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1. Preliminaries

1.1. Conventions and Notations. We work over an algebraically closed
field of any characteristic.

The word “curve” means projective scheme of pure dimension one. The
genus of a curve X will always be the arithmetic genus gX := 1 − χ(OX).
For an irreducible curve, the geometric genus is defined as the genus of its
normalization.

By a “family of curves” we mean a flat projective morphism f : X → B
such that for every b ∈ B the fiber Xb := f−1(b) is a curve.
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1.1.1. Let Z ⊂ X be a subcurve. We denote by Zc := X r Z, and by Z ·Zc
the Weil divisor

Z · Zc =
∑

n∈Z∩Zc
n.

Also, δZ := #Z ∩ Zc, so that δZ = degZ Z · Zc.

1.1.2. A graph Γ is a finite one-dimensional simplex whose set of vertices
(0-dimensional simplexes) and edges (1-dimensional simplexes) are denoted
by V (Γ) and E(Γ) respectively. Every edge e joins two verteces v, w, called
the endpoints of e; if v = w we say that e is a loop.

An orientation on Γ is the choice, for every edge e ∈ E(Γ), of a starting
vertex and an ending vertex between its endpoints.

The first Betti number of Γ is the integer b1(Γ) = rankZH1(Γ,Z). A
connected graph is called a tree if its first Betti number is equal to 0

1.2. Representable functors. Let B and B′ be two schemes over a base
scheme S; we denote by HomS(B,F ) the set of S-morphisms, i.e. S-
regular maps, from B to B′. If S = Spec k for some field k we write
HomSpec k(B,F ) = Homk(B,F ). If S = Spec Z we simply omit the sub-
script: HomSpec Z(B,F ) = Hom(B,F ).

We denote by SCHS the category of schemes over a base scheme S and
simply by SCH the category of all schemes (over Spec Z).

Definition 1.2.1. Let F be a contravariant functor from the category of
schemes over S to that of sets

F : SCHS −→ SET.

A pair (F,UF ), with F ∈ SCHS and UF ∈ F(F ), is said to represent F if
for every scheme B ∈ SCHS the natural map of sets

HomS(B,F ) −→ F(B); ψ 7→ F(ψ)(UF )

sending an S-morphism ψ : B → F to the image of UF under the map

F(ψ) : F(F ) −→ F(B),

is a bijection.

Example 1.2.2. The prototypical example of a representable functor is the
following. LetX be a scheme; define the functorHom(..., X) : SCH −→ SET
which assigns to a scheme B the set Hom(B,X). It is easy to check that
the pair (X, idX) represents this functor.

Now, as we shall see, many interesting moduli functors, e.g. the mod-
uli functor for smooth curves, are not representable. This motivates the
following weakening of Definition 1.2.1.

Definition 1.2.3. Let F : SCHS −→ SET be a functor as above. An
S-scheme F is said to coarsely represent F if there exists a functor transfor-
mation

Φ : F(...) −→ HomS(..., F )

such that
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(A) For every algebraically closed field k over which S is defined, the map

Φ(Spec k) : F(Spec k) −→ HomS(Spec k, F )

is a bijection.
(B) (Uniqueness) If N is an S-scheme and Ψ : F(...) −→ HomS(..., N)

a functor transformation, then there exists a unique morphism π :
F −→ N such that the corresponding functor transformation Π :
HomS(..., F ) −→ HomS(..., N) satisfies Ψ = Π ◦ Φ.

We say that a functor F is a moduli functor if for any scheme B the set
F(B) parametrizes equivalence classes of geometrically defined objects. The
main examples that we will consider are moduli functors for curves, and the
Picard functors.

Example 1.2.4. The moduli functor for smooth curves is the functor Mg

defined from the category of all schemes (i.e. S = Spec Z) which associates
to a scheme B the set

Mg(B) = {C → B family of smooth curves of genus g}/∼=B
where [C → B] ∼=B [C′ → B] if there is a B-isomorphism between C and C′,
i.e. a commutative diagram

C
∼= //

��?
??

??
??

? C′

��~~
~~

~~
~

B

One of the first and most important results in classical moduli theory is the
fact that there exists a coarse moduli scheme Mg for the functor Mg.

Definition 1.2.5. If F is a representable moduli functor and F the scheme
that represents it, then F is a called a fine moduli scheme and UF the
universal family.

If a moduli functor is coarsely represented by a scheme F , we say that F
is a coarse moduli scheme.

1.3. Rational points of moduli spaces. Consider Definition 1.2.3 for
some moduli functor; condition (A) means that the closed points of the
moduli scheme parametrize the objects for which the moduli functor is de-
fined. For example, if the functor is the moduli functor for smooth curves,
Mg, and Mg is its moduli scheme, the closed points of Mg over any al-
gebraically closed field k are in bijection with the isomorphism classes of
smooth curves of genus g over k. Let us explain this more precisely.

Let F be a scheme over a field k and let p be a point in F . We denote by
R(p) the residue field of p, that is, R(p) = OF,p/mp. As F is defined over k
there is always a natural injection

k ↪→ R(p).

If the above injection is an isomorphism, the point p is said to be rational
over k or a k-rational point of F . Denote

F (k) := {p ∈ X : p is rational over k}
The notation F (k) comes from a functorial perspective; in fact:
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Lemma 1.3.1. For every scheme F defined over a field k there is a natural
identification:

F (k) ∼= Homk(Spec k, F ).

Proof. Given a ψ : Spec k −→ F , denote by p the image point of ψ. Then
there is an induced natural homomorphism ψ∗ : OF,p −→ k which (after
moding out by the maximal ideal of the left hand side) descends to a natural
homomorphism of fields R(p) −→ k. As we observed above, R(p) always
contains k, hence the above morphism in an isomorphism.

Conversely, for every p ∈ F (p) there is a natural isomorphism R(p) ∼= k
(by definition). Then the quotient map OF,p −→ R(p) = k determines a
morphism Spec k −→ F . �

So, the elements of Homk(Spec k, F ) can be identified with the k-rational
points of F . Thus, to say that a moduli problem admits a coarse moduli
space F , is to say that for any algebraically cosed field k over which F is
defined, the k-rational points of F are in bijection with the geometric objects
parametrized by the functor F , and defined over k.

Example 1.2.4 continued. Consider the moduli schemeMg; it is is defined
over Spec Z. For any algebraically closed field k the set of k-rational points
of Mg is in bijection with the set of isomorphism classes of genus g smooth
curves defined over k.

2. Lecture 1

2.1. Moduli of stable curves. For further details about this part we refer
to [DM69], [Gie82] and [HM98]

2.1.1. Nodal curves. Let X be a connected curve having only nodes (ordi-
nary double points) as singularities. We will denote by γ the number of
irreducible components of X, and X = ∪γi Ci the irreducible components
decomposition of X; moreover we set δ = #Xsing and denote by

ν : Xν = tγi=1C
ν
i −→ X

the normalization. We have the associated map of the structure sheaves

OX ↪→ OXν

which yields the following exact sequence in cohomology:
(1)
0→ H0(X,OX)→ H0(Xν ,OXν )→ kδ → H1(X,OX)→ H1(Xν ,OXν )→ 0.

From this sequence we obtain a formula for the (arithmetic) genus of X,
g = h1(X,OX)

(2) g = h1(Xν ,OXν ) + δ − γ + 1 =
γ∑
i=1

gi + δ − γ + 1

where gi = h1(Cνi ,OCνi ) is the geometric genus of Ci.
Let us now consider the sheaf of regular, never vanishing functions, i.e.

the subsheaf of units in the structure sheaf, denoted O∗X ↪→ OX for X
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(similarly for other schemes); we have a cohomology sequence looking exactly
as (1), by replacing OX and OXν by O∗X and O∗Xν respectively, and k by
k∗. Identifying PicX = H1(X,O∗X) and PicXν = H1(Xν ,O∗Xν ) we get the
following important short exact sequence

(3) 0 −→ (k∗)δ−γ+1 −→ PicX ν∗−→ PicXν −→ 0

where the map ν∗ above denotes the pull-back of line bundles.

2.1.2. Dual graph. Let Y be a nodal curve, having δY nodes, γY irreducible
components and cY connected components. The dual graph of Y is the
graph ΓY whose vertices are identified with the irreducible components of
Y and whose edges are identified with the nodes of Y ; an edge joins two
(possibly equal) vertices if the corresponding node is in the intersection of
the corresponding irreducible components. So, ΓY has δY edges, γY vertices
and cY connected components. Its first Betti number is

b1(ΓX) = δY − γY + cY .

Lemma - Definition 2.1.1. Let X be a connected nodal curve. The fol-
lowing conditions are equivalent.

(1) Every node of X is separating (X r n is disconnected ∀n ∈ Xsing).
(2) The dual graph of X is a tree.
(3) δ − γ + 1 = 0.
(4) The pull back map induces an isomorphism PicX ∼= PicXν .

If the above conditions hold X is called of compact type.

Remark 2.1.2. For a nodal curve X the dualizing sheaf ωX is invertible. Let
n1, . . . , nδ be the nodes of X and pi, qi ∈ Xν be the branches of the node ni
for every i = 1, . . . , δ. Then we have

ν∗ωX = ωXν

(
(
δ∑
1

(pi + qi)
)
.

2.1.3. Stable curves and stabilization. The original definition of stable curves,
originating from ([MM64] and [DM69]), is usually given only for curves of
genus g ≥ 2, but it can be convenient to generalize it to all g ≥ 0, so as to
be able to define the “stabilization” of a curve ant genus (see Remark 2.1.8
for a different convention about stable curves of genus at most 1)

A connected nodal curve X of arithmetic genus g ≥ 0 is called stable if
each smooth rational component E ( X meets Ec = X \ E in at least three
points.

One easily checks that if g = 0 the only stable curve is P1, and if g = 1 a
stable curve is either smooth, or irreducible with one node.

A nodal curve X of genus g ≥ 0 is called semistable if each smooth rational
component E ( X meets Ec in at least two points.

Let E ( X with E ∼= P1. E will be called a rational tail if #E ∩ Ec = 1.
E will be called an destabilizing component if #E ∩ Ec ≤ 2.

Given any nodal connected curve X, the stabilization of X is defined as
the curve X obtained as follows. If X is stable then X = X, oherwise let
E ( X be a destabilizing component, we contract E to a point thereby
obtaining a new curve X1. If X1 is stable we set X1 = X, otherwise we
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choose a destabilizing component of X1 and contract it to a point. By
iterating this process we certainly arrive at a stable curve X. It is easy to
check that X is unique up to isomorphism.

The stabilization of a non connected curve will be defined as the union of
the stabilizations of its connected components.

Given a family of nodal curves, f : X → B, its stabilization is a family of
stable curves f : X → B such that for every b ∈ B the fiber Xb of f is the
stabilization of Xb.

Remark 2.1.3. Let X be a connected nodal curve of genus g ≥ 2. X is
semistable if and only if the dualizing sheaf ωX has non-negative multidegree
(i.e. nonnegative degree on every irreducible component of X.)

Proposition 2.1.4. Let X be a connected nodal curve of genus g ≥ 2. The
following are equivalent.

(1) X is stable.
(2) The dualizing sheaf ωX has positive multidegree.
(3) ωX is ample.
(4) X has a finite number of automorphisms.

Why are stable curves so important among all singular curves? Since ev-
ery nodal curve has a uniquely determined stabilization, the above question
is essentially equivalent to ask why nodal curves are so important. A simple
natural answer is: Because nodes are the simplest type of singularities a
curve can have. This is indeed true, but there is another, much less triv-
ial fact which provides a stronger motivation. This is the so-called stable
reduction theorem, which states the following.

Theorem 2.1.5 (Stable Reduction Theorem). Let B be smooth connected
with dimB = 1, and b0 ∈ B a fixed point. Let f : X → B family of curves
such that for every b ∈ B r b0 the fiber of f over b is smooth. Then there
exists a finite covering φ : B′ → B and a new family h : Y → B′ all of whose
fibers are stable and such that on φ−1(B r b0) ⊂ B′ the restriction of h is
the base change of f .

Moreover the family h : Y → B′ is uniquely determined by φ : B′ → B.

We will not discuss this theorem in details, as we will not need it. But
we do observe that the existence part holds also if we replace the word
stable by the word semistable, or nodal. On the other hand the uniqueness
trivially fails. To have uniqueness for families of semistable curves we need
to require that the total space Y be a nonsingular minimal surface. If we
do that, then the singular fibers will necessarily be semistable (a rational
tail in the fibers would be contractible). Then uniqueness follows from the
uniqueness of minimal models for surfaces.

The stable reduction theorem implies that the moduli space of stable
curves (which we have not yet introduced, and whose construction was com-
pleted after the stable reduction theorem was proved) satisfies the valuative
criterion for separation (uniqueness of stable limit) and properness (exis-
tence of the stable limit up to base change).

Indeed, let M be the moduli space of stable curves; assume only that
M is a scheme whose closed points are in bijective correspondence with
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isomorphism classes of stable curves, and containing the moduli space of
smooth curves as dense open subset. Let R be a DVR with function field
K; let us prove that any rational map from SpecK to M extends to a regular
map from the whole SpecR to M . Let φ : SpecK → M be a morphism.
Then there exists an extension of DVR, R ⊂ R′, where R′ is a DVR with
quotient field K ′, such that the associated map φ′ : SpecK ′ → M is the
moduli map of a family of smooth curves over SpecK ′ which extends to a
family of stable curves over SpecR′ (this follows from the stable reduction
theorem). But then φ′ extends to a regular map φ′ : SpecR′ →M . This of
course implies that φ also extends to a regular map SpecR→M (if M is not
projective, let M be any completion; then φ extends to a map from SpecR to
M , and such an extension must be compatible with φ′ : SpecR′ →M ⊂M).

2.1.4. GIT-construction and properties of the scheme Mg and the stackMg.
The moduli functor of stable curve is the contravariant functor defined anal-
ogously to Mg, in example 1.2.4. Mg associates to any scheme B the set

Mg(B) = {f : X → B, f family of stable curves of genus g}/∼=
where two families f : X → B and f ′ : X ′ → B are isomorphic if there exists
a B-isomorphism between X and X ′.

If φ : B → B′ is a morphism, then the map Mg(φ) :Mg(B′) →Mg(B)
is given by base change.

The fact that Mg is coarsely representable was proved for the first time
using Geometric Invariant Theory ([Gie82]), completing a program initiated
by Deligne and Mumford ([DM69]) and [GIT]). The GIT construction has
several advantages. As Mg is the geometric quotient of a smooth scheme,
one obtains that Mg is a projective, reduced and normal variety having
only finite quotient singularities. Moreover, it yields that the stackMg is a
projective Deligne-Mumford stack.

Fact 2.1.6. The moduli functor of genus g stable curves is coarsely repre-
sented by a projective integral, normal scheme Mg, containing the moduli
scheme of smooth curves Mg as a dense open subset. Moreover

(1) If g = 0 then M0 = M0 is a point.
(2) If g = 1 then M1

∼= P1 and M1
∼= A1.

(3) If g ≥ 2 then Mg has dimension 3g − 3.
(4) The singularities of Mg are all of finite quotient type (more precisely,

Mg is the quotient of a smooth scheme by a group acting with finite
stabilizers).

(5) Denote by M0
g := {X ∈ Mg : Aut(X) = {idX}}. Then the singular

locus of Mg is properly contained in Mg rM
0
g.

2.1.5. Pointed stable curves. Together with stable curves, it is quite conve-
nient to consider stable curves with marked points.

Lemma - Definition 2.1.7. Let X be a nodal connected curve of genus
g ≥ 0 and let p1, . . . , pn be n smooth points of X. We say that (X; p1, . . . , pn)
is an n-pointed stable curve if the following equivalent conditions hold.

(1) The line bundle ωX(
∑n

1 pi) has positive multidegree.
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(2) The group of authomorphisms of X which permute the points p1, . . . , pn
is finite.

(3) Let C ⊂ X be an irreducible component.
If C ∼= P1 then |C ∩ Cc ∩ {p1, . . . , pn}| ≥ 3.
If pa(C) = 1, then |C ∩ Cc ∩ {p1, . . . , pn}| ≥ 1.

Remark 2.1.8. We earlier made the convention that a smooth curve of genus
0 or 1 be stable. This convention was used to introduce the stablilization
of a curve of any genus. On the other hand, a smooth curve of genus 0 or
1 is not stable as a pointed curve, according to the above definition. More
generally, there exist no stable curves if g = 0 and n ≤ 2, and if g = 1 and
n = 0. !!

Fact 2.1.9. If 2g− 2 +n > 0 the moduli space of stable n-pointed curves of
genus g is a projective integral variety, denoted Mg,n of dimension 3g−3+n.

2.2. The boundary of Mg. This section concentrates on an explicit de-
scription of singular stable curves, in case g ≥ 2.

Example 2.2.1. Curves with one node. We will now prove that the closure
in Mg of the locus of curves having one node has codimension one. Since
every singular stable curve can be obtained as the specialization of a stable
curve with one node, this fact implies that the boundary, Mg rMg, of Mg

is of pure dimension and

(4) codimMg rMg = 1.

Suppose X is a stable curve of genus g with only node, n. Let Xν → X be
the normalization. Then X is obtained from Xν by identifying two points
p, q ∈ Xν ; the points p, q are called the branches, or the gluing points, of n.

Now there are two possibilities, either X is irreducible or it is reducible.
Suppose X is irreducible. Then Xν is a smooth irreducible curve of genus

g − 1. For every smooth curve of genus g − 1 and every pair of points p, q
in it we obtain a stable curve of genus g by gluing together the two points.
If g − 1 ≥ 2 the curve Xν has only finitely many automorphisms; therefore
the family of uni-nodal curves of genus g having Xν as nomalization has
dimension 2. This yields that, if g ≥ 3 the closure, ∆0, of the locus of
irreducible curves in Mg with one node has dimension

dim ∆0 = dimMg−1 + 2 = 3(g − 1)− 3 + 2 = 3g − 4.

Moreover ∆0 is irreducible, because so is Mg−1. If g = 2 a curve in ∆0

is determined by a curve of genus 1, and a pair of points on it modulo
the automorphism group of the curve, which has dimension 1. Therefore
dim ∆0 = 1+2−1 = 2 = 3 ·2−4. so the above formula applies also if g = 2.

Let now Xν = C1 ∪ C2 be reducible; let gi be the genus of Ci; as X is
stable gi ≥ 1 and we have g1 +g2 = g. Suppose that gi ≥ 2 for both i. Then
for any pair C1 and C2 and any point p1 ∈ C1 and p2 ∈ C2 we have a stable
curve of genus g

X = C1 t C2/p1=p2

Therefore the closure, ∆g1 , of the locus of uni-nodal reducible curves in Mg

having one component of genus g1 (and the other of genus g− g1 of course)
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has dimension

dim ∆g1 = 3g1 − 3 + 3g2 − 3 + 2 = 3g − 4.

We leave it as an exercise to show that the same formula holds if gi = 1 for
one or both i = 1, 2. Since Mgi is irreducible, we have that ∆g1 is a prime
divisor in Mg.

In conclusion, we have that the closure in Mg of the locus of curves with
only one node is a union of irreducible divisors:

∆0 ∪∆1 ∪ . . . ∪∆b g
2
c.

2.2.1. Combinatorial decomposition of Mg. To study curves with more nodes,
we begin by endowing Mg with a combinatorial decomposition by means of
the weighted dual graph of a stable curve. Let X be a stable curve of genus
g, the weighted dual graph of X is the weighted graph (ΓX , wX) such that
ΓX is the dual graph of X, and wX is the weight function on the set of
irreducible components of X, V (ΓX), assigning to a vertex the geometric
genus of the corresponding component. Hence

g =
∑

v∈V (ΓX)

wX(v) + b1(ΓX);

we call the above number the genus of (ΓX , wX). To say that X is a stable
curve is to say that every v ∈ V (ΓX) such that wX(v) = 0 has valency at
least 3. A weigthed graph with this property will be called a stable weighted
graph.

Now, for any stable weighted graph (Γ, w) of genus g, we denote by
Cg(Γ, w) the locus of curves in Mg having (Γ, w) as dual weighted graph:

Cg(Γ, w) := {X ∈Mg : (ΓX , wX) = (Γ, w)}.
Then we have

(5) Mg =
∐

(Γ,w) stable of genus g

Cg(Γ, w).

To better analyze the above decomposition, let us introduce a partial order-
ing on the set of weighted graphs.

Definition 2.2.2. Let (Γ, w) and (Γ′, w′) be two weighted graphs, we say
that (Γ′, w′) is a (weighted) contraction of (Γ, w), and write (Γ, w) ≥ (Γ′, w′),
if (Γ′, w′) is obtained as follows. There exists S ⊂ E(Γ) such that Γ′ is
obtained from Γ by contracting every edge in S. Let

σ : Γ→ Γ′

be the (surjective) contraction map and let

ν : V (Γ)→ V (Γ′)

be the associated surjection, mapping v ∈ V (Γ) to σ(v) ∈ V (Γ′). Then w′

satisfies:

w′(v′) =
∑

v∈ν−1(v′)

w(v) + #{loops contained in σ−1(v′)} =

=
∑

v∈ν−1(v′)

(
w(v) + #{loops in S based at v}

)
.(6)
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Remark 2.2.3. Let (Γ, w) ≥ (Γ′, w′); then g(Γ, w) = g(Γ′, w′).
Moreover if (Γ, w) is stable so is (Γ′, w′).

Proposition 2.2.4. Consider the combinatorial decomposition of Mg given
in (5). Then

(1) Cg(Γ′, w′) ⊂ Cg(Γ, w) if and only if (Γ′, w′) ≥ (Γ, w).
(2) C(Γ, w) is irreducible of codimension equal to #E(Γ).

Proof. Part (2) is proved in 2.2.8 �

Here is a basic lemma, with a simple instructive proof.

Lemma 2.2.5. A stable curve X has at most 3g − 3 nodes. Moreover if
#Xsing = 3g − 3 then X has 2g − 2 irreducible components all of geometric
genus 0; such curves are called graph curves.

Proof. Since every stable curve can be specialized to a curve having all
components of geometric genus 0, and the number of nodes grows under a
nontrivial specialization, a curve having the maximal number of nodes must
have all components of geometric genus 0. Let X be such a curve. Then
every vertex of its dual graph must have valency at least 3 (by stability),
therefore γ ≤ 2δ/3. We obtain

g = δ − γ + 1 ≥ δ − 2δ/3 + 1 = δ/3 + 1.

Hence δ ≤ 3g − 3; moreover if equality holds every vertex of ΓX is 3-valent
and hence and γ = 2g − 2. �

Example 2.2.6. Graph curves in Mg. Let X be a graph curve; hence it
has 3g − 3 nodes and 2g − 2 irreducible components, all of geometric genus
0, and every component Ci of X satisfies degCi ωX = 1.

As we have seen, the dual graph of a graph curve is 3-regular (every vertex
has valency equal to 3), and its first Betti number is equal to g.

Let us show that for every g there exist only finitely many graph curves.
Let X be a stable curve and ν : Xν → X its normalization. Then Xν is the
disjoint union of 2g − 2 copies of P1, moreover, for every Cνi ⊂ Xν we have

#Cνi ∩ ν−1(Xsing) = 3.

Now, on P1 a triple of points has no moduli, therefore the pointed curve
(Xν , ν−1(Xsing)) is the same for every graph curve X. Therefore to deter-
mine X we just need to know how the points ν−1(Xsing) are glued. There
are obviously finitely many ways of gluing these points, so we are done.

Let γ(g) be the number of points of Mg parametrizing graph curves.

Problem 2.2.7. Find a formula for γ(g).

It is very easy to compute γ(g) for g ≤ 3, indeed γ(0) = γ(1) = 0, γ(2) = 2
and γ(3) = 5. However, an answer to the above problem, i.e. an explicit
formula for γ(g), is not known.

Generalizing what we proved in the previous examples

Lemma 2.2.8. Let δ ≥ 1 be an integer. The closure in Mg of the locus of
curves with exactly δ nodes has pure codimension equal to δ.
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Proof. If g ≤ 1 the statement follows from the explicit description of Mg

given in 2.1.6. Assume g ≥ 2. We will prove the lemma by showing that for
every weighted graph (Γ, w) of genus g the set C(Γ, w) ⊂Mg is irreducible
of codimension δ = #E(Γ). A curve X ∈ C(Γ, w) is determined by, for
every i = 1, . . . , γ, a curve Cνi ∈ Mgi for i = 1, . . . , γ with δi marked points
in it, where

δi := #ν−1(Xsing) ∩ Cνi .
Indeed, once we have such γ pointed curves, the gluing data of ν−1(Xsing)

are uniquely determined by the graph Γ.
In other words, as the the δi-pointed curve Cνi varies in the moduli space

Mgi,δi , we have a surjective morphism

Mg1,δ1 × . . .×Mgγ ,δγ −→ C(Γ, w).

This shows that C(Γ, w) is irreducible. Notice that for every i such that
gi = 0 we have δi ≥ 3 (by the stability); for every i such that gi = 1 we
have δi ≥ 1 (because g ≥ 2). Therefore for every i we have 2gi − 2 + δi > 0,
hence fact 2.1.9 applies. Since the above surjection has finite fibers, we get
dimMgi,δi = 3gi − 3 + δi for all i = 1, . . . , γ. We conclude

dimC(Γ, w) =
γ∑
i=1

(3gi − 3 + δi) = 3
γ∑
i=1

gi − 3γ + 2δ

(since
∑γ

i=1 δi = 2δ). Now g =
∑γ

i=1 gi + δ − γ + 1 hence

dimC(Γ, w) = 3g − 3δ + 3γ − 3− 3γ + 2δ = 3g − 3− δ.
�
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3. Lecture 2

3.1. Picard functor and Picard scheme.

3.1.1. Generalized Jacobians of nodal curves. Let X be a nodal curve; we
denote by J(X) the generalized jacobian of X. We shall always identify it
with the moduli space, Pic0X, of isomorphism classes of line bundles having
multidegree 0 (degree 0 on every irreducible component):

J(X) = Pic0X.

J(X) is a commutative algebraic group with respect to tensor product, and
a semiabelian variety, i.e. there is a canonical exact sequence

(7) 0 −→ (k∗)b −→ J(X) ν∗−→ J(Xν) =
γ∏
i=1

J(Cνi ) −→ 0

where b = b1(ΓX) (compare with (3)).

Remark 3.1.1. By Lemma 2.1.1 J(X) is projective if and only if X is a curve
of compact type. In such a case there is a natural isomorphism

J(X) ∼=
γ∏
i=1

J(Ci)

saying that a line bundle on X is uniquely determined by its restrictions to
the irreducible components of X.

The definition of generalized jacobian and Picard scheme generalizes to
families of curves over any base scheme B. To every family of curves f :
X → B one associates the relative jacobian, Jf → B. It is a group scheme
over B whose fibers are the jacobians of the fibers of f .

Similarly, there is a relative Picard scheme, Picf → B, again a group
scheme, whose fibers are the Picard schemes of the fibers of f . We have an
injective morphism of B-schems Jf ↪→ Picf .

The Picard scheme is a moduli space, in the sense that it coarsely repre-
sents a certain functor.

3.1.2. The Picard functor and the Picard scheme. Fix a flat projective mor-
phism

f : X −→ B

and consider the category SCHB of schemes over B. We shall use the fol-
lowing notation: if T is an object in SCHB, we set XT := X ×B T and

fT : XT −→ T

the base change of f . The Picard functor Picf associated to the above
f : X → B goes from SCHB to the category of sets, and associates to any
object T ∈ SCHB the set

Picf (T ) = {equivalence classes of line bundles on XT },
where we say that two line bundles L and L′ on XT are equivalent if there
exists a line bundle M on T such that

L ∼= L′ ⊗ f∗TM
Notice that Picf (T ) is a group under tensor product of line bundles.
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The representability properties of the Picard functor were studied by
Grothendieck. To say that Picf is coarsely representable is to say that
there exists a B-scheme Picf with the following properties.

(1) For any B-scheme T and any line bundle L on XT there exists a
unique morphism, µL, the moduli map of L,

µL : T → Picf .

The map µL maps a point t ∈ T to the isomorphism class of the
restriction of L to the fiber of fT over t. This property can be more
tersely stated by requiring that there exists a map

(8) µT : Picf (T ) −→ HomB(T,Picf ); L 7→ µL.

(2) For every algebraically closed field k the above map µSpec k is a bi-
jection. In other words, the closed points of Picf are in bijection
with isomorphism classes of line bundles on the fibers of f over the
closed points of B.

(3) Finally, the moduli scheme Picf is uniquely determined up to iso-
morphism.

The following theorem summarizes the main results see [SGAb] and [GIT].

Theorem 3.1.2 (Grothendieck). Let f : X −→ B be a flat projective mor-
phism with integral geometric fibers.

(1) There exists a group scheme Picf over B which coarsely represents
Picf .

(2) For every scheme T over B the natural map

Picf (T ) −→ HomB(T,Picf ), L 7→ µL

is injective.
(3) If f admits a section, then Picf is a fine moduli scheme for Picf

(i.e. the above maps Picf (T )→ HomB(T,Picf ) are isomorphisms).

If B = Spec k where k is an algebraically closed field, and X is an integral
projective variety over k, we find the classical Picard group of X, PicX =
Picf where f : X → Spec k is the structure map.

Remark 3.1.3. The injectivity of the map Picf (T ) −→ HomB(T,Picf ) says
that if L and L′ are two line bundles on XT which agree on every fiber of fT ,
then L and L′ are equivalent, that is, they differ by the pull-back of some
line bundle of T .

3.1.3. Representability and Poincaré line bundles. What prevents Picf from
having a fine moduli space is the existence of non-modular maps T → Picf .
In other words, a continuously varying family of line bundles on the fibers of
fT does not necessarily “glue together” to a line bundle on the total space
XT . The theorem says that such a “gluing” exists if f has a section.

Suppose that Picf is represented by a scheme Picf → B. What is the
universal element U = UPicf ∈ Picf (Picf ) (cf. subsection 1.2)? By the
definition of the Picard functor, U is a line bundle on XPicf = X ×B Picf
with the following property. First, note that for any B-scheme T and any
L ∈ PicXT the moduli map µL : T → Picf obviously lifts to a map

µ̂L : XT → XPicf .
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Now, the pull-back µ̂L
∗U is a line bundle on XT whose moduli map must

coincide with µL. By Theorem 3.1.2 (2), we have that L and µ̂L
∗U are

isomorphic modulo tensoring with the pull-back of a line bundle on T .
A line bundle U ∈ Pic(X ×B Picf ) with this universal property is called

a Poincaré line bundle.
By applying the universal property to Spec k for any field k over which B

is defined we have that for any k-rational point b ∈ B and any L ∈ PicXb

the restriction of U to Xb × {[L]} is isomorphic to L.

3.2. The universal Picard variety over Mg. Let fg : Cg → Mg be the
universal family of curves of genus g ≥ 3. So, for every [C] ∈ M0

g (i.e.
for every C such that Aut(C) ∼= {0}) we have a canonical isomorphism
f−1
g ([C]) ∼= C, se we shall usually identify f−1

g ([C]) = C. We can apply
the above Theorem 3.1.2 and obtain a so-called universal Picard scheme
Picfg → Mg; this Picard scheme has infinitely many components, one for
each d ∈ Z, denoted by P dg , such that P dg parametrizes line bundles of relative
degree d. So, for every d we have

πd : P dg −→Mg

and for every [C] ∈M0
g we have π−1

d ([C]) ∼= PicdC (another common nota-
tion for P dg is Pd,g).

The scheme P dg above is called the “Universal Picard variety” or the
“Universal Jacobian” of degree d.

Theorem 3.2.1. Let g ≥ 3 and let fg : Cg → Mg be the universal family
of curves. There exists a Poincaré line bundle on Cg ×Mg P

d
g if and only if

(d− g + 1, 2g − 2) = 1.

The theorem was proved by Mestrano and Ramanan in [MR85], assuming
characteristic 0. The extension to any characteristic and to all stable curves,
with applications to the stack setting, was obtained later (see [C05, Sect.
5]).

3.2.1. Isomorphisms between universal Picard varieties. If C is a smooth
curve then for any integers d, e the varieties PicdC and PiceC are isomor-
phic in a non canonical way (see below). This isomorphism is not, in general,
induced by an isomorphism between P dg and P eg . The situation is summa-
rized by the following statement.

Proposition 3.2.2. Assume g ≥ 2 and pick d, e ∈ Z.
P dg and P eg are birational over Mg if and only if they are isomorphic over

Mg, if and only if d = ±e+ n(2g − 2) for some n ∈ Z.

For the proof of this Proposition we need the simple Lemma 3.2.3. As
the Picard group PicC is commutative we shall use the additive notation:
L+M := L⊗M for all L,M ∈ PicC.

Lemma 3.2.3. Let C be a general smooth curve of genus g ≥ 1 and d, e ∈ Z.
Let α : PicdC → PiceC be an isomorphism. Then one of the following two
possibilities occurs.

(1) There exists T ∈ Pice−dC such that α(L) = L + T for every L ∈
PicdC.



15

(2) There exists T ′ ∈ Pice+dC such that α(L) = −L + T ′ for every
L ∈ PicdC.

Proof. Fix L0 ∈ PicdC and M0 ∈ PiceC. Then we have two isomorphisms

uL0 : PicdC −→ Pic0C; L 7→ L− L0

and
uM0 : PiceC −→ Pic0C; M 7→M −M0.

For any isomorphism α as in the statement we have a commutative diagram

PicdC
α //

��

PiceC

��
Pic0C

α0 // Pic0C

where the vertical arrows are uL0 and uM0 and α0 := uM0αu
−1
L0

. So, every
arrow of the diagram is an isomorphism.

Recall now that the automorphism group of the Jacobian of a general
curve of genus g ≥ 1 is generated by the involution and by the translations.
Therefore there exists T0 ∈ Pic0C such that one of the two following cases
occurs:

(a) α0 is a translation, i.e. α0(P ) = P + T0 for every P ∈ Pic0C.
(b) For every P ∈ Pic0C we have α0(P ) = −P + T0.
Suppose α0 is as in (a). The diagram is commutative, hence for any

L ∈ PicdC we have

L− L0 + T0 = α0uL0(L) = uM0α(L) = α(L)−M0.

Therefore α(L) = L − L0 + T0 + M0. Setting T := T0 + M0 − L0 we have
that case (1) occurs.

Suppose now we are in case (b). As before, the commutativity of the
diagram yields

L0 − L+ T0 = α0uL0(L) = uM0α(L) = α(L)−M0

hence α(L) = −L+L0 +M0 +T0 by taking L0 +M0 +T0 = T ′ we have that
case (2) occurs. �

Remark 3.2.4. From the proof of the Lemma it is clear that the assumption
that C be a general curve can be replaced by the more precise assumption
that C be a curve such that the automorphism group of its Jacobian is
generated by the involution and by the translations.

Proof of Proposition 3.2.2. If d = ±e + n(2g − 2) then P dg and P eg are
isomorphic over Mg. The proof of this fact is precisely the same as that of
[C94, Lemma 8.1].

Suppose now that there is an birational Mg-map αg : P dg 99K P
e
g . Let

V ⊂ P dg be an open subset over which αg is regular. Let C ∈Mg be a curve
such that PicdC ∩ V 6= ∅ (identifying PicdC with the fiber of P dg → Mg

over C). Denote by αC : PicdC 99K PiceC the restriction of αC . Then, as
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PicdC and PiceC are isomorphic to an abelian variety (namely Pic0C) we
have that αC is an isomorphism:

αC : PicdC
∼=−→ PiceC

(see [Mi08, Sect I.3]). Of course, the set of C ∈ Mg for which the above
discussion holds is a non empty open subset of Mg. By Lemma 3.2.3 there
exists a non empty open subset U ⊂Mg such that for every C ∈ U the iso-
morphisms αC are all either as in part (1), or as in part (2) of Lemma 3.2.3.

Suppose first that (1) occurs, i.e. for all C ∈ U there exists TC ∈ Pice−dC
such that for all L ∈ PicdC we have αC(L) = L + TC . This enables us to
define a rational section of P e−dg →Mg, namely

Mg 99K P
e−d
g ; C 7→ TC .

Now, it is well known that the only rational sections of
∐
d∈Z P

d
g −→ Mg

are those given by powers of the relative dualizing sheaf (this is the strong
Franchetta Conjecture, proved in caracteristic 0 by N. Mestrano in [Me87],
and later, in positive characteristic, by [S02]). Therefore, as P e−dg → Mg

has a section, we must have e− d = n(2g − 2) as claimed.
Suppose now that case (2) occurs; hence for all C ∈ U there exists T ′C ∈

Pice+dC such that αC(L) = −L + T ′C for all L ∈ PicdC. Hence we have a
rational section of P e+dg →Mg, i.e.

Mg 99K P
e+d
g ; C 7→ T ′C .

Arguing as in the previous case we conclude that e+ d = n(2g − 2).
We thus proved that if P dg and P eg are birational as Mg schemes we have

d = ±e + n(2g − 2). By the first part of the proof this yields that P dg and
P eg are actually isomorphic. The proof is complete. �

Remark 3.2.5. Proposition 3.2.2 extends to the compactifications of P dg and
P eg , by [C94, Lemma 8.1], whose proof (of the necessary part) relies on our
Proposition.

3.3. Non-separatedness and the degree class group.

3.3.1. One parameter families and the twisting operations. Let f : X → B
be a one parameter family of curves having smooth fibers over every b ∈ B
with b 6= b0, and singular fiber over b0; we call X the special fiber and
refer to f as a smoothing of X. To simplify matters we assume that X is
nonsingular.

The Picard scheme Picf → B decomposes into its connected components
Picdf → B, parametrizing line bundles of degree d. Now Picdf → B is an
irreducible scheme, whose general fiber is non-canonically isomorphic to an
abelian variety. The special fiber will, however, have infinitely many con-
nected components, unless X is irreducible.

Let d = (d1, . . . , dγ) ∈ Zγ and set

PicdX :=
{L ∈ PicX : degL = d}

∼=
∼= J(X)



17

the moduli space of line bundles of multidegree d on X. Then the special
fiber of Picdf → B is ∐

|d|=d

PicdX.

Let us now ask: is Picdf → B separated? The answer is: no, unless X is
irreducible.

To explain why, let L := OX (D) and suppose that D is not a multiple
of X; consider the trivial bundle OX . It is clear that L and OX restrict to
isomorphic line bundles on every fiber but X. Indeed the restiction of L to
the special fiber is nontrivial, as its multidegree is different from 0 (because
D 6= mX). This is a simple instance of the “non-separatedness” of the
Picard functor.

We now define a subgroup Twf X of Pic0X as follows Twf X is the set of
all line bundles of the form OX (D)|X where D is a divisor on X supported
on the closed fiber X. Elements of Twf X are called twisters (or f -twisters).
Twisters are the reason why the Picard functor is not separated.

Remark 3.3.1. (1) Twf X is a discrete subgroup of Pic0X.
(2) [EM02, Cor 6.9] Let L ∈ Pic0X be such that there exists a subcurve

Z ⊂ X for which we have the following two identities:

LZ = OZ(−Z · Zc) LZc = OZc(Z · Zc)
(notation in 1.1.1.) Then L is a twister, i.e. there exists a regular
smoothing X → B such that L = OX (Z)|X

(3) By the previous observation f -twisters depend on the family f , un-
less X is of compact type. On the other hand their multidegree does
not, i.e. let f ′;X ′ → B′ be another regular smoothing of X, then

degOX (D)|X = degOX ,(D)|X .

For more details we refer to [C05].

3.3.2. Multidegree classes and Degree Class Group. By the previous remark
twisters depend on two types of data:

(1) discrete data, given by the choice of D =
∑
niCi, with ni ∈ Z,

(2) continuous data, namely the choice of the family f .
We shall now focus on the discrete data. For every component Ci of X

denote, if j 6= i
ki,j := #(Ci ∩ Cj)

and
ki,i = −#(Ci ∩X \ Ci)

then it is clear that for every pair i, j and for every non-singular X
degCj OX (Ci) = ki,j

Obviously we have that ki,j = kj,i and that
∑γ

j=1 ki,j = 0 for every fixed i .
Now, for every i = 1, . . . , γ set

ci := (k1,i, . . . , kγ,i) ∈ Zγ

and
Z := {d ∈ Zγ : |d| = 0}
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so that ci ∈ Z. Consider the sublattice ΛX of Z spanned by them

ΛX :=< c1, . . . , cγ > .

Thus, ΛX is the lattice formed by the multidegrees of all twisters, inside the
abelian group Z of multidegrees of degree 0.

It is easy to see that ΛX has rank γ−1, in fact any γ−1 among the c1, . . . cγ
are independent over Z, whereas the following natural relation occur

γ∑
1

ci = 0

(since
∑γ

1 ci = deg
C
OX(C) = 0).

Definition 3.3.2. The group ∆X := Z/ΛX is called the degree class group
of X.

The previous definition comes from [C94]. The degree class group has
other incarnations; most remarkably, it coincides with the group of compo-
nents of the Néron model of the Jacobian of a family of nodal, generically
smooth curves, with regular total space (due to A.Raynaud [R70], see also
[C05] for more details).

Example 3.3.3. If X is irreducible Z = ΛX = 0, hence ∆X = 0.
If X is a curve of compact type, then again ∆X = 0. More generally, we

have that ∆X = 0 if and only if X is treelike, i.e. every node lying in two
different components is separating. We leave the proof as exercise.

Let d and d′ be two multidegrees (so that d, d′ ∈ Zγ); we define them to
be equivalent if their difference is the multidegree of a twister, i.e.:

d ≡ d′ ⇔ d− d′ ∈ ΛX .

Now the quotient of the set of multidegrees with fixed total degree by this
equivalence relation is a finite set ∆d

X :

∆d
X :=

{d ∈ Zγ : |d| = d}
≡

.

It is easy to see that the cardinality of ∆d
X is independent of d, and of course

∆0
X = ∆X .

3.3.3. Combinatorial description of the Degree Class Group. To better ap-
preciate the combinatorial nature of the degree class group, let us follow
Oda and Seshadri [OS79][??] with a short digression. Fix an orientation on
a graph Γ (cf. 1.1.2), then we have the standard homology operators ∂ and
δ:

∂ : C1(Γ,Z) −→ C0(Γ,Z), e 7→ v − w
where the edge e goes from the vertex v to the vertex w. Next

δ : C0(Γ,Z) −→ C1(Γ,Z); v 7→
∑

e+
v −

∑
e−v

where the first sum is over all the edges e+
v starting at v, and the second

sum is over all the e−v v. Then we introduce the group

∂C1(Γ,Z)
∂δC0(Γ,Z)

.
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The theorem of Kirchoff-Trent states that such a group is finite and its
cardinality is equal to the complexity of Γ.

Proposition 3.3.4. For a nodal connected curve X with dual graph ΓX we
have

∆X
∼=

∂C1(ΓX ,Z)
∂δC0(ΓX ,Z)

.

In particular #∆X is equal to the complexity of the dual graph of X.

Proof. The proof is straightforward using the definitions of ∂ and δ. First
we identify Z ∼= ∂C1(ΓX ,Z) (because ΓX is connected). Then we have
ΛX ∼= ∂δC0(ΓX ,Z), in fact if vi is the vertex of ΓX corresponding to the
component Ci of X, then, by definition, one obtains ∂δ(vi) = −ci, for every
i = 1, . . . , γ.

The rest follows from the theorem of Kirchoff-Trent. �

Example 3.3.5. If X is a curve made of two smooth components meeting
at δ points, or if X is a “cycle” of δ smooth components, then ∆X is the
cyclic group of order δ.

3.3.4. Boundary points. What type of boundary points for the compactified
Picard scheme can we use?

To answer this question, let us consider a curve X with a node n, its
normalization Xν , and the two branch points p, q ∈ Xν over n. Assume
that Xν is connected, and pick M ∈ PicXν ; then the set of line bundles
on X pulling back to M is a k∗. Let us try and complete this k∗. Any line
bundle L ∈ PicX pulling back to M is obtained by gluing the fiber Mp of
M at p with the fiber of M at q, Mq; after fixing local trivializations for
M , any such gluing is an isomorphism obtained by mapping 1 ∈ k = Mp to
some c ∈ k = Mq with c 6= 0. We denote by L = L(c) the line bundle on X
corresponding to this gluing.

What happens when c goes to 0? The isomorphism Mp
∼=→Mq degenerates

to the zero map. So the sections of M compatible with this map are the
sections vanishing at q. We can interpret this as the fact that M degenerates
to M(−q). Unfortunately, in doing so we have lowered the degree, which is
obviously a problem. To fix this problem, we choose to replace the curve X
by the “blow up of X at n”, i.e. by the nodal curve Y obtained by adding to
Xν a smooth rational component E joining p with q. Now the limit of L(c)

as c goes to 0 is a line bundle L̂ ∈ PicY whose restriction to Xν is M(−q)
and whose restriction on E is OE(1) (i.e. the only degree 1 line bundle on
E). Now deg L̂ = degM . Moreover the automorphisms of Y which fix Xν

and act only on E (a k∗ of them) act transitively on the set (again a k∗) of all
line bundles on Y whith the same restrictions on Xν and E. Therefore our
limit point L̂ is uniquely determined up those automorphisms of Y which
fix Xν .

With a similar reasoning, if c tends to ∞ the limit of L(c) is a line bundle
on Y whose restriction to Xν is M(−p) and whose restriction to E is again
OE(1).
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4. Lecture 3

4.1. Balanced line bundles. The discussion in 3.3.4 served as motivation
for the fact that to compactify the Picard scheme we will use line bundles
on a simple type of semistable curves, the so-called quasistable curves.

Before we begin, let us point out that, although we will describe the com-
pactified Picard scheme for stable curves, there is no real loss of generality
in doing so.

Remark 4.1.1. Let Y be a connected nodal curves and X its stabilization,
The compactified Picard scheme of Y is naturally identified to the compact-
ified Picard scheme of X.

Definition 4.1.2. Let Y be a connected nodal curve of genus g.
If g ≥ 2, we say that Y is quasistable if is semistable (i.e. it has no rational

tails) and if two exceptional components do not intersect each other.
If g = 1 we say that it is quasistable if it is stable, or if it is the union of

two copies of P1.
If X is the stabilization of Y we say that Y is a quasistable curve of X. If

g ≥ 2 we denote by ε(Y ) the number of exceptional components of Y , and

(9) Yexc :=
⋃

E exceptional comp. of Y

E, Ỹ := Y r Yexc.

so, Ỹ is a partial normalization of the stabilization of Y at ε(Y ) nodes (see
4.1.3 for g = 1).

Remark 4.1.3. Let g = 1 and Y = C1 ∪C2 with Ci ∼= P1 and #C1 ∩C2 = 2.
We fix a stabilization map Y → X, which contracts one of the two compo-
nents. We then use the convention that the non contracted component (the
normalization of X) is not exceptional, whereas the contracted component
is exceptional. With this convention, notation (9) makes sense also when
g = 1.

Remark 4.1.4. Let X be a stable curve with δ nodes. Then the set of all
quasistable curves of X has cardinality 2δ.

Recall that a nodal curve Y of genus g has an invertible dualizing sheaf
ωY of degree 2g− 2, such that that for every subcurve Z ⊂ Y we have, with
the notation of 1.1.1, ωY ⊗OZ = ωZ(Z ·Zc) so that degZ ωY = 2gZ−2+δZ ,
where gZ is the arithmetic genus of Z.

Definition 4.1.5. Let Y be a quasistable curve of genus g ≥ 2 and let
L ∈ Picd Y .

(1) We say that L is balanced if its multidegree degL is balanced. i.e. if
the following two properties hold.
(a) For every exceptional component E ⊂ Y we have degE L = 1.
(b) For any subcurve Z ⊂ Y we have

(10) | degZ L− degZ ωY
d

2g − 2
| ≤ δZ

2
(2) We say that L, or degL, is strictly balanced if it is balanced and if

strict inequality holds in (10) for every subcurve Z ( Y such that
Z ∩ Zc 6⊂ Yexc.
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(3) We denote

Bd(Y ) = {d : |d| = d balanced on Y } ⊃ SBd(Y ) = {d : strictly balanced}
(4) A stable curve X is called d-general if Bd(X) = SBd(X).

Remark 4.1.6. A couple of observations which simplify the computations.
First of all, if d is a multidegree on Y and Z ⊂ Y a subcurve we denote by
dZ ∈ Z the total degree of the restriction of d to Z.

(1) It is convenient to introduce the notation

mZ(d) := degZ ωY
d

2g − 2
− δZ

2
, MZ(d) := degZ ωY

d

2g − 2
+
δZ
2
.

Now (10) reads as follows:

mZ(d) ≤ dZ ≤MZ(d).

(2) Condition (10) holds on Z if and only if it holds on Zc.
(3) Condition (10) holds on every subcurve if and only if it holds on

every connected subcurve.

Remark 4.1.7. Let X be a stable curve. Then every multidegree class [d] ∈
∆d
X has a balanced representative; the balanced representative is unique if

and only if it is strictly balanced ([C94]).

Example 4.1.8. d = 0.
The inequality (10) gives

−δZ/2 ≤ degZ L ≤ δZ/2.
Let X = C1 ∪ C2 with Ci nonsingular and δ = δCi = 2 for i = 1, 2. Call
Xsing = {n1, n2}. The set of non stable, quasistabe curves of X, is made of
three curves: two curves Y1 and Y2 obtained by blowing up the node ni of
X; the curve X̂ obtained by blowing up both nodes of X.

We have,
(1) SB0(X) = {(0, 0)} and B0(X) = {(−1, 1), (0, 0), (1,−1)}
(2) SB0(Yi) = ∅ and B0(Yi) = {(−1, 0, 1), (0,−1, 1)} for i = 1, 2.
(3) SB0(X̂) = {(−1,−1, 1, 1)} = B0(X̂)

where we ordered the multidegrees so that the degrees on the exceptional
components are at the end.

More generally, for every δ ≥ 1 one easily checks that X is 0-general if
and only if δ is odd.

Example 4.1.9. d = g − 1.
Condition (10) yields

gZ − 1 ≤ degZ L ≤ gZ − 1 + δZ .

Therefore a stable curve is (g − 1)-general if and only if it is irreducible.
By imposing condition (10) to Z and to Zc it suffices to impose only one

of the two above inequalities to every subcurve of Y . In other words, a line
bundle L of degree g − 1 is balanced if for every subcurve Z we have

gZ − 1 ≤ degZ L

and if strict inequality holds for exceptional components.
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Let us show that

(11) Xsep 6= ∅ ⇒ SBg−1(X) = ∅.

Let n ∈ Xsep and write X = Z∪Zc with Z∩Zc = n. Hence g = gZ +gZc .
Suppose by contradiction that there exists d ∈ SBg−1(X). Then we have
dZ ≥ gZ and dZc ≥ gZc ; hence

g − 1 = dZ + dZc ≥ gZ + gZc = g

a contradiction. The converse of (11) also holds, as we shall explain later.

Definition 4.1.10. The strictly balanced Picard functor associated to a
stable curve X is the contravariant functor PdX from the category of schemes
to the category of sets defined as follows. For any scheme B the set PdX(B)

is the set of equivalence classes of pairs (Y f→ B,L) where f : Y → B is a
family of quasistable curves having X as stabilization, and L ∈ PicY is a
relatively degree d, stricty balanced line bundle.

For any morphism φ : B′ → B the map PdX(B)→ PdX(B′) maps (Y →B,L)
to (Y ×B B′→B′,L′) where L′ is the pull back of L via Y ×B B′ → Y.

We define (Y f→ B,L) and (Y ′ f
′
→ B,L′) to be equivalent if the following

facts hold.

(1) The stabilizations of f and f ′ coincide; let X → B be their stabi-

lization, and let Y σ→ X → B and Y ′ σ
′
→ X → B be the stabilization

maps.
(2) There exists an isomorphism α : Y → Y ′ which commutes with σ

and σ′ (i.e. α is an X -isomorphism) and a line bundle M ∈ PicB
such that α∗L′ ∼= L ⊗ f∗M .

Remark 4.1.11. Let L,L′ ∈ PicY be two strictly balanced line bundles on
the quasistable curve Y . Let L̃ and L̃′ be the restrictions of L and L′ to the
curve Ỹ ⊂ Y (the complement of the exceptional components, cf. 4.1.2).
Then L and L′ are equivalent if and only if L̃ ∼= L̃′. Indeed, L̃ ∼= L̃′ if and
only if L and L′ differ only in the gluing data on Ỹ ∩ Yexc. On the other
hand the automorphisms of Y which fix Ỹ act transitively on those gluing
data, and fix the stabilization of Y . Therefore L̃ ∼= L̃′ if and only if L and
L′ are equivalent.

4.1.1. The strictly balanced class of a balanced line bundle. To begin with,
observe that the terminology “strictly balanced” is not to be confused with
the terminology “stably balanced” used in [CCC04] or in [C05]. They coin-
cide for stable curves; in general stably balanced implies strictly balanced,
but the converse fails, see example 4.1.13 below.

A balanced multidegree on a quasistable curve is called stably balanced if
part (2) of Definition 4.1.5 is strengthened by requiring that strict inequality
holds in (10) for every subcurve Z ( Y such that Zc 6⊂ Yexc.



23

The degree d compactified Picard scheme of X, denoted P dX , is con-
structed as the GIT-quotient of a certain scheme VX , containing only GIT-
semistable points, by a certain group G. So that there is a quotient mor-
phism

(12) VX −→ P dX = VX/G.

Equivalence classes of strictly balanced line bundles of degree d on qua-
sistable curves of X correspond to the closed (and GIT-semistable) orbits of
G on VX .

Equivalence classes of balanced line bundles correspond to GIT-semistable
orbits, i.e. to all the G-orbits in VX , and equivalence classes of stably bal-
anced line bundles correspond to the GIT-stable orbits in VX . Therefore a
stably balanced line bundle is strictly balanced, but the converse fails in the
presence of GIT-semistable points which are not stable.

Of course, if there are some non stable GIT-semistable points, some points
of the GIT-quotient parametrize more than one G-orbit. But every such
point parametrizes a unique closed orbit. Therefore to every point in the
compactified Picard scheme P dX there corresponds a unique equivalence class
of strictly balanced line bundles.

Remark 4.1.12. By what we said, to every balanced line bundle L on a
quasistable curve of X there corresponds a strictly balanced line bundle,
LSB, uniquely determined up to equivalence. Indeed the equivalence class
of LSB, written [LSB], corresponds to the unique closed orbit contained in
the closure of the orbit of L in VX .

We call [LSB] the strictly balanced class of L. A formula for [LSB] will be
given in Lemma 4.2.4.

Example 4.1.13. Let X = C1 ∪ C2 be a stable curve made of two smooth
components meeting at two points and let Y = C1 ∪ C2 ∪ E1 ∪ E2 be the
quasistable curve of X obtained by blowing up both nodes of X. Let d = 0.
Consider the strictly balanced multidegree on Y

d := (−1,−1,+1,+1) ∈ SB0(Y )

(the exceptional components are listed at the end). Now, d is not stably
balanced, indeed the degree on C1 is equal to the minimum allowed by (10)
but, of course, Cc1 contains C2.

4.2. Compactified Picard shemes of nodal curves. In the next state-
ment we will use the following notation: If Y is a quasistable curve of X
and L ∈ PicdX we denote by L̃ the restriction of L to Ỹ (see 4.1.2) and by
d̃ the multidegree of L̃, so that L̃ ∈ Piced Ỹ .

Theorem 4.2.1. Let X be a stable curve of genus g ≥ 2. There exists
a reduced, connected projective scheme P dX of pure dimension g with the
following properties

(1) P dX is a coarse moduli scheme for the strictly balanced Picard functor.
In particular, there exists a map

PdX(B)→ Hom(B,P dX); L 7→ µL.
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The above map is a bijection if B = Spec k with k an algebraically
closed field.

(2) For any family f : Y → B of quasistable curves of X, and any rela-
tively balanced degree d line bundle L on Y, there exists a morphism
µL : B → P dX such that, ∀b ∈ B, the point µL(b) parametrizes the
strictly balanced class of the restriction of L to f−1(b) (cf 4.1.12).

(3) Let P dX be the smooth locus of P dX . If Xsep = ∅ there exists a canon-
ical isomorphism

P dX ⊃ P
d
X
∼=

∐
d∈SBd(X)

PicdX.

If Xsep 6= ∅ there exists an isomorphism P dX
∼=
∐
d PicdX where d

varies in a finite set.
(4) There is a canonical isomorphism

P dX
∼=

∐
Y quasistable curve of X

d∈SBd(Y )

Piced Ỹ .

(5) The generalized Jacobian J(X) acts on P dX by tensor product. Each
stratum of the decomposition (4) is left invariant under this action.

Let us explain part (5). A point λ in P dX corresponds to a pair (Y, L)
where Y is a quasistable curve of X and L a strictly balanced line bundle
on Y . Recall from Remark 4.1.11 that λ is determined by the restriction L̃

of L to Ỹ ⊂ Y ; in other words we can write λ = [Ỹ , L̃]. The curve Ỹ is a
partial normalization of X, let ν̃ : Ỹ → X be the normalization map. For
every M ∈ J(X) = Pic0X the action of M maps [Ỹ , L̃] to [Ỹ , L̃ ⊗ ν̃∗M ].
Since deg L̃ = deg ν̃∗M by gluing the line bundle ν̃∗M to OE(1) on each
exceptional component of Y we get a strictly balanced line bundle. From
this we obtain that the stabilizer of λ under this action is a torus:

(13) StabJ(X)(λ) = {M ∈ J(X) : ν̃∗M = OeY } ∼= (k∗)t

with t = b1(ΓX)− = b1(ΓeY ).

Remark 4.2.2. Parts (3) and (4) of the theorem imply that the singular locus
of P dX has codimension one. In particular P dX is not a normal scheme, unless
X is of compact type, in which case P dX is nonsingular (and irreducible).
In fact if X is a curve of compact type, for every d there exists a unique
quaistable curve Y of X such that SBd(Y ) 6= ∅. We leave this claim as an
exercise.

Example 4.2.3. If X is a reducible curve not of compact type the structure
of P dX varies with d. For example, consider a curve X = C1 ∪ C2 as in
example 4.1.8 (with the same notation). If δ ≥ 3 is odd then P 0

X has δ
irreducible components, one for every multidegree class. On the other hand
P g−1
X has only δ − 1 irreducible components, as

SBg−1(X) = {(g1, g2 + δ − 2), (g1 + 1, g2 + δ − 3), . . . , (g1 + δ − 2, g2)}.
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On the other hand if δ = 1, so that X is of compact type, P 0
X ha one

irreducible component such that

P 0
X
∼= Pic(0,0)X = Pic0C1 × Pic0C2.

What if d = g − 1? Then SBg−1(X) = ∅. Let Y be the blow up of X at its
node, so that Y = C1 ∪ C2 ∪ E; we have SBg−1(Y ) = {(g1 − 1, g2 − 1, 1)},
hence

P g−1
X
∼= Pic(g1−1,g2−1,1) Y = Picg1−1C1 × Picg2−1C2 × Pic1E

hence
P g−1
X
∼= Picg1−1C1 × Picg2−1C2.

4.2.1. Constructing the strictly balanced class. Given a balanced line bundle
L ∈ Picd Y we want to construct [LSB]. This will be done in Lemma 4.2.4,
to state which we need some preliminaries. We say that a node n of Y is
exceptional if it lies in an exceptional component of Y , and denote by Y exc

sing

the set of exceptional nodes of Y . We shall say that a connected subcurve
Z ⊂ Y is d-minimal if dZ = mZ (notation in Rk. 4.1.6). Set

(14) S(d) := {n ∈ Ysing r Y exc
sing : ∃Z d-minimal with n ∈ Z ∩ Zc}.

We let σ : Y (d) → Y be the blow-up of S(d), so that Y (d) is a quasistable
curve, and σ contracts one exceptional component, En ⊂ Y (d), for every
n ∈ S(d). For every d-minimal Z ⊂ Y there exists a subcurve of Y (d)
mapping isomorphically to Z via σ; we abuse notation and call Z this curve.
For every n ∈ S(d) lying in Z∩Zc there exists a unique point pn ∈ Z ⊂ Y (d)
mapping to n; of course pn is a node of Y (d). Let

ν : Y ν(d) −→ Y (d)

be the normalization of Y (d) at all nodes of the form pn for all n ∈ S(d).
Finally, ∀n ∈ S(d) we pick a smooth point rn ∈ Y ν(d) such that ν(rn) ∈ En.
With the above set-up, we have the following

Lemma 4.2.4. Let Y be a quasistable curve of a stable curve X and let
L ∈ Picd Y be balanced. Then the strictly balanced class [LSB] ∈ P dX of L
parametrizes (strictly balanced) line bundles LSB ∈ PicY (d) whose pull-back
to Y ν(d) satisfies

(15) ν∗LSB = ν∗σ∗L⊗OY ν(d)(
∑

n∈S(d)

(rn − pn)).

Proof. Recall that we have a GIT-quotient map VX −→ P dX = VX/G, and
that strictly balanced classes correspond to the closed orbits of the action
of G on VX We use [C94, Lemma 6.1] characterizing the closed orbits in
VX in terms of the multidegrees of the line bundles they parametrize. That
Lemma states that L is strictly balanced if and only if for every d-minimal
Z ⊂ Y we have that Z ∩ Zc is contained in the union of the exceptional
components of Y .

The curve Y (d) has been constructed by blowing up every non-exceptional
node lyig in Z ∩Zc for every d-minimal curve. The pull-back of L to Y (d) is
not balanced, as it has degree 0 to the exceptional components En. To adjust
σ∗L to get a balanced (in fact, a strictly balanced) line bundle equivalent
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to L we need to tensor by OY ν(d)(
∑

n∈S(d)(rn − pn)) its pull back to Y ν(d).
Checking the details is easy, and we leave it to the reader. �

Theorem 4.2.5. Fix d and g ≥ 3.
(1) There exists an integral, normal, projective scheme P dg with a projec-

tive morphism, π, onto Mg, with the following property. For every
family of quasistable curves f : Y → B of genus g and every rela-
tively balanced, degree d line bundle on Y there exists a morphism
µL : B → P dg such that the diagram below is commutative:

B
µf //

µL ��=
==

==
==

= Mg

P dg

π

?? ??~~~~~~~~

where µf is the moduli map of the stabilization f of f .
(2) The following conditions are equivalent

(a) (d− g + 1, 2g − 2) = 1.
(b) Every X ∈Mg is d-general.
(c) P dg is the geometric quotient of a smooth scheme by a group

acting with finite stabilizers.
If these conditions hold, the morphism π is flat. Moreover P dg is
the coarse moduli scheme of a Deligne-Mumford stack Pd,g with
a strongly representable morphism onto the moduli stack of stable
curves Mg.

Condition (2a) is the same as that of Theorem 3.2.1 ([MR85]). The con-
structon of the scheme P dg was performed in [C94], using GIT along the same
lines as the construction of Mg. All of the above results, with the exception
of the part concerning the associated stacks, were proved in [C94].

For the stack version and the relation of the above construction with
Néron models of Jacobians see [C05]. More generally the Artin stack asso-
ciated to the scheme P dg for every d is studied in details in [M08].
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5. Lecture 4

5.1. Linear series on nodal curves. The central objects in the classical
theory of linear series on curves are the so-called Brill-Noether varieties,
which we will now define for any connected nodal curve Y . Fix two integers
d and r ≥ 0.

W r
d (Y ) := {L ∈ Picd Y : h0(Y,L) ≥ r + 1}.

Among the fundamental facts for line bundles on smooth curves which ex-
tend directly to nodal ones we recall

Theorem 5.1.1. Let Y be a nodal connected curve of genus g
(1) (Riemann-Roch) For any L ∈ Picd Y we have

h0(Y,L)− h1(Y, L) = d− g + 1.

(2) (Serre duality) Let ωX be the dualizing sheaf of Y ; then

h0(Y, ωY ) = h1(Y,OY ) = g.

Let us now state some other important facts which are easily seen to fail
for reducible nodal curves.

Theorem 5.1.2. Let C be a smooth curve of genus g and let L ∈ PicdC.
(1) If d < 0 then h0(C,L) = 0.
(2) (Clifford theorem) If 0 ≤ d ≤ 2g − 2 then h0(C,L) ≤ d/2 + 1. If

d = 0 or d = 2g − 2, then equality holds if and only if L = OC and
L = ωC .

(3) (Riemann theorem) If d ≥ 2g − 1 then h0(C,L) = d− g + 1.

Example 5.1.3. Let X = C1∪C2 with g1 = g2 = 1. Suppose #C1∩C2 = 1.
Let L ∈ Pic−1X be any line bundle of multidegree (−3, 2). Then, calling
pi ∈ Ci the branches over the node, we have

h0(X,L) = h0(C2, L|C2
(−p2) = 1

because degL|C2
(−p2) = 1. This shows that (1) of the above theorem fails.

Let L ∈ Pic0X have multidegree (−3, 3). Then, notation as above,

h0(X,L) = h0(C2, L|C2
(−p2) = 2

showing that Clifford’s therem fails.
We leave it as an exercise to show that Riemann theorem, part (3) above,

fails for infinitely many multidegrees (and for any reducible curve).

As we have seen in the previous lectures, if one restricts the Picard func-
tor to balanced, or strictly balanced, line bundles, the functor has better
representability properties. Now we shall see that, with such a restriction,
also the Brill-Noether theory is better behaved.

Theorem 5.1.4. Let Y be a quasistable curve of genus g and let L ∈ Picd Y
be a balanced line bundle.

(1) If d ≤ 0 then h0(Y, L) = 0 unless L = OY .
(2) (Riemann theorem) If d ≥ 2g − 1 then h0(Y,L) = d− g + 1.
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(See [C08, Thm 2.2.1 and Lemma 4.4.1]) The situation for the Clifford’s
theorem is less clear. Let us summarize the known facts in a unique state-
ment.

Theorem 5.1.5 (Generalized Clifford theorem). Let Y be a quasistable
curve of genus g and let L ∈ Picd Y be balanced, with 0 ≤ d ≤ 2g − 2. Then
h0(Y,L) ≤ d/2 + 1 if one of the following conditions holds

(1) d = 0 or d = 2g − 2. Moreover, in this case h0(Y,L) = d/2 + 1 if
and only if L = OY or L = ωY .

(2) Y has at most two irreducible components.
(3) d = 1, 2 and Y is free from separating nodes.
(4) d = 3, 4 and Y is stable and free from separating nodes.

The last two parts are sharp, as shown by several counterexamples. More-
over there are counterexamples showing that for d ≥ 5 the Clifford theorem
fails for stable curves free from separating nodes; we refer to [C08, Sections
3 and 4] for more details.

The following question, having a strong combinatorial nature, is open:

Problem 5.1.6. How does Clifford theorem generalize (to balanced line bun-
dles) for any d with 0 < d < 2g − 2?

5.2. Theta divisor.

5.2.1. Theta divisor of a smooth curve. We refer to [ACGH] for more details
about this subsection. The theta divisor on a smooth curve C of genus g ≥ 1
can be intrinsically defined in Picg−1C as follows:

Θ(C) := W 0
g−1(C) ⊂ Picg−1C.

Let us show that Θ(C) is an irreducible codimension-one subvariety of
Picg−1C. Consider the Abel map αg−1

C in degree g − 1, i.e. the morphism

(16) αg−1
C : Cg−1 −→ Picg−1C; (p1, . . . , pg−1) 7→ OC(

g−1∑
i=1

pi).

It is clear that the image of αg−1
C coincides with W 0

g−1(C), hence Θ(C) is an
irreducible closed subscheme. Now the generic fiber of αg−1

C has dimension
0, in fact it is well known that if g ≥ 3

dimW 1
g−1(C) =

{
g − 3 if C is hyperelliptic
g − 4 otherwise

(see [ACGH, p.250]). On the other hand of g = 1, 2 it is trivial to check
that W 1

g−1(C) = ∅.
The theta divisor turns out to be ample, and, which is perhaps its most im-

portant property, the isomorphism class of the pair (Picg−1C,Θ(C)) uniquely
determines the isomorphism class of C:

Theorem 5.2.1 (Torelli theorem). Let C and C ′ be two smooth connected
curves of genus g ≥ 1. Then (Picg−1C,Θ(C)) ∼= (Picg−1C ′,Θ(C ′)) if and
only if C ∼= C ′.
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See [T13] or [ACGH].
The geometry of the theta divisor encodes some important properties of

the curve C and its linear series. A striking instance of this is the following

Theorem 5.2.2 (Riemann Singularity Theorem). Let L ∈ Picg−1C be a
line bundle on a smooth curve C such that h0(C,L) 6= 0; let [L] ∈ Θ(C) be
the corresponding point. Then mult[L]Θ(C) = h0(C,L).

See [ACGH, Chapt.VI]. In particular we have that the singular locus of
Θ(C) coincides with W 1

g−1(C). This is one of the facts used to prove the
characterization of hyperelliptic curves given above.

5.2.2. Compactified Picard scheme in degree g − 1. Now let us consider a
stable curve X, and let us try to generalize the previous picture.

By what we said, it seems reasonable to restrict to the case d = g − 1.
Moreover, we have seen that the structure of the compatified Picard scheme
P dX varies with d in general. This is another good reason to concentrate on

the case d = g − 1. Let us define the Theta divisor in P g−1
X exactly as for

smooth curves. Recall that a point in P g−1
X parametrizes a unique pair [Y,L]

where Y is a quasistable curve of X and L ∈ Picg−1 Y is a strictly balanced
line bundle on Y . Now we set

Θ(X) := {[Y,L] ∈ P g−1
X such that h0(Y,L) 6= 0}

where it is understood that Y is a quasistable curve of X and L ∈ Picg−1 Y
is strictly balanced.

Now recall that Ỹ is the curve obtained by removing the exceptional
components from Y , and L̃ denotes the restriction to Ỹ of an L ∈ PicY .
We already noticed that the pair (Ỹ , L̃) uniquely determines the point [Y,L]
in the compactified Picard scheme. Moreover we have

Remark 5.2.3. Let L be a balanced line bundle on the quasistable curve Y ,
then h0(Y, L) = h0(Ỹ , L̃) ([C07, Lemma 4.2.5])

Before continuing, we will show that, if d = g − 1, computations become
easier and the definition of balanced line bundles can be generalized. We
begin by a straitghtforward lemma.

Lemma 5.2.4. Let Y be a quasistable curve of genus g ≥ 2. L ∈ Picg−1 Y
is strictly balanced if and only if the following hold

(1) degE L = 1 for every connected E ⊂ Yexc;
(2) degZ L > gZ − 1 for every Z ( Y such that Z ∩ Zc ( Yexc;
(3) degZ L = gZ − 1 for every Z with Z ∩Zc ⊂ Yexc such that Z ( Yexc.

Proof. The “if” part is clear. Conversely, assume L strictly balanced. The
first two conditions hold by definition; we need to prove condition (3). Re-
call that, since L is balanced, for every Z we have gZ − 1 ≤ degZ L (see
Example 4.1.9). Let E1, . . . , EδZ be the exceptional components intersect-
ing Z, and set EZ = E1 ∪ . . . ∪ EδZ . Then L is balanced if and only if
degEZ L = δZ . If EZ = Zc we have

g − 1 = degZ L+ degEZ L ≥ gZ − 1 + δZ = g − 1
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(since gZ = g − δZ); therefore equality holds and degZ L = gZ − 1. If
Zc ⊂ Yexc we are done.

Now suppose Zc 6⊂ Yexc, i.e. EZ ( Zc; recall that we can assume that Z is
connected (Remark 4.1.6). LetW = EcZ , so that Z is a connected component
of W . By the previous part of the argument we know that L is (strictly)
balanced if and only if degW L = gW −1; notice that gW =

∑c
i=1 gWi + 1− c

where W1, . . . ,Wc are the connected components of W . We have

degW L = gW − 1 =
c∑
i=1

(gWi − 1) ≤
c∑
i=1

degWi
L = degW L

therefore equality must hold. Hence for every connected component Wi of
W we have degWi

L = gWi − 1. In particular this holds for Z. �

Our goal is to characterize strictly balanced line bundles by disregarding
the exceptional components. This would significantly simplify matters, aslo
in view of remark 5.2.3. The previous lemma enables us to do that. First
we need a definition.

Notice also that the inequalities defining balanced and strictly balanced
line bundles in degree g − 1 make sense for every g (not only g ≥ 2, as in
Definition 4.1.5).

Definition 5.2.5. Let Y be a connected nodal curve of genus g ≥ 0 and
L ∈ PicY . We say that L, or its multidegree, is stable if degL = g − 1 and
if for every proper subcurve Z ( Y we have degZ L > gZ − 1.

If Y is not connected, we say that L ∈ PicY is stable if the restriction of L
to every connected component of Y is stable (in particular, degL = gY −1).

We denote by Σ(Y ) the set of stable multidegrees on Y .

Example 5.2.6. If X is a stable curve we have Σ(X) = SBg−1(X).
Let Y = C0 ∪ C1 with #C0 ∩ C1 = 2, C0

∼= P1 (i.e. C0 is an exceptional
component) and C1 smooth of genus g − 1 ≥ 1. Now Σ(Y ) = {(0, g − 1)}
whereas SBg−1(Y ) = {(1, g − 2)}.

Recall that for a quasistable curve Y of genus g the subcurve Ỹ is a
(possibly non connected) curve, of genus g − ε(Y ) (cf.4.1.2).

The following is a trivial consequence of Lemma 5.2.4

Corollary 5.2.7. Let Y be a quasistable curve of genus g ≥ 2. The following
map is a bijection

SBg−1(Y ) −→ Σ(Ỹ ); d 7→ deY .
Now we will give a simpler description of P g−1

X and, with it, state some
properties of Θ(X). First, for any set of nodes of X, S ⊂ Xsing, we will
denote by YS → X the normalization of X at S; thus YS is a nodal curve of
genus g −#S. From the previous discussion and Theorem 4.2.1 we obtain
the following

Proposition 5.2.8. Let X be a nodal connected curve of genus g.
(a) There is a canonical isomorphism:

(17) P g−1
X
∼=

∐
∅⊆S⊆Xsing

d∈Σ(YS)

Picd YS .
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(b) Σ(YS) 6= ∅ if and only if YS has no separating node.

Now we turn to the Theta divisor. Let d = (d1, . . . , dγ) ∈ Σ(X) be a
stable multidegree (in particular, X is free from separatig nodes). Consider
the following rational map

α
d
X : Cd11 × . . .× C

dγ
γ 99K PicdX ⊂ P g−1

X ; (p1, . . . , pg−1) 7→ [OX(
γ∑
1

pi)].

The above map is regular away from the preimages of the nodes of X. It
is a generalization of the Abel map described in (16), indeed the product
Cd11 × . . . × C

dγ
γ is an irreducible component of Xg−1 (notice that, as d is

stable, di ≥ 0 for each i).

Theorem 5.2.9. Let X be a nodal connected curve of genus g
(a) There is a canonical isomorphism compatible with (17)

(18) Θ(X) ∼=
∐

∅⊆S⊆Xsing

d∈Σ(YS)

Wd(YS).

(b) Θ(X) is a Cartier, ample divisor of P g−1
X .

(c) Assume that X is free from separating nodes. Then for every d ∈ Σ(X)
we have

PicdX ⊃ Im
α
d
X

= Wd(X).

In particular, every irreducible component of P g−1
X contains exactly one

irreducible component of Θ(X).

The previous statement summarizes results of [S94], [E97], [Ale04] and
[C07].

5.3. Torelli problem. The classical Torelli Theorem 5.2.1 can be stated
using moduli spaces. Namely, let Ag be the moduli scheme of principally
polarized abelian varieties of dimension g (which exists and is a quasipro-
jective coarse moduli scheme); then the Torelli map

tg : Mg → Ag

mapping a curve to its Jacobian, polarized by the theta divisor (everything
up to isomorphism) is injective.

Now, we know how to compactify Mg using stable curves, and we have
shown that every stable curve has a compactified Jacobian, endowed with
an ample Cartier divisor generalizing the Theta divisor.

It is thus natural to ask: does the Torelli map extend from Mg to some
good compactification of Ag? If so, is the extension injective? If it is not
injective, what are its fibers?

The moduli space Ag has been shown, over the years, to have several inter-
esting compactifications. We want to introduce one that has been costructed
recently, and which has the advantage of having a straightforward modular
description which ties in well with what we discussed so far.

To explain that, let us list some useful properties of our compactified
Picard scheme. Let X be a connected nodal curve of genus g, J(X) its
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generalized Jacobian, P g−1
X is compactified Picard scheme in degree g − 1

and Θ(X) ⊂ P g−1
X its Theta divisor. Recall that J(X) is a semiabelian

variety i.e. it fits in an exact sequence of algebraic groups whose kernel is a
torus (called the toric part of J(X)) and whose cokernel and abelian variety
(see (7)).

Fact 5.3.1. Let X be a connected nodal curve of genus g. Then

(a) P g−1
X is a connected, projective, reduced scheme of pure dimension equal

to dim J(X) = g.
(b) J(X) acts on P g−1

X with finitely many orbits. The stabilizer of every
orbit is a subtorus of the toric part of J(X).

(c) P g−1
X is seminormal.

(d) Θ(X) is an ample, Cartier divisor of P g−1
X which does not contain any

J(X)-orbit, and such that h0(Θ(X)) = 1.

Some of the above properties have already appeared. For (a) see Theo-
rem 4.2.1. For (b), we have seen after Theorem 4.2.1 that each J(X) orbit
is canonically isomorphic to Picd YS with d ∈ Σ(YS), and its stabilizer is
the set of line bundles on X which pull back to OYS (cf. (13) and Proposi-

tion 5.2.8). The seminormality of P g−1
X is proved in [Ale04]. Part (d) has

almost entirely been discussed before; the fact that Θ(X) does ot contain
any orbit follows from the fact that Wd(YS) ( Picd YS for every stable d on

YS (using the decompositions of P g−1
X and Θ(X) given in Proposition 5.2.8

and Theorem 5.2.9)
A consequence of the above properties is that the pair (P g−1

X ,Θ(X)) to-
gether with the action of J(X) is a so called principally polarized stable
semi-abelic pair, in the sense of Alexeev [Ale02].

As proved in [Ale02], is the fact that principally polarized stable semi-
abelic pairs admit a projective moduli space:

Theorem 5.3.2 (Alexeev). There exists a projective scheme A
mod
g which

is a coarse moduli space for principally polarized stable semi-abelic pairs of
dimension g. The main irreducible component of Amod

g contains a dense
open subset naturally isomorphic to Ag.

See also [Bri07] for an expository description.
Now let us go back to the the Torelli map tg. The largest subset of Mg

admitting a regular map to Ag extending tg is the locus of curves of compact
type (see Lemma 2.1.1). Moreover tg extends to a regular map

tg : Mg −→ A
mod
g ; [X] 7→ (P g−1

X ,Θ(X))

([Ale04]). Now we can ask how the Torelli theorem generalizes. It is not
hard to see that if g ≥ 3 tg cannot possibly be injective. Indeed, it has
positive dimensional fibers over the locus of curves having a separating node
(see [Nam80, Thm 9.30(vi)]). The natural question is now: is tg injective
away from curves with a separating node?

This question, with a different formulation (i.e. using a different com-
pactification of Ag) was explicitely asked by Namikawa.
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The answer, obtained very recently, is: no. In [CV209] there is a precise
description of the fibers of tg; in particular, although on the locus of curves
free from separting nodes, tg has finite fibers, it fails to be injective on that
locus as soon as g ≥ 5.
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