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Abstract. We give a combinatorial characterization of nodal curves admitting a
natural (i.e. compatible with and independent of specialization) d-th Abel map for
any d ≥ 1.

Let X be a smooth projective curve and d a positive integer; the classical d-th
Abel map of X, αd

X : Xd −→ Picd X, associates to (p1, . . . , pd) ∈ Xd the class of
the line bundle OX(p1 + . . . + pd) in Picd X. This morphism has good functorial
properties, it is compatible with specialization and base change.

Now let X be a singular nodal curve occurring as the limit of a family of smooth
curves. We ask whether there is a notion of d-th Abel map for X which is limit
of the Abel maps of the smooth curves of the family, and which is natural, i.e.
independent of the choice of the family.

It is known that, although a nodal curve X is endowed with a generalized Ja-
cobian and a Picard scheme which are both natural (i.e. they are the limit of the
Jacobians and, respectively, of the Picard schemes of the fibers of every family of
curves specializing to X), there are interesting degeneration problems about line
bundles and linear series where naturality is a subtle issue. Here we investigate the
case of Abel maps.

The main result of this paper, Theorem 1.5, characterizes in purely combinatorial
terms nodal curves that possess a natural d-th Abel map.

A consequence of our result is that, if we consider stable curves of genus g ≥ 2,
then the locus in Mg of curves that fail to admit a natural d-th Abel map, for a
fixed d ≥ 2, has codimension 2. So, naturality of Abel maps is not to be taken for
granted, unless X is irreducible or of compact type, in which case it is not difficult
to see that natural Abel maps exist for all d.

What is a good notion of Abel maps for singular curves? The same definition
as for the smooth case behaves badly under specialization; moreover, it obviously
does not make sense if some of the pi are singular points of X. This last problem
will not be an issue here: we shall only study noncomplete Abel maps, which is
enough for our scopes.

So, for us a d-th Abel map is a rational map β : Xd 99K Picd X arising as the
limit of Abel maps of smooth curves specializing to X, for some family. A further
requirement is added to ensure separation; see 1.2.

Thus, the target space of our d-th Abel map is the Picard scheme, not any
particular compactification of it. Our definition and results should be sufficently
general to apply to various compactified Picard schemes existing in the literature
(see section 5).

The construction of complete Abel maps for singular curves was carried out by
A. Altman and S. Kleiman for irreducible and reduced curves in [AK]; see also
[EGK00] for further results. Not much is known for reducible curves. Recently,
in [CE06], degree-1 Abel maps of stable curves have been defined, compactified,
and shown to be natural. For higher d the completion problem is open in general,
see [Co06] for some progress in case d = 2. The main result of the present paper
indicates that a safe way to approach it is to work with a fixed one-parameter
smoothing of the given curve X (as in [CE06] and [Co06]), or to restrict to natural
Abel maps.

Among our techniques, the main one is the use of Néron models of Jacobians (as
constructed by M. Raynaud in [R70]); this allows us to obtain a concrete description
of our axiomatically defined Abel maps. Then we combine a result of E. Esteves and
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N. Medeiros about deformation of line bundles and enriched structures (in [EM02])
with a detailed combinatorial analysis.

I wish to thank Simone Busonero and Eduardo Esteves for precious suggestions
and remarks.

1. Statement of the main result

In this section we state the main theorem (1.5) after a few preliminaries.

1.0.1. Conventions. We work over an algebraically closed field k. X always denotes
a connected, reduced, projective curve defined over k having at most nodes as
singularities, and C1, . . . , Cγ its irreducible components.

By a (one-parameter) regular smoothing of X we mean a proper morphism
f : X → B = Spec R, with R a discrete valuation ring having residue field k
and quotient field K, such that X is the closed fiber of f , the total space X is non-
singular, and such that the generic fiber of f , denoted XK , is a smooth projective
curve over K.

Let X = ∪γ
1Ci be a curve as above and L ∈ Pic X a line bundle on it. Then

L has a degree, d = deg L ∈ Z, and a multidegree, d = deg L ∈ Zγ defined as
deg L := (degC1

L, . . . , degCγ
L). Denoting Picd X, respectively Picd X, the locus

in Pic X of line bundles of degree d, respectively of multidegree d, we have

Pic X =
∐
d∈Z

Picd X Picd X =
∐

d∈Zγ :|d|=d

Picd X,

where |d| :=
∑γ

1 di for every d = (d1, . . . , dγ) ∈ Zγ . Picd X is (non canonically)
isomorphic to the generalized Jacobian of X.

If Z ⊂ X is a (complete) subcurve, we denote by dZ the multidegree of L|Z (L
restricted to Z) and by |dZ | the total degree of L|Z .

Set D(X) := {D =
∑

niCi, ni ∈ Z} the free abelian group generated by
C1, . . . , Cγ . If Z ⊆ X is a subcurve of X, so that Z = ∪Ci⊂ZCi, we shall, as
usual, abuse notation by denoting again Z =

∑
Ci⊂Z Ci ∈ D(X).

For any f : X −→ Spec R be a regular smoothing of X we have a symmetric
bilinear product ( · ) : D(X)×D(X) → Z, often called the “intersection pairing”,
which is the same for every f (as long as the total space X is regular, which we
always assume). Recall that (X ·D) = 0 for all D ∈ D(X).

For any subcurve Z ⊂ X we set Z ′ := X r Z and kZ := (Z · Z ′) = −Z2.
Consider the quotient D(X) of D(X) by the subgroup generated by X: D(X) :=

D(X)
Z·X . The intersection pairing descends to D(X).

1.0.2. Twisters. For a fixed regular smoothing f : X → B of X, set

Twf X :=
{OX (D)|X , ∀D ∈ D(X)}

∼=
⊂ Pic0 X.

The union as f varies among the regular smoothings of X is denoted by

(1) Tw X :=
⋃

f reg. sm.

Twf X ⊂ Pic0 X

Elements of Tw X are special line bundles called twisters. Any T ∈ Twf X deter-
mines a D ∈ D(X) such that T ∼= OX (D)|X only up to adding a multiple of the
central fiber X of f ; in fact OX (D)|X ∼= OX (D + nX)|X for any n ∈ Z. Thus we
have a surjective map Tw X −→ D(X) associating to any T ∈ Tw X the class of
a D ∈ D(X) such that T = OX (D)|X . We shall denote such a class Supp(T ) and
call it the support of T .
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Let D ∈ D(X) and T ∈ Tw X such that Supp(T ) = D, then

deg T = ((D · C1), . . . , (D · Cγ)),

independently of the representative D for D. Furthermore, this shows that deg T
does not depend on the regular smoothing defining T . In other words, the mul-
tidegree of a twister only depends on its support, so that we can unambiguously
write

(2) deg D := degOX (D)|X = ((D · C1), . . . , (D · Cγ));

for a subcurve Z ⊂ X we set degZ D := degOX (D)|Z . Summarizing, we have

deg : Tw X
Supp−→ D(X)

deg−→ Zγ

where the second arrow is a group homomorphism. We denote by ΛX ⊂ Zγ the
image of deg above, i.e. the group of multidegrees of all twisters:

(3) ΛX := {d ∈ Zγ : ∃T ∈ Tw X : deg T = d}.

More details about this set up will be in section 3.
Interpreting Zγ as the set of all multidegrees on X, we get an equivalence relation

on it, induced by X:
Let d, d′ ∈ Zγ , define d equivalent to d′ (in symbols d ≡ d′ ) if d− d′ ∈ ΛX

where ΛX is defined in (3). Introduce the set of multidegree classes of total degree
equal to a fixed d

(4) ∆d
X :=

{d ∈ Zγ : |d| = d}
≡

.

∆d
X is well known to be a finite set whose cardinality does not depend on d ([R70]

8.1.2, see also [C05] 3.7 for an overview). As we shall see, ∆d
X is useful to control

the non-separatedness of the Picard scheme.
For d ∈ Zγ we shall denote [d] ∈ ∆d

X its class.

1.0.3. Let f : X → B be a regular smoothing of X. Then there exists a Picard
scheme relative to f , denoted here Picf (an alternative notation is Picf = PicX/B ,
which is not used in this paper). Picf is a scheme over B whose generic fiber is
PicXK

, the Picard scheme of the curve XK . Picf has a basic moduli property which
we need to recall. Let S be a B-scheme, then for any line bundle L on S ×B X
there exists a unique B-morphism

(5) µL : S −→ Picf s 7→ L|k(s)×BX

which we refer to as the moduli map of L. More details are in [GIT] 05 (d).
Picf decomposes into its connected components, Picf =

∐
d∈Z Picd

f , where Picd
f →

B parametrizes line bundles of relative degree d. The generic fiber of Picd
f → B is

denoted Picd
K := Picd

XK
, an integral projective variety over K; the closed fiber is

Picd X, a reducible scheme if X is reducible (see 1.0.1).
Picf is smooth over B but not separated if X is reducible. The essential reason

is the existence of twisters (see 1.0.2), which must all be identified in any separated
completion of PicXK

over B.
Using the moduli property of Picf one can construct Abel maps for smooth

curves over any base scheme, see 2.0.4. For example let X be a smooth curve over
k. As we already said, the d-th Abel map of X is the map αd

X : Xd → Picd X such
that αd

X(p1, . . . , pd) = OX(p1 + . . . + pd).
We shall denote αd

K the d-th Abel map of the generic fiber of f :

(6) αd
K = αd

XK
: X d

K −→ Picd
K
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Example 1.1. Let X = C1∪C2 be a curve having two smooth components meeting
in only one node r. Let us examine the naive definition for the Abel map in degree
1, copying the smooth case. We get a map regular away from the node r:

(7) Ẋ
α−→ Pic1 X =

∐
d1+d2=1(Picd1 C1 × Picd2 C2)

p 7→ OX(p)

where Ẋ := X r {r}. Let us illustrate some pathologies of definition (7). The two
components of Ẋ are mapped to two different connected components of Pic1 X,
namely α(C1) ⊂ Pic1 C1 × Pic0 C2 while α(C2) ⊂ Pic0 C1 × Pic1 C2. All the con-
nected components Picd1 C1 ×Picd2 C2 of Pic1 X are obviously projective, hence α
cannot possibly be extended to a regular map from the whole of X to Pic1 X.

A second problem is the fact that (1, 0) ≡ (0, 1); indeed #∆1
X = 1 (see (4)).

Now if X → B is a regular smoothing of X, any separated model of Pic1
XK

over B
cannot contain components of Pic X corresponding to equivalent multidegrees (see
below). So the target of the naive Abel map of the family fails to be separated.

A more satisfactory definition turns out to be 1.2 below; first some notation.
Let f : X → B be a regular smoothing of X, then fd : X d

B → B denotes the d-th
fibered power of X over B. The open subset of X d

B where fd is smooth is denoted
by Ẋ d

B := X d
B r sing(fd). Similarly, Ẋd := {(p1, . . . , pd) : pi ∈ X r Xsing} denotes

the closed fiber of Ẋ d
B → B, where Xsing is the set of singular points of X.

Definition 1.2. A d-th Abel map for the curve X is a regular map β : Ẋd −→
Picd X satisfying the following requirements.

(a) There exist a regular smoothing f : X → B of X and a map βf : Ẋ d
B −→ Picd

f

such that the restriction of βf to the generic fiber is the d-th Abel map of XK

(i.e. (βf )K = αd
K of (6)), and the restriction of βf to the closed fiber is equal

to β (i.e. (βf )k = β).
(b) If d, d′ ∈ Zγ are such that Im β ∩ Picd X 6= ∅ and Im β ∩ Picd′ X 6= ∅, then

d 6≡ d′.

A d-th Abel map β is called natural if it is independent of the choice of f . More
precisely, if for every regular smoothing f of X there exists a (necessarily unique)
βf as in (a), extending β.

Condition (b) will ensure that the image of an Abel map is contained in some
separated model of Picd

K over B (cf. Example 1.1).
A concrete description of Abel maps will be given by Proposition 2.1. In Section 5

we shall relate our definition to others in the literature.
Although (see 2.2) every curve does have Abel maps, not all curves admit a

natural one. Our main result, Theorem 1.5 characterizes in purely combinatorial
terms those curves admitting a natural d-th Abel map. Before stating it we define
the crucial combinatorial character. Denote Xsep

sing ⊂ Xsing the set of separating
nodes of X, i.e. Xsep

sing is the set of nodes p of X such that X r p is disconnected.
In the next definition, we use the notation of 1.0.1 and adopt the convention

that if S is an empty set of integers, then inf{n ∈ S} = +∞.

Definition 1.3. The essential connectivity ε(X) of X is

(8) ε(X) := inf{kZ , ∀Z : ∅ ( Z ( X and Z ∩ Z ′ ∩Xsep
sing = ∅}.

Equivalently

(9) ε(X) := inf{kZ , ∀Z : ∅ ( Z ( X and Z ∩ Z ′ 6⊂ Xsep
sing}.
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Remark 1.4. So, if X is irreducible or of compact type then ε(X) = +∞.
An elementary arguments yields that to compute ε(X) it suffices to consider

connected subcurves and that (8) and (9) are equivalent; we omit it since we shall
only use version (9). An example: if X = C1 ∪C2 then either #(C1 ∩C2) = 1 and
ε(X) = +∞, or #(C1 ∩ C2) ≥ 2 and ε(X) = #(C1 ∩ C2).

Theorem 1.5. Let X be a nodal curve and d a positive integer. Then X admits a
natural d-th Abel map if and only if ε(X) > d.

The proof of the theorem will be in Section 4.

2. Abel maps via Néron models

The goal of this section is to obtain a complete description of Abel maps, which
will be done in Proposition 2.1. We shall use Néron models in the same spirit of
[C05] (and of [E98] section 9). We refer to [BLR] chapter 9 or to [A86] section 1
for details.

Let f : X → B be a regular smoothing of X; as we said in 1.0.3, if X is
reducible Picd

f is not separated over B. To correct this we introduce the Néron
model N(Picd

K) → B of its generic fiber Picd
K . This is a smooth, separated scheme

over B uniquely determined by a universal property, the Néron mapping property
([A86] 1.1 or [BLR] 1.2.1). We shall denote

Nd
f := N(Picd

K).

Recall that there exists a unique surjective B-morphism

(10) qf : Picd
f −→ Nd

f

which is the identity on the generic fiber (qf is called “Ner” in [A86] diagram 1.21).
To describe the map (10), consider Picd

f ⊂ Picd
f the moduli scheme for degree-d

line bundles having multidegree d on the closed fiber X of f . Then

Picd
f =

∐
|d|=d Picd

f

∼K

where “∼K” denotes the natural gluing of the schemes Picd
f along their generic

fiber (which is the same for all d: Picd
K). Similarly we have

(11) Nd
f
∼=

∐
δ∈∆d

X
Picδ

f

∼K

where Picδ
f := Picd

f for any representative d of δ. Such a definition does not depend
on the choice of d; in fact for every pair of equivalent multidegrees d, d′ there exists a
unique isomorphism between Picd′

f and Picd
f , determined by the unique T ∈ Twf X

such that deg T = d− d′ (see 3.1 (ii)).
The map qf restricted to Picd

f ⊂ Picd
f is the unique isomorphism Picd

f
∼= Pic[d]

f .

We denote Nd
X the closed fiber of Nd

f → B, which, if X is reducible, is the disjoint
union of #∆d

X copies of the generalized Jacobian of X.
Although Nd

f does not have good functorial properties, it has a geometric inter-
pretation. Let L,L′ ∈ Pic X and call them f-twist equivalent iff L′⊗L−1 ∈ Twf X.
Then the fibers of (qf )k : Picd X −→ Nd

X are the classes of f -twist equivalent line
bundles.
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2.0.4. Abel maps and Néron models. To study Abel maps of singular curves, we use
an approach analogous to [GIT] section 6, just like in [CE06]. With the notation
introduced in 1.0.3, let f : X → B be a regular smoothing of X. Consider the base
change of f to Ẋ d

B → B, namely

π : Ẋ d
B ×B X −→ Ẋ d

B

so that π is the first projection. Define the “universal effective (Cartier) divisor” Ed

on Ẋ d
B×BX as the sum of the d natural sections σ1, . . . , σd of π, that is, the sections

σi(p1, . . . , pd) = ((p1, . . . , pd), pi). Consider the moduli map of Ed, µEd
: Ẋ d

B → Picd
f

as defined in (5). By definition, its restriction to the generic fiber is its d-th Abel
map, αd

K : X d
K → Picd

K , introduced in (6). Consider now the composition

(12) N(αd
K) : Ẋ d

B

µEd−→ Picd
f

qf−→ Nd
f

where the notation N(αd
K) is motivated as follows. To the map αd

K one can apply
the Néron mapping property: since Ẋ d

B is smooth over B and has X d
K as generic

fiber, there exists a unique extension of αd
K to a morphism Ẋ d

B → Nd
f ; such an

extension, denoted N(αd
K), is unique and hence coincides with the map (12).

Finally, notice that if D is a Cartier divisor supported on the closed fiber of π
(i.e. on Ẋd × X), the same construction, replacing Ed with Ed + D, gives again
N(αd

K) (in other words: N(αd
K) = qf ◦ µEd+D = qf ◦ µEd

).
To use the morphism (12) we shall fix a choice of representatives for the multi-

degree classes, given by a map

r : ∆d
X −→ Zγ such that | r(δ)| = d and [r(δ)] = δ, ∀δ ∈ ∆d

X .

Then there exists a unique isomorphism

(13) ιr : Nd
f

∼=−→
∐

δ∈∆d
X

Picr(δ)
f

∼K
=: Nd,r

f

So Nd,r
f defined above is a subset of Picd

f . Restricting qf : Picd
f → Nd

f to it we have
idNd,r

f
= ιr ◦ (qf )|Nd,r

f
. The closed fiber of Nd,r

f is denoted

Nd,r
X := (Nd,r

f )k =
∐

δ∈∆d
X

Picr(δ) X ⊂ Picd X

and obviously does not depend on f . Now compose the map N(αd
K) of (12) with ιr

and call the composition αd,r
f

(14) αd,r
f : Ẋ d N(αd

K)−→ Nd
f

ιr−→ Nd,r
f .

Restricting to the closed fiber we get a d-th Abel map αd,r
f,X : Ẋd −→ Nd,r

X .
To complete the picture, focus on the multidegrees that are attained by the

divisor Ed restricted to the fibers of Ẋ d
B×BX → Ẋ d

B . We shall name them partitional
multidegrees and denote their set Part(d, γ):

Part(d, γ) := {d ∈ Zγ : |d| = d and di ≥ 0 ∀i = 1, . . . γ}

Then the map αd,r
f factors

(15) αd,r
f : Ẋ d µEd−→

∐
d∈Part(d,γ) Picd

f

∼K

qf−→ Nd
f

ιr−→ Nd,r
f

where, abusing notation, qf is the restriction of qf : Picd
f −→ Nd

f . Therefore the
image of αd,r

f,X is entirely contained in the union of the components of Nd,r
X that

correspond to those multidegree classes containing some partitional representative.
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The conclusion of the preceeding discussion is stated in part (i) of 2.1 below, where
we also classify Abel maps as defined in 1.2.

Proposition 2.1. (i) Let f : X → B be a regular smoothing of X, d a positive
integer and r : ∆d

X −→ Zγ a choice of representatives. Then there exists a
unique morphism αd,r

f : Ẋ d
B −→ Nd,r

f whose restriction to the the generic fiber
is the d-th Abel map of XK . The restriction of αd,r

f to the closed fiber is the
d-th Abel map

(16) αd,r
f,X : Ẋd −→

∐
d∈Part(d,γ)

Picr([d]) X ⊂ Nd,r
X .

(ii) Conversely, every d-th Abel map of X equals αd,r
f,X for some f and r.

Proof. The first part has been proved before the statement. For the second, let
β : Ẋd → Picd X be an Abel map as defined in 1.2. Then there exists a regular
smoothing f : X → B and a morphism βf : Ẋ d

B → Picd
f extending β and restricting

to the d-th Abel map αd
K of XK on the generic fiber.

Consider the composition qf ◦ βf : Ẋ d
B −→ Picd

f −→ Nd
f . We claim that

(17) qf ◦ βf = N(αd
K)

where N(αd
K) is defined in (12). Indeed the two maps qf ◦ βf and N(αd

K) coincide
on the generic fiber X d

K and hence, by the uniqueness part in the Néron mapping
property, they are equal.

Now define r : ∆d
X → Zγ as follows; pick δ ∈ ∆d

X . If there exists a representative
dδ for δ such that Im β ∩ Picdδ

X 6= ∅, then such a dδ is unique by condition
(b) of Definition 1.2; hence we can define r(δ) = dδ. If instead there is no such
representative for δ, we define r(δ) however we like.

By construction

Im βf ⊂
∐

δ∈∆d
X

Picr(δ)
f

∼K
= Nd,r

f

Now consider the isomorphism ιr (see (13)) ιr : Nd
f

∼=−→ Nd,r
f ⊂ Picd

f .

Recall that ιr ◦ (qf )|Nd,r
f

= idNd,r
f

. Therefore

βf = idNd,r
f
◦ βf = ιr ◦ (qf )|Nd,r

f
◦ βf = ιr ◦N(αd

K)

using (17) for the last equality. Now ιr ◦ N(αd
K) = αd,r

f by definition (see (14)),
therefore β = (βf )k = αd,r

f,X and we are done. �

Remark 2.2. We get that, for all d, every curve X has Abel maps, infinitely many
of them if X is reducible (at least one for every r).

As a consequence of 2.1, to prove Theorem 1.5 it suffices to study the maps
αd,r

f,X . If r is fixed, the domain and the target
∐

d∈Part(d,γ) Picr([d]) X of αd,r
f,X do

not depend on f , whereas the map itself does. In fact αd,r
f,X factors through certain

isomorphisms Picd X → Picr([d]) X; each of these isomorphisms is given by tensor
product by the (unique) T ∈ Twf X of multidegree r([d]) − d. The crux of the
matter is that T may change as f varies (even though its multidegree and support
do not change), in which case the Abel map αd,r

f,X will not be natural.
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3. Spaces of twisters

The goal of this section is to characterize twisters that depend only on their
support, hence only on their multidegree (see 3.1), and not on the regular smoothing
defining them (see 3.10). Recall the set up of 1.0.2; we shall need the following well
known facts, see for example [A86] p.220 diagram 1.21. The notation is in 1.0.2.

Lemma 3.1. (i) The map deg : D(X) −→ ΛX is an isomorphism
(ii) For any regular smoothing f of X and any T, T ′ ∈ Twf X we have T = T ′ ⇔

deg T = deg T ′. In particular Twf X ∼= D(X)

Remark 3.2. For any D ∈ D(X) and f : X −→ B regular smoothing of X, there
exists a unique T ∈ Twf X such that Supp(T ) = D. We will denote by Df such a
T , that is Df

∼= OX (D)|X .
Denote by t := deg D; the lemma above implies that the set Twf X contains a

unique element of multidegree t. By contrast the set

(18) Twt X := {T ∈ Tw X : deg T = t} = {Df , ∀f reg. sm. of X}

may be quite large. If # Twt X = 1, i.e. if Df = Df ′ for all regular smoothings f ,
f ′ of X, we will say that Df does not depend on the choice of f .

3.0.5. Level curves. Let D =
∑

niCi, we can write

(19) D =
∑
m∈Z

mDm

with Dm := ∪ni=mCi (in particular D0 :=
∑

ni=0 Ci) so that the Dm are possibly
empty subcurves of X having no components in common, and such that ∪m∈ZDm =
X. We call (19) the level expression of D and the non-empty curves Dm the level
curves of D; of course they are uniquely determined.

Notice also that for any n ∈ Z the level curves of D and of D + nX are the
same, hence it makes sense to speak of level curves of a class D ∈ D(X). We can
also define level curves of a twister T ∈ Tw X as the level curves of its support,
Supp(T ) ∈ D(X). Similarly, for any t ∈ ΛX the level curves of t can be defined via
the isomorphism D(X) ∼= ΛX of 3.1. We need the following

Lemma 3.3. Let t ∈ ΛX with t 6= 0. There exists a unique D(t) ∈ D(X), with
deg D(t) = t, admitting an expression

(20) D(t) =
`(t)∑
1

mhZh(t)

where `(t), mh and Zh(t) are uniquely determined by the following properties.
(a) `(t) ≥ 1 and mh ∈ Z with 0 < m1 < . . . < m`(t);
(b) the Zh(t) are subcurves of X having no components in common;

(c) the curve Z0(t) := X r ∪`(t)
1 Zh(t) is not empty.

Moreover, on every subcurve Y ⊆ Z0(t) we have

(21) |tY | = degY D(t) ≥ −m1(Y · Z0(t)) ≥ 0.

In particular, if Y = Z0(t) we have |tY | ≥ m1kZ0(t) > 0.

Proof. Pick any D ∈ D(X) with deg D = t and consider the level expression of D
in (19). It has a finite number of nonzero summands, so let m0 be the minimum
integer for which Dm0 is not empty. Set D(t) := D − m0X. Then the level
expression of D(t) can be written as in (20) and satisfies the conditions (a), (b),
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(c) in the statement; note that Dm0 = Z0(t). We need to check condition (21). So
let Y ⊆ Z0(t), then

|tY | = (Y ·D(t)) =
`(t)∑
1

mh(Y · Zh(t));

now for every h ≥ 1 we have (Y · Zh(t)) ≥ 0 (because Y lies in the complementary
curve of Zh(t)). Therefore, since m1 ≤ mh if h ≥ 1, we get

|tY | ≥ m1

`(t)∑
1

(Y · Zh(t)) = m1(Y · ∪`(t)
1 Zh(t)) = −m1(Y · Z0(t)) ≥ 0

indeed the Zh(t) have no common components and ∪`(t)
1 Zh(t) is a reduced proper

subcurve of X whose complement is, by definition, Z0(t). If Y = Z0(t) the last
inequality is strict, so we are done. �

Let D ∈ D(X); to the level expression D =
∑

m∈Z mDm of (19) we can naturally
associate a set of nodes S(D) as follows.

(22) S(D) := ∪m6=m′(Dm ∩Dm′) ⊂ Xsing

Similarly, let t ∈ ΛX and consider D(t) =
∑`(t)

1 mhZh(t) of Lemma 3.3. Denote

(23) S(t) := S(D(t)) =
⋃

0≤h<h′≤`(t)

(Zh(t) ∩ Zh′(t)) ⊂ Xsing

Remark 3.4. For D,D′ ∈ D(X) we have S(D + D′) ⊂ S(D) ∪ S(D′).

Remark 3.5. Fix D ∈ D(X) and let S = S(D). Denote by νS : Xν
S → X the

normalization of X at the points in S. Then Xν
S is the disjoint union of the level

curves of D, i.e. Xν
S =

∐
m∈Z Dm.

For any regular smoothing f : X → B of X consider the twister Df = OX (D)|X
and its pull-back ν∗S(Df ) to Xν

S . Observe that ν∗S(Df ) does not depend on the
choice of f ; indeed if f ′ is another regular smoothing of X, then Df and Df ′ have
the same restrictions to every curve Dm, hence their pull-backs to Xν

S coincide.
Therefore we can use the following non-ambiguous notation

(24) OXν
S
(D) := ν∗S(Df ) = ν∗SOX (D)|X

for any f : X → B as above.

The following result due to Esteves and Medeiros, in [EM02], characterizes
twisters among all line bundles on a nodal curve X.

Corollary 6.9 in [EM02] p.297 Fix X a nodal curve, D ∈ D(X) and S = S(D);
let N ∈ Pic X. If ν∗SN ∼= OXν

S
(D) there exists a regular smoothing f of X such

that N ∼= Df .

As we mentioned, the converse also holds. The language used in [EM02], section
6, is different from ours; here is a small dictionary. Our D is τ1C1 + . . . + τmCm

in 6.9 of [EM02]. Υ in [EM02] is the set of irreducible components of the curve.
The partition P of Υ corresponds to our level expression of D so that a subset I of
P corresponds to a non empty level curve Dm. Condition 6.9.1 is ν∗SN ∼= OXν

S
(D)

above. Finally, [EM02] assumes characteristic 0, which is not needed for the proof
given to this result.
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3.0.6. A useful graph. Mantaining the hypothesis and notation above, we now in-
troduce the graph Γ(S), whose vertices are the connected components of Xν

S and
whose edges correspond to S. An edge e joins the two vertices corresponding to
the two components passing through the node represented by e. So, Γ(S) is the
connected graph obtained from the standard dual graph of X by contracting to a
point all the edges corresponding to nodes not in S. Let b(S) = b1(Γ(S), Z) be its
first Betti number, so that

b(S) = #S + 1−#(connected components of Xν
S).

Corollary 3.6. Let t ∈ ΛX and S = S(t). Then there are bijections

Twt X ↔ (ν∗S)−1(OXν
S
) ↔ (k∗)b(S)

where Pic X
ν∗

S−→ Pic Xν
S is the pull-back map.

Proof. As observed in 3.5 (also in 6.9 of [EM02]) we have an injection Twt X ↪→
(ν∗S)−1(OXν

S
) for any fixed f , mapping Df ′ ∈ Twt X to Df ⊗D−1

f ′ . Surjectivity of
such an injection follows from 6.9 of [EM02].

The second bijection (well known), follows from the exact sequence

1 −→ (k∗)b(S) −→ Pic X
ν∗

S−→ Pic Xν
S −→ 1.

�

Definition 3.7. Let Q ⊂ X be a (connected) complete subcurve. We say that Q
is a tail of X if Q ∩ Q′ is a separating node of X; we say that the node Q ∩ Q′

generates the tails Q and Q′.
Let D ∈ D(X); we say that D is a sum of tails if there is an expression D =∑
miQi + nX where the Qi are tails of X.
Let D ∈ D(X), then D is a sum of tails if any of its representative in D(X) is.

Let T ∈ Tw X, we say that T is a sum of tails if Supp(T ) is.

Remark 3.8. The set D(X)
0

of elements in D(X) that are sums of tails is clearly a
subgroup. Let Λ0

X be its image via the multidegree map:

(25) Λ0
X := deg(D(X)

0
) ⊂ ΛX .

Thus Λ0
X is the group of multidegrees of sums of tails.

Recall that Xsep
sing is the set of separating nodes of X. If r ∈ Xsep

sing and Q is one of
the two tails generated by r, it is clear that S(Q) = {r}. More generally, we have

Lemma 3.9. Let D ∈ D(X). D is a sum of tails if and only if S(D) ⊂ Xsep
sing.

(Equivalently: let t ∈ ΛX . t ∈ Λ0
X ⇔ S(t) ⊂ Xsep

sing)

Proof. We can work modulo adding to D a multiple of X. We can assume that
D 6= nX, otherwise the statement is obvious since S(D) = ∅.

Let D =
∑l

1 miQi be a sum of tails and let us use induction on l to prove that
S(D) ⊂ Xsep

sing. If l = 1 then D = mQ with Q a tail, hence S(D) = Q ∩ Q′ = {r}
where r is the separating node generating Q.

If l > 1 write D =
∑l−1

1 miQi + mlQl; by 3.4 we have

S(D) ⊂ S(
l−1∑
1

miQi) ∪ S(mlQl);

by induction, each of the two sets on the right lies in Xsep
sing so we are done.

Conversely, assume that S(D) ⊂ Xsep
sing. Consider the level expression D =∑

m∈Z mDm defined in (19); then every subcurve Dm meets its complement D′
m in
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separating nodes of X, by (22). Obviously it suffices to prove that every connected
component of Dm is a sum of tails. To do that, it suffices to prove that if Z is a
connected subcurve of X such that Z ∩ Z ′ ⊂ Xsep

sing, then either Z or Z ′ is a union
of tails.

Use induction on #Z∩Z ′. If #Z∩Z ′ = 1 then Z and Z ′ are both tails. Suppose
#Z∩Z ′ > 1 and let r ∈ Z∩Z ′. Since Z is connected Z is contained in one of the two
tails Qr and Q′

r generated by r, say Z ⊂ Qr. Let Y := Qr r Z so that Z ′ = Y ∪Q′
r;

then Z∩Y is made of separating nodes for Qr and of course #Z∩Y = #Z∩Z ′−1.
Therefore we can use induction and conclude that either Z or Y is a union of tails
of Qr. If Y is a union of tails of Qr then Y ∪Q′

r = Z ′ is a union of tails of X and
we are done. If Z is a union of tails of Qr then Z is actually a tail in Qr (Z is
connected) hence Y is also a tail of Qr and hence (arguing as before) Z ′ is a union
of tails of X. �

Corollary 3.10. Fix the curve X and t ∈ ΛX . Then

# Twt X = 1 ⇔ S(t) ⊂ Xsep
sing ⇔ t ∈ Λ0

X .

(Equivalently, with the terminology of 3.2: let D ∈ D(X); then Df does not depend
on f if and only if S(D) ⊂ Xsep

sing if and only if D is a sum of tails.)

Proof. The second equivalence is 3.9, so we just need to prove the first. Fix D ∈
D(X) such that deg D = t and let S := S(t) = S(D).

By Corollary 3.6 we have # Twt X = 1 if and only if b(S) = 0 where b(S) is the
first Betti number of the graph Γ(S) defined in 3.0.6. Therefore b(S) = 0 if and
only if Γ(S) is a tree if and only if S ⊂ Xsep

sing. �

4. Proof of the main Theorem

Fix a curve X, then by Proposition 2.1 every Abel map of X is of type αd,r
f,X :

Ẋd → Picd X, for some r and f . To say that αd,r
f,X is natural (i.e. independent

of the choice of f) is to say that for every regular smoothing f ′ of X we have
αd,r

f,X = αd,r
f ′,X . We begin with a preliminary characterization.

Lemma 4.1. The map αd,r
f,X is natural if and only if d − r([d]) ∈ Λ0

X for every
d ∈ Part(d, γ).

Proof. Let us revisit the factorization (15) of αd,r
f by writing it

αd,r
f : Ẋ d µ−→

∐
d∈Part(d,γ) Picd

f

∼K

∼=−→
∐

d∈Part(d,γ) Picr([d])
f

∼K

where µ = µEd
is the moduli map of the divisor Ed ⊂ Ẋ d×BX , and the isomorphism

is the restriction of ιr ◦ qf .
The restriction of µ to the closed fiber Ẋd is fixed, i.e. independent of f , indeed if

p1, . . . , pd ∈ Ẋ then µ(p1, . . . , pd) = OX(
∑

pi). We obtain that αd,r
f,X is independent

of f if and only if for every d ∈ Part(d, γ) the isomorphism Picd X −→ Picr([d]) X is
independent of f . This map is given by tensor product by that twister T ∈ Twf X
whose multidegree satisfies deg T = d − r([d]); set t := d − r([d]). Recall that T is
uniquely determined by f and t (see lemma 3.1 part (ii)).

We obtain that αd,r
f,X does not depend on the choice of f if and only if T is the

same for every f , i.e. if and only if Twt X = {T}. We conclude by Corollary 3.10,
which tells us that Twt X = {T} if and only if t ∈ Λ0

X . �

Remark 4.2. Thus, for any fixed d the set of natural d-th Abel maps is either empty
or in bijective correspondence with (Λ0

X)# Part(d,γ). So, if a natural d-th Abel map
for X exists, it is unique if and only if X is free from separating nodes.
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Proof of Theorem 1.5. We first prove that, if ε(X) > d, then X admits a natural
d-th Abel map, which is the harder part. Define a choice of representatives r as
follows. Pick δ ∈ ∆d

X ; if δ does not contain any partitional representative, the way
in which we define r(δ) does not matter. If instead δ contains some partitional
representative, we choose one of them, call it dδ, and define r(δ) = dδ. We claim
that the Abel map αd,r

f,X is natural, i.e. it does not depend on f . To prove that it
suffices to show that for every pair d, d′ ∈ Part(d, γ) such that d ≡ d′ we have

(26) d− d′ ∈ Λ0
X .

Indeed, for any d ∈ Part(d, γ), denoting by δ ∈ ∆d
X its class, by (26) we get

d− r(δ) = d− dδ ∈ Λ0
X . Hence, by 4.1, αd,r

f,X does not depend on f .
Let t := d− d′ and consider S(t) (see (23)). By 3.9, (26) is equivalent to

(27) S(t) ⊂ Xsep
sing.

In conclusion: we reduced ourselves to prove the following statement.
(•) Let t ∈ ΛX and assume that there exist d, d′ ∈ Part(d, γ) such that t = d − d′.
Then S(t) ⊂ Xsep

sing.

We can of course assume that t 6= 0. Let us introduce D(t) =
∑`(t)

1 mhZh(t)
described in lemma 3.3; then S(t) = S(D(t)). We shall prove (•) using induction on
`(t). First, we simplify the notation by writing Z0 := Z0(t); recall that Z0, defined
in 3.3 part (c), is not empty.

Now on with the induction: assume `(t) = 1. Then D(t) = m1Z1(t) with m1 > 0
and Z ′

0 = Z1(t).
By contradiction assume that S(t) 6⊂ Xsep

sing; then Z0 ∩Z ′
0 6⊂ Xsep

sing. Therefore, by
the definition of essential connectivity (1.3 form (9)) we have

kZ0 ≥ ε(X).

On the other hand by Lemma 3.3 (21) we have

|tZ0
| ≥ kZ0 .

Combining these two inequalities with the hypothesis ε(X) > d we get

|tZ0
| > d.

Restricting the equality t = d− d′ to Z0 and applying the above relation we obtain

|d′Z0
| = |dZ0

| − |tZ0
| < |dZ0

| − d.

Now |dZ0
| ≤ d because d ∈ Part(d, γ); hence |d′Z0

| < 0, which is in contradiction
with the fact that d′ ∈ Part(d, γ). This concludes the proof of the case `(t) = 1.

Assume now that `(t) ≥ 2. Again by contradiction suppose that S(t) 6⊂ Xsep
sing.

If, as in the preceeding case, Z0 ∩ Z ′
0 6⊂ Xsep

sing, we can argue exactly as before to
obtain a contradiction. So, suppose that Z0 ∩Z ′

0 is made of separating nodes; then
deg Z0 ∈ Λ0

X by 3.9. Set
u := t + deg m1Z0;

then (Λ0
X is a group) u ∈ Λ0

X if and only if t ∈ Λ0
X . By 3.9 this is equivalent to

saying that
S(u) ⊂ Xsep

sing ⇔ S(t) ⊂ Xsep
sing.

To reach a contradiction we shall prove that S(u) ⊂ Xsep
sing. We have

u = deg(m1(Z0 + Z1(t)) + m2Z2(t) + . . .m`(t)Z`(t)).

Therefore Lemma 3.3 applied to u gives that Z0(u) = Z0 + Z1(t) and

D(u) = (m2 −m1)Z1(u) + . . . + (ml −m1)Z`(t)−1(u).
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So `(u) = `(t) − 1. To be able to apply the induction hypothesis to u and con-
clude that S(u) ⊂ Xsep

sing we need to express u as the difference of two elements in
Part(d, γ). To do this let

d′′ := d + deg m1Z0 = d′ + t + deg m1Z0 = d′ + u.

We claim that d′′ ∈ Part(d, γ). In fact, let C be an irreducible component of X,
then of course

d′′C = dC + m1(C · Z0)
and we need to show that d′′C ≥ 0. If C 6⊂ Z0 both summands on the right are
nonnegative (recall that d ∈ Part(d, γ)) so we are ok.

If C ⊂ Z0, by (21) in lemma 3.3 we have that tC ≥ −m1(C · Z0) hence

dC = d′C + tC ≥ −m1(C · Z0)

(as d′ ∈ Part(d, γ)). Hence

d′′C = dC + m1(C · Z0) ≥ −m1(C · Z0) + m1(C · Z0) ≥ 0.

This shows that d′′ ∈ Part(d, γ). Since u = d′′ − d′ we can apply the induction
hypothesis to u and obtain S(u) ⊂ Xsep

sing. We are done with one half of the proof.
Now we prove the converse, so assume that X admits a natural d-th Abel map.

By 2.1 this means that there exists r such that αd,r
f,X is independent of f . By 4.1,

∀d ∈ Part(d, γ) we have that d− r([d]) ∈ Λ0
X and hence, for every d, d′ ∈ Part(d, γ)

such that d ≡ d′

(28) d− d′ ∈ Λ0
X

(as d− d′ =
(
d− r([d])

)
+

(
r([d′])− d′

)
and both summands

(
. . .

)
lie in Λ0

X).
To prove that ε(X) > d it suffices to show that if Z is a subcurve of X such that

kZ ≤ d, then

(29) Z ∩ Z ′ ⊂ Xsep
sing

(using definition (9) of ε(X)). So let Z be such a curve; up to renaming the
components of X we have Z = ∪γ

h+1Ci where 1 ≤ h < γ. Thus kZ =
∑h

1 (Ci · Z).
By the assumption that kZ ≤ d there exist h integers d1, . . . , dh such that di ≥

(Ci · Z) for all i = 1 . . . , h, and such that
∑h

1 di = d. We have

(Z · Ci)
{
≤ di if i ≤ h (by definition)
≤ 0 if i > h (because Ci ⊂ Z)

Set d := (d1, . . . , dh, 0 . . . , 0) so that d ∈ Part(d, γ) (because di ≥ (Ci · Z) ≥ 0 for
i ≤ h). Now define d′ := d− deg Z so that d′ ≡ d. We have

d′ =
(
d1 − (C1 · Z), . . . , dh − (Ch · Z),−(Ch+1 · Z), . . . ,−(Cγ · Z)

)
therefore d′ ∈ Part(d, γ). By (28) we obtain that deg Z ∈ Λ0

X which is to say that
S(Z) ⊂ Xsep

sing (by Lemma 3.9). But of course S(Z) = Z ∩ Z ′ and so we are done
with the proof of theorem 1.5. �

We highlight some remarkable special cases of the theorem.

Corollary 4.3. (1) Let X be a curve of compact type. Then for all d ≥ 1
every d-th Abel map of X is natural.

(2) Let X be a nodal curve free from separating nodes and such that ε(X) > d.
Then X admits a unique natural d-th Abel map, described as follows:

(30)
Ẋd −→

∐
d∈Part(d,γ) Picd X

(p1, . . . , pd) 7→ OX(p1 + . . . + pd)
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5. Abel maps and compactified Picard schemes

This final section is to establish some connection with the vast literature on
compactified Jacobians. To keep it to a length comparable with the rest of the
paper, various important, interesting facts have been left out; so, it may appear
somewhat obscure to a reader who is not already acquainted with the theory of
compactified Picard schemes. On the other hand it will hopefully be useful to
somebody wishing to apply or generalize our results to study and compactify Abel
maps within a particular compactified Picard scheme.

The generalized Jacobian of a nodal curve X fails to be projective, unless X is of
compact type. The problem of constructing a compactification for it, with certain
natural properties, has been studied for a long time by many authors and diverse
solutions exist (see [C05] for a short overview and some guide to the rich bibliog-
raphy). Such compactifications usually go under the generic name of “compactified
Jacobians” or of “compactified Picard schemes”.

Here we consider only compactifications compatible with the operation of smooth-
ing the curve (over a local one-parameter base, see property P1 below). We shall
list, rather loosely, some basic properties that are common to most such compacti-
fications, in order to relate our notion of Abel maps to such constructions.

5.0.7. Given a nodal curve X a degree-d compactified Jacobian of X is a reduced
complete scheme Jd

X satisfying the following properties (and others not needed
here).

(P1) For every f : X → B regular smoothing of X, there exists a proper scheme
over B, π : Jd

f → B whose generic fiber is Picd
K and whose closed fiber is Jd

X .

Denote by Jd
f ⊂ Jd

f the smooth locus of π and let Jd
X be the closed fiber

of Jd
f → B; then Jd

X is an open dense subset of Jd
X .

(P2) There exists a canonical B-morphism nf : Jd
f −→ Nd

f which is the identity
on the generic fiber. (This follows by the Néron mapping property)

(P3) There exists a B-morphism uf : Jd
f −→ Picd

f such that qf ◦ uf = nf and uf

induces an isomorphism of Jd
f with its image.

(P4) The restriction uX : Jd
X → Picd X of uf induces an isomorphism of Jd

X with
a finite number of copies of the generalized Jacobian of X.

The rest of the section applies to all compactified Jacobians Jd
X that satisfy all the

properties in 5.0.7. For cases when the map nf of (P2) is an isomorphism see [C05].
Our definition 1.2 of Abel maps does not involve compactified Jacobians, but

only the Picard scheme. As we said in the introduction, one can define Abel maps
having a specific compactified Jacobian as target (see [AK], [E01], [CE06], [Co06]).
To compare such an approach to ours we now introduce an ad hoc terminology,
slightly awkward but useful to make distinctions.

Definition 5.1. Let Jd
X be a compactified Jacobian for X as in 5.0.7.

(i) A map ζ : Ẋd −→ Jd
X is a pre-Abel map of degree d if there exists a regular

smoothing f : X → B of X and a map ζf : Ẋ d −→ Jd
f such that (ζf )K = αd

K

and (ζf )k = ζ.
(ii) A pre-Abel map is called nonsingular if ζ(Ẋd) ⊂ Jd

X .

So, a nonsingular ζ maps the nonsingular locus of Xd to the nonsingular locus
of Jd

X . For example the pre-Abel maps studied in [AK] and [CE06] (called simply
“Abel maps” in those papers) are nonsingular. This is almost immediate for the
first paper, since the curves studied there are integral. The other paper explores
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the case of reducible stable curves, restricting to “d-general curves” (cf. [CE06] 3.6
and 3.10) when d ≥ 2, and thus getting nonsingular Abel maps.

A nonsingular pre-Abel map determines an Abel map. More precisely:

Proposition 5.2. Let ζ : Ẋd −→ Jd
X be a nonsingular pre-Abel map; the composi-

tion uX ◦ ζ : Ẋd −→ Picd X (notation of (P4)) is an Abel map.

Proof. The nonsingularity assumption enables us to define β := uX ◦ ζ and

βf := uf ◦ ζf : Ẋ d −→ Picd
f

extending β (where ζf is given by definition 5.1). Thus to prove that β is an Abel
map it remains to prove that condition (b) of 1.2 holds.

By P3 and P4 in 5.0.7 there exists a finite set S of multidegrees such that

uf : Jd
f

∼=−→
∐

d∈S Picd
f

∼K
⊂ Picd

f .

We shall from now on identify Jd
f with the image of uf as indicated above. We

must prove that for every pair of multidegrees d and d′ both contained in S we have
that d 6≡ d′. By contradiction, suppose that there is a pair of distinct equivalent
multidegrees d and d′ in S; let D ∈ D(X) be such that deg D = d′ − d. We shall
arrive at a contradiction by showing that the map Jd

f → B is not separated.
Pick L ∈ PicX having multidegree equal to d when restricted to X; in order for

such an L to exist we may need to make a (étale) base change, but this will not
affect the argument. The moduli map of L, µL : B → Picd

f , has therefore image in
Picd

f . Then we can view µL as a map µL : B −→ Picd
f ⊂ Jd

f .

Set L′ := L ⊗ OX (D), so that L′ restricted to X has multidegree d′. Then,
arguing as we did for L, the moduli map of L′ is µL′ : B −→ Picd′

f ⊂ Jd
f . Now µL

and µL′ are different maps coinciding on the generic point of B (as L|XK
= L′|XK

).
We have thus contradicted the fact that Jd

f → B is separated (by P1). �

Example 5.3. Consider again the Abel maps studied in [CE06]. If d = 1 our
Theorem 1.5 implies that they are all natural, which was already known by the
direct proof of loc.cit. 4.10 and 5.13. If d ≥ 2 the question of which of them are
natural is interesting (see loc.cit. 3.14) and open.

Example 5.4. Let X = C1∪C2 with #C1∩C2 = δ ≥ 2. Let Jd
X be a compactified

degree-d Jacobian having at most δ − 1 irreducible components (this definitely
occurs, see [C05] 6.5). Then for every d ≥ δ a pre-Abel map Ẋd → Jd

X is singular.
To prove this, observe first that #∆d

X = δ, so that δ is equal to the number of
connected components of the Néron model (i.e. of Nd

X). The assumption on the
number of irreducible components of Jd

X , hence of Jd
X , implies that the image of

nf : Jd
f → Nd

f does not intersect some connected components of Nd
X .

Now, if d ≥ δ every multidegree class in ∆d
X contains some partitional representa-

tive, therefore the image of the map N(αd
K) (see (12)) does intersect every connected

component of Nd
X . If there were a nonsingular pre-Abel map ζ : Ẋd −→ Jd

X , then
we could factor N(αd

K) = nf ◦ ζf , which is impossible.
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[E98] B.Edixhoven: On Néron models divisors and modular curves. J.Ramanujan Math.

Soc. 13 (1998), no2 157-194.
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