quick notation for the universal Picard variety

over M0
g . Assume now that d is such that every X ∈ Mg has a compactified degree-d

Picard scheme of N-type, and that such compactified Picard schemes glue together
over Mg; by Theorem 2.3.9 this amounts to assume that (d− g + 1, 2g − 2) = 1.

Recall that there exists a compactification P
Ner

d,g → Mg for Picd
g, which is the

moduli scheme for the stack PNer

d,g (see 2.3.9). So we ask: does the map (20) extend

to a regular map C̃g

d
−→ P

Ner

d,g ?
From Proposition 3.3.6, one sees that, if d ≥ 2, the answer is no.
By contrast, in case d = 1 the answer is yes; in fact E. Esteves proved that the

map α1
hg

extends to a regular map over the whole of Cg; and, more generally, that
this holds in its stack version ([E07]).

Finally, a similar reasoning works if d = g − 1. In such a case we need Proposi-
tion 3.2.5 rather than Proposition 3.3.6, and the scheme Pg−1,g (see (7)) parametriz-
ing compactified Picard schemes in degree g− 1. Again we obtain that there exists
no regular map from C̃g

g−1
to Pg−1,g.

3.4. The theta divisor of P g−1
X .

3.4.1. Theta divisor of a smooth curve. Let us consider a smooth curve C of genus
g ≥ 2. Using the set up of 3.1.1, the locus of effective line bundles in Picg−1 C is a
divisor (by (10)), called the theta divisor of C, and denoted

Θ(C) := Wg−1(C) ⊂ Picg−1 C.

Many properties of the curve C are encoded in the geometry of Θ(C). For example,
assume g ≥ 4, then C is hyperelliptic iff dim Θ(C)sing = g − 3 (where Θ(C)sing is
the singular locus of Θ(C)); if C is not hyperelliptic, then dim Θ(C)sing = g− 4; in
both cases Θ(C)sing has pure dimension and it is irreducible if C is hyperelliptic.

On the other hand Θ(C)sing is precisely described in terms of special line bundles
on C (a line bundle is called “special” if its space of global sections has dimension
higher than expected). Indeed, the Riemann singularity theorem states that for
every L ∈ Θ(C), the multiplicity of Θ(C) at L is equal to h0(C,L). In particular
we get

Θ(C)sing = W 1
g−1(C) = {L ∈ Picg−1 C : h0(C,L) ≥ 2}.
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Observe that, as we saw in (10), Θ(C) is the image of the (g − 1)-th Abel map,
therefore it is irreducible. Finally, recall that Θ(C) is a principal polarization on
Picg−1 C (see [ACGH]).

3.4.2. Theta divisor of a generalized jacobian. Now suppose that X is singular.
We may define, using the notation (15),

Θ̃(X) := {L ∈ Picg−1 X : h0(X, L) ≥ 1} =
∐

|d|=g−1

Wd(X).

We know already, by Proposition 3.1.3, that Θ̃(X) has only finitely many compo-
nents of the right dimension (i.e. of dimension g − 1); indeed if d is not semistable

we have Wd(X) = Picd X. So Θ̃(X) is not a divisor, if X is reducible.
Assume that d is semistable, then Wd(X) has dimension equal to g−1; moreover

the same holds for the image of the Abel map α
d
X . Since the Abel map is only a

rational map, let us denote its closure by Ad(X) := Im α
d
X ⊂ Picd X. We now ask

what the relation between Wd(X) and Ad(X) is. Are they equal (as for a smooth
curve)? If d is strictly semistable, the answer is no, as we shall see in the next
example.

Example 3.4.3. Let X = Xδ = C1 ∪ C2 and consider the strictly semistable
multidegree (notation in Example 2.1.5)

d = (g1 − 1, g2 − 1 + δ).

Wd(X) has dimension g − 1 (by Prop. 3.1.3). We shall prove that Wd(X) has two
different irreducible components, one of which (necessarily by Prop. 3.1.3) coincides
with Ad(X).

Consider the normalization ν : Xν = C1

∐
C2 → X. For any L ∈ Picd X

denote by M = ν∗L. Since Xν is disconnected, M is uniquely determined by its
restrictions L1 and L2 to C1 and C2. So, pick a pair (L1, L2) ∈ Pic(g1−1,g2−1+δ) Xν .
If h0(C1, L1) 6= 0, i.e. if L1 ∈ Θ(C1), then (as every L2 ∈ Picg2−1+δ C2 has
h0(C2, L2) ≥ δ by Riemann-Roch)

h0(Xν ,M) = h0(C1, L1) + h0(C2, L2) ≥ δ + 1.

Therefore for every L ∈ Pic X such that ν∗L = (L1, L2) = M we have that
h0(X, L) ≥ h0(Xν ,M)− δ ≥ 1. We conclude that Wd(X) contains a closed subset
W1 given as

W1 = (ν∗)−1
(
Θ(C1)× Picg2−1+δ C2

)
,

where
ν∗ : Picd X −→ Picg1−1 C1 × Picg2−1+δ C2

is the pull-back map. The fibers of ν∗ are irreducible of dimension δ− 1 (by 2.1.3),
hence W1 is irreducible of dimension

dim W1 = (g1 − 1) + g2 + (δ − 1) = g − 1,

so that W1 is an irreducible component of Wd(X).
Now suppose that h0(C1, L1) = 0. Call q1, . . . , qδ the points of C2 mapping

to the nodes of X. If h0(C2, L2(−q1 − . . . − qδ)) 6= 0, every L such that ν∗L =
(L1, L2) lies in Wd(X). The locus D ⊂ Picg2−1+δ C2 of line bundles L2 such that
h0(C2, L2(−q1 − . . . − qδ)) 6= 0 is a so-called translate of Θ(C2). Indeed, consider
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the isomorphism u : Picg2−1 C2 −→ Picg2−1+δ C2 mapping N to N(+q1 + . . . + qδ).
Then D is equal to u(Θ(C2)). In particular D is irreducible of dimension g2 − 1.
We just constructed a second irreducible component W2 of Wd(X):

W2 = (ν∗)−1
(
Picg1−1 C1 ×D

)
.

Arguing as for W1, we see that W2 is irreducible of dimension g1+g2−1+δ−1 = g−1.
We conclude that Wd(X) = W1 ∪ W2 as wanted (we leave it to the reader to

show that in Wd(X) there is nothing else).

The previous example had d strictly semistable. If d is stable, Wd(X) turns out
to be irreducible (see [C07]) and equal to Ad(X).

3.4.4. Compactifying the Theta divisor. The history follows a similar pattern as
for compactified Picard schemes and Abel maps, with the case of irreducible curves
being solved much earlier. As we mentioned (cf. Theorem 2.4.1), the case of an
irreducible curve was treated in [So94] and [E97], where it is proved that, on the
compactified jacobian of X, there exists a Cartier, ample divisor Θ(X) and that,
just as for smooth curves, 3θ(X) is very ample (in the latter paper). For a reducible
X, the situation remained open for some time (despite some breakthroughs in [B77])
partly because of the diversity of the existing compactified Picard schemes. The
proof of the fact that P g−1

X (the canonical one, see 2.4.2) has a theta divisor which
is Cartier and ample is due to [Al04]. A new element in his construction is the
use of semiabelian group actions, which also yields a placement of the pair (P g−1

X ,
Θ(X)) within the degeneration theory of principally polarized abelian varieties (see
[Al04] section 5, in particular 5.4).

Comparing to the smooth case, to the rich picture we partly sketched in 3.4.1,
the subject opens up now with a variety of interesting issues and unsolved problems.
Indeed, not much is known about the geometry of the theta divisor of a singular
curve and about its interplay with the geometry of the curve and its jacobian.

3.4.5. The Theta divisor of P g−1
X . The definition of Θ(X) is given by the non van-

ishing of h0. To do this properly we must say what the points of P g−1
X parametrize.

There are at least two good options: semistable torsion free sheaves of rank 1 and
degree g − 1 (see [Al04] for example); or stable line bundles on the partial normal-
izations of X. We will use the second option, for consistency with Proposition 2.4.9,
and because this description enables us to describe examples quite easily.

We stated in Proposition 2.4.9 that a point in P g−1
X corresponds naturally to

a line bundle on some normalization of X, and we described an instance of this
correspondence in 2.4.10. We shall here use the same notation. Let us denote by `

a point in P g−1
X and by L ∈ Picd Xν

S the corresponding point (recall that Xν
S is the

normalization of X at S ⊂ Xsing) so that ` = ε
d
S(L). We set

(21) h0(`) := h0(Xν
S , L),

now we define

(22) Θ(X) := {` ∈ P g−1
X : h0(`) 6= 0}.

The fact that the above set-theoretic definition coincides with the definition of
the divisor Θ(X) studied in [So94], [E97] and [Al04] is shown in [C07]. As we
said, description (22) is good to easily give examples as we are going to do next,
consistently with the stratification of Proposition 2.4.9.



22

Example 3.4.6. If X is irreducible with δ nodes, and g ≥ 1, then Θ(X) is irre-
ducible and

(23) Θ(X) ∼= Wd(X)
∐( δ−1∐

i=1

( ∐
Si⊂Xsing
#Si=i

Wd−i(Xν
Si

)
))∐

Θ(Xν).

Each stratum Wd−i(Xν
Si

) is irreducible of dimension g − 1− i.

A characterization of stable curves X such that Θ(X) is irreducible is [C07],
4.2.2. Reducible curves whose theta divisor is irreducible do exist. Here is what
happens for the vine curve Xδ.

Example 3.4.7. Let X = Xδ (as in 2.1.5).
If δ = 1, then Θ(X) is reducible:

(24) Θ(X1) ∼= Θ(C1)× Picg2−1 C2 ∪Θ(C2)× Picg1−1 C1.

If δ = 2 then Θ(X) is irreducible and

(25) Θ(X2) ∼= W(g1,g2)(X)
∐(

Θ(C1)× Picg2−1 C2 ∪Θ(C2)× Picg1−1 C1

)
.

If δ ≥ 3, then Θ(X) is reducible, having δ − 1 irreducible components.
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