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1. Smooth curves and their moduli

1.1. Smooth curves and their Picard group. Unless otherwise
stated, by curve we mean a reduced, connected, projective variety (not
necessarily irreducible) of dimension one, defined over C.

Let C be a smooth curve. The Picard group, Pic(C), of C can be
defined in various equivalent ways, and we shall use each time the
most convenient one. First, it is the set of divisors on C modulo linear
equivalence, in symbols

Pic(C) = Div(C)/ ∼ .

Next, it is the set of isomorphism classes of line bundles (equivalently,
of invertible sheaves) on C

Pic(C) = {Line bundles on C}/ ∼= .

Line bundles and their isomorphism classes are denoted in the same
way. For D ∈ Div(C) we denote by O(D) the corresponding line
bundle. As is well known, in D ∼ D′ then O(D) ∼= O(D′).

Pic(C) is an abelian group, with the trivial bundle, OC , as neutral
element. With divisors, for the group operation one uses the additive
notation, i.e. [D], [D′] ∈ Pic(C) with D,D′ ∈ Div(C) then [D]+[D′] :=
[D+D′], whereas for line bundles one uses the multiplicative notation:
L,L′ ∈ Pic(C) then LL′ := L⊗ L′.

We have a surjective homomorphism

deg : Pic(C) −→ Z
1
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such that if D =
∑

p∈C npp then deg([D]) = degD =
∑

p∈C np. Its
kernel is a remarkable subgroup, written

Pic0(C) = {L ∈ Pic(C) : degL = 0},

also called the Jacobian variety of C and denoted by Jac(C). It is an
abelian variety. i.e. a projective algebraic group.

The following is well known

Theorem 1.1.1. Let C be a smooth curve, then

Pic(C) ∼= Z⇐⇒ C ∼= P1.

For any divisor D ∈ Div(C) the set of effective divisors linearly
equivalent to D is written as follows

|D| := {E ∈ Div(C) : E ≥ 0, E ∼ D}.

If |D| is not empty, then it is identified with a projective space

|D| = Pr(D) = P(H0(C,D))

where H0(C,D) = H0(C,O(D)) is the vectors space of global sections
of O(D). Its dimension is written h0(C,D) and, of course,

r(D) = h0(C,D)− 1

so that

|D| = ∅ ⇐⇒ h0(C,D) = 0

If |D| 6= ∅ we have a regular map

φD : C −→ Pr(D).

Let r(D) ≥ 1 and suppose |D| has no base points (i.e. h0(C,D − p) =
h0(C,D)− 1 for every p ∈ C); then for any hyperplane H ⊂ Pr(D) (an
effective divisor on Pr(D)), the divisor on C given by the pull-back of
H, satisfies

φ∗DH ∈ |D|;
conversely, every E ∈ |D| is obtained in this way.

Remark 1.1.2. For the trivial line bundle, OC , we have degOC = 0
and h0(C,OC) = 1. Moreover, these two conditions characterize OC

among line bundles on C.

Remark 1.1.3. Let us introduce the most important line bundle on a
curve C, the canonical line bundle, denoted by KC and defined as the
dual of the tangent bundle, TC , of C,

KC := T ∗C .
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The genus of C is defined as follows

gC := h0(C,KC);

we have
degKC = 2gC − 2

and KC is the unique line bundle on C satisfying these two conditions.

If k = C the genus defined above is equal to the topological genus of
the surface over R underlying C. Let us write SC for the real surface
underlying C; this is a compact, connected and orientable topological
manifold of dimension 2: compactness and connectedness follow from
the definition. Orientability follows from the fact that, in the analytic
topology, SC is covered by open subsets holomorphic to open subsets
of C, and holomorphic maps are conformal, hence preserve the orien-
tation. So the orientation of C induces an orientation on SC .

Theorem 1.1.4. (Riemann-Roch) For any D ∈ Div(C) we have

h0(C,D)− h0(C,KC −D) = degD − gC + 1.

Equivalently, as by Serre’s duality h0(C,KC −D) = h1(C,D),

h0(C,D)− h1(C,D) = degD − gC + 1.

Corollary 1.1.5. (1) If degD ≥ 2g − 1 then h0(C,D) = degD −
gC + 1.

(2) If degD ≥ 2g + 1 then φD is an embedding.

1.2. Moduli spaces in low genus. We will denote by Mg the moduli
spaces of smooth curves of genus g, to be fully defined soon. As a
first approximation, let us view Mg as the set of isomorphism classes
of curves of genus g.
M0 consists of one element, by the following, whose proof is an ex-

ercise.

Proposition 1.2.1. If C is a smooth curve of genus 0, then C ∼= P1.

If g = 1, the classical j-invariant gives is a bijectionM1 ↔ k, hence
one can endow M1 with the structure of an algebraic variety, namely
the affine line

M1 = A1.

Example 1.2.2. Let g = 2. Now KC has degree 2 and determines a
morphism

φ : C −→ |KC | = P1

necessarily surjective of degree 2. Moreover, up to automorphisms of
P1, the map φ is unique. We say that a point p ∈ P1 is a branch point
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if |φ−1(p)| = 1. Since φ has degree 2, the number of ramification points
coincides with the degree of the ramification divisor of φ, which is given
by the Riemann-Hurwitz formula

Theorem 1.2.3. (Riemann-Hurwitz) Let ψ : C → D be a non constant
map between two smooth curves C and D of respective genus gC and
gD. Let R ∈ Div(C) be the ramification divisor of ψ. Then

degR = 2gC − 2− (2gD − 2) degψ.

By the Riemann-Hurwitz formula the ramification divisor of our φ
has degree 6, hence φ has exactly 6 branch points.

Conversely, given 6 points in P1 there exists a unique curve C en-
dowed with a degree 2 map to P1

On the other hand, any 6-tuple of points in P1 can be written, up to
a unique automorphisms of P1 as

{0, 1,∞, b1, b2, b3} : bi ∈ k r {0, 1}, i = 1, 2, 3.

Denote by ∆ ⊂ (k r {0, 1})3 the union of all diagonals, then we have
a surjection

(k r {0, 1})3 r ∆ −→M2

which maps (b1, b2, b3) to the curve C having a degree-2 map to P1

ramified over {0, 1,∞, b1, b2, b3}. Let U := (k r {0, 1})3 r ∆, then one
easily checks that U is an affine variety, and M2 is the quotient of U
by the action of the symmetric group S6, hence M2 is an affine variety.

1.3. The moduli scheme of smooth curves. We have seen that the
set of isomorphism classes of genus 1 and 2 is endowed with a natural
structure of algebraic variety, dictated by the geometry of the objects
it parametrizes. On the other hand, this structure tells us something
about the parametrized curves. It tells us that there is a 1-dimensional
(resp. 3-dimensional) space of curves of genus 1 (resp. 2). It also tells
us that such curves do not form a complete space! This will be an
important point in the sequel.

Let us list some properties that one would hope a moduli scheme,
Mg, for smooth curves of genus g satisfies.

(1) The points of Mg are in bijection with isomorphism classes of
smooth curves of genus g.

(2) For every family f : C → B of smooth curves of genus g (i.e. for
every flat proper morphism of schemes such that for every closed
point b ∈ B the fiber Cb = f−1(b) is a smooth curve of genus g),
the natural map

µf : B −→Mg; b 7−→ µf (b) = [Cb]
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is a morphism of varieties (i.e. it is a regular map).
(3) Properties (1) and (2) determine Mg up to isomorphism.
(4) For any morphism φ : B −→Mg there exists a family (as defined in

(2)) of smooth curves f : C → B such that φ = µf , and this family
is unique up to B-isomorphisms, i.e. if f ′ : C ′ → B is another
family such that µf ′ = φ then there is an isomorphism α : C → C ′
such that α ◦ f ′ = f .

The first three properties are satisfied for all g ≥ 0. The case g = 0
is trivial, so we omit it in the next statement

Theorem 1.3.1 (Mumford). For every g ≥ 1 there exists an integral,
normal, non projective, algebraic variety Mg which satisfies properties
(1), (2) and (3), but not (4). Moreover

If g = 1 then dimM1 = 1.
If g ≥ 2 then dimMg = 3g − 3.

To stress that property (4) does not hold, one says that Mg is a
coarse (rather than fine) moduli space.

Remark 1.3.2. Property (4) cannot possibly be satisfied. In fact, both
the existence part and the uniqueness part fail, and the obstruction lies
in the existence of curves having non trivial automorphism group. More
precisely, there exist morphisms φ : B → Mg for which there does not
exist a family of smooth curves over B whose moduli map is φ. And
there exist families of smooth curves over the same scheme B which
are not isomorphic over B but have the same moduli map.

1.4. Stable curves. It is very important to notice that Mg is not
complete. This says that there are families of smooth curves which
degenerate to singular ones. We will study the problem of completing
Mg in a modular way, i.e. by constructing a projective scheme M g

which contains Mg as dense open subset, and which is itself a moduli
space.

A celebrated solution to this problem, provided by Deligne and Mum-
ford, consists in extending the set of smooth curves to the set of reduced
(possibly reducible) curves having at most nodal as singularities, and
having finitely many automorphisms.

Recall that a point p of a curve X is a node if, locally at p, the curve
X is formally analytically isomorphic to a neigborhood of the origin of
the plane curve Y of equation xy = 0, i.e. if the complete local ring of
X at p is isomorphic to the complete local ring of Y at the origin.

Definition 1.4.1. A stable curve is a connected reduced curve X hav-
ing at most nodes as singularities, and such that Aut(X) is finite.
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Remark 1.4.2. Stable curves in the sense of Deligne and Mumford
Smooth curves of genus at least 2 are stable, since they have finitely
many automorphisms. Conversely, smooth curves of genus ≤ 1 have
infinitely many automorphisms.

There is a notion of genus for a singular stable curve which general-
izes the genus of a smooth curve; we shall postpone this definition for
the moment.

It is a fact, due to Deligne, Mumford and Gieseker, that for every
g ≥ 2 stable curves admit a coarse moduli space, M g, which is a
projective irreducible variety containg Mg as a dense open subset, i.e.
we have the following.

Theorem 1.4.3 (Deligne-Mumford, Gieseker). For every g ≥ 2 there
exists an integral, normal, projective variety M g of dimension 3g − 3
whose points are in bijection with the set of isomorphism classes of
stable curves of genus g. Moreover Mg is an open subset of M g.

In section 1.3 we defined some properties with respect to smooth
curves. One easily checks that properties (1) - (4) make sense if we
replace the word “smooth” by the word “stable”. Then M g satisfies
properties (1), (2) and (3), but not (4). Hence we say that M g is a
coarse moduli space for stable curves.

1.5. Curves with marked points. We now extend our consideration
to curves with marked points. A smooth curve with n points (or an
n-pointed curve), written (C; p1, . . . , pn) = (C; p), is a smooth curve C
together with n distinct points pi ∈ C.

Two such curves, (C; p) and (C ′, p′) are isomorphic if there exists an
isomorphism α : C → C ′ such that α(pi) = p′i.

We denote by Mg,n the set of isomorphism classes of smooth n-
pointed curves of genus g. As we shall see, Mg,n has the structure
of an algebraic variety and is a moduli space for smooth n-pointed
curves of genus g.

Example 1.5.1. Let us study M0,4, which is easily seen to be the first
new case of positive dimension.

For any (P1; p1, . . . , p4) there exists a unique isomorphism α, of P1

mapping (p1, p2, p3) to (0, 1,∞); then α(p4) ∈ C r {0, 1} and we thus
have a bijection

M0,4 −→ Cr {0, 1}.
Which shows that M0,4 can be given the structure of an affine variety
namely M0,4 = A1 r {0, 1}.
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Definition 1.5.2. Let g, n ≥ 0. A nodal n-pointed curve of genus
g, written (X; p1, . . . , pn) = (X; p), is a (connected) nodal curve X
of arithmetic genus g, together with n distinct nonsingular points pi ∈
X \Xsing. A nodal n-pointed curve is stable if the set of automorphisms
of X mapping pi to pi for all i = 1, . . . , n is finite.

Theorem 1.5.3. Let 2g − 2 + n ≥ 1. There exists a projective, ir-
reducible, normal, variety of dimension 3g − 3 + n, denoted by M g,n,
which is the coarse moduli space of n-pointed stable curves of genus g.
The moduli space of nonsingular n-pointed curves of genus g is an open
subset Mg,n ⊂M g,n.

Example 1.5.4. In case g = 0 and n = 4, then M0,4
∼= P1.

Remark 1.5.5. The fact that M g,n is not a fine moduli space follows
from the existence of curves with nontrivial automorphisms (in fact if
g = 0 then M0,n is a fine moduli space for n ≥ 4). On the other hand
there do exist finite covers of M g,n which are fine moduli spaces of
stable curves with some extra structure. In particular, such coverings
are endowed with universal families of stable pointed curves whose
moduli map to M g,n coincides with the covering map.


