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1. Introduction

We construct Abel maps for a stable curve X. Namely, for each one-
parameter deformation of X to a smooth curve, having regular total space,
and each d ≥ 1, we construct by specialization a map αdX : Ẋd → P dX ,
where Ẋ ⊆ X is the smooth locus, and P dX is the coarse moduli scheme for
equivalence classes of degree-d “semibalanced” line bundles on semistable
curves having X as a stable model. For d = 1, we show that α1

X extends to
a map α1

X : X → P 1
X , and does not depend on the choice of the deformation.

Finally, we give a precise description of when α1
X is injective.

The theory of Abel maps for smooth curves goes back to the 19th century.
In the modern language, let C be a smooth projective curve, and PicdC its
degree-d Picard variety parametrizing line bundles of degree d on C. For
each d > 0 there exists a remarkable morphism, often called the d-th Abel
map:

Cd −→ PicdC
(p1, . . . , pd) 7→ OC(

∑
pi).

This map has been extensively studied and used in the literature. For d = 1,
after the choice of a “base” point on C, it gives the Abel–Jacobi embedding
C ↪→ Pic1C ∼= Pic0C (unless C ∼= P1). For an interesting historic survey
see [K04] or [K05].

What about Abel maps for singular curves? Abel maps were constructed
for all integral curves in [AK], and further studied in [EGK00], [EGK02] and
[EK05]. In [AK], it is shown that the first Abel map of an integral singular
curve is an embedding into its compactified Picard scheme. However almost
nothing is known for reducible curves, not even when they are stable. This
lack of knowledge appears all the more regrettable because of the importance
of stable curves in moduli theory.

In the present paper we construct Abel maps for stable curves. As we
see it, Abel maps should satisfy the following natural properties. First, they
should have a geometric meaning. More explicitly, recall that for a smooth
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curve C the d-th Abel map is the “moduli map” defined by a natural line
bundle on Cd × C; see 2.5. We want a similar property to hold for singular
curves as well.

Second, Abel maps should vary continuously in families. In particular,
given a one-parameter family of smooth curves specializing to a singular
curve, we expect the d-th Abel maps of the smooth fibers to specialize to
the d-th Abel map of the singular fiber.

Both requirements turn out to be nontrivial. In order to address the
second one we view stable curves as limits of smooth ones. So, let X be
a stable curve and f : X → B be a family of curves over a local one-
dimensional regular base B, with regular total space X , smooth generic
fiber and X as closed fiber. We observe that there exists a canonical way
to partially extend the d-th Abel map of the generic fiber of f , by using the
Néron model Nd

f of the degree-d Picard scheme of that fiber. The Néron
mapping property yields a close relative of the d-th Abel map of X, defined
on the nonsingular locus Ẋd ⊆ Xd, which we call the d-th Abel–Néron map
of X; see 2.6. The target of this map is the closed fiber of Nd

f , rather than
the Picard scheme of X.

Néron models appeared first in [N64]; good references in a more modern
language are [R70] and [BLR]. The great advantage of Abel–Néron maps
is their naturality, obtained directly from the universal property of Néron
models. However, they have two major drawbacks. First, they do not have
any a-priori modular interpretation. Second, they are not defined on the
whole Xd.

To attack these problems we consider the geometric compactified Picard
scheme introduced in [C94] and further studied in [C05]. If X is suitably
general, more precisely “d-general” (Definition 3.6), there exists a proper B-
scheme P df that is a coarse moduli space for equivalence classes of degree-d
”semibalanced” line bundles on semistable curves having the fibers of f as
stable models; see 3.8. These are line bundles whose multidegree satisfies
certain inequalities; see Definition 3.2. It is shown in [C05] that P df contains

Nd
f as a dense open subscheme. Thus not only does P df give a geometrically

meaningful description of Nd
f , but also a completion of it; alternatively see

(6) and (14).
So, assume for now that X is d-general. Let P dX be the closed fiber of

P df . It does not depend on the choice of f , as it is explained in 3.8; see also

[C05], Section 5. Because Nd
f sits inside P df , we obtain our d-th Abel map

αdX : Ẋd → P dX (see Theorem 3.10).
The map αdX is modular but an explicit description for it is hard to ex-

hibit in full generality; we do this only for curves with two components (see
Proposition 3.12). The case d = 1 turns out to be easier. By means of
Theorem 4.6 we give an explicit description of the line bundle defining α1

X .
Using this description, we show in Corollary 4.10 that α1

X does not depend
on the choice of f , a remarkable property not to be expected in general for
d > 1; see Remark 3.14. (More precisely, this property holds for d smaller
than a certain invariant of the graph of X; see [C06].)
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Using our modular description of α1
X , we construct a completion for it

as a regular map α1
X : X → P 1

X (Theorem 5.5). Finally, we prove that α1
X

is as close as it can be to an injection (see Proposition 5.9 for the precise
statement).

Finally, suppose that X is not 1-general; then g is even and [X] lies
in a proper closed subset of Mg (see Proposition 3.15). Then P 1

f fails to
contain N1

f ; nevertheless our existence results do extend, suitably modified
(see 5.10), whereas uniqueness and injectivity results (like Proposition 5.9)
may fail. In this case the setup is significantly more complicated for standard
technical reasons (presence of non-GIT-stable points, or of nonfine moduli
spaces.) This is why we chose to first work under the assumption of 1-
generality, and to later indicate, in 5.10 and 5.13, how to modify proofs and
statements to include the special case.

Constructing Abel maps for reducible curves presents difficulties not found
for integral curves, due to the lack of natural, separated target spaces. The
use of Néron models as target spaces is not new in the literature: in [E98]
Abel–Jacobi maps for nodal curves were studied by means of the Néron
mapping property, similarly to what we do here with our Abel–Néron maps.
However, Néron models are seldom proper and thus we cannot expect Abel
maps to Néron models to be complete. In this framework, our contribution
is that of bringing compactified Picard schemes into the picture. This en-
ables us to compactify Néron models and hence to obtain a target space into
which complete Abel maps might be considered. In fact, we prove that α1

X
extends over the whole of X. For d ≥ 2 the completion problem is more
subtle and still open. A preliminary study, as well as the case of irreducible
curves, shows that to complete αdX one would need to blow up the source,
i.e. to blow up Xd.

Our paper is organized as follows. Section 2 is devoted to preliminaries
of various types. In Section 3 we describe degree-d Abel–Néron maps to the
compactified Picard scheme. In Section 4 we establish the modular descrip-
tion of the Abel–Néron map in degree 1, and show that it is independent of
the choice of the deformation. Finally, in Section 5 we construct the com-
pleted degree-1 Abel map, give it a modular description and study when it
is injective. Finally, from 5.10 to the end of the paper, we explain how to
handle the special case of non-1-general curves.

We would like to thank Juliana Coelho and Steven Kleiman for helpful
comments.

2. Néron models of Picard schemes

2.1. Setup. We work over a fixed algebraically closed field k. All schemes
are assumed locally of finite type over k, unless stated otherwise.

For us, a curve is a reduced and connected projective scheme of dimen-
sion 1. Mostly, we will deal with nodal curves, that is, curves whose only
singularities are nodes.

A regular pencil (of curves) is a flat projective morphism f : X → B
between connected, regular schemes such that dimB = 1, every geometric
fiber of f is a curve, and f is smooth over a dense open subscheme of B.
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We call a regular pencil f : X → B local if B = SpecR, where R is a
discrete valuation ring over k having k as residue field. If X is the closed
fiber, we will also say that f is a regular smoothing of X.

For each regular pencil f : X → B we shall let K := k(B), the field of
rational functions of B, and denote by XK the generic fiber of f . Notice
that XK is a smooth curve over K.

Given any morphism f : X → B, and any integer d ≥ 1, let fd : X dB → B
denote the d-th fibered power of X over B. If f is a regular pencil, we denote
the open subset of X dB where fd is smooth by Ẋ dB; so

Ẋ dB := X dB r Sing(fd)

If f is a local regular pencil, let Ẋd denote the closed fiber of Ẋ dB → B; so

Ẋd = {(p1, . . . , pd) : pi ∈ X rXsing}.

Given any morphism f : X → B and any B-scheme T , the base change
of f to T is denoted fT : XT → T .

2.2. The relative Picard scheme. Let f : X → B be a regular pencil, and d
an integer. The closed fibers of f are geometric, by our general assumption,
and the general fiber is smooth. Thus the irreducible components of the
fibers of f are geometrically irreducible. By a theorem of Mumford’s, [BLR],
Thm. 2, p. 210, the (relative) Picard scheme Picf of f exists, and is locally
of finite type over B.

Furthermore, Picf is formally smooth over B by [BLR], Prop. 2, p. 232,
whence smooth over B by [BLR], Prop. 6, p. 37.

Let Picdf be the degree-d Picard scheme of f , the open subscheme of Picf
parametrizing line bundles of relative degree d. Given any B-scheme S and
any line bundle L on XS of fS-relative degree d, there is a moduli map
associated to L,

(1) µL : S −→ Picdf
s 7→ Ls,

where Ls ∈ PicdXs is the restriction of L to the fiber Xs := f−1
S (s). The

map µL determines L up to tensoring with pullbacks of line bundles from S.
Notice that to a map S → Picdf there does not necessarily correspond a line
bundle on XS , though the line bundle will exist, for instance, if f admits a
section; see [BLR], Prop. 4, p. 204.

2.3. Néron models of Picard schemes. Let f : X → B be a regular pencil,
and d an integer. Recall that a basic characteristic (and a drawback for
various applications) of the Picard scheme Picdf is that it is not separated
over B, if f has reducible special fibers. One way to fix this is to introduce
the Néron model:

Nd
f := N(PicdXK).

The Néron model is a smooth, separated (possibly not proper) scheme
of finite type over B with generic fiber equal to PicdXK , which satisfies a
fundamental mapping property that uniquely determines it. Namely, for
every smooth B-scheme Z each map ZK → PicdXK extends uniquely to a
map Z → Nd

f ; see [BLR], Def. 1, p. 12.
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The existence of Nd
f for any regular pencil f is likely well known. Since

this result is fundamental for our work, but we could not find the precise
statement to refer to, we sketch a proof of it using results in [BLR]. First,
assume that f is local, that is, B is the spectrum of a discrete valuation ring
R. Then there is a Néron model of PicdXK over B, which is equal to Picdf if
f is smooth. Indeed, since PicdXK is a Pic0XK-torsor, by descent theory we
may assume that R is a strictly Henselian ring; see [BLR], Cor. 3, p. 158.
In this case, f admits a section through its smooth locus, by [BLR], Prop. 5,
p. 47. This section can be used to produce a B-isomorphism Picdf → Pic0

f .
We may thus assume that d = 0. In this case, there is a Néron model of
Pic0XK over B because Pic0XK is an Abelian variety over K; see [BLR],
Cor. 2, p. 16. Furthermore, if f is smooth, Pic0

f is an Abelian B-scheme,
whence is the Néron model of Pic0XK over B by [BLR], Prop. 8, p. 15.

Now, consider the general case. Let U ⊆ B be the largest open subscheme
over which f is smooth, and set h := f |f−1(U). As we saw above, Picdh
restricts to the Néron model of PicdXK locally around each point of U .
Then Picdh is the Néron model of PicdXK over U by [BLR], Prop. 4, p. 13.
Finally, the local existence of Néron models of PicdXK around each point
of B, and the existence of the Néron model over the dense open subscheme
U ⊆ B imply the (global) existence of the Néron model over B, by [BLR],
Prop. 1, p. 18.

Since Picdf is smooth over B, a first consequence of the mapping property
of the Néron model Nd

f is the existence of a canonical B-morphism

(2) qf : Picdf −→ Nd
f

which is the identity on the generic fiber.
Assume now that the geometric fibers of f are nodal. Let X be a closed

fiber of f . In the description of the Néron model, and also in our paper,
the following subgroup Twf X ⊆ Pic0X of (isomorphism classes of) distin-
guished line bundles plays an important role:

Twf X :=
{OX (D)|X : D ∈ DivX with Supp D ⊂ X}

∼=
⊂ Pic0X.

The divisors D appearing above are simply sums with integer coefficients of
the components of X, which are Cartier divisors of X because X is regular.
Line bundles in Twf X are called twisters. Here is a useful observation:

(3) ∀T, T ′ ∈ Twf X, T = T ′ ⇔ deg T = deg T ′,

where deg denotes the multidegree of a line bundle on X. More precisely,
let X = ∪γi=1Ci be the decomposition into irreducible components, then the
multidegree degL of L ∈ PicX is defined as degL := (degC1

L, . . . ,degCγ L).
Since twisters are specializations of the trivial line bundle of the generic

fiber, OXK , all of them must be identified in any separated quotient of Pic0
f .

In particular, qf (T ) = qf (OX) for each T ∈ Twf X.
We shall now identify multidegrees that differ by multidegrees of twisters.

Let γ be the number of irreducible components of X, and set

ΛX := {deg T : T ∈ Twf X} ⊆ Zγ .
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Define now an equivalence relation “≡” on multidegrees by setting

d ≡ d′ ⇔ d− d′ ∈ ΛX .

The set of multidegree classes d + ΛX with fixed total degree |d| :=
∑
di

equal to d is denoted by ∆d
X . Thus

(4) ∆d
X :=

{d ∈ Zγ : |d| = d}
≡

.

It is well known that ∆0
X is a finite group, a purely combinatorial invariant

of X, called the degree class group of X in [C94], but known before as the
group of connected components of N0

f ; see [BLR], Thm. 1 on p. 274 or [R70],
Thm. 8.1.2 on p. 64. In addition, for each d there are a (noncanonical)
bijection between the set of connected components of N0

f and that of Nd
f ,

and a (nonunique) bijection ∆0
X → ∆d

X , obtained by summing with any
multidegree d with |d| = d.

For each δ ∈ ∆d
X , let d be any multidegree representing δ, and set

(5) Picδf := Picdf ⊂ Picdf ,

where Picdf parametrizes line bundles with fixed multidegree d on X. The
particular choice of representative d is not important; see [C05], 3.9.

Assume now that f is a regular smoothing of X. At this point we are
able to describe the Néron model of PicdXK :

(6) Nd
f
∼=

∐
δ∈∆d

X
Picδf

∼K
,

where ∼K” denotes the gluing along the generic fiber, equal to PicdXK ; see
[C05], Lemma 3.10.

Let Nd
X denote the closed fiber of Nd

f . Observe that Nd
X is a disjoint

union of finitely many copies of the generalized Jacobian of X: picking a
representative dδ for each class δ ∈ ∆d

X , we have

Nd
X
∼=
∐
δ∈∆d

X

Picd
δ

X.

Although the above isomorphism is not canonical, we see that the scheme
structure of Nd

X does not depend on f . The closed points of Nd
X are in 1-1

correspondence with the degree-d line bundles on X modulo twisters. In
particular, for d = 0, we have q−1

f (qf (OX)) = TwfX.

2.4. Néron maps. Let f : X → B be a regular pencil. Let T be a B-scheme,
and L a line bundle on XT of relative degree d over T . Let µL : T → Picdf
be the moduli map of L, defined in 2.2. Consider the composition:

µL : T
µL−→ Picdf

qf−→ Nd
f .

We call µL the Néron map of L. Notice that L is certainly not determined
by its Néron map, not even modulo pullbacks of line bundles on T . In fact,
if D ⊂ X is a Cartier divisor entirely supported on a closed fiber of f , then
L⊗OXT (DT ) has the same Néron map as L, because Nd

f → B is separated.
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2.5. Abel–Néron maps. Let us recall the precise definition of the Abel map
of a smooth curve, using the set up of [GIT], Section 6, pp. 118, 119.

Let h : C → S be a smooth curve over a scheme S, i.e. a smooth morphism
whose fibers are curves. For each integer d ≥ 1, let CdS be the d-th fibered
power of C over S. There is a canonical S-morphism

(7) CdS −→ Picdh
Cds 3 (p1, . . . , pd) 7→ OCs(p1 + · · ·+ pd),

defined over each s ∈ S by taking a d-tuple of points of the fiber Cs to the
line bundle associated to their sum, which we shall call the d-th Abel map
of h. Recall that the above map is the moduli map of a natural line bundle
on CdS ×S C, namely the one associated to the Cartier divisor

∑d
1 Si, where

each Si is the image of the i-th natural section σi of the first projection
CdS ×S C → CdS , given by

(8) σi(p1, . . . , pd) = ((p1, . . . , pd), pi).

We may apply this construction to a regular pencil f : X → B. First of
all, since XK is smooth over K, we may consider the d-th Abel map of XK :

(9) αdK : X dK −→ PicdXK .

The above map extends to a map Ẋ dB → Picdf . Indeed, the extension is
the moduli map of the line bundle associated to the Cartier divisor Ed of
Ẋ dB ×B X , where Ed is the sum of the images of the d natural sections
σ1, . . . , σd given by (8) of the first projection Ẋ dB ×B X → Ẋ dB. Composing
with the map qf of (2), we obtain the Néron map of OẊ dB×BX (Ed) (see 2.4),

which is also an extension of αdK .

The first simple but crucial observation is the following (well-known) fact:

Lemma - Definition 2.6. Let f : X → B be a regular pencil. For each
integer d ≥ 1 there exists a unique morphism, which we call the d-th Abel–
Néron map of f ,

N(αdK) : Ẋ dB −→ N(PicdXK) = Nd
f

whose restriction to the generic fiber is αdK . The map N(αdK) is the Néron
map of OẊ dB×BX (Ed+D) for every Cartier divisor D of Ẋ dB×BX supported

on any finite number of closed fibers of Ẋ dB ×B X → B.

Proof. The existence and uniqueness of an extension of αdK is a straightfor-
ward consequence of the Néron mapping property, [BLR], Def. 1, p. 12:
since Ẋ dB is smooth over B and has generic fiber X dK , the Abel map αdK
admits a unique extension N(αdK) : Ẋ dB → N(PicdXK).

Since also the Néron map of OẊ dB×BX (Ed +D), for any D as described in

the lemma, extends αdK , the last statement follows from the fact that Nd
f is

separated over B. �
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3. Abel maps to balanced Picard schemes

We want to give a modular interpretation of the Abel–Néron maps and,
at the same time, study the problem of completing them. To do this we shall
use some results of [C05], where Néron models are glued together over the
moduli space of stable curves and are endowed with a geometrically mean-
ingful completion. Our moduli problem is centered around Definition 3.2
below. First, we recall a few concepts.

3.1. Let X be a nodal curve of arithmetic genus g ≥ 2. Denote by ωX its
canonical, or dualizing bundle. For each proper subcurve Z ( X, always
assumed to be complete, let Z ′ := X r Z and kZ := #Z ∩ Z ′. Also, let
wZ := degZ ωX . If Z is connected, denote by gZ its arithmetic genus, and
recall that

(10) wZ = 2gZ − 2 + kZ ,

a well-known identity that can be proved using adjunction.
We call X semistable (resp. stable) if kZ ≥ 2 (resp. kZ ≥ 3) for each

smooth rational component Z of X. Those Z for which kZ = 2 are called
exceptional. A semistable curve is called quasistable if two exceptional com-
ponents never meet each other. If X is semistable, then it has a stable model,
that is, a stable curve X and a map X → X contracting all exceptional com-
ponents. We may also say that X is semistable over X.

If X is semistable, it follows from (10) that wZ ≥ 0 for each subcurve
Z ⊆ X, with equality if and only if Z is a union of exceptional components.

A family of semistable (resp. stable, resp. quasistable) curves is a flat,
projective map f : X → B whose geometric fibers are semistable (resp.
stable, resp. quasistable) curves. A line bundle of degree d on such a family
f : X → B is a line bundle on X whose restriction to each fiber has degree d.

Definition 3.2. Let X be a semistable curve of arithmetic genus g ≥ 2,
and let L ∈ PicdX.

(i) We say that L and its multidegree degL are semibalanced if for each
connected proper subcurve Z ( X the Basic Inequality below holds:

(11) mZ(d) ≤ degZ L ≤MZ(d),

where

MZ(d) :=
dwZ

2g − 2
+
kZ
2

and

mZ(d) :=
{
MZ(d)− kZ if Z is not an exceptional component,
0 if Z is an exceptional component.

(ii) We call L and degL balanced if they are semibalanced and if for each
exceptional component E ⊂ X we have

degE L = 1.

(iii) We call L and degL stably balanced if they are balanced and if for
each connected proper subcurve Z ( X such that degZ L = mZ(d) the
complement Z ′ is a union of exceptional components.
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(iv) We denote byBd
X the set of balanced multidegrees onX, and by B̃d

X the
subset of stably balanced ones (in [C05] Bd

X denotes the semibalanced
multidegrees).

(v) A line bundle (of degree d) on a family of semistable curves is called
semibalanced (balanced or stably balanced) if its restriction to each
geometric fiber of the family is.

Remark 3.3. Definition 3.2 is 4.6 of [C05], which originates from [C94],
Section 3.1 and from [CCC04], 5.1.1. There the Basic Inequality is∣∣∣ degZ L−

dwZ
2g − 2

∣∣∣ ≤ kZ
2
,

and the extra condition for when Z is an exceptional component is imposed
separately. For convenience, we presented a set of inequalities, (11), that
includes the exceptional cases. Abusing the terminology, we still call (11)
the Basic Inequality.

We mention some basic, useful consequences of the definition.
(A) If X is stable, then (i) and (ii) coincide, i.e. a semibalanced line bundle

is always balanced.
(B) There can only exist a balanced line bundle on a semistable curve X if X

is quasistable. Indeed, let Z ⊂ X be a connected chain of exceptional
components. If L is a semibalanced line bundle on X, then L has
degree 0 on every component of Z but possibly one, where L may have
degree 1. However, if L is balanced, L cannot have degree 0 on any
component of Z. Then Z ∼= P1 and degZ L = 1.

(C) To check whether L is semibalanced it is enough to check whether
degZ L ≥ mZ(d) for every connected proper subcurve Z ( X, and
degZ L ≥ 0 if Z is exceptional. Indeed, let Z be such a subcurve, and
let Y1, . . . , Yn denote the connected components of Z ′. By hypothesis,

degYi L ≥ mYi(d) ≥ dwYi
2g − 2

− kYi
2

for each i. Since kY1 + · · · + kYn = kZ′ = kZ , summing up the above
inequalities we get

degZ′ L ≥
dwZ′

2g − 2
− kZ

2
.

Now, since degZ L+ degZ′ L = d and wZ + wZ′ = 2g − 2, we get

degZ L = d− degZ′ L ≤ d−
dwZ′

2g − 2
+
kZ
2

=
dwZ

2g − 2
+
kZ
2
.

3.4. In [C05], Lemma 4.4, it is proved that each multidegree class has a
semibalanced representative. More precisely, fix an integer d, and let X be
a stable curve. Recall the notation in (4) and 3.2 (iv). Then Lemma 4.4
of [C05] implies that the natural map below is surjective (square brackets
denoting classes):

(12) [. . .] : Bd
X −→ ∆d

X
d 7→ [d]

We shall say that X is “d-general” if the map (12) is bijective; see Defi-
nition 3.6 below



10

3.5. The moduli problem for balanced line bundles was introduced and
studied in [C94] to compactify the universal Picard scheme over Mg. That
compactification was constructed as a GIT-quotient. We do not need to
recall all the details of this construction here. However we shall recall that
there are morphisms

Hd
πd−→ Hd/G

φd−→Mg

where Hd is an open subscheme of a suitable Hilbert scheme, acted upon
by an algebraic group G, the map πd is a GIT-quotient map, and φd is a
surjective, projective morphism. The quotient scheme Hd/G, denoted by
P d, g, is integral and projective. The fiber of φd over a general smooth curve
X is exactly PicdX; see [C94], Thm. 6.1.

Denote by U ⊆ P d, g the nonempty open subscheme over which πd restricts
to a geometric GIT-quotient, i.e. all fibers over points in U are G-orbits,
and all stabilizers are finite and reduced.

Definition 3.6. Let X be a stable curve of arithmetic genus g ≥ 2. We say
that X is d-general if any of the following equivalent conditions hold:

(i) φ−1
d (X) ⊂ U .

(ii) The class map (12) of 3.4 is bijective.
(iii) Every balanced line bundle on X is stably balanced, i.e. B̃d

X = Bd
X .

The equivalence of these three conditions follows from [C94] Lemma 6.1.
It is known that all stable curves of genus g are d-general if and only if

the integers d and g satisfy (d− g + 1, 2g − 2) = 1; see [C94], Prop 6.2.

3.7. We need to recall when two semibalanced line bundles are defined to be
equivalent. Let X be a stable curve, and X1 and X2 two semistable curves
having X as stable model. For each i = 1, 2 let Li be a semibalanced line
bundle on Xi. Let Yi be the semistable curve obtained by contracting all
exceptional components of Xi where Li has degree 0. Then there is a unique
line bundle Mi on Yi whose pullback to Xi is Li. Since Li is semibalanced,
Mi is balanced and Yi is quasistable. Let Fi ⊆ Yi be the union of all the
exceptional components of Yi, and let Ỹi := F ′i , the complementary subcurve
of Fi in Yi. Then L1 and L2 are equivalent if there is an isomorphism
Y1 → Y2 such that M1|fY1

∼= M2|fY2
under the identification given by it.

Notice that Mi is equivalent to Li for i = 1, 2.
Thus, every equivalence class includes always a balanced line bundle N

on a quasistable curve Y . The quasistable curve Y is unique, but N is not.
What is unique is the restriction of N to Ỹ , the complementary subcurve
of the union F of all the exceptional components of Y . The quasistable
curve Y and N |Ỹ determine the equivalence class. The restriction N |F
is also unique, since a balanced line bundle must have degree 1 on every
exceptional component. So, our equivalence relation disregards the gluing
data of the bundles over the points in Ỹ ∩ F .

If X → B is a family of semistable curves, then two semibalanced line
bundles L1 and L2 on X → B are called equivalent if and only if their
restrictions to every geometric fiber of X → B are equivalent in the sense
explained above.
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3.8. Let d and g be integers, with g ≥ 2. Assume first that d − g + 1
and 2g − 2 are coprime, so that every stable curve of arithmetic genus g
is d-general. Then the construction summarized in 3.5 can be improved,
by considering stacks. More precisely, there exist two (modular) Deligne–
Mumford stacks Pd,g and Pd,g, each one equipped with a natural, strongly
representable morphism to Mg. (To tie in with 3.5, we mention that Pd,g
is the quotient stack [Hd/G].) The following properties hold; see [C05],
Section 5 for details:
(A) For each (d-general) stable curve X, denote by P dX and P dX the fibers

of Pd,g and Pd,g over X. Since Pd,g and Pd,g are strongly representable
over Mg, both P dX and P dX are quasiprojective schemes.

The first, P dX , is the fine moduli scheme of degree-d balanced line
bundles on X. The second, P dX , is the coarse moduli scheme of equiva-
lence classes of degree-d semibalanced line bundles on semistable curves
having X as stable model; see 3.7. Actually, P dX is not far from being
a fine moduli scheme; see (C) below.
P dX lies naturally inside P dX as an open and dense subscheme.

(B) Let f : X → B be any family of (d-general) stable curves of genus g,
and consider the schemes

P df := B ×Mg
Pd,g and P df := B ×Mg

Pd,g.

(That these are indeed schemes follows, again, from the fact that the
maps Pd,g →Mg and Pd,g →Mg are strongly representable.) We have
a natural inclusion P df ⊂ P df . An explicit description of P df , for when

f is a local regular pencil, is (13) below. As for P df , the following fact
holds: to each triple (T,Y → T,L) where T is a B-scheme, Y → T is a
family of semistable curves having fT : XT → T as stable model, and L
is a semibalanced line bundle of degree d on Y → T , there corresponds
a moduli map

µ̂L : T −→ P df ,

taking each geometric point t of T to the equivalence class of the re-
striction of L to the (geometric) fiber of Y over t. We call µ̂L the
moduli map of L.

The image of µ̂L is contained in P df if and only if L has degree 0 on
every exceptional component of every geometric fiber of Y → T .

(C) The scheme P df is a fine moduli scheme; see [C05], Cor. 5.14 and

Rmk. 5.15. Also, P df is not far from being a fine moduli scheme. In fact,

it is endowed with a quasiuniversal pair (Z → P df ,N ), where Z → P df

is a family of quasistable curves having f
P df

: X
P df
→ P df as stable

model, and N is a balanced line bundle of degree d on Z → P df that
has a role similar to that of a Poincaré bundle. Indeed, for each triple
(T,Y → T,L) where T is a B-scheme, Y → T is a family of semistable
curves with stable model fT : XT → T , and L is a semibalanced line
bundle of degree d on Y → T , there is a map Y → Z such that the
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diagram of maps below is commutative,

Y −−−−→ Zy y
T

µ̂L−−−−→ P df ,

and such that L is equivalent to the pullback of N to Y; see 3.7. (The
map Y → Z is certainly not uniquely determined, which is why we
call the pair (Z → P df ,N ) quasiuniversal.) Furthermore, if Y → T

is a family of quasistable curves, and L is balanced, then the map
Y → Z can be chosen such that the above diagram is a fibered product
diagram.

Remark 3.9. If (d− g + 1, 2g − 2) 6= 1, almost everything in 3.8 works over
the open subset of Mg parametrizing d-general stable curves. For a proof,
it suffices to argue exactly as for Theorem 5.9 in [C05], after replacing Mg

with the substack of d-general curves, and the stacks Pd,g and Pd,g with the
corresponding substacks (over d-general curves).

The only assertion in 3.8 that does not hold is the existence of a “Poincaré”
line bundle, in (C), which will never be used in this paper.

We are ready to go back to the study of Abel maps.

Theorem 3.10. Let f : X → B be a regular pencil of d-general stable
curves. Then there exists a canonical map

αdf : Ẋ d −→ P df

which restricts to the d-th Abel map on the generic fiber.

Proof. We may glue local extensions of the d-th Abel map of XK because
they are unique. Thus we may assume f is local; let X be the closed fiber
of f . In this case, the explicit description of P df is (see [C05], Cor. 5.14)

(13) P df =

∐
d∈BdX

Picdf
∼K

,

where, as in 2.3, “∼K” means gluing over the generic fiber.
As we know from (6) in 2.3, Nd

f is described in a very similar way. Indeed,
by [C05], Thm. 6.1, we have a canonical isomorphism

(14) εdf : P df
∼=−→ Nd

f .

To describe it precisely is straightforward: for each d ∈ Bd
X the restriction

of εdf to Picdf is the natural isomorphism

Picdf
∼=−→ Pic[d]

f ⊂ N
d
f ,

restricting to the identity on the generic fibers. The isomorphism εdf is
completely described because, since X is d-general, the class map Bd

X → ∆d
X

is bijective, by Definition 3.6. To conclude, use Lemma 2.6 and (14) to define
αdf := (εdf )−1 ◦N(αdK). �
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We call αdf the d-th Abel map of f . The natural problem now is to describe
αdf as the moduli map of a balanced line bundle on π : Ẋ d ×B X → Ẋ d.
Since P df is a fine moduli scheme, this should be possible. In fact, the
proof of [C94], Prop. 4.1, p. 621, can be used to produce an algorithm for
determining the necessary twisters we need to tensor OẊ d×BX (Ed) with to
get the balanced line bundle.

However the explicit description of this line bundle turns out to be difficult
to find in general. In Section 4 we will give it for d = 1. And in the next
subsection, 3.11, we will give it for every d in a special case.

3.11. Two-component curves. Let X be a stable curve with only two irre-
ducible components, C1 and C2. Let g be the arithmetic genus of X and
δ := #C1 ∩ C2. Set (see 3.2)

m := dmC1(d)e =
⌈ dwC1

2g − 2
− δ

2

⌉
where dxe denotes the ceiling of a real number x, that is, the smallest integer
not smaller than x. The set Bd

X of balanced multidegrees of X satisfies

(15) Bd
X ⊇ {(m, d−m), (m+ 1, d−m− 1), . . . , (m+ δ− 1, d−m− δ+ 1)},

with equality if and only if mC1(d) is not integer, if and only if X is d-general.
For each integer a define r(a) to be the integer determined by the following

two conditions:

0 ≤ r(a) < δ and a−m ≡ r(a) mod δ.

Using this notation we have:

Proposition 3.12. Let X be a stable curve with exactly two irreducible
components, C1 and C2. Let δ := #C1 ∩ C2. For each regular smoothing
f : X → B of X, let

L(d) := OẊ d×BX
(
Ed +

d∑
a=0

a−m− r(a)
δ

Ca1 × Cd−a2 × C1

)
where, abusing notation, we view

Ca1 × Cd−a2 × C1 ⊂ Xd ×X ⊂ X d ×B X

as a Cartier divisor of Ẋ d ×B X , by restriction. Then L(d) is balanced on
fẊ d : Ẋ d ×B X → Ẋ d. Furthermore, if X is d-general, then the d-th Abel
map αdf : Ẋ d → P df is the moduli map of L(d).

Proof. Since each Ca1 × C
d−a
2 × C1 is supported over the closed point of B,

the line bundle L(d) coincides with OẊ d×BX (Ed) over the generic point of
B. This implies that L(d) and OẊ d×BX (Ed) have the same Néron map.

If X is d-general, αdf is defined and coincides with the Néron map of
OẊ d×BX (Ed) on X dK . On the other hand, if the line bundle L(d) is balanced
on π : Ẋ d ×B X → Ẋ d, there is an associated moduli map µ̂L(d) : Ẋ d → P df
by 3.8 (B). Since µ̂L(d) coincides with the Néron map of L(d) on X dK , it
follows that µ̂L(d) = αdf . Thus, it suffices to prove that L(d) is balanced.
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To verify this, we must compute the multidegree of the restriction of L(d)

to every singular fiber of π : Ẋ d × X −→ Ẋ d. Of course, all singular fibers
lie over Ẋd. So, let p ∈ Ẋd, and denote by Xp the fiber π−1(p). The
point p determines a unique pair of nonnegative integers (a0, b0) such that
a0 + b0 = d and p ∈ Ca0

1 ×C
b0
2 . Then, identifying Xp with X in the natural

way,

(16) (Ed · C1, E
d · C2) = (a0, b0) = (a0, d− a0).

To compute the intersection degrees with C1 and C2 of the remaining sum-
mands defining L(d), notice first that, since p ∈ Ca0

1 ×C
b0
2 , the only nonzero

degrees come from the summand indexed by a = a0. Now, using

(Ca0
1 × C

b0
2 × C1) · (C1, C2) = (−δ, δ)

and (16), we get

degXp L
(d) = (degL(d)|C1 ,degL(d)|C2) = (m+ r(a0), d−m− r(a0)),

which is balanced because 0 ≤ r(a0) < δ; see (15). �

Example 3.13. Let X be a “split” curve of arithmetic genus g, that is,
X = C1∪C2 with Ci ∼= P1 and #C1∩C2 = g+1. Then, for each d = 1, . . . , g
and any regular smoothing f : X → B of X, the map αdf is the moduli map
of OẊ d×BX (Ed). In particular, given p1, . . . , pd ∈ Ẋ we have, independently
of f ,

αdf (p1, . . . , pd) = OX(p1 + · · ·+ pd).

A split curve is d-general if and only if d ≡ g mod 2. Actually, the
conclusion of Example 3.13 is valid regardless of X being d-general, because
at any rate OẊ d×BX (Ed) is stably balanced on fẊ d .

Remark 3.14. The case of split curves is in a sense special. In general, we
should expect the restriction αdf |Ẋd of the d-th Abel map of Proposition 3.12
to depend on the choice of smoothing f . For a simple concrete example of
this dependence, consider the case d = 2 and δ = 2. Then X is stable and
2-general if C1 and C2 have distinct positive arithmetic genera. Indeed, X
is stable because the genera of C1 and C2 are positive. Moreover, since they
are distinct, wCi/(g − 1) is never an integer, for any i = 1, 2. So the Basic
Inequality is always strict, and hence X is 2-general.

Suppose C1 has smaller genus. Then m = 0, and thus r(0) = 0, r(1) = 1,
but r(2) = 0. Let p, q ∈ C1 r C1 ∩ C2. Then

α2
f (p, q) = OX(p+ q)⊗OX (C1)|X .

Now, as f varies through all smoothings of X, the restriction OX (C1)|X
varies through all line bundles restricting to OC1(−r1−r2) and OC2(r1 +r2),
where r1 and r2 are the nodes of X. So α2

f (p, q) depends on the choice of f .

Denote by Σd
g the locus in Mg of curves that are not d-general. Then Σd

g

is a proper closed subset of Mg; in fact, with the notation of 3.5, Σd
g is the

image via φd of the complement of U . As we mentioned in 3.5, Σd
g is empty

if and only if (d− g + 1, 2g − 2) = 1. Since the rest of our paper is devoted
to Abel maps for d = 1, we conclude this section by describing the locus of
curves that are not 1-general.
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Proposition 3.15. Let g ≥ 2.
(i) If g is odd then Σ1

g is empty.
(ii) If g is even then Σ1

g is the closure in Mg of the locus of curves X
such that X = C1 ∪C2, with C1 and C2 smooth of the same genus and
#C1 ∩ C2 odd.

Proof. If g is odd then

(1− g + 1, 2g − 2) = (g − 2, g − 1) = 1.

So Part (i) follows; see 3.6.
For Part (ii), let X be a stable curve. Suppose first that X has the

description given in (ii). Then(1− δ
2

,
1 + δ

2

)
∈ B1

X r B̃1
X ,

where δ := kC1 = kC2 . So X is in Σ1
g. Since Σ1

g is closed in Mg, it contains
the closure of the locus defined in (ii).

Suppose now that X is in Σ1
g, i.e. there is a line bundle L on X such

that degL ∈ B1
X r B̃1

X . Then there is a connected, proper subcurve Z ( X
such that either mZ(1) or MZ(1) is equal to degZ L. Then both mZ(1) and
MZ(1) are integers. Thus

(17)
wZ
w

+
kZ
2
∈ Z

where w := degωX = 2g − 2. Now, since X is stable,

(18) 0 <
wZ
w

< 1.

In particular, wZ
w is never an integer, and thus (17) implies that kZ is odd.

Since kZ is odd, (17) and (18) immediately yield wZ
w = 1

2 .
If Z ′ is connected, then, since wZ′

w = 1
2 as well, we have gZ = gZ′ . Since

both Z and Z ′ are limits of smooth curves, X lies in the closure of the locus
described in (ii).

Thus it remains to show that Z ′ is connected. Let Z ′1, . . . , Z
′
m be the

connected components of Z ′. Notice that

(19) kZ′1 + · · ·+ kZ′m = kZ′ = kZ .

Suppose by contradiction that m > 1. Then

(20) 0 <
wZ′i
w

<
1
2

for each i. Since degL ∈ B1
X , we have

wZ′i
w
−
kZ′i
2
≤ degZ′i L ≤

wZ′i
w

+
kZ′i
2

for each i. Using (20), we get
1− kZ′i

2
≤ degZ′i L ≤

kZ′i
2

for each i. Summing up, and using (19), we get
m− kZ

2
≤ degZ′ L ≤

kZ
2
.
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Now, since degL = 1, we must have

(21)
2− kZ

2
≤ degZ L ≤

2−m+ kZ
2

.

Suppose first that degZ L = MZ(1), that is, degZ L = (1 + kZ)/2. Then
(21) implies 1 + kZ ≤ 2−m+ kZ , and hence m ≤ 1, a contradiction.

Finally, suppose degZ L = mZ(1), that is, degZ L = (1 − kZ)/2. Then
(21) implies 2− kZ ≤ 1− kZ , a contradiction as well. �

4. Geometric interpretation of the first Abel map

The following diagram represents the families we shall deal with in this
section, starting from a regular pencil of stable curves f : X → B:

Ẋ ×B X
⊂−−−−→ X 2

B −−−−→ X

π̇

y π

y yf
Ẋ ⊂−−−−→ X −−−−→ P df ,

where π is the projection onto the first factor.
We denote by ∆ ⊂ X 2

B the diagonal. Its restriction to Ẋ ×BX is a Cartier
divisor. Denote by OẊ×BX (∆) the associated line bundle. We may view
OẊ×BX (∆) as a family of degree-1 line bundles on the fibers of π̇. Recall
that the first Abel map of the generic fiber of f is the moduli map of the
restriction of OẊ×BX (∆); see 2.5. We want to interpret the first Abel map
α1
f , defined in Theorem 3.10, as the moduli map of a balanced line bundle

on π̇, which will necessarily be a (possibly trivial) twist of OẊ×BX (∆).
In fact, we shall see that OẊ×BX (∆) fails to be balanced over points of a

singular fiber X of f only if X has a separating node. To fix this, we will
tensor OẊ×BX (∆) by twisters supported on so-called “tails”.

We need a few preliminary results which hold for any curve X, possibly
having singularities other than nodes. For the sake of future applications
of the techniques developed in this paper, from now until 4.5, and in 4.8,
4.11 and 4.13, we shall be in this more general situation, i.e. X will be any
(reduced, connected and projective) curve over an algebraically closed field.

Let r be a node of X and Xν
r → X be the normalization of X at r only.

If Xν
r is not connected, r is called a separating node of X.

Definition 4.1. Let X be a curve of arithmetic genus g. A proper subcurve
Q ( X will be called a tail of X if Q intersects the complementary subcurve
Q′ in a separating node r of X. We say that Q is attached to r or that r
generates Q. A tail Q of X will be called small if gQ < g/2 and large if
gQ > g/2. Let

Q(X) := {Q ⊂ X : Q is a small tail of X}.
If X has no separating node, for instance if X is smooth, then Q(X) = ∅.

If r is a separating node of X, then Xν
r has two connected components,

isomorphic to the two tails generated by r; hence every tail is connected.
For every tail Q ⊂ X we have that g = gQ + gQ′ . So, at least one of the

two tails attached to a separating node has arithmetic genus at most g/2.
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If the curve X is stable and 1-general, it follows from Proposition 3.15 that
no tail of X can have genus equal to g/2, or in other words that every tail
of X is either small or large.

Remark 4.2. Let r be a separating node of X generating the tails Q and
Q′. If Z ⊂ X is a connected subcurve not containing r, then Z is entirely
contained in either Q or Q′.

Lemma 4.3. Let X be a curve and Q1 and Q2 two tails of X. Then

Q1 ∪Q2 = X or Q1 ∩Q2 = ∅ or Q1 ⊆ Q2 or Q2 ⊆ Q1.

Proof. For each i = 1, 2 let ri be the separating node of X generating Qi. If
r1 = r2 then either Q1 = Q′2, and hence Q1 ∪Q2 = X, or Q1 = Q2. So we
may assume that r1 6= r2.

Thus r1 6∈ Q2 or r1 6∈ Q′2. Suppose first that r1 6∈ Q2. Since Q2 is
connected, either Q2 ⊂ Q1 or Q2 ⊂ Q′1 by Remark 4.2. If Q2 ⊂ Q′1 then
Q1 ∩ Q2 ⊆ Q1 ∩ Q′1 = {r1}, and hence Q1 ∩ Q2 = ∅ because r1 6∈ Q2. So
either Q2 ⊂ Q1 or Q1 ∩Q2 = ∅.

The case where r1 6∈ Q′2 is treated similarly. In this case, either Q′2 ⊂ Q′1,
and hence Q1 ⊂ Q2, or Q′1 ∩Q′2 = ∅, and hence Q1 ∪Q2 = X. �

Lemma 4.4. Let X be a curve, and Q a tail of X. Then, for any two line
bundles L1 on Q and L2 on Q′, there is, up to isomorphism, a unique line
bundle L on X such that L|Q ∼= L1 and L|Q′ ∼= L2.

Proof. Let r be the separating node of X to which Q is attached. For each
isomorphism µ : L1|{r} → L2|{r}, let L be the kernel of the composition

φµ : L1 ⊕ L2 −→ L1|{r} ⊕ L2|{r}
µ̃−→ L2|{r},

where µ̃ := (−µ, 1). Since φµ is surjective, L 6= L1 ⊕ L2. Also, since µ is an
isomorphism, L 6= L1(−r)⊕ L2 and L 6= L1 ⊕ L2(−r). Since r is a node of
X, it follows that L is a line bundle, and L|Q ∼= L1 and L|Q′ ∼= L2.

Conversely, if N is a line bundle on X for which there are isomorphisms
λ1 : N |Q → L1 and λ2 : N |Q′ → L2, then N is the kernel of φµ, where
µ := λ2|{r} ◦ λ−1

1 |{r}.
Finally, if µ′ : L1|{r} → L2|{r} is another isomorphism, the kernel of φµ is

carried isomorphically to the kernel of φµ′ by the automorphism

(a, 1) : L1 ⊕ L2 −→ L1 ⊕ L2,

where a is the unique scalar such that µ = aµ′. �

4.5. Twisters on tails. Let X be a curve. By Lemma 4.4, for each tail Q of
X there is a unique, up to isomorphism, line bundle on X whose restrictions
to Q and Q′ are OQ(−r) and OQ′(r), where r is the separating node of X
generating Q. Denote this bundle by OX(Q).

For each formal sum
∑
aQQ of tails Q with coefficients aQ ∈ Z, set

OX(
∑
aQQ) :=

⊗
OX(Q)⊗aQ .

If X is a nodal curve, and a closed fiber of a regular pencil f : X → B, then

(22) OX (
∑
aQQ)|X ∼= OX(

∑
aQQ).
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So twisters supported on tails do not depend on the chosen regular pencil.
To check (22) it is enough to observe that, for each tail Q of X, since

OX (Q)|Q ∼= OQ(−r) and OX (Q)|Q′ ∼= OQ(r),

Lemma 4.4 implies that OX (Q)|X ∼= OX(Q).

To state the main result of this section we need some notation, similar to
the one used in Proposition 3.12. Let f : X → B be a regular pencil. Let
Z be a subcurve of X, where X ⊂ X is a singular fiber of f . Then Z is a
divisor of X . Now, the restriction πZ of the first projection π : X 2

B → X
over Z is the trivial family

X 2
B ⊃ Z ×X

πZ−→ Z.

Thus, for any other subcurve Z1 ⊆ X, the product Z × Z1 can be viewed
as a Weil divisor of X 2

B. Now, since the open subscheme Ẋ ×B X ⊂ X 2
B is

regular, the restriction of Z×Z1 to it is a Cartier divisor. LetOẊ×BX (Z×Z1)
denote the associated line bundle. Using this notation, we have an explicit
description of the map α1

f : Ẋ −→ P 1
f defined in Theorem 3.10.

Theorem 4.6. Let f : X → B be a regular pencil of stable curves. Then
the line bundle

L(1) := OẊ×BX
(

∆ +
∑
b∈B

Q∈Q(Xb)

Q×Q
)
.

is balanced on π̇ : Ẋ ×B X → Ẋ . Furthermore, assume that the fibers of f
are 1-general. Then the following two statements hold.

(i) The morphism α1
f : Ẋ → P 1

f is the moduli map of L(1).
(ii) IfM is a balanced line bundle on π̇ : Ẋ ×BX → Ẋ having α1

f as moduli
map, then M∼= L(1), up to pullbacks from Ẋ .

Remark 4.7. But for Part (ii), the theorem generalizes to curves that are
not 1-general. See 5.10 and Remark 5.13.

Proof. The divisor
∑
Q×Q is entirely supported on a union of closed fibers

of X ×B X → B. By Lemma 2.6, the Néron maps of L(1) and O(∆) are
equal. Now, if the fibers of f are 1-general, α1

f agrees with the Néron map
of O(∆) on XK . On the other hand, if L(1) is balanced on π̇ : Ẋ ×B X → Ẋ ,
there is an associated moduli map µ̂L(1) : Ẋ → P 1

f by 3.8 (B). Since µ̂L(1)

coincides with the Néron map of L(1) on XK , it follows that µ̂L(1) = α1
f .

Thus, to prove Part (i) it is enough to prove that L(1) is balanced on π̇.
To prove Part (ii), it is also enough to show that L(1) is balanced, since

P 1
f is a fine moduli scheme; see 3.8 (C).
Let us now prove that L(1) is indeed balanced. We need only check this

on each singular fiber of f , whence we may assume f is local. Let X be the
closed fiber. It suffices to consider the singular fibers of the first projection

π̇ : Ẋ ×B X −→ Ẋ ,
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which are all isomorphic to X. Let p ∈ X be a nonsingular point, and set
L

(1)
p := L(1)|π̇−1(p). Then

(23) L(1)
p
∼= OX(p)⊗OX(

∑
Q∈Q(X)

p∈Q

Q).

We conclude by Lemma 4.9 (ii), observing that, since X is stable, a semibal-
anced line bundle on X is necessarily balanced; see 3.3 (A). �

The next two lemmas are needed to finish the proof of Theorem 4.6.

Lemma 4.8. Let X be a curve, and Z a connected, proper subcurve. Let

(24) Q1 ⊂ Q2 ⊂ · · · ⊂ Qn−1 ⊂ Qn
be a chain of tails of X, and let ri be the separating node of X generating
Qi for each i = 1, . . . , n. Then

−1 ≤ degZ OX(
∑
Qi) ≤ 1.

Furthermore, the extremes are attained if and only if there is a unique j
such that rj ∈ Z ∩ Z ′. In this case, the lower bound is attained if Z ⊆ Qj,
and the upper bound is attained if Z ⊆ Q′j.

Proof. If r` 6∈ Z for any ` = 1, . . . , n, then degZ OX(
∑
Qi) = 0. Sup-

pose now that Z contains at least one r`. Let i and j be the smallest and
greatest integers such that ri ∈ Z and rj ∈ Z, respectively. Since Z is con-
nected, Z contains as well all the irreducible components of X containing
ri+1, . . . , rj−1. In particular, r` 6∈ Z ∩ Z ′ for any ` = i+ 1, . . . , j − 1.

If Z ∩Z ′ contains both ri and rj or neither of them, degZ OX(
∑
Qi) = 0.

If Z ∩ Z ′ contains ri but not rj , then degZ OX(
∑
Qi) = 1 and Z ⊆ Q′i.

At last, if Z ∩ Z ′ contains rj but not ri, then degZ OX(
∑
Qi) = −1 and

Z ⊆ Qj . �

Lemma 4.9. Let X be a semistable curve, and p a nonsingular point. Then
the following two statements hold.

(i) The line bundle OX(p) is semibalanced if and only if p does not belong
to any small tail of X.

(ii) The line bundle

L(1)
p := OX(p)⊗OX(

∑
Q∈Q(X)

p∈Q

Q)

is semibalanced.

Proof. The “if part” of (i) is a consequence of (ii), as the sum of tails in (ii)
is zero when p does not belong to any small tail. As for the “only-if part”,
recall from 3.1 that

(25) wZ = 2gZ − 2 + kZ

for every connected proper subcurve Z ⊂ X. In particular,

(26) wQ < g − 1 for every small tail Q of X.

So, if p is contained in a small tail Q, then

MQ(1) < 1 = degQOX(p).
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Hence the Basic Inequality (11) is not satisfied for Q. So OX(p) is not
semibalanced.

We need only prove (ii) now. First, since X is semistable, wZ ≥ 0 for
every subcurve Z ⊆ X; see 3.1. As a consequence,

(27) wZ1 ≤ wZ2 for all subcurves Z1 and Z2 of X with Z1 ⊆ Z2.

Let Q1, . . . , Qn be the small tails of X containing p, and r1, . . . , rn their
generating nodes. Since wQi + wQj < 2g − 2 by (26), we have Qi ∪Qj 6= X
for each i and j. By Lemma 4.3, up to reordering, we may assume that

Q1 ⊂ Q2 ⊂ · · · ⊂ Qn−1 ⊂ Qn.

Let N := OX(
∑n

1 Qi); so L
(1)
p = OX(p) ⊗ N . Let Z be any connected,

proper subcurve of X. Then degZ N ≥ −1 by Lemma 4.8, and hence
degZ L

(1)
p ≥ −1. As pointed out in Remark 3.3 (C), we need only show

that degZ L
(1)
p ≥ mZ(1), and degZ L

(1)
p ≥ 0 if Z is exceptional.

First, suppose degZ N = −1. By Lemma 4.8, there is j such that rj ∈ Z
and Z ⊆ Qj . By (26) and (27),

(28) wZ ≤ wQj < g − 1,

and hence mZ(1) ≤ 0. Thus, if p ∈ Z,

degZ L
(1)
p = 0 ≥ mZ(1).

Suppose p 6∈ Z. Then Z 6= Qj . Since rj ∈ Z, either kZ ≥ 3 or Z is a tail of
Qj . Now, if Z were a tail of Qj , then Qj r Z would be a tail of X contained
in Qj , whence a small tail. Since p ∈ Qj r Z, we would have Qj r Z = Qi
for some i < j, or Z = Qj rQi. But then degZ N = 0, a contradiction.
Thus kZ ≥ 3. In particular, Z is not an exceptional component of X. It
follows now from (28) that mZ(1) < −1, and hence

degZ L
(1)
p ≥ −1 > mZ(1).

Second, suppose degZ N ≥ 0. Then degZ L
(1)
p ≥ 0. By (27) we have that

wZ ≤ wX = 2g − 2. So, if Z is not a large tail of X, then mZ(1) ≤ 0, and
hence

degZ L
(1)
p ≥ 0 ≥ mZ(1).

On the other hand, suppose that Z is a large tail. At any rate, mZ(1) ≤ 1/2.
Thus, if p ∈ Z,

(29) degZ L
(1)
p ≥ 1 ≥ 1/2 ≥ mZ(1).

Finally, suppose p 6∈ Z. Then p lies on Z ′, which is a small tail of X. Thus
Z ′ = Qj for some j, and hence Z = Q′j . It follows that degZ N = 1, and
hence (29) holds as well. �

Let X be a 1-general stable curve. Let Ẋ := X rXsing. For any regular
smoothing f of X, let

α1
X := α1

f |Ẋ : Ẋ −→ P 1
X .

The notation is not ambiguous by the following consequence of Theorem 4.6.
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Corollary 4.10. Let X be a 1-general stable curve. Then α1
X does not

depend on f . In fact, for each nonsingular point p ∈ X we have

α1
X(p) = OX(p)⊗OX(

∑
Q∈Q(X)

p∈Q

Q).

Proof. The expression of α1
X(p) follows from (23) in the proof of Theo-

rem 4.6. By 4.5 the map α1
X does not depend on f . �

If X is free from separating nodes then α1
X is injective. This follows

immediately from Lemma 4.13 below. The same lemma will be used in the
proof of Proposition 5.9, a more general and precise statement. For the
lemma and the proposition, the definition below is used.

Definition 4.11. Let X be a curve. A rational, smooth component C of X
is called a separating line if C intersects X r C in separating nodes of X.
More generally, a connected subcurve Z ⊆ X of arithmetic genus 0 is called
a separating tree of lines if Z intersects X r Z in separating nodes of X.

4.12. Let X be a curve, and Z ( X a proper connected subcurve such
that Z intersects X r Z in separating nodes of X. Then the connected
components of X r Z are tails of X. In addition, if r is a separating node
of Z, then r is a separating node of X.

A curve of arithmetic genus 0 is a curve of compact type, i.e. a nodal curve
with every node separating, whose irreducible components are smooth and
rational. So, if Z is a separating tree of lines, every node of Z is a separating
node of Z, and hence of X. It follows that every connected subcurve of Z
is also a separating tree of lines. In particular, every irreducible component
of Z is a separating line.

We shall later need the following lemma.

Lemma 4.13. Let X be a curve, and p and q distinct nonsingular points of
X. Let C ⊆ X be the irreducible component containing p. Then there is an
isomorphism OX(p) ∼= OX(q) if and only if C contains q and is a separating
line of X.

Proof. Assume first that C contains q and is a separating line of X. Since
C is smooth and rational, OC(p) ∼= OC(q). We may thus assume C 6= X.
Since C meets C ′ := X r C in separating nodes, applying Lemma 4.4 a
few times, we can show that a line bundle on X is uniquely determined
by its restrictions to C and to C ′. Since OX(p) and OX(q) restrict to
isomorphic line bundles on C and to the trivial line bundle on C ′, it follows
that OX(p) ∼= OX(q).

Conversely, suppose OX(p) ∼= OX(q). Since OX(p) has degree 1 on C,
so has OX(q), and hence q ∈ C as well. Now, since OX(p) ∼= OX(q), in
particular OC(p) ∼= OC(q). Since p 6= q, it follows from [AK], Thm. 8.8,
p. 108 that C ∼= P1.

If C = X we are done. Suppose thus that C 6= X, and let C ′ := X r C.
Also, suppose by contradiction that C ∩C ′ is not made of separating nodes
of X. Then there is a connected subcurve Z ⊆ C ′ such that C ∩ Z is a
scheme of length at least 2.
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SinceX is connected, the restriction τ : H0(X,OX(p))→ H0(C,OC(p)) is
injective. But it is not surjective. Indeed, if a nonconstant σ ∈ H0(C,OC(p))
could be extended to σ̃ ∈ H0(X,OX(p)), then σ̃ would have to be constant
on Z and hence σ would be constant on C ∩ Z. Since C ∼= P1, this is
impossible, σ being a nonconstant section of OP1(1) So τ is injective, but
not surjective, and hence h0(X,OX(p)) = 1. Since OX(p) ∼= OX(q), it
follows that p = q, an absurd. �

5. Completing the first Abel map

The main result of this section is Theorem 5.5. We shall prove it first in a
simpler case in Proposition 5.2, where we have a neater statement concerning
the modularity, see 5.3.

As in Section 4, certain basic results of this section hold in more generality
for curves having singularities other than nodes. Apart from the notation
set in 5.1 below, these results are concentrated in 5.4.

5.1. Fix a nodal curve X. For each node r ∈ X, let νr : Xν
r → X be the

partial normalization of X at r, and denote by X̂r the connected nodal curve
obtained by adding to Xν

r a smooth rational curve Er connecting the two
points of ν−1

r (r). Thus
X̂r = Xν

r ∪ Er
and there is a natural surjection σr : X̂r → X such that σr(Er) = {r}
and (σr)|Xν

r
= νr (so that σr is an isomorphism away from Er). The nodal

curve X̂r will be considered up those automorphisms of Er that fix the two
attaching points Er ∩Xν

r .
Assume now that X is a 1-general stable curve, and let r be a node of

X. Let r ∈ Er be any point distinct from the attaching points. If X has
no separating nodes, then the line bundle OX̂r(r) ∈ Pic1 X̂r is balanced by

Lemma 4.9, and hence determines a point of P 1
X r P 1

X ; see 3.8 (B). This
point does not depend on the choice of r because, in any case, the restriction
of OX̂r(r) to Xν

r is trivial; see 3.7. Thus we shall denote it by `r.

Proposition 5.2. Let f : X → B be a regular pencil of 1-general stable
curves free from separating nodes. Then α1

f : Ẋ → P 1
f extends to an injection

α1
f : X −→ P 1

f

such that α1
f (r) = `r ∈ P 1

X for each node r of each closed fiber X of f .

Remark 5.3. More precisely, the proof will show that α1
f is the moduli map of

the line bundle OY(∆̃), where Y → X 2
B is a partial resolution of singularities,

and ∆̃ is the proper transform in Y of the diagonal ∆; see 5.4.

Proof. Denote by ρ : Y → X 2
B the partial resolution of singularities described

in 5.4, from where we take some of the properties mentioned below. The
map ρ is an isomorphism away from the points (r, r) for r ∈ X r Ẋ . On
the other hand, if r ∈ X r Ẋ , then ρ−1(r, r) is a copy of P1. In addition,
composing ρ with the first projection π,

Y ρ−→ X 2
B

π−→ X ,
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we obtain a family of quasistable curves Y → X having π : X 2
B → X as

stable model.
For each closed fiber X of f , and each r ∈ Xsing ⊂ X , let Yr be the fiber

of π ◦ ρ over r. Then Yr = X̂r, where X̂r is as defined in 5.1. On the other
hand, each fiber of π ◦ ρ over Ẋ is the same as the corresponding fiber of π.

Let ∆̃ ⊂ Y be the proper transform of ∆. By Property 5.4 (B), the map
ρ restricts to an isomorphism between ∆̃ and ∆. Also, ∆̃ meets each fiber
Yr = X̂r of π ◦ ρ over any r ∈ X r Ẋ transversally at a nonsingular point r
contained in the exceptional component Er.

To prove that α1
f extends, we prove two claims: first, that OY(∆̃) is

balanced on π ◦ ρ : Y → X , so it induces a morphism α1
f : X → P 1

f , its

moduli map; and second, to show that α1
f extends α1

f , that the restriction of
OY(∆̃) to the each fiber of π ◦ ρ over Ẋ is isomorphic to the corresponding
restriction of L(1), whose moduli map is α1

f by Theorem 4.6.
We may now assume that f is local. Let X be its closed fiber. For each

r ∈ Xsing, since ∆̃ intersects Yr transversally at r, we have

(30) OY(∆̃)|Yr ∼= OX̂r(r),

which is balanced by Lemma 4.9. In addititon, for each nonsingular point
p ∈ X we have

OY(∆̃)|Yp ∼= OX(p)

which is balanced and isomorphic to the corresponding restriction of L(1),
also by Lemma 4.9. Therefore OY(∆̃) induces a moduli map

α1
f : X −→ P 1

f

which extends α1
f . Notice that (30) also shows that α1

f (r) = `r for each
r ∈ Xsing.

To show that α1
f is injective it suffices to consider singular points of X,

by Lemma 4.13 and by the fact that α1
f (r) ∈ P 1

X r P 1
X for every node

r ∈ X. Now, if r ∈ Xsing, then α1
f (r) represents a balanced line bundle on

X̂r. Hence, two different nodes r and r′ of X are mapped to two points of
P 1
X corresponding to balanced line bundles on different quasistable curves,

namely X̂r and X̂r′ . Thus α1
f (r) 6= α1

f (r′); see 3.7. �

5.4. Resolution of singularities. In the proof of Proposition 5.2 we used a
partial resolution of singularities of X 2

B which we are now going to describe
in detail, and in more generality.

Let f : X → B be a regular pencil. The threefold X 2
B is singular at the

points (r1, r2), where r1 and r2 are (not necessarily distinct) singular points
of the same closed fiber of f .

Let X be a closed fiber of f , and r1 and r2 nodes of X. Since f is regular,
locally around ri the surface X is formally equivalent to the surface in A3

given by the equation xiyi = t, where t denotes a local parameter of B at the
closed point covered by X. Pulling back these local equations to X 2

B under
the two projection maps X 2

B → X , and abusing of the same notation, we
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get that X 2
B is formally equivalent, locally around (r1, r2), to the threefold

in A5 given the equations {
x1y1 = t,
x2y2 = t.

If r1 = r2, then the diagonal ∆ ⊂ X 2
B contains (r1, r2), and we may assume

that it is given locally around (r1, r2) by x1y1 = t,
x2 = x1,
y2 = y1.

Locally around (r1, r2) we may eliminate t, and view X 2
B as the cone

C ⊂ A4 over the smooth quadric in P3 given by x1y1 = x2y2. Also, if
r1 = r2, we may view ∆ as the plane D ⊂ A4 given by x2 = x1 and y2 = y1.
Notice that C is singular only at the origin. To resolve this singularity we
need only blow up a plane in C containing the origin. Any plane will do,
but let us blow up the plane given by x1 = x2 = 0. The blowup is the
nonsingular threefold C̃ ⊂ P1 × A4 given by the equations{

ξ2x1 = ξ1x2,
ξ1y1 = ξ2y2,

where ξ1, ξ2 are homogeneous coordinates of P1. The blowup γ : C̃ → C
is isomorphic to C away from the origin. In addition, the fiber F over the
origin is given by x1 = x2 = y1 = y2 = 0, and hence is isomorphic to P1.

The exceptional divisor E of the blow up C̃ is given by x2 = 0 where
ξ2 6= 0, and x1 = 0 where ξ1 6= 0. In particular, F ⊂ E. Now, since
ξ2x1 = ξ1x2, summing the divisor given by ξ1 = 0 to E we get the principal
divisor given by x1 = 0. Thus E · F = −1.

Suppose r1 = r2. Then γ−1(D) is given by x1(ξ1 − ξ2) = y2(ξ1 − ξ2) = 0
where ξ1 6= 0, and by x2(ξ1 − ξ2) = y1(ξ1 − ξ2) = 0 where ξ2 6= 0. Thus
γ−1(D) is the union of the Cartier divisor given by ξ1 = ξ2 and the fiber
F . The strict transform D̃ of D is thus a Cartier divisor intersecting F
transversally at a point.

For i = 1, 2, let φi : C̃ → A2 be the composition of γ with the projection
onto the plane with coordinates xi, yi. The fiber of φ1 over the origin is given
by x1 = y1 = ξ1x2 = ξ2y2 = 0. It is the union of F and the affine lines N1,
given by x1 = y1 = ξ1 = y2 = 0, and N2, given by x1 = y1 = ξ2 = x2 = 0.
The lines N1 and N2 do not meet, and F intersects each Ni transversally
at a single point. Also, φ2 maps N1 and N2 isomorphically onto the lines
y2 = 0 and x2 = 0, respectively.

The exceptional divisor E contains N2, and intersects N1 transversally.
Since ξ1 6= 0 on N2, we have E ·N2 = 0. If r1 = r2, the strict transform D̃
does not meet either N1 or N2, and intersects F transversally.

(An analogous description holds if we reverse the roles of φ1 and φ2.)
We will now consider the global picture. Let I∆ denote the ideal sheaf of

the diagonal ∆ ⊂ X 2
B, and let Ǐ∆ denote the dual sheaf, i.e.

Ǐ∆ := Hom(I∆,OX 2
B

).
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Since I∆ is a sheaf of ideals, Ǐ∆ is a sheaf of fractional ideals of X 2
B. A piece

of notation: for each open subscheme U ⊆ X 2
B and each sheaf of fractional

ideals M of U , consider its powers Mn, and form the associated sheaf of
Rees algebras:

R(M) := OU ⊕M⊕M2 ⊕ · · · ⊕Mn ⊕ · · · .
Set Y := ProjX 2

B
(R(Ǐ∆)), and let ρ : Y → X 2

B be the structure map.
We may view ρ as a blowup. In fact, for any open subscheme U ⊆ X 2

B

over which there is an embedding ι : Ǐ∆|U → L into an invertible sheaf L,
we may view ρ : ρ−1(U)→ U as the blowup of U along the closed subscheme
V ⊆ U whose sheaf of ideals IV |U satisfies ι(Ǐ∆|U ) = IV |UL. In other words,
ι induces an isomorphism over U :

ProjU (R(IV |U )) −→ ProjU (R(Ǐ∆)|U ).

In the same vein, for each invertible sheaf of ideals J ⊆ OU we have that
Hom(I∆|U ,J ) = Ǐ∆|UJ , and hence we obtain a canonical isomorphism
over U :

ProjU (R(Ǐ∆)|U ) −→ ProjU (R(Hom(I∆|U ,J ))).

Since I∆ is invertible away from the points (r, r) for r ∈ X r Ẋ , it follows
from the above description that ρ is an isomorphism away from these same
points. In addition, around the points (r, r), where r is a node of a closed
fiber of f , the map ρ is formally equivalent to the blowup described above,
because

HomA((x1−x2, y1−y2), (x1−x2)) = (x1, x2), where A :=
k[[x1, x2, y1, y2]]
(x1y1 − x2y2)

.

Then all of the properties above, verified locally, yield global properties of ρ.
Indeed, assume that the fibers of f are nodal. (It would actually be enough
to assume that the fibers are Gorenstein.) Then, recalling that π : X 2

B → X
denotes the first projection, the following statements hold:
(A) The composition

π ◦ ρ : Y −→ X
is a family of curves whose fiber Yr over a point r of a closed fiber X
of f is X, if r is nonsingular, and X̂r, described in 5.1, if r is a node.

(B) Let ∆̃ ⊂ Y denote the proper transform of ∆. For each node r of each
closed fiber X of f , the transform ∆̃ intersects the fiber Yr transversally
at a point lying in the exceptional component Er = ρ−1(r, r).

(C) Let Q be a tail of a closed fiber X of f , and r the node of X generating
Q. Let

Q̃2 := ρ−1(Q×Q).

Then Q̃2 is a Cartier divisor of Y containing Er. Furthermore,

Q̃2 · Er = −1, Q̃2 · Q̂ = −1, and Q̃2 · Q̂′ = 1,

where, using the notation in 5.1, Q̂ := σ−1
r (Q) and Q̂′ := X̂r r Q̂, i.e.

Q̂ is the tail of X̂r mapping to Q and containing Er, and Q̂′ is the
complementary tail.

We may now generalize Proposition 5.2.
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Theorem 5.5. Let f : X → B be a regular pencil of 1-general stable curves.
Then there exists a morphism

α1
f : X −→ P 1

f

extending α1
f : Ẋ → P 1

f . If r is a node of a closed fiber X of f , then

α1
f (r) ∈ P 1

X if and only if r is a separating node of X.

Remark 5.6. The result extends to curves that are not 1-general. See 5.10
and 5.13.

Proof. As in the proof of Theorem 3.10 we may work locally around each
singular fiber. So, assume f is local, and let X denote its closed fiber.

The new difficulty with respect to Proposition 5.2 is that, if X has sepa-
rating nodes, α1

f is the moduli map of a nontrivial “twist” of the diagonal
by Theorem 4.6, and thus the same must hold for its completion. Fortu-
nately, however, the divisors we need for the “twist” are already present in
the partial resolution of singularities ρ : Y → X 2

B described in 5.4.
Namely, let Q1, . . . , Qm be all the small tails of X. Let ∆̃ ⊂ Y be the

strict transform of ∆, and set Q̃2
i := ρ−1(Qi ×Qi) for i = 1, . . . ,m. As seen

in 5.4, all the Q̃2
i and ∆̃ are Cartier divisors. Define the line bundle

(31) M := OY
(

∆̃ + Q̃2
1 + · · ·+ Q̃2

m

)
.

We claim that M is semibalanced on the composition π ◦ ρ : Y → X of ρ
with the first projection π : X 2

B → X . Once the claim is proved, we may let
α1
f : X −→ P 1

f be the moduli map of M; see 3.8 (B).
To prove the claim, first observe that ρ is an isomorphism over Ẋ ×B X ,

whence

M|Ẋ×BX
∼= OẊ×BX (∆ +Q1 ×Q1 + · · ·+Qm ×Qm),

which is balanced, by Theorem 4.6, and defines α1
f . Thus, onceM is shown

to be semibalanced, we have that α1
f |Ẋ = α1

f .
Now, let r ∈ Xsing. The fiber Yr := (π ◦ ρ)−1(r) is equal to X̂r by

Property 5.4 (A). Also, ∆̃ intersects Yr transversally at a point r of the
exceptional component Er = ρ−1(r, r), by Property 5.4 (B).

For each i = 1, . . . ,m, let ri be the separating node of X generating Qi.
Let

Q̂i := σ−1
r (Qi) ⊂ X̂r,

and let Q̂′i be its complement in X̂r. Then Q̂i is a small tail of X̂r dominating
Qi, and containing Er if and only if r ∈ Qi. If r = ri then also Q̂i r Er
is a small tail of X̂r. These are all the small tails of X̂r: the subcurves
Q̂1, . . . , Q̂m, together with Q̂i r Er in case r = ri.

For each i = 1, . . . ,m, the subscheme Qi × Qi ⊂ X 2
B is a Cartier divisor

away from (ri, ri). Identifying Yr with X̂r, we claim that

(32) OY(Q̃2
i )|Yr ∼=

{
OX̂r if r 6∈ Qi,
OX̂r(Q̂i) if r ∈ Qi.
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In fact, if r 6∈ Qi, then Q̃2
i does not meet Yr, and hence (32) holds. Suppose

now that r ∈ Qi. Recall that Q̂i is a tail of X̂r. Let si denote its generating
node. If r 6= ri then, since Qi × Qi is a Cartier divisor of X 2

B at (r, ri), we
have

(33) OY(Q̃2
i )|Q̂i

∼= OQ̂i(−si) and OY(Q̃2
i )|Q̂′i

∼= OQ̂′i(si).

The same restrictions are achieved with OX̂r(Q̂i). Thus (32) follows from
Lemma 4.4. Finally, if r = ri then (33) still holds, by Property 5.4 (C), and
hence (32) follows in the same way. The proof of (32) is complete.

Now, notice that Qi contains r if and only if Q̂i contains r. In addition,
if r = ri then r 6∈ Q̂i r Er. Since Q̂1, . . . , Q̂m, and Q̂i r Er if r = ri, are all
the small tails of X̂r, it follows from (32) that

M|Yr ∼= OX̂r(r)⊗OX̂r(
∑

Q∈Q(X̂r)

r∈Q

Q),

which is semibalanced by Lemma 4.9. Our claim is proved, and thus we
finish the proof of the existence of α1

f .
To prove the second statement of the theorem, it suffices to prove that

for any node r ∈ X we have

degErM =
{

1 if r is not separating,
0 otherwise.

To prove this, notice that, if r 6= ri then Q̃2
i · Er = 0, whereas if r = ri

then Q̃2
i · Er = −1 by Property 5.4 (C). Since at any rate ∆̃ · Er = 1, the

degree of M|Er is 1, unless r = ri for some i, in which case the degree is 0.
Since X is 1-general, each separating node of X generates a small tail, and
hence is equal to ri for some i. So α1

f (r) ∈ P 1
X if and only if r is a separating

node. �

Example 5.7. Let X be a curve of compact type with two components, C1

and C2. Then C1 and C2 are smooth, and C1 ∩ C2 = {r}, where r is
the unique node of X. Assume gC1 < gC2 . Then X̂r = C1 ∪ E ∪ C2 and
Q(X̂r) = {C1, C1 ∪ E}, where E = P1. The line bundle M in the proof of
Theorem 5.5, whose moduli map is α1

f , satisfies

M = OY
(

∆̃ + C̃2
1

)
.

In this case, it is easy to describe the completed Abel map. First notice
that there is a canonical isomorphism P 1

X
∼= Pic0C1 × Pic1C2, essentially

by Lemma 4.4. Hence, a point ` ∈ P 1
X is represented by a pair (L1, L2) with

Li ∈ PicCi. For i = 1, 2 let qi ∈ Ci lying above r. Then

α1
f (p) =

{
(OC1(p− q1),OC2(q2)) if p ∈ C1,
(OC1 ,OC2(p)) if p ∈ C2.

In particular, α1
f (r) = (OC1 ,OC2(q2)). Thus, composing α1

f |C1 with the
projection Pic0C1 × Pic1C2 → Pic0C1 we obtain the classical Abel–Jacobi
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map of C1 with base point q1, i.e.

C1 −→ Pic0C1

p 7→ OC1(p− q1).

The analogous composition for C2 gives the first Abel map C2 → Pic1C2.

Let X be a 1-general stable curve, and f a regular smoothing of X.
The restriction α1

f |Ẋ coincides with α1
f |Ẋ , whence does not depend on f

by Corollary 4.10. So α1
f |X does not depend on f either, and we may set

α1
X := α1

f |X .

5.8. Explicit description of the complete Abel map. Let X be a 1-general
stable curve and p ∈ X. We shall now explicitely describe α1

X(p), in formulas
(34) and (35) below, following the proof of Theorem 5.5.

First some notation. Let P1, . . . , Pm be all the small tails of X containing
p. (The unusual naming of the tails using “P” rather than “Q” is to match
the notation of the proof of Proposition 5.9 below.) By Lemma 4.3 we can
write

Pm ⊂ Pm−1 ⊂ · · · ⊂ P2 ⊂ P1.

Set Zi := Pi − Pi+1 for each i = 1, . . . ,m − 1 and Zm := Pm, so that
P1 = ∪m1 Zi. Also, put Q := P ′m, a large tail of X. Hence

X = P1 ∪Q = ∪m1 Zi ∪Q.
Let r1, . . . , rm be the separating nodes of X generating P1, . . . , Pm. Notice
that Zi∩Z ′i = {ri, ri+1} if i = 1, . . . ,m−1, and Zm∩Z ′m = {rm}. Therefore
each of the Zi and Q meets the complementary curve in separating nodes
of X. Hence, by iterated use of Lemma 4.4, to give a line bundle on X it
suffices to give its restrictions to all the Zi and to Q.

We are now ready to describe α1
X(p) if p is a nonsingular point or a

separating node of X (in which case of course p = rm). Recall that by
Theorem 5.5, α1

X(p) corresponds to a line bundle on X. We have

(34) α1
X(p) = {OQ(r1),OZ1(r2−r1), . . . ,OZm−1(rm−rm−1),OZm(p−rm)}.

Now, suppose that p is a nonseparating node of X. Then we know that
α1
X(p) corresponds to a line bundle on X̂p. Let E ⊂ X̂p be the exceptional

component of X̂p, and let Z̃m denote the normalization of Zm at p only.
Keeping the above notation we have

X̂p = Q ∪ Z1 ∪ · · · ∪ Zm−1 ∪ Z̃m ∪ E.

Now, recall from 3.7 that α1
X(p) is uniquely determined by a line bundle L,

of degree 0, on the complementary curve of E; that is, arguing as above, by
the string of the restrictions of L to Q, Z1, . . . , Zm−1, Z̃m. We have

(35) α1
X(p) = {OQ(r1),OZ1(r2 − r1), . . . ,OZm−1(rm − rm−1),OgZm(−rm)}

Proposition 5.9. Let X be a 1-general stable curve. Let p and q be distinct
points of X. Then α1

X(p) = α1
X(q) if and only if p and q belong to the same

separating tree of lines of X.
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A similar result for the Abel–Jacobi map to the (degree-0) Jacobian is
proved by B. Edixhoven in [E98], Prop. 9.5. His statement (necessarily)
excludes the case where p or q is a nonseparating node, since there the
target space of the map is a noncompactified Néron model.

Proof. Suppose first that p and q belong to a separating tree of lines Z ⊂ X.
Since Z is connected, to prove that α1

X(p) = α1
X(q) it is enough to consider

the case where p and q are nonsingular points of X in the same irreducible
component C of Z. Now, C is a separating line of X; see 4.12. Thus
OX(p) ∼= OX(q) by Lemma 4.13. Since p and q lie on the same component,
it follows that α1

X(p) = α1
X(q), and hence α1

X(p) = α1
X(q).

Conversely, suppose α1
X(p) = α1

X(q). We claim that p and q are non-
singular points or separating nodes of X. Indeed, suppose by contradic-
tion, and without loss of generality, that p is a nonseparating node of X.
Then α1

X(p) ∈ P 1
X r P 1

X by Theorem 5.5. Since α1
X(p) = α1

X(q), it fol-
lows from Theorem 5.5 as well that q is also a nonseparating node of X.
However, α1

X(p) and α1
X(q) correspond to balanced line bundles on different

quasistable curves, X̂p and X̂q; see 5.8. So α1
X(p) 6= α1

X(q); see 3.7. The
contradiction proves the claim.

Since p and q are nonsingular or separating nodes of X, both α1
X(p) and

α1
X(q) are line bundles on X. Let P1, . . . , Pm be the small tails containing
p and Q1, . . . , Qn the small tails containing q. (We may have m = 0 or
n = 0.) It follows from Lemma 4.3, as in the proof of Theorem 4.6, that, up
to reordering the tails,

Pm ⊂ Pm−1 ⊂ · · · ⊂ P2 ⊂ P1 and Qn ⊂ Qn−1 ⊂ · · · ⊂ Q2 ⊂ Q1.

Set P0 := Q0 := X. Let r1, . . . , rm be the separating nodes of X generating
P1, . . . , Pm, and s1, . . . , sn those generating Q1, . . . , Qn. In addition, set
Pm+1 := Qn+1 := ∅, and put rm+1 := p and sn+1 := q.

We may assume m ≤ n, without loss of generality. Let i be the largest
nonnegative integer such that i ≤ m and Pj = Qj for j = 0, 1, . . . , i. Then
also rj = sj for j = 1, . . . , i. We claim that Pi+1 ∩ Qi+1 = ∅. Indeed, if
i = m then Pi+1 is already empty. Suppose i < m. If Pi+1 ⊆ Qi+1, then
Qi+1 is a small tail containing p. And since

Pi+1 ⊆ Qi+1 ⊂ Qi = Pi,

we have Pi+1 = Qi+1, contradicting the maximality of i. In a similar way,
Qi+1 6⊆ Pi+1. Since Pi+1 ∪ Qi+1 6= X, because Pi+1 and Qi+1 are small
tails, it follows from Lemma 4.3 that Pi+1∩Qi+1 = ∅, proving our claim. In
particular, ri+1 6= si+1.

As Pi = Qi, we may consider Y := Pi r (Pi+1 ∪Qi+1). As Pi+1 and Qi+1

do not meet, their union cannot be Pi, a connected subcurve of X. Thus Y
is a subcurve of X. It is also connected, being either equal to, or a tail of,
Pi r Pi+1, which in turn is either equal to, or a tail of, Pi, a tail of X.

Since Y ⊆ Pi r Pi+1, the restriction of α1
X(p) to Y is OY (ri+1 − ri); see

5.8. Analogously, α1
X(q) restricts to OY (si+1 − si). Since α1

X(p) = α1
X(q)

and ri = si, it follows that OY (ri+1) ∼= OY (si+1). Since ri+1 6= si+1, by
Lemma 4.13 applied to the curve Y , we see that ri+1 and si+1 are contained
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in a separating line C of Y . Since Y ∩ Y ′ is made of separating nodes of X,
so is C ∩ C ′; see 4.12. In other words, C is a separating line of X.

For ` = 1, . . . ,m − i let Y` := Pi+` − Pi+`+1. Then α1
X(p) restricts to

OY`(ri+`+1− ri+`). On the other hand, since Y` ⊂ Qi rQi+1 for each `, but
neither si ∈ Y` nor si+1 ∈ Y`, we have that α1

X(q) restricts to the trivial
bundle OY` . Applying Lemma 4.13 to the curve Y`, we get that ri+` and
ri+`+1 are contained in a separating line Cp` of Y`. As before, Cp` is also a
separating line of X.

Similarly, for each ` = 1, . . . , n−i the points si+` and si+`+1 are contained
in a separating line Cq` of X. The union of all the separating lines, namely,

Cpm−i, . . . , C
p
2 , C

p
1 , C, C

q
1 , C

q
2 , . . . , C

q
n−i,

is a separating tree of lines containing p and q. �

To give a finer description of the map α1
X , in particular to characterize

when it is a closed embedding, requires further techniques, such as the theory
of theta functions from [E01]. We left this out to keep the paper to a
reasonable length.

5.10. Curves that are not 1-general. We conclude by discussing the case of
stable curves which are not 1-general. Recall that such curves form a proper
closed subset of Mg, nonempty if and only if g is even, and their combinato-
rial structure is described in Proposition 3.15. What kind of complications
occur for curves that are not 1-general, or not d-general?

The stack Pd,g introduced in 3.8 in the case (d − g + 1, 2g − 2) = 1 is
constructed as a quotient stack, i.e. Pd,g := [Hd/G]; notation as in 3.5. The
same definition can be given for each d, obtaining in this way a quotient stack
[Hd/G]. However, when non-d-general curves appear, this stack presents
some pathologies.

More precisely, recall from 3.5 that the scheme-theoretic quotient Hd/G
is endowed with a natural surjective morphism φd : Hd/G→Mg. The open
subset of Mg over which the quotient map πd : Hd → Hd/G is a geometric
quotient is exactly the locus of d-general curves. The problem is that, as
soon as πd : Hd → Hd/G fails to be a geometric quotient, the following
pathologies occur:

(i) [Hd/G] fails to be a Deligne–Mumford stack.
(ii) The natural map of stacks [Hd/G]→Mg fails to be representable.
(iii) Néron models are not parametrized by [Hd/G].

However, when studying Abel maps, we can still obtain some results.
Since the stack Pd,g behaves badly, let us consider the scheme P d, g := Hd/G
introduced in 3.5. As we mentioned above, there is always a surjective
morphism φd : P d, g →Mg. By [C94], Thm. 6.1, p. 641, P d, g is an integral
projective scheme. It is also normal, being a GIT-quotient of Hd, which is
nonsingular by [C94], Lemma 2.2, p. 609.

Although P d, g is not a coarse moduli space, not even away from curves
with nontrivial automorphisms, P d, g does satisfy useful functorial proper-
ties. Thus, let f : X → B be a regular pencil of stable curves. Let B →Mg
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be the associated map, and define

P df := B ×Mg
P d, g.

If X is a closed fiber of f , denote by P dX the corresponding fiber of P df over B.

As mentioned above, P df may fail to contain the Néron model Nd
f . However,

a functorial property holds: the moduli property given in 3.8 (B) holds
exactly as stated. More precisely, to any semibalanced line bundle L on a
family of semistable curves Y → T having XT → T as stable model, where
T is any B-scheme, we can associate a canonical moduli map µ̂L : T −→ P df ;
see [C94], Prop. 8.1, p. 653.

The main weakness, when nongeneral curves are present, is that different
balanced line bundles on the same quasistable, or even stable, curve may be
mapped to the same point in P df . Let us give an example of this behavior
with regard to Abel maps.

Example 5.11. Let X = C1 ∪ C2 be a curve of compact type as in Exam-
ple 5.7. However, assume now that C1 and C2 have the same genus. Then
X is not 1-general. As before, let r be the unique node of X, and let qi be
the point of Ci lying over r for i = 1, 2.

We shall now exhibit three nonequivalent balanced line bundles that cor-
respond to the same point of P 1

X . Notice that, by Lemma 4.4, to give a line
bundle on a curve of compact type is equivalent to give a line bundle on
each irreducible component of the curve.

Let p ∈ C1 r {q1}. Our first line bundle is L1 ∈ PicX corresponding to
the pair

(OC1(p),OC2).

Let Y := X̂r; so Y = C1 ∪ E ∪ C2, where E is the exceptional component.
Our second line bundle is L2 ∈ PicY corresponding to the triple

(OC1(p− q1),OE(qE),OC2),

where qE is any point of E. Finally, our third line bundle is L3 ∈ PicX
corresponding to the pair

(OC1(p− q1),OC2(q2)).

We leave out the proof that L1, L2 and L3 correspond to the same point of
P 1
X , referring to [C94], 7.2, Example 2, p. 645 for more details.

The above example shows that, if f : X → B is a regular pencil with
a non-1-general fiber X, then P 1

f and P 1
X are not coarse moduli schemes

for balanced line bundles. However, we can still get a map α1
f : X → P 1

f

restricting to the classical Abel map of XK , by using our modular interpre-
tation of the Abel map. In fact, essentially the same line bundleM given in
(31) can be used to produce a moduli map α1

f : X → P 1
f . Most of the results

in Sections 4 and 5 hold, provided we change one definition, as explained in
5.12 below.

5.12. Small tails, again. Let X be a stable curve of arithmetic genus g.
Taking into account the case where X is not 1-general, we need to adjust
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the definition of the set Q(X) in 4.1. Suppose that X has a separating node
that generates two tails Q and Q′ of equal genus. It is easy to see that, if
such a node exists, then it is unique. (A 1-general curve will never admit
such a node by Proposition 3.15.) We must add to the set Q(X) of small
tails of X either Q or Q′, thus making an arbitrary choice between Q and
Q′, which nonetheless turns out to be completely irrelevant.

So, Q(X) is defined as the set of all small tails of X together with one
tail of genus g/2, if any such tail exists.

Remark 5.13. The following results of the paper hold with essentially the
same proof, as long as we use the modified definition of Q(X) for stable
curves X of 5.12:

(i) Theorem 4.6, excluding Part (ii).
(ii) Corollary 4.10.

(iii) Theorem 5.5.
What will certainly fail is the possibility to interpret the Abel map in a
unique way. In other words, if f : X → B is a regular pencil, an extension
α1
f : X → P 1

f of the Abel map of XK is obtained as the moduli map of
a semibalanced line bundle, however the line bundle is not uniquely deter-
mined.
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