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0. INTRODUCTION AND SUMMARY

0.1. Statement of the problem. In this paper we construct a geometrically mean-
ingful compactification for the relative degree-d Picard variety associated to a
family of stable curves.

More precisely, let 2 — B be a (proper and flat) family of stable curves of
genus g and let f? 7 B be the corresponding family of Jacobians; we want
to answer the following question: does there exist a compactification of ,@ B
over B, which is natural (in a sense that we make precise below), and what
does it look like?

We will now formulate the problem which we will study. We will work
over an algebraically closed field k. Let M A be the moduli space of smooth

curves of genus g, g > 2, let Hg be its Deligne-Mumford compactification

via stable curves, and let Mg be the locus of automorphism-free nonsingular
curves. If X is a stable curve of genus g, we will denote by [X] the point of
Hg corresponding to its isomorphism class.
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For every integer d, there exists a so-called “Universal Picard variety of

degree d”, P, g over Mg (sometimes denoted in the literature by J: or

by Pic?'¢ ), whose fiber over the point [X] is identified with the variety of
isomorphism classes of line bundles of degree d on the curve X. P, . coarsely
represents the relative Picard functor of degree d with respect to the universal
family %g over Mg ; it is also known that P, 2 is a smooth and irreducible
quasi-projective variety and that P, = Py . if and only if there exists an

integer n such that d +d' = n(2g — 2). Finally, Mestrano and Ramanan
[MR] proved that P, ¢ is a fine moduli space (i.e., there exists a Poincaré line

bundle over P, , xMo%go) ifandonlyif (d—g+1,2¢g-2)=1.
, p e
Our goal is to construct a projective scheme P, , with a surjective (and
proper) morphism to M ¢
bq:F; e M <
such that the preimage of Mg is isomorphic to P, g

Then we will describe the fiber of ¢, over any curve [X] € M ¢ (denoted by

P, x) as a good compactification of the generalized Jacobian of X (when X
has trivial automorphism group).

0.2. Compactifying the generalized Jacobian. Recall that if X is a reduced,
nodal, connected curve, having § nodes and y irreducible components, the
generalized Jacobian of X, J,, is a smooth, commutative, algebraic group,
whose points are identified with isomorphism classes of line bundles having
degree 0 on each component.

Let v : X — X be the normalization of X. Then we have the exact
sequence

0— (K" — Jy 5 Jpw — 0
where the integer m is a combinatorial invariant of the curve: m =46 -y +1.

The problem of compactifying the generalized Jacobian of a fixed singular
curve has been explicitly studied for the first time by Igusa, around 1950. Since
then, there has been much progress and, at the moment, good models for the
compactified Jacobian are available in a large number of cases. There is a fairly
rich literature on the subject, and our list of references is by no means complete.

A “good” compactification of the generalized Jacobian J, should be a pro-
jective g-dimensional scheme, containing J, . Its points should correspond to
geometric objects and there should be a natural action of J, on it. Finally, this
compactification should be, in some sense, intrinsic, that is, invariant under
suitable specialization.

When it comes to compactifying families of Jacobians for nodal curves, very
little is known. The situation can be briefly summarized as follows: there is
a solution for some particular families of irreducible curves, which is given
by compactifying the Picard functor via the functor of torsion-free, coherent
sheaves of rank 1. More precisely, for an integral curve, the moduli space of
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torsion-free, coherent sheaves having rank 1 and fixed Euler characteristic turns
out to be a projective scheme, and so does its relative analogue over certain
families. Such an approach was first suggested by Mayer and Mumford, and
the complete construction was carried out by D’Souza (cf. [Ds]).

This method does not give a good solution for reducible curves, because in
this case such a functor is no longer separated. In [OS], Oda and Seshadri con-
sidered the case of a fixed nodal (possibly reducible) curve, and constructed a
number of compactifications for its generalized Jacobian by considering torsion-
free sheaves of rank 1 together with some extra structure, containing the com-
binatorial data of the curve. Their techniques have been generalized by Ishida
(cf. [Is]) to some special families of nodal curves. Their construction, as well
as D’Souza’s, applies Geometric Invariant Theory on a set-up which uses the
Grothendieck Quot schemes. We also use Geometric Invariant Theory in our
construction, but the set-up from which we start is different, and the points of
our compactification are described in a new way.

What we will do is to compactify the generalized Jacobian in such a way
that its boundary points are described in terms of line bundles of degree d on
certain curves; these curves will be in a larger class than stable curves, but they
will still be semistable (in the sense of Deligne and Mumford).

This approach will yield a natural compactification for the case of a reducible
curve X, which will “periodically” depend on the degree and which will be de-
noted by P d X - In such a case, we certainly do not expect the compactified
Jacobian to contain an open dense subset isomorphic to J v - This will in gen-
eral not be true, unless X is irreducible. What we do expect is that Pd X
have finitely many irreducible components, each one containing a dense subset
isomorphic to Jy

The reason is that, although the Picard functor of degree d is not separated
(in fact, it is easy, for example, to construct a family of line bundles over
the punctured disc which has infinitely many nonisomorphic limits), we can
construct a new separated functor, by means of a stronger equivalence relation
on line bundles of fixed degree on a fixed curve X (cf. Section 8). As we shall
see, this will provide an upper bound on the number of irreducible components
of our compactified Jacobian. Such an upper bound will not depend on the
degree, being only a function of the dual graph of the curve, and will be denoted

by u(X).

0.3. Construction of P . As we said, we will describe P . g in terms of line
bundles on some DM- semlstable curves; a natural place to look is the Hilbert
scheme Hllbp(x) parametrizing closed subschemes of a fixed projective space
P, having ﬁxed Hilbert polynomial p(x) =dx — g+ 1, with r =d — g and
d suﬁiaently large.

There is a natural action of PGL(r + 1) on such a Hilbert scheme, and we
will have to divide by that action. We are faced here with a geometric invariant
theory situation, in fact we will construct P g as the geometric invariant theory
quotient of the action of a group over a sultable scheme.
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The first problem one has to solve, when dealing with an algebraic group G
acting on a projective scheme Proj(S), is to linearize the group action; this
means, to have the group consistently act on the coordinate ring of the scheme.
In fact, once one has a (compatible) action of G on S, the natural candidate
for the quotient is the projective scheme PrO_](S ), where S% is the (graded)
ring of elements of S which are invariant under the action of G. It is exactly
to be able to find a linearization, that we will consider the action of the group
SL(r + 1) instead of PGL(r + 1). From now on, we will denote SL(r + 1)
simply by G.

For any d > 20(g — 1), it is possible to choose an embedding of Hllbp( ) ina
Grassmannian in such a way that the semistable points for the correspondmgly
linearized action of G can be geometrically described: a theorem of Gieseker
(cf. [G] or 1.4) shows that they correspond to Deligne-Mumford semistable
curves . Let us call H, this set,

H,={h € Hilb’™ : h is G-semistable
and the corresponding curve is connected}.

The fundamental theorems of geometric invariant theory allow us to conclude
that the GIT-quotient H,/G exists as a projective scheme.

Now, combining some fundamental properties of Deligne-Mumford stable
curves with standard geometric invariant theory arguments, we can prove the
following.

Theorem. Let d > 20(g — 1), g > 3. The projective scheme H,/G is endowed
with a surjective morphism

H,/G— M <
such that (o;' (Mg) =
We will naturally set

d_g =H;/G and P, =9, Lxn.

d,g’

The above is Theorem 2.1.
Although the structure of P g and P 4. X will depend on d, the propertles
stated in the next theorem (proved in Section 3) hold for all d >20(g —1).

Theorem. Let d >20(g—1) and g >3. Then
(1) The projective scheme P 0.g IS reduced, irreducible, and Cohen-Macaulay.
(2) The proper, surjective morphism

¢, Pd, e M <
is flat over the locus of stable curves with trivial automorphism group. The preim-
age of M0 under ¢, is isomorphic to P, ,
(3) V[X le M Pd x 1s a projective, connected scheme having at most u(X)
irreducible components Moreover, if X has trivial automorphism group, Pd X
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is reduced and its smooth locus is isomorphic to the disjoint union of a finite
number of copies of J, .

The number u(X) is the upper bound we talked about in 0.2. To prove this
result, we have to overcome the difficulties that arise when dealing with reducible
curves. The key observation is that a (reducible) curve in P" should have
semistable Hilbert point when its multidegree is “balanced” or “proportional” to
its multigenus.' More precisely, let us denote by hilb(X) € Hilbf(x) the Hilbert
point of a curve X in projective space. Then we can prove the following

Theorem (Basic Inequality). Assume d > 20(g —1) and g > 3. Let X C P’
be a projective curve such that hilb(X) € H > and let Y C P’ be any complete
subcurve of X having arithmetic genus g, and intersecting the remaining com-
ponents of X in k points. Then the degree of Y, dy , satisfies the following

inequality
d
d, — —— —-1+k/2)| <k/2.
Conversely, if X C P’ is a nondegenerate, nodal, connected curve of genus g
and degree d such that all of its subcurves satisfy the above inequality, then the

Hilbert point of X is semistable.

The proof is in Sections 3.1 and 6.1. The hard part is to show that if the
basic inequality is satisfied for all subcurves of X, then the Hilbert point of X
is G-semistable. This is done indirectly, that is, without actually applying any
stability criterion; rather the proof uses the semistable replacement property (or,
the valuative criterion for properness) together with arguments of combinato-
rial flavor. This can be done thanks to a theorem of Mumford and Gieseker
(whose proof is, in turn, direct) to the effect that the Hilbert point of a smooth,
nondegenerate, nonspecial curve in P’ is stable, provided that the degree of the
curve is higher than twice its genus (cf. Section 1.4).

0.4. The “best” compactification. Now let X be a nodal curve, having y irre-
ducible components C;, i =1, ...,y , and let us also assume that X has no
nontrivial automorphisms. There is a natural equivalence relation among all
the multidegrees summing to a fixed d, which measures the nonseparatedness
of the relative Picard functor. More precisely, if 2 — A, is any smooth defor-
mation of X over the disc A,, one can twist a line bundle .¥ on £ by any
line bundle of type ﬂ’y(zzﬂ r,C,), r; € Z, having the only effect of changing
the restriction of .2’ to X . This gives us an example of the phenomenon we
already mentioned: the family 2, with the polarization given by .# over the
punctured disc, has infinitely many nonisomorphic limits.

Notice also that, for any fixed linear combination }>)_ r,C,, the isomor-

phism class of the line bundle &, ( L] r,C,) ® @, depends on 2, while its

B3 Cisenns Cy are the irreducible components of X C P’ , we will define its multidegree to
be d = (dy,...,d,) with d; = degC; and its multigenus (& s-es g,) with g; equal to the
arithmetic genus of C;.
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multidegree does not. This way we are led to consider multidegree classes; the
total number of them will only depend on the combinatorial data of X, and it
will be denoted by u(X). Under this perspective, Theorem indicates how to
choose representatives for the multidegree classes.

There is an injective map from the set of irreducible components of Pd x to
the set of such multidegree classes; therefore p(X) is actually an upper bound
on the number of components of Pd « - Specifically, it turns out that, if X is

1rredu01ble P 0 X will also be irreducible and P xS P , vd, d.If X is

reducible and does not have a separating node’ _;_X mlght be reducible with
each component corresponding in a natural way to a fixed multidegree d , deter-
mined by the Basic Inequality. In other words, for every irreducible component
Z of P 0 X there exists a unique multidegree d such that Z contains an open

subset which is identified with Plc— the variety of isomorphism classes of line
bundles of multidegree d on X .

The irreducible components of the compactified Jacobian E,—X are therefore
indexed by a subset of multidegree classes; moreover, we will find models of
compactified Jacobian having exactly u(X) components. It is precisely in this
case, occurring for the “general” choice of d, that such compactification of Jy
can be described as the scheme representing a geometrically described functor,
and we will therefore say that such T,X are of geometric type. We refer to
Section 8 for all the details.

A natural question is whether there are values of d for which the fiber of
m over every [X] in _M— has u(X) components. This is equivalent to
asking whether there are values of d such that P g is a geometric quotient
for the action of G on H, (ie., H; only contalns stable points).

The next result is an answer to thls question.

Proposition. The points in H, are all stable for the action of G if and only if
d-g+1,2g-2)=1.1In thzs case the singularities of Pd are all of finite

quotient type and for every [X] in M the compactified Jacobian P 0. x IS of
geometric type; moreover Pd coarsely represents the functor .9”(,

If P g satisfies the condition of this theorem, we will say that P, . is

a geometrlc or nondegenerate compactification of the universal Picard varlety

P .-

If X has trivial automorphism group and it is not of compact type, Pd X
has less than u(X) components exactly when there are properly semistable
points in the preimage of [X] in H . If that happens, some degree classes will
not be represented by any irreducible component of P;j,; instead, they will
correspond to some positive codimension loci.

ZFor example, for curves of compact type P, , will always be irreducible and isomorphic to
Jy,cf. 1.2.
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0.5. Examples. Let us consider, as an example, the case of an automorphism-
free curve X having two smooth irreducible components meeting at k > 2
points. For the general choice of d, P, , will be of geometric type and it will
have k irreducible components, all of dimension g . For some special values
of d, for example, d = 2n+1)(g - 1), T,x will have kK — 1 g-dimensional
components.

A detailed description of this example is in 7.3. Here we want to say a few
more words for the case k = 3, with the purpose of giving an idea of how the
boundary of P, , will be described.

As we said, there are, up to isomorphism, exactly two models for Pd x - the

“general” or “canonical” model, having three components, and the “spec1a1” or
“degenerate” model, having two components. The generalized Jacobian of such
a curve is a (k*)z-bundle over the Jacobian of its normalization, and we will
find boundary loci in codimensions 1 and 2. In fact, an open subset of any
irreducible component of the boundary (having codimension 1 in P, x) can be
identified with the generalized Jacobian of the curve obtained by desmgularlz-
ing X at one particular node N. Each (codimension 2 in P x) irreducible

component of the boundary of such locus will be identified w1th the Jacobian of
the curve of compact type obtained by desingularizing X at two given nodes,
one of which is of course N.

In the canonical model, there will be three such codimension 2 loci, cor-
responding to the three nodes of X . In the degenerate model, all such loci
coincide, and the (irreducible) codimension 2 corresponding locus can be better
described as the Jacobian of the normalization of X .

This provides a stratum by stratum description of P, , . A global way of de-

scribing P, , is to consider the DM-semistable curve X t (which will be called

the “ladder of X™), which is obtained from X by replacing each node by a P!
so that X* has five irreducible components, three of which are smooth rational
curves. Then, the geometric P, , is a parameter space for “equivalence” classes

of line bundles on X°, where such an equivalence relation amounts roughly to
moding out by twisting. The details of this example can be found in 7.3; here we
want to conclude by mentioning that, although for every DM-stable curve X,
and for all d, the singular locus of m is generically normal crossing, already
in this particular example m will have nonnormal crossing singularities in
the codimension 2 loci.

1. PRELIMINARIES

We will compactify the universal Picard variety using Geometric Invariant
Theory (GIT) in a way that has nowadays become standard for this type of
problem. We will start with a brief summary of the main results of Geometric
Invariant Theory and then we will illustrate one of their most important appli-
cations: the construction of a compactification of the moduli space of smooth
curves of fixed genus, as carried out by Mumford and Gieseker. In doing this,
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we will also have the opportunity to recall a number of facts that will be needed
for our construction of P, i

1.1. Terminology. As we said, we will work over an algebraically closed field k.
Curves will always be assumed to be projective over k. By the genus of a curve
Y we will mean the arithmetic genus, and we will usually denote it by g, . If
Y c P" we will denote by d, its degree.

“DM-stable [semistable] curve” will stand for a stable [semistable] curve in
the sense of Deligne and Mumford, that is, a reduced, connected, curve having
only ordinary double points as singularities and such that every smooth rational
component meets the remaining components in at least three [two] points.

Let X be a DM-semistable curve and let E be a complete, irreducible sub-
curve of X. We will say that E is a destabilizing component for X if E is
smooth, rational, and meets the other components of X in exactly two points;
(similarly) a connected subcurve of X all of whose irreducible components are
destabilizing for X , will be called a destabilizing chain. Finally, we will denote
by D, the destabilizing subcurve of X, thatis, D, is defined to be the union
of all destabilizing components of X . Let ¢ be a node of X ; we will say that
q is a stable node if ¢ does not lie on any destabilizing component of X . Let
o : X' > X be a morphism between two DM-semistable curves; we say that the
node g of X is destabilizedin X' if ¢~ '(g) is a destabilizing chain for X'.

By the word “family” we will always mean a proper, flat morphism, whose
fibers are curves. A one-parameter deformation of the curve X will be a family
& — (B, b,), where B is a smooth, one-dimensional scheme, b, a closed
point of B, and X the fiber over b, ; as is customary, the fiber over the point
b € B will be denoted by X, . A one-parameter deformation of a given curve
will be denoted by a script capital letter and the deformed curve by the same
letter, in roman style.

A polarized deformation (£, .%) of the couple (X, L) (X acurve, L a
line bundle on it) is a deformation of X together with a line bundle %’ on the
total space, with the property that the restriction of % to X is isomorphic to
L. We will often use the notation (2°,.%) — B to denote a polarized family
over B.

If A and B are schemes over S, we will denote by p, the natural projection

p i AxgB— A

Let d be an integer. The symbol d will always denote an ordered n-uple of
integers (d,, ..., d,) such that } - d;, = d. Given two integers n and m, we
will denote by (n, m) the greatest common divisor of n and m.

If V is a vector space, we will denote by P(V) the set of dimension 1
quotients of V.

1.2. Background in Geometric Invariant Theory. Geometric Invariant Theory
provides a solution for the problem of defining and constructing quotients in
the realm of algebraic geometry. We will start with an introductory analysis and
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afterwards we will summarize the fundamental results in a theorem. References
for everything that follows are [GIT] and [N].

We will be interested in the special case of a projective scheme Z endowed
with an action of a reductive algebraic group G (we may think of G as equal
to SL(r +1)). Let us consider an embedding of Z in some projective space
P(V), so that Z = ProjR, R some graded ring, finitely generated over k. If
the action of G on Z can be lifted to a linear action on ¥V, one says that
G acts linearly with respect to such an embedding. If that happens, G will
of course act on R; the subring of elements of R which are invariant under
the action of G is denoted by RY. It is a foundational theorem of Geometric
Invariant Theory that, if G is reductive, then R® is a graded algebra, finitely
generated over k.

Now, let us consider the inclusion R% c R and the associated rational map

n:ProjR=2Z --+ Q := Proj RC.

This leads us to consider a special G-invariant open subset of Z :
ng :={z € Z s.t. 3 a homogeneous nonconstant f € R® with f(z) #0},
that is, Zlfs is precisely the locus where 7 is regular. Notice that, although it

is natural to view Q as the quotient of ng modulo G, the fibers of 7 may
very well fail to be equal to the orbits of G ; just consider the (common) case
when there are nonclosed orbits. In other words, the closed points of Q will not
in general be in one-to-one correspondence with the orbits of G. This should
motivate the following definition:

Zp:={z€Zy st Oy(z)NZy = O4(z) and dim O,(z) is
maximum among the dimensions of all G-orbits in ng}.

The expectation is that the fibers of the restriction of n to Zg are equal to
orbits.
We finally make the previous discussion precise by stating

Theorem (Fundamental Theorem of GIT). Let G be a reductive group acting
linearly on the projective scheme Z = ProjR. Then Q := Proj RS isa pro-
Jjective scheme and the natural morphism

T Z:S —Q
satisfies the following properties

(1) Forevery x,y € z3s, n(x) = n(y) if and only if Ogz(x) N Ogi(y) N Zlfs
£0.

(2) (Universality) If there exists a scheme Q' with a G-invariant morphism
n':Z3° — @, then there exists a unique morphism p:Q — Q' such
that o' = pom.

(3) For every x,y € Zy, n(x)=n(y) if and only if Oy(x) = Og(»).
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The usual notation is as follows:

(a) The points in Z;:S are called semistable (or R-semistable).

(b) The points in Z: are called stable.

(c) The nonsemistable points, that is, the pointsin Z \ Z 55 | are called (alas!)

unstable.

(d) Q is denoted by Z3°/Q .}

(e) A quotient which satisfies property (3), that is, Z;S = Zlf , 1s called a
geometric quotient.

Once the linearization is fixed, the R is usually dropped from the notation
and one writes Z55 and Z5 instead of ng and Z:. We want to stress that,
if we change the linearization, that is, if we change the embedding of Z and
the lifting of the group action, we will in general get different sets of semistable
and stable points.

An immediate consequence of the fact that Z 5§ /G is projective is the so-
called semistable replacement property of Geometric Invariant Theory, which
we will often use in the sequel.

1.2.1. Semistable replacement property of GIT. Let B be a smooth, one-dimen-
sional scheme, b, be a closed point of B, and f be a morphism of B \ {b}
to Z55. Then there exists a ramified cover B’ of B and a morphism f* of
B’ to Z55 such that

(1) the diagram below is commutative:

B % B <~  BN{b)

N\ /S

758
(2) there exists a point b, in B' with h(b,) = b, and a morphism
g:B'\{b} —G

such that for every b’ € B’ \ {b,} we have f(h(b'))=g(b") f'(}).
Moreover, b; can be chosen so that f'(b,) is either stable, or with stabilizer of
positive dimension.

We will conclude this summary by stating the so-called numerical criterion
for stability, which has so far proven itself to be the most efficient tool available
to test stability, and which we will use in the sequel. Roughly, such a theorem
says that the study of the action of a reductive group can be reduced to the
study of the action of its one-parameter subgroups.

From now till the end of this section we will work with a reductive group G
acting linearly on P(¥) and with a closed G-invariant subscheme Z of P(V).

3Sometimes the notation ng //Q appears in the literature, to distinguish from the ordinary
quotient. We will never use it.
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Recall that if G,, denotes k™ with multiplicative group structure and

1:G, —G
is a one-parameter subgroup of G, there exist a basis {vo ..., 0} for V and
integers {w,, ..., w,} such that the action of 1 on V is given by
At) v, = 1",

forevery t in G, and 0<i<r.If v = >_av;, a; € k, then those integers
n; such that a. ; does not vanish are called the A-welghts of v.

Now let z be a point in Z and let v, be any vector in ¥ which is mapped
to z by the natural map ¥V \ {0} — P(V). Having set the above notation, we
can state the numerical criterion:

Theorem (Hilbert-Mumford Theorem). (1) z € Z is semistable <> for every
one-parameter subgroup A of G the A-weights of v, are not all positive.

(2) z € Z is stable <= for every one- parameter subgroup A of G v, has
both positive and negative A-weights.

(3) z € Z is unstable <> there exists a one-parameter subgroup i of G
such that the A-weights of v, are all positive.

Of course the way we stated the theorem is redundant, as (1) and (3) are
equivalent. -

1.3. Stable curves in the sense of Deligne and Mumford. Let M. A be the moduli
space of smooth curves of genus g; M o is a reduced, irreducible algebraic
scheme whose closed points correspond to isomorphism classes of smooth curves
of genus g. More precisely, M < is uniquely determined as the scheme which
coarsely represents the contravariant functor .#_ from schemes to sets defined
as follows: for any scheme S, /lg(S) is the set of all proper and flat families
of smooth curves of genus g over S. If f:S' — S is a morphism of schemes,
/lg (f) is just given by taking fiber products.

We recall that to say that a scheme F coarsely represents the functor & is
to say that there exists a morphism of functors

E:F —Hom( ,F)

such that:
(i) for every algebraically closed field K , the map

E(SpecK) : F (SpecK) — #om(SpecK , F)

is an isomorphism;
(ii) F satisfies the following universal property: given a scheme F’ and a
morphism of functors
g:F — Fom( ,F)
there exists a unique morphism

w:F—F
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such that = = ¥ . E where for every S,

¥Y(S): Zom(S,F) — Xom(S, F')
f = yof.

M o is not proper, in fact a family of smooth curves may very well have a
singular limit. The problem of finding a meaningful compactification of it can
be set in the following way:

(1) To find a class & of curves containing all smooth curves and such that

(i) & is big enough that every family whose general fiber is smooth (or in
%) is birational to one having all fibers in & and the same general fiber
as the first family;

(ii) # is small enough to satisfy the separation property, that is, a family of
curves in & should have a unique (up to isomorphism) limit in & .

(2) To construct a projective scheme which is a moduli space for isomorphism
classes of curves in % .

The answer to the first part of the problem was provided by Deligne and
Mumford, following ideas by Mayer and Mumford. The beauty of it is that
precisely the “optimistic” try for & turns out to work. More precisely, one starts
by including in # only curves with the simplest possible type of singularities,
that is, ordinary double points (nodes). It is easy to see that this class cannot
possibly satisfy any separation property; for example, one can just blow up a
point of the total space of a one-parameter family of nodal curves to obtain
a different family of nodal curves, and yet generically isomorphic to the first
one. To get rid of this particular nonseparatedness phenomenon it is enough to
consider the subclass of nodal curves having no smooth rational components,
such as the ones arising from blowing-ups of the type we just described. This
is easily made precise by the following definition:

Definition. A Deligne-Mumford stable curve is a reduced connected curve having
only nodes as singularities and such that every smooth rational component meets
the remaining components in at least three points.

The upshot is that Deligne-Mumford stable curves of fixed arithmetic genus
have a moduli space which is a projective variety and contains M g asa dense

subset; the usual notation for it is M ¢ As we promised, we will describe the

Geometric Invariant Theory construction” of such a compactification of M o in
the following section. Much before such a construction was carried out, Deligne
and Mumford proved that their stable curves satisfy both the separation and
the properness property, which are the necessary requirements for a projective
moduli space to exist. Their result can be stated as follows (cf. Lemma 1.12 in
[DM)).

It should be mentioned that there are other constructions of Hg which do not use Geometric
Invariant Theory; see, for example, [Ko].
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1.3.1. Properness property. Let % and Z be two families of Deligne and
Mumford-stable curves over SpecR, where R is a discrete valuation ring.

Then, every isomorphism between the generic fibers of 2 and Z extends
to the whole of SpecR.

1.4. The GIT-construction of Hg . To set up the GIT-situation, one has to use
the existence of Grothendieck Hilbert schemes. We will briefly describe them
in the special case that is necessary to our purpose.

Let us fix the following data: a projective space P’, integers d > 0 and
g >3 with r = d — g, and a polynomial p(x) = dx — g + 1. Then there
exists a projective scheme Hilb’r’(") whose closed points are in one-to-one cor-
respondence with closed subschemes of P” having Hilbert polynomial equal
to p(x). More precisely, Hilb’r’(") finely represents the contravariant functor
Zilb? ™) from schemes to sets such that #il b? *)(S) is the set of proper and
flat embedded families over S, whose fibers have Hilbert polynomial equal to
p(x). Here to say that a scheme F represents the functor % is to say that F
coarsely represents # (see 1.3) plus the following condition:

The morphism of functors

E:F —Fom( ,F)

is an isomorphism.
In our case, this is equivalent to the existence of a “universal” family over
Hilb? *) together with a tautological polarization:

Z - 2" L, Hily’™

such that for every /4 in the Hilbert scheme, the fiber X, = u_l(h) is isomor-
phic to the subscheme of P* parametrized by 4, and L,:= ,iﬁ X, is isomorphic
to the line bundle giving the embedding of X, . We will also use the somewhat
inappropriate notation s = hilb(X, , L,), without specifying the basis giving
the embedding and assuming that the embedding is complete; we will usually
simply write & = hilb(X, L) or A = hilb(X), meaning X £ X, and L= L,.
To say that' = is an isomorphism is to say that, given any scheme S, every po-
larized family in Zilb? *)($) is obtained in a unique way as the fiber product
of the universal family described above.

We will now recall how to construct the Hilbert point of a given X c P’;
that is, we will pointwise construct Hilb? *x)

Let L := (1) ® @y ; then, by a theorem of Serre, for m large enough we
have the exact sequence

0 — H(P', F (m)) — H(¥', G, (m)) — H' (X, L") — 0

where %, is the ideal sheaf of X . Moreover, one can prove that there exists
an integer m’' such that for all m > m’ and for all subschemes of P’ having
p(x) as Hilbert polynomial, the above sequence is exact and the degree-m part
of the ideal of X, that is, HO(]P' , Fx(m)), uniquely determines X . Hence we
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can associate to any such X a point in the Grassmannian of p(m)-dimensional
quotients of S, := H° (P", &, (m)), and such correspondence is injective.
Even a sketch of the proof that the set of all Hilbert points can be given the
structure of a projective scheme satisfying the moduli property that we dicussed
before would take too much room; as it is not really useful for our purposes,
we just refer to Mumford’s lectures [M1] for the complete construction. But
the simple set-theoretic description that we just exhibited will be helpful to
understand the Geometric Invariant Theory set-up. '
Notice first of all that for any m > m’' we have a different embedding of
Hilb’r’(x) in a Grassmannian, and hence in a projective space
p(A

1, Hilb?™ H (P, G, (m))).

Now we have a natural linear action of the group G = SL(r+1) on IP’(P (/r\n) S,
hence any such 1,, determines a linearization of the action of G on Hilbf(x)
(which is obviously G-invariant).

The goal is to construct M—g as the quotient of a suitable subscheme of

Hilb’,’(x) ; for this reason it will be convenient to have a version of the Hilbert-
Mumford theorem which is specific to this set-up. G acts naturally on S,, and

( .
on "N ) S, » and so does the general linear group GL(r +1). It turns out to be
better to look at one-parameter subgroups of GL(r + 1) whose diagonal form
is
A(t) = diag(t"™, ..., ')
where w; € Zand 0 < w, < --- < w,. See [G], Section 0.B, for a very clear
explanation of how to make such a reduction and how to prove the statement
below.
The Hilbert-Mumford criterion for Hilbert points is

Numerical criterion. Let h = hilb(X, L) be a closed point in Hilb‘r'("); then
h is SL(r + 1)-semistable (resp. stable) if and only if for every one-parameter
subgroup A of GL(r + 1) as above there exist p(m) monomials (in the basis
diagonalizing 1)
0
{M,, ... M, ) } € H (P, Fp(m))

which restrict to a basis of H 0(X , L™) and such that

p(m) 20
Zw(M < g emim)

(resp <).

Here by w,(M;) we denote the weight of 4 on M, ; that is, let {x,, ..., x,}
be a basis of H’(P', (1)) such that

w.
A)-x;=t"'x;,, 0<w,<---<w,;

= = r
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then
M=xg0... X = wy (M) =) muw,

r

We will see applications of such a version of the Hilbert-Mumford Theorem
in Sections 3.1 and 3.2.

As we said, we want to find a closed subscheme K of (Hilb”™)%S such that
M =K /G . K should satisfy the following requirements:

(1) All points of K are G-stable, for some m .

(2) For every Deligne-Mumford stable curve X there exists a unique orbit
in K parametrizing embeddings of X in P".

(3) All points of K parametrize Deligne-Mumford stable curves.

The results that one uses at this point are

Theorems. Let d > 20(g — 1) ; then there exist infinitely many linearizations of
the action of SL(r + 1) on Hilb?™ such that

(1) (Mumford-Gieseker Theorem) If X C P" is a smooth, connected, nonde-
generate curve of genus g and degree d, then its Hilbert point is stable.
(2) (Gieseker Theorem) If h € Hilb‘,’(") is G-semistable, then all connected
components of X, are Deligne-Mumford semistable curves, moreover, the

embedding induced by L, is complete and H 1(X ws Ly) =0.

See [MM] or [G] for (1) and [G] for (2).

Now, let us consider d = n(2g — 2) and let us fix once and for all an m for
which these two theorems hold. Then we can consider the following subset of
(Hilb?™)5S .

K={he Hilbf(x)such that A is semistable,

. ~ . .®n
X, is connected, and L, = X, },

wy being the dualizing sheaf of X . K isclearly G-invariant and, by Gieseker’s
Theorem, it only parametrizes DM-stable curves; in fact, for any n > 3, w?"
is very ample if X is DM-stable and it contracts precisely the destabilizing
components of a DM-semistable curve. Moreover, K only consists of G-stable
points, and can be shown to be a closed subscheme of (Hilb?™)*S . The final
thing one needs to prove to conclude that K/G is the moduli space of stable
curves, is that the nth-canonical projective model of every stable curve is in
K, that is, it has semistable Hilbert point. The key point in the proof of this is
precisely the properness property of stable curves that we stated at the end of
the previous section.
All the details of this construction of Hg are in [G1].

2. CONSTRUCTION OF P, R

2.1. Existence of P . From now on, we will assume d > 20(g—-1), g >3,
and r=d-g. We w111 use the notation introduced in 1.4 and we will consider
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the Hilbert scheme Hilb’,’(x) parametrizing closed subschemes of P", having
Hilbert polynomial p(x)=dx—g+1.

We will fix once and for all an m for which Theorems (1) and (2) in 1.4 hold,
and we will focus our attention on (Hilb”™)%" | the subset of points of Hilb?™
which are semistable under the linearization of the action of G induced by 1,
From now on we will simply say that a point in Hilbf(x ) is semistable (unstable,

stable) if it belongs to (Hilb‘r’(x))‘fns , and we will not mention the integer m any
longer. If X c P’ is a curve whose Hilbert polynomial is p(x), and if & is
its Hilbert point, we will say that X is G-semistable if A is semistable for the
action of G.

Let us define the set H, C (Hilb?™))5S

H;={he Hilb’™ : X, is connected and 4 is semistable}.

Notice that by Gieseker’s Theorem, the points of (Hilb‘,’ x) ) correspond to
reduced curves; therefore, the condition of being connected can be equivalently

expressed by saying that hO(X ho ﬁxh) =1 or by the usual condition on the un-
derlying topological space. The first condition is open, by upper-semicontinuity,
the second one is closed. Hence we can conclude that H, is both open and
closed in (Hilb‘r’(x))ss , in other words, H, isa union of connected components

of the locus of semistable points of Hilb?™ .
Let

u,: &, — H,

be the restriction of the universal curve to it. By Mumford-Gieseker’s Theorem,
H, is nonempty, in fact for every [X] in M 2 and for all L in Pici, , the
Hilbert point hilb(X, L) isin H,.
By the fundamental theorem of Geometric Invariant Theory, there exists a
quotient of H,; by G,
n,:H,— H,/G,

where 7 is a surjective, G-invariant morphism and H,/G is a projective
scheme.

The next step is that H; maps naturally to M . To show this, we need to
construct a “canonical” famlly of stable curves over H, . Recall that the fibers
of the universal family u, : 2, — H,; are DM- sem1stable curves; our claim will
therefore follow from the following general fact:

If u:% — B is any family of DM-semistable curves, there exists a canonical,
commutative diagram

Z — sHZ)
N v
B

where
st(u) : st(Z)— B
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is a family of DM-stable curves such that for every b in B, st(u)_l(b) is the
stable model of X, , i.e., the DM-stable curve obtained by contracting to an
ordinary double point every destabilizing rational component of X, .

We will call the family st(u) : st(2°) — B the stable model or stable reduction
of & over B. To construct such a stable model, consider the dualizing sheaf
W=0Wyp of the family u: 2 — B; u*(w®3) is locally free on H, and there
is a diagram

r L Pu(0®)
N 7
B
such that the restriction of y to any fiber X, maps it to a DM-stable curve in
P**7% . This clearly follows from the fact that »®? restricts to a very ample
line bundle on each DM-stable fiber, whereas its restriction to any destabilizing
component of a DM-semistable fiber has degree 0. Therefore, there exists a
unique morphism vy, : H, — Hg such that y,(h) = [st(X,)].

We now want to show that this map is surjective. This is a simple consequence
of the semistable replacement property of Geometric Invariant Theory (cf. 1.2)
and of the properness property of DM-stable curves (cf. 1.3).

Lemma 2.1. Let [X]e M P then there exists a point h € H; such that the stable
model of X, is X .

Proof. Let us consider a one-parameter deformation of X to a smooth curve,
that is, a family

*

f:& — (B, b)),

where B is a smooth curve and such that the fiber of 2 over b € B is
nonsingular for all b # b, while the fiber over b, is isomorphicto X . If Zis
any line bundle on 2 having degree d on the fibers, after shrinking B around
b, we can choose a frame for f,-# ; this will give a map 7 : B — Hilbf(x) with
the property that y(B \ {b,}) C H; (recall that the Hilbert point of a smooth,
projective, linearly normal curve of degree d is stable). By the semistable
replacement property of Geometric Invariant Theory, up to taking a ramified
cover of (B, b,), we can assume that there is a morphism 7: B — H, whose
restriction to B \ {b,} is congruent to y modulo G.

Now we want to use the properness property to show that y(b;) corresponds
to the Hilbert point of a curve having X as stable model.

Let % be the family of DM-semistable curves on B obtained by pulling back
Z, to B via 7 and let Y be its fiber over b,. % and Z are isomorphic
away from their fibers over b, ; if st(%¥) — B is the stable reduction of %,
then st(%) and 2 are also isomorphic away from their fibers over b,. By
the properness property, such isomorphism extends, hence we can conclude that
st((Y)Y=X. O

Obviously, y, is constant along the orbits of G, hence, by the universal
property of the GIT-quotient, it factors through the quotient morphism 7, in
a unique way. To conclude, we can state the main result of this section:
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Theorem 2.1. (1) There exists a projective scheme T,g with a natural (proper),
surjective morphism ¢, onto M .
(2) For all [X]€ M),
¢, ([X]) = Picy ;
moreover
¢; (M) =P, ..
Proof. To prove (1), we take

Pd,g =H,/G,;

then the first part of the statement has already been proved. Note that, in fact,
we have a canonical, commutative diagram:

Lzl

H, - H,/G
Wd\ /¢d

Mg

Now we will prove (2). If [X] € Mg , we claim that ¢;1([X )= Picf‘, . There
are two ways to prove this: one way is to just use the universal property of
Pic‘; , the fine moduli space of line bundles of degree d on X . In other words,
we can use the fact that such a moduli space already exists as the (unique up
to isomorphism) scheme which finely represents (cf. Sections 1.3 and 1.4) the
contravariant functor .@icﬁ, from the category of schemes to the category of
sets. Here for any scheme S, 9”1’01,(8) is the set of isomorphism classes of
line bundles over X x, S having relative degree d, modulo pull-backs of line
bundles on S'.

In fact, V[X]e M g’ let us denote the set of GIT-semistable projective models
of X by

My ={heH,: X, =X}

If X is smooth and has no nontrivial automorphisms, we can describe M,
completely:

M, = {hilb(X, L), VL € Pick} = w; ' (IX]),

where the last equality follows from Gieseker’s theorem. M, is closed in H,
and its points are all stable under the action of G.

At this stage, it is clear that ¢;1([X 1) is pointwise isomorphic to Pici,.
Notice also that if X has automorphisms, a point in M, determines the line
bundle L only up to automorphisms of X .

Now, by the universal property of the Hilbert scheme, for any family of line
bundles of degree d on X, parametrized by some base scheme S, we can
construct a unique morphism

S — M, /G =, (X))
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In other words, there is a morphism of functors
- . d -1
E: Picy — Zom( , ¢, ([X)).

Therefore, by the universal property of Pici, , there correspondingly exists a
unique morphism of schemes

&: Pich — M, /G

through which Z is factorized.
To construct the inverse of &, first consider the morphism from M v 1o

Pici, associated to the natural, polarized family over M 't » such a morphism is
G-invariant, hence it can be descended to the quotient, providing the required

&
This concludes the proof of our statement.

Another, more interesting, approach is to directly prove that M /G is the
degree d Picard variety, by showing that it satisfies the required moduli prop-
erties. By the above discussion, what still needs to be proved is the existence
of a Poincaré line bundle over M, /G x X. We will now construct such a
bundle, by using the tautological line bundle over the universal family over the
Hilbert scheme. Our method can be viewed as a special case of a more general
construction due to Maruyama (see [Ma]).

The restriction of 27, to M, is M, x « X ; let usdenote by & the restriction

of the tautological polarization to it.
We have the diagram:

L M,/G— Pic‘;(.

..Cf—éMXka — M,
MX/kaX — MX/G

- We cannot simply descend .# to a line bundle over M +/G x, X , because the
stabilizers of the points of M  (all of which are isomorphic to the cyclic group
of order r+1, u, ) may act nontrivially on the restriction of .% to the fibers
of

Myx, X —M X

But now, given a tautological polarization .%’, we can obtain another one by
taking
Zep' F
My
for any line bundle F on M, . What we need to do then, is to find a line

bundle F endowed with an action of G which kills the action of Ky O L.
We define

F= det(pMX*(_?)) ® det(pMX,,(-? ®p:ﬁx(—p)))_l
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where p is a point of X . It is clear that the action of x, , on
' =FLep F
My

is trivial and that %’ descends to a line bundle on M, /G x, X which satisfies
the defining property for a Poincaré bundle.

Finally, to prove that ¢;' (Mg) is isomorphic to P, , we have to show that
¢;1 (Mz) coarsely represents the degree d Picard functor ,97"1, 2 relative to the
universal curve o

gg — M pe
This is to say (cf. 1.3) that there exists a morphism of functors
- —1,,,0
E: Py, — Hom( , ¢, (M,))

such that:
(i) for every algebraically closed field K, the map
E(SpecK) : #, ,(SpecK) — #om(SpecK, ;' (M)
is an isomorphism;
(i) given a scheme P and a morphism of functors

%, ,—&om( ,P)

there exists a unique morphism
—1,,,0

such that '=¥-E

Let us start by constructing E. Let F € &, ,(S); then F is a family of
smooth curves of genus g over S, with a polarization . of relative degree
d:

v —#w-Ls;

f,.-Z islocally free, hence there exists an open covering S = UU; such that for
every i we are given a trivialization of f,.Z v, SO that there ex1sts a morphism

£, of U, to (H,)*™", given by f,(u):=hilb(C,, L,). If we denote by f; the
composition of f; with the quotient map, i it is clear that the f can be glued to

a map, Z(S)(¥), from S to ¢;1(M ); which does not depend on the choice
of the trivialization.

Now, the fact that Z(Spec K) is bijective follows immediately from the fact
that the restriction of z; to

0 0
H,={heH,st [X,]eM,}
is a geometric quotient.5

>Recall that a GIT- quotient 7 : H — H/G is called geometric if every fiber of 7 is equal to
a G-orbit.
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Finally, to prove (ii), we consider the image under the map
0 0 0
I'(Hy): g"d,g(Hd) — Zom(H,, P)

of the restriction of the universal family to Hg . This will be a G-invariant
morphism
c//' : Hg — P

that can be factored through the quotient map =, that is, we obtained a mor-
phism

—1,,,0
vig; (Mg — P,
which is what we wanted. O

We will denote
e -1
P, x =9, (X).

2.2. Local geometry of H,. We have the following result.

Lemma 2.2. (1) H, is nonsingular.
(2) Every connected component of H; has dimension r(r +2)+4g —3.

Proof. H, is an open subset of Hilbf(x). Recall that a lower bound for the
dimension of any irreducible component of Hilb‘,’(x) is given by the number

r(r+2)+4g - 3.

We will prove the lemma by showing that for all 4 € H,, the dimension of the
tangent space of H, at h is equal to r(r 4+ 2) +4g — 3. The essential point will
be to observe that, since /4 is semistable for the action of G, the corresponding
subscheme of P*, X, 4 » 18 a nonspecial curve. Let us denote X, by X, X will
be a nodal curve embedded in P* by L; let JF be its ideal sheaf. Let us
denote by /VX/R,, the corresponding normal sheaf, that is,

2
/tf\’/ﬂ” = Homax(‘fx/‘fx , Oy).
Then we have the well-known identification
0
T,H,=H (X, /VX/P,).

Since X islocally a complete intersection, ./ 1P is locally free and, by applying
the Riemann-Roch Theorem to it, we get

X(Ayp) =r(r+2)+4g - 3.

Therefore, to prove the lemma, we need to show that A' (X, /VX/P,) =0.
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There is the following standard exact sequence
0Ty > Ip 00y — X/P’_’T -0

(cf. [LS]) where J, is the tangent sheaf of X, J, is the tangent bundle of
P", and
1 1
T, = EXtax(Qx’ Oy).

Since T)'( is a skyscraper sheaf supported at the singular locus of X , we get a
surjection

1 1
H(X,% ®0y) > H (X, Vyp)— 0.
This, together with the Euler sequence for P’ yields

h(X, n,,)<h (X, @"'@,(1) = (r+ DA' (X, G,(1))

0

where the last equality follows from Gieseker’s Theorem (for the details, see
[G], Proposition 1.0.8). O

Corollary 2.1. The scheme P, g IS reduced and Cohen-Maculay.

Proof. The fact that P 4. g is Cohen-Macaulay follows from the fact that H} is
regular, by results by Hochster and Roberts [HR] about the GIT-quotient of a
smooth variety. 0O

Remark. We will show later (Lemma 6.2) that H is actually irreducible.

The previous lemma is a special case of a more general result that we will
now describe and that will also be useful. Let X be a nodal connected curve
in P’ and let I be a subset of the nodes of X. Then there exists a locally
closed subscheme Hilb, (1) of Hilb?™ such that Hilb, (I) parametrizes (flat)
deformations of X in P” which are locally trivial at all the nodes contained in
I (cf. [LS] and [Sn]).

The result we need is the following:

Lemma 2.3. Let h = hilb(X) be in H,, and let I be any subset of the nodes of
X. Then I is flatly smoothable in P ; in other words, Hilb,(I) is smooth at h
and it has dimension r(r +2)+4g —3 —|I|.

Proof. The proof is really a straightforward generalization of the proof of
Lemma 2.2. By standard deformation theory the tangent space to Hilb (1)

at h is identified with HO(X , /VXI /1?’) and Hilb, (/) is smooth at 4 if and only
if H l()( s /Vxl /P,) =0; here /VXI/P, is defined by the exact sequence

O_’/VX/P'_’ X/P'_’T -0

(T;,ll denotes the restriction of T)l( to I).
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In particular, notice that
ingX 1
/t/;;,,’,',g =Ker{#yp = Ty} =Im{Fp @ Ty — Ny p'};
hence, from the proof of the previous lemma,
( X ./I/smgX ) 0
Now, we have an exact sequence

smgX iy | 1 .
O_"/,/ _)./VI-Y/]P’ - TXIsingX\I _'0’
hence
1 I
H'(X, Nyp)=0

and the lemma is proved. O

3. WHAT IS THE MULTIDEGREE OF A GIT-SEMISTABLE CURVE?

3.1. The Basic Inequality. We will now state the theorem which is the key tool
in the analysis of P 4, and P . In this section, we will only prove a part of
it; the remaining half will be proved in Section 6.1. The crucial observation is
that a curve in P* should have better chances to have semistable Hilbert point
if its multidegree is proportional to its multigenus. This is made precise by the
statement below.

Theorem (Basic Inequality). Let X be a connected, nondegenerate, nodal, curve
in P" having genus g and degree d. For hilb(X) to be semistable it is necessary
and sufficient that, for any complete subcurve Y of X, the degree of Y satisfies
the following inequality :

(BI) d, - dl)(gY L+ky/2)| <k, /2

(&
where ky, = |Y N X \Y]|.

We will prove the two directions of the statement separately. The necessary
condition is restated and proved below, as Proposition 3.1. The sufficient con-
dition will be Proposition 6.1 in a following section. The proposition below
determines a bounded domain in which the multidegree of a GIT-semistable
curve X can vary. We remark that such a first approximation is a very good
one, for example, it will imply that the abstract curve X , which by Gieseker’s
Theorem is DM-semistable, can only have destabilizing chains of length 1. In
particular, we have the striking fact that, given any DM-stable curve W , there
are only finitely many abstract curves having W as stable model and admitting
some GIT-semistable embedding of degree d in P’

To prove the necessary condition part we will follow the methods of Gieseker.

Proposition 3.1 (Basic Inequality: necessary condition). Let X C P" be a projec-
tive curve such that h = hilb(X) € H,, andlet Y C P’ be any complete subcurve
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of X having arithmetic genus g, and intersecting the remaining components of
X in k points. Then the degree of Y satisfies the following inequality

d
(g-1)

Proof Let L € P1c— be the very ample line bundle &, (1) ® &y ; we are as-
suming that hilb(X, L) = & is semistable under the group action on Hilb?™ .
Let Y be any complete subcurve of X and Z = (X — Y); then k = lYn Z|.
To show that d, satisfies the Basic Inequality, we need to use the fact that, if
hilb(X, L) is semistable, then for every subcurve Y of X we have

(BI) dy — ———(gy — 1+ k/2)| < k/2.

Oy, Ly) _ dy+k/2
x,L) - d
where L, = L ® @, . We will refer to (G) as the Gieseker inequality.
The easy part of the proof consists in showing that the Gieseker inequality

is equivalent to the Basic Inequality. Let us do that first.
By Gieseker’s Theorem, L embeds X as a nonspecial curve, hence we have

(G)

oy, Ly)  dy+k/2

x,L) - d
~
dy—gy +1+h (Y, Ly) _ dy+k/2
d-g+1 - d
—~

Ei—l(gy _14k/2) <dy +k/2.

If we now apply the same argument to Z we get
and, since d =d, +d, and g =g, + &g, +k — 1, we have

d

Ei—l(gy —14+k/2) 2 dy —k/2.

Now, we have to show that (G) is satisfied if 4 is semistable. The proof
of this fact is due to Gieseker; we will briefly describe it, since we need to
more extensively analyze its consequences (a more detailed proof can be found
in [G]). As it is standard in Geometric Invariant Theory, the method is to
assume that (G) is not satisfied and then to find a so-called “destabilizing one-
parameter subgroup” for A, which highlights the fact that (G) fails. More
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precisely, suppose that

KoY, L) Ay tk/2
(X, L) da ~’
then one can reach a contradiction by exhibiting a one-parameter subgroup A

of G such that 4 is unstable with respect to 4.
Let us construct such a destabilizing A. Let ¥ = H°(F', 4,,(1)) and let

U=Ker {H (¥, 6, (1)) - H'(Y, &,(1) }.
Then choose a basis {xXgs---» Xy, ..., x,} relative to the filtration
OCUCcV,
that is, x; € U if 0 <i < N; now we define
N

We will now show that, if (G) is not satisfied, then % is A-unstable. By the
numerical criterion for Hilbert points that we have stated in 1.4, 4 is unstable

if for every p(m)-uple of monomials {Af,, ... M,,,} inthe {x,,...,x]},
which are independent over X, one has
p(m) S w
20
3w, (M) > g pme(m)

Consider the filtration of H°(P', &, (m)):
ocuU"cU™ve...cU™v'c...cv" =H' (¥, G, (m)).

This of course induces a filtration F of H° (X, L™) via the (surjective) restric-
tion map
p, H(P', . (m)) - H (X, L™.

Let {M,,..., M,,,} be monomials which restrict to a basis of H(x, L™
relative to F . Clearly

—iy i —itlpiml :
MjGUm 7N f a7 =>w,{(Mj)=l;

moreover, for any other p(m)-uple {Ml' s eens M;(m)} , restricting to a basis of
H°(X, L™), we have
p(m) p(m
> w, (M) < Z w,(M,).
j=1 Jj=1
Therefore, to conclude that /4 is unstable it is enough to prove that
p(m) 26 w,

Z w,(M;) > mmp(m).

j=1
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Let b, =dimp, (U""'V") for 0 <i < m;then

p(m) m—1
T = Z wy(M)) = mb,, — Z b,.
j=1 i=0

Let f:Z' — Z be the normalizationof Z, L' = f*L, D= f~'(YnZ), and
g =g, . We have

b, <h®(Z', (L'Y"((i—-m)D)) =dym+(i—mk —g +1+h,

where
b =h'(Z', (L) (i~ mD)) < g

the last inequality holds, provided that, on each connected component of Z !
the line bundle in question has nonnegative degree. We will now suppose that
this is the case and continue the proof under such an assumption. Since the
proof of the general case is of no interest to us, we will simply refer to [G], p.
83. Then

m—1 2

T >mb, — Y (md, +(i—mk+1)=m"(d—d, +k/2)+ O(m).
i=0

Finally, using the fact that (G) fails together with the obvious relation
r
(Y, Ly) > w,,
0

we have that there exists an integer m’, which can be shown not to depend on
X and L, such that, for all m > m' we have

r

d+ O(m) > h%—/%w—imp(m).

%Y, L)

2

This finishes the proof. O
We will usually write the Basic Inequality as
my <dy < My

where

my = (g—i—l—)(gy —1+ky/2)—ky/2 and M, =my +k,.
3.2. Behaviour at the extremes of the Basic Inequality. We now want to show
that, as a corollary of the proof, if d, is equal to one of the extremes of the
Basic Inequality, and X is DM-stable, then % has no chance to be G-stable.
As we will see in the next paragraph, such a lemma is false if X is strictly DM-
semistable and the subcurve with extremal degree is a destabilizing component.
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Lemma 3.1. Let X Cc P' be a DM-semistable curve;, assume that there is a com-
plete subcurve Y of X such that

d
(8-

and such that X \'Y is not a union of destabilizing components. Then hilb(X)
is not G-stable.

dy = oy 8y = L+ ky/2) — Ky /2

Proof. We will first assume that X has only two smooth irreducible components,
Y and Z, meeting at k- points, and such that

dy=my and d, =M,.
It is convenient to recall that from the first part of the proof of Prqposition 3.1
we can derive

d R(Y,L,) dy+k/2
() dy= oy 8y — 1+ hy/2) ~ky/2 = h"((X,LY))z k2

We will use the same A and the same notation as in the proof of the previous
proposition. By the numerical criterion of stability (see 1.4), to prove that 4 is
not stable it is enough to prove that there exists a 4 such that

r

p(m) Zo w;
T= ]2:; w,(M;) > mmp(m)

for every p(m)-uple of monomials which restrict to a basis of HO(X ,L™.

Remark. We will see in the sequel that 4 is in fact G-semistable, that is, the
inequality above will be an equality.
We have already obtained the estimate
m—1 ’ )
T > mb,, — Z(mdz+(i—m)k—gz+1+hi),
i=0
but now
1 1 .
h; =h (Z,L;(i—m)D)=0
because
deg L (i—m)D = m(d, — k) + ik > 2g, - 2;
in fact, since we are assuming that g, = 0 implies k > 3, Proposition 3.1
yields that d, > k. Hence, we have

T >m’(dy +k/2) +m(1—g+k/2+g, - 1);
on the other hand, by (x)

S, KoY P L)

m_ mp(m) T m’(dy +k/2) + m(—gy + 1 —k/2).

mp(m)
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Finally, we can conclude

Tw,
mp(m)——— < T.
p()d_g+1_
This proves the lemma in the special case of a curve with only two smooth
irreducible components; let us now consider the general case.
Let Y C X and let Z be the complementary curve, so that

d,=my, and d, = M,.

We start by observing that one can assume that both Y and Z are connected,
because all connected components of Y (respectively Z) must have minimum
(resp. maximum) degree. In fact, let

Y=UY, Y,nY =0 Vi#j;
then

my = ZmY, hence d, =m,
and analogously for Z . Now, let

W=X\Y =UW,
W, connected components; then
dW,- = MW.- Vi

so that we can take

Y =Y,U(Uy,W,) and Z'=W,

provided that W, is not a destabilizing component, which we can certainly
assume.

Now Y’ and Z' are connected and they have extremal degrees.

Let L := 0, (1) ® @y, and consider a generic one-parameter deformation of
(X, L) which is locally trivial at Y N Z . The generic fiber of it is a DM-stable
curve having two smooth irreducible components meeting at |Y N Z| points.
We have already proved that the Hilbert point of it is not stable.

Since the locus of nonstable points in Hilbf(x) is closed, we can conclude
that the Hilbert point of the special fiber is also nonstable. O

3.3. Quasistable curves and ladders. We will now apply Proposition 3.1 to give
a more detailed description of the points of H,, .

If h=hilb(X, L) € H;, by applying Proposition 3.1 to any chain of desta-
bilizing components of X, we get that the degree of the restriction of L to
such a subcurve is 1. In other words, every destabilizing chain of X is actu-
ally an irreducible rational curve which is mapped by L to a line of P". This
observation motivates the following definition:

Definition. We will call a DM-semistable curve quasistable if all its destabilizing
chains have length 1.
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We have just seen that all points of H, correspond to quasistable curves.
It is important to observe that, although a strictly quasistable curve X has a
positive dimensional automorphism group as an abstract curve, it might very
well happen that its models of degree d in P’ have only finitely many linear
automorphisms. More precisely, recall that D, denotes the subcurve of X
given by the union of all destabilizing components of X , and let Stab (k) be
the stabilizer of 4 in G =SL(r+ 1). Then we can prove the following

Lemma 3.2. Let h = hilb(X) € H,; then Stabg(h) has positive dimension if
and only if X \ D, is not connected.

Proof. Since h € H,, X is not contained in any hyperplane of P (by Gieseker’s
Theorem). Let Y = X \ D, ; since D, is aunion of lines, Y and X span the
same linear subspace of P, thatis, Y spans P'.

Suppose that Y is connected; since Y is also nondegenerate, every a €
Stab(h) is determined (up to a finite subgroup of G) by its restriction to Y.
Now, either g, > 1, hence Y is DM-stable and Aut(Y) is finite; or g, < 1

in which case Y has
= Dy NY]

2
marked couples of points which are fixed by a. If g, =1 then p > 1, and if
&y =0 then p > 3; in both cases there are only finitely many automorphisms
of Y which fix that many couples. Hence Stab (k) is finite.

Viceversa, suppose Y =Y, UY,, Y, NY, = &, where Y, are complete sub-
curves of Y. Let A, be the linear subspace spanned by Y;. Itis A, NA, =2,
since, by the Riemann-Roch Theorem, we have dimA, + dimA, = r — 1.
Therefore, there exists a positive dimensional family of automorphisms of P
which fix both A, ; the nontrivial elements of such a family will induce non-
trivial automorphisms on D, ; therefore Stab;(h) has positive dimension. O

Definition. A quasistable curve X which satisfies the condition in the above
lemma (that is, X \ D, is not connected) will be called a ladder. The number

#{ connected components of X \ D, } — 1

will be called the order of X . A ladder could also be defined as a curve having
positive order.

This somewhat funny name “ladder” is suggested by the picture of the case in
which X \ D, has two irreducible nonsingular components, C, and C, (see
Figure 1 on the next page).

If he Hilbf(x) , let Og(h) be the orbit of 4 under the G-action. Since
dim O, (h) = dim G — dim Stab;(h) , we have that dim Og(h) < r(r +2) if and
only if X, is a ladder.

3.3.1. Important remark. Notice that if X c P" is a ladder having semistable
Hilbert point, every connected component Y of X \ D, satisfies

d, =m,.
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FIGURE 1

4. COMBINATORIAL CONSIDERATIONS

The purpose of this section is to introduce a language which will be used to
deal with the combinatorial problem.

4.1. The degree class group of a nodal curve. Let X = U_ C; be a DM-semi-
stable curve and let the C; be its irreducible components; let d be an integer.
In this section, we will assume the above data to be fixed.

If L is a line bundle of degree d on X we define its multidegree d to be
the ordered p-uple of integers

Y
degl=d=(d,, ... ,dy) where di=degCiLand Zdi=d.

i=1

We will denote by Pic% the variety of line bundles of multidegree 4 on X .

Given L € Picf-( , Proposition 3.1 imposes a necessary condition for hilb(X, L)
to be semistable. It is convenient to introduce the next

Definition. Let L € Picii—v be a line bundle on a DM-semistable curve. We say
that L and d satisfy the Basic Inequality if and only if every subcurve of X
satisfies (BI) in Theorem 3.1, with respect to L. We will denote by B; (or,
more often, simply B, ) the set of multidegrees d satisfying the Basic Inequality
on X and such that d; > 0Vi.

In this section, we will illustrate in what sense the Basic Inequality is actually
sharp. We will start by associating to every curve a finite group which is an
invariant of its combinatorial data. There is a natural equivalence relation
among all the multidegrees summing to a fixed d. This comes from the fact
that in any deformation of X with smooth total space 2 over a smooth one-
dimensional base, one can twist a line bundle . on the total space by another
line bundle of type ﬁ%(ZLl r,C,), r; € Z, having only the effect of changing
the restriction of . to X and its multidegree. The point is that the way the
multidegree of .S”l '« changes does not depend on the choice of the polarized
family (27, £); it only depends on the ordered y-uple (r, ..., r,).
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To precisely define this equivalence relation, we only need to consider the
combinatorial data of X ; define

_flcingl, s,
IC,NX\C)|, ifi=j

i,j
andlet Z=7""" be

Y
Z={(ry,...,r,} €Z’, such that > =0}

i=1

let A, C Z be the lattice generated by the y vectors

=k 12k 5snn k)
=k yseees =k s kL)
g = (ky,l’ k7,2’ T _ky,y);

of course, these vectors are not independent, since

gj=0.

4
=1

J

¢; corresponds to the multidegree of
the restriction to X of the line bundle &, (C;), where 2 is the total space of
a generic one-parameter deformation of X . We will use the same suggestive
notation for any complete subcurve Y of X, that is, we will denote by y the
multidegree of any line bundle of type &,.(Y) on X.
Now, if we are given d = (d,,...,d,) and d' = (d}, ..., d,) with 3°d, =
S d; =d, we say that d is equivalent to d' (with respectto X)if d —d’ lies
in A, where d-d = (d, —d;, ey dy—d}',). The notation willbe d =d’.

The meaning of these vectors is clear: ¢,

Definition. The degree class group of X is the finite group Z /A, , which will
be denoted by A, .

Remark. The group Z /A, is equal to the space Ag, of equivalence classes of
multidegrees which sum to zero. This is, of course, noncanonically isomorphic
to the space A‘;( of equivalence classes of multidegrees summing to d, for any
integer d. In order to simplify the notation, we will still denote by A, such
a space, without further specifying d. We can just assume that we fixed an
isomorphism between A, and A% | for every d, once and for all.

The cardinality of such a group will be denoted by u(X). We will show later
(Corollary 5.1) that u(X) is an upper bound for the number of irreducible
components of T,X' Moreover, if X has trivial automorphism group, there
will be values of d for which P, , has exactly u(X) irreducible components.
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If X has automorphisms which permute its components, then a sharp upper
bound would be given by the cardinality of the quotient of A, by the automor-
phism group of X .

Examples. (1) If X has only two irreducible components C, and C,, with
|C,nC,| =k, then ¢, =(-k, k), ¢,=(k,—k),and

A, 2 Z/KEZ.

(2) If X has y irreducible components C,, ..., Cy , then the cardinality of
A, will be given by the absolute value of the determinant of the (y — 1) x (y —1)
intersection matrix relative to any choice of y — 1 components of X . In other
words,

[Ax] = 1det((C;+ C)) gy -

Let us apply this to a quasistable curve obtained by destabilizing all the ¢
nodes of an irreducible curve, that is, X has y = § + 1 components, J of
which are destabilizing and do not intersect each other. We obtain that the
degree class group of X has 2° elements.

4.2. Relation with Geometric Invariant Theory. Recall that if Y is a subcurve
of X, we denoted the extremes of the Basic Inequality by

d d
my=m(gy—l+ky/2)—ky/2, MY=—-—-—(gY—1+kY/2)+kY/2

(g—-1)
where g, is the arithmetic genus of Y.
We want to start by a simple observation. Firstif 4 and B are two subcurves
of X with no common components, we define

ky p:=14ANB|
Then if W = AU B, the Basic Inequality yields
my =my+mp+k, p and My =M, +My—k, p.
We have the following

4.2.1. Important remark. If d satisfies the Basic Inequality and Z is a subcurve
of X such that d, = M, , then d + z also satisfies the Basic Inequality.

To check this, let &' =d +z andlet Y = X \ Z . Assume that there exists a
subcurve W of X such that d, > My, ; let us writt W = AUB with ACY
and B C Z . We have

!
dy=d +ky ;+dp—kp y>My =M, + My —k, p.
Since d satisfies the Basic Inequality, we obtain
dy>M,—ky p—ky ,+tky y>M,—k, ,.
This gives

dyz >My+M; -k, ,=M,,,,

which is a contradiction.
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It is straightforward to check that, in the case of a curve having only two
irreducible components, every degree class has a representative which satisfies
the Basic Inequality. In fact, according to Theorem 3.1, if the two components
of the curve meet in k points, then the length of the interval in which the degree
of either one component can vary has length k + 1. On the other hand, the
cardinality of the degree class group is k, and two multidegrees d = (d,, d,)
and d' = (d, d;) are equivalent if and only d, = d| + nk for some integer 7.
Hence, for any fixed degree class, at least one representative (and at most two)
will fall in the allowable range.

The same is true for the general quasistable curve, but the proof, although
elementary, is more complicated:

Proposition 4.1. Let X be a quasistable curve and A, its degree class group. Then
every element & of A, has a representative which satisfies the Basic Inequality.
Proof. Given any representative d for 6, we will exhibit a method to pro-
duce a new multidegree which satisfies the Basic Inequality and which is also
a representative for 6. Suppose d does not satisfy the Basic Inequality; then
there exists a complete proper subcurve Y of X for which the condition of
Theorem 3.1
my <dy < M,

is violated, that is (for example), d,, > M, ; we will call the number d, — M,
the “excess” of Y with respect to d and we will denote it by €,(d) orjust €, .
We have (by the observation at the beginning of the section)

€W=6A+€B+kA’B;

this implies that there exists a unique curve Z(d) = Z having maximum excess
and minimal with respect to this property (that is, the excess of any proper
subcurve of Z is less than the excess of Z). In fact, if Z, and Z, are two
different curves with the above property, then the union of them,

U=ZUZ,,
will have excess
€y > €z
contradicting the assumption that Z, has maximum excess. This is clear if Z,

and Z, have no common components. If, instead, L is the curve in which
they intersect, let H = Z, \ L; then we have

€y =€z Tyt kZl,H'
But, by the minimality of Z,
€y + kH,L > 0 hence a fortiori €, > €z,

We will define
€(d) = €z
to be the total excess of d, and we will call Z the excess curve of d. We will
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make the convention that the excess of the empty curve be equal to 0; in this
way,

Z(d) =2 <= d satisfies the Basic Inequality <= €(d) =0.

The proof of the proposition will consist of showing a way by which, given a
d which does not satisfy the Basic Inequality, we can find a new multidegree
d’' = d which has smaller total excess.

Note that for any complete subcurve Y of X, we have

YCZ = dy—My+ky ,>0.

In the same way we defined Z(d), we can define the deficiency curve A = A(d)
as the minimal subcurve of X having maximum deficiency, where the deficiency
of a subcurve Y will be defined as the number m, —d, . It is easy to see that
A and Z have no common components.

Finally, we have a decomposition

X=Zd)UNd)UAd)=ZUNUA
where N is a sort of “neutral” subcurve, defined to be
N:=X\(4UZ).
We have that
YCA = —dy+my+ky ;>0 <=dy—-My+ky , <—ky y.

Now, we claim that, if 4NZ # @, then the operation of twisting by Z actually
yields a multidegree d' having smaller total excess. In other words, let

d=d+z;
then, if AN Z # @, we will prove that
e(d) < e(d).
If Y is a subcurve of X, we will write
ey(d) =ey;
we have to show that, for any Y, e;, < €(d). We can decompose Y as
Y=WULUB with gCWCZ, oCLCN, aCBCA.

Then we have
! li ! !
€y =€w+€L+fa+kW,L+kL,B+kB,W-

Now,
li
ew=dy —ky y—ky —My <e;—ky y—ky , ,
where equality holds if and only if Z = W, because of the minimality of Z ,

i
eL=dL+kL,Z—ML§O,
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and finally
€p=dp+ kp 7 — Mg < —kg y
where equality holds if and only if B is empty. Therefore
li
€y<€z—ky n—ky 4=k ntky ptky +thy <€

where equality holds if and only if W = Z and B = @. Therefore we are left
with Y = Z U L, where

!
€y <€z _kZ,N_kZ,A +kZ,L

and clearly the only case in which €, =€, iswhen Y =ZUN and k, , =0,
ie, ANZ=2.

Our claim is then proved; to conclude we need to deal with the case ANZ =
@, when we saw that €(d’) = €(d) = €, -

Let us consider

dll —

IR,

+n+2z;

we will see that the total excess of d” is smaller than that of d. As before,
with analogous notation, we have

I/_ n + " n k k k
€y =€y +€ +e€gtKy | K pthp w

=(6;4’)-'-(62_kL,A)+(elIB+kB,N)+kB,L+kW,L;

finally, since el <0 and e; =€5 < —kB, » (equality holds iff B is empty), we
have

ey Sep—ky y =k gtky Lty <ez
hence €(d”) <e(d). D

Notice that, by 4.2.1, a multidegree class has a representative satisfying the
Basic Inequality if and only if it has a representative in Bi, (cf. Definition in
Section 4.1). In fact, if d satisfies the Basic Inequality, but it is negative on a
subcurve C of X, then C must be a union of destabilizing components and
hence, by 4.2.1, d + ¢ will be in B%.

4.3. A useful normalization. Let v = (v, ..., vy) be an element of A, ; then
v can be written as a combination of the ¢, in many different ways. Yet there
is a convenient choice that can be made, if v is such that |v;| < ki’ ; for every
i. This is explained in the following simple lemma.

Lemma 4.1. Let X = U’I'C,. be a DM-semistable curve. Let d, d' be two mul-
tidegrees on X which satisfy the Basic Inequality, and such that d = d'. Then
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there exists a partition in disjoint subsets

{1,2,...,9}=JuJu---UJ,

such that
X"hnX"k=z = |h—k|>2

and

—d' =) g+ Y 2+ D4

jed, j€J, j€J,
where q is some positive integer.

Proof. Even without assuming that d and d' satisfy the Basic Inequality, we

can write
q
-d'=3 > he;.

h=0j€J,

In fact, for any element v of A, we have

Y
=Zuigi, u; € L.
i=1
Let m = min{u;} and let us define
Jy={i: 1<i<y, u;=m};

clearly J, is not empty. Now we have the relation

hence

and clearly now v; > 0. Let
={i: 1<i<y, v,=h}.
Now, if d and d' satisfy the Basic Inequality, we will prove that
thnXJk=ro’ <= |h—k|>2.

Let I =J, and J =J, U---UJ, ; then by Theorem 3.1
ky ;> ldp—dy| =1 vk jl.
JjeJ

Since k,), =ij,’j we find that if k,’jaéO then v; = 1; that is, onanh =
@ Vh>2.
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Now we can conclude by induction: let /: 2</<g,andlet I = Jou---uJ,
and J =J ,U---U Jq . Arguing exacly like before, we have that

kp g 2ld—dyl =1k, ;+3 vk, | >|-1k ,+(+1)) k

jeJ jeJ
Therefore, since equality holds if and only if v ;= I+1 vj: k,, i # 0, the
proof of the lemma is finished. O

This lemma gives us a recipe to reduce the case of a general curve to the
combinatorially simple case of a curve having only two irreducible components.
In fact, given d and d' in the same multidegree class and both satisfying the
Basic Inequality, the lemma gives us a decomposition of X

q
X =Up_X,,

such that for any /, 0 </ < g — 1, we can define two (complementary) sub-
curves of X

! M
A4;=V)oX,, and B, =U;_, X,
with AinBj=z if j > i. We have

%—%=@

where k; = |4, N B)| = |XJ/ n Xfml . This is saying that we can obtain d’' from
d by twisting by one (reduced) subcurve at the time, in such a way that these
“twists”do not interfere with each other. We can write, in a fashion that we will
call the “normal form” of v,

<
I
I
|
1Ry
I
-~ Q
I [
o —
I

or
q
= Z h-x
h=1
Notice finally that we have d B, = M, and d, A .

The following corollary will be used in the sequel The proof is an immediate
consequence of the previous lemma.

Corollary 4.1. Let X = U|C, be a DM-semistable curve. Let d, d' be two
multidegrees on X which satzsf,’v the Basic Inequality, and such that d = d’ .
Let E be a destabilizing component of X such that d, =0 and d = 1. Then
there exists h > 0 such that

EcXJh, |EUXJH|=1, EnX, =2.

Jh+l

4.4. Locally trivial deformations. The degree class group of X does not depend
on the choice of a deformation, and we introduced it as a tool to measure the
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ambiguity of the limiting line bundle. Such an ambiguity will in fact be faith-
fully reflected in A, , provided that we limit ourselves to general deformations,
which in particular will not be locally trivial at the nodes of X . In the sequel,
we will consider deformations of a given curve which preserve some of its nodes;
such families will still be nice, in the following sense:

Definition. Let 22 — B be a one-parameter deformation of the DM-semistable
curve X . We say that such a family is a generic locally trivial deformation of
X if B is smooth, 2 is reduced, it preserves some subset of the nodes of
X , and has no other singularities than the ones corresponding to such nodes.
Moreover we require that such singular curves be simple double curves, that is,
they are locally given by transverse intersection of two branches of 2.

The simplest example of such a deformation is, of course, a trivial family
XxB—B.

Let 22 — B be a one-parameter deformation of X . We say that a node N
of X is genericif & is locally trivial at N. We say that N is special if 2 is
smooth at N.

As we said, we will always reduce ourselves to deformations 2 of X such
that a node N of X is either a smooth point of 2, or 2 is locally trivial at
N . That is to say that a node of X is either special or generic.

Then we have the following observation:

4.4.1. Important remark. Let & — B be a one-parameter deformation of X
as above; then not every subcurve Y of X will determine a line bundle on
& . More precisely, the sheaf @,,(Y) is locally free if and only if all nodes of
YNX\Y are special.

5. THE FIBERS OF ¥/,

5.1. Deforming quasistable curves in P’ . Recall that we already defined, for
any DM-semistable curve X, the set of its GIT-semistable projective models,
denoted by M, . M, can be decomposed in a natural way as

My =u,M*

where
Mi ={heH,, h=hilb(X, L) s.t. deg L = d}.

Of course, M— will be empty for all but finitely many d, since the Basic

Inequality only allows a finite number of multidegrees on a G-semistable model
of X . Let us now define _
“=MiNH,

(in other words, V;d— is the semistable closure of Mf—) and let
d
Vy=U i V;

be the semistable closure of M, .
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If X is DM-stable, V) is clearly contained in the fiber over [X] of the
morphism
v, :H;, — M e

The expectation is that V, is in fact equal to y, 1([X 1) . This amounts to
saying that y; ! ([X1) does not have any extra irreducible component, other than
the V;i. In the subsequent proposition we will show that this is exactly what
happens, by constructing a degeneration of X to X,, forany 4’ € t//'l([X D.

In fact the proof will give us also all the multidegrees on X such that A’ is
contained in the corresponding irreducible component of ¥, .

Proposition 5.1. Let X = U{Ci be a quasistable curve and let the C,; beits
irreducible components. Let h' € H,, h' = hilb(X', L"), with L' € Pic‘){,.
Then h' € in if and only if the following condition holds:

X' is obtained by destabilizing p nodes of X, in such a way that we can
write

X' =(U]C))U(UE,)

where the E ; are the new destabilizing components and C,f has a birational
morphism to C;; moreover, there is a decomposition of X !

’ y
X' =UC
such that C,' is a complete connected subcurve of X' and
(1) C;cc i,
(2) degon L' =d,, that is, the multidegree of L' with respect to this decom-
position is equal to d .

Proof. If (X', L') satisfies the above condition, we will explicitly construct a
polarized, one-parameter deformation (2, #') — (B, b,) of (X', L') to X,
such that X, = X, Vb # b, , and such that degL, =d.

This construction will also show that V;d— is nonempty. In fact, to say that
de— is empty is to say that Vb # b, hilb(X, 1’, , L;) is unstable. But this would

imply that 4’ = hilb(X’, L') is also unstable, as the locus of unstable points is
closed. This contradicts the assumption that 4’ be G-semistable.
Notice that 4’ determines the line bundle L' only up to the action of
Aut(X"); in fact we will really consider L' modulo automorphisms of X’ .
We will exhibit the construction in the case that X' has a unique new desta-
bilizing component, that is, p = 1; the general case is obtained by iterating
(notice that the fact that &' is semistable implies that E; N E =2 Vi, ).
The idea for constructing such a family comes from a work by Gieseker [G2].
Let E be the new destabilizing component of X' ; then we write X' = EU
X", where X” denotes the partial normalization of X at the node g generated
by contracting E. We can assume that ENC, # @ and that C; = C, U
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E, C/=C,;, Vix2,in particular, C, is either isomorphic to C, or equal
to the partial normalization of C, at g.

If v: X" — X is the (partial) normalization map, let v 1 ={p,, pz}
with pl € C, . Since L' must satisfy the Basic Inequality w1th respect to X',
degL| g < L if degL =0, X = X' and there is nothing to prove; hence

degL| g = 1. Let now L' e Pch., denote the restriction of L' to X” ; Dy 1s

a regular point of X, therefore there exists a unique M € Pic? v such that
M=L"®0.p,)-

Now consider the family P! x k X” over P' and the line bundle .# = pX.,M
on it.

If we pick any point b, on P we can find an isomorphism o : .#, — .4 ®
Oy ( b,) , defined in an open nelghborhood B of b,, where B; = B x {p },
z— 1,2, and let #; denote the restriction of .# to B,. Let Z = B x X

Let now o : ¥ — Z be the blow up of the surface B x X" at the pomt
(by> P,), and let E be the exceptional divisor. On %, we can define a line
bundle

M' =0 # ®Fy(-E)

which has the property that, over a neighborhood of b, Afl B! = ./ll B via a

(B is the proper transform of B,).

Let 2’ — U be the new famlly obtained by fiberwise gluing B to B, ; its
fiber over b, is isomorphic to X', and every other fiber is 1somorph1c to X;
moreover, we can use o to descend A' to a line bundle & on &'. &'
restricts to L” on X', and clearly L” differs from L' by an automorphism of
X' . It is clear from the construction that d is the multidegree of the restriction
of &' to X.

To conclude, we need to show that the canonical map B — Hllbp(" maps
B~ {b,} in H; (we may have to shrink B around b, for that). But, as
we already mentloned this follows from the assumption that hilb(X’, L') i
semistable and from the fact that the locus of unstable points is closed in
Hllb‘”(x

The converse is much simpler to show. Let h' e V— Then X' is clearly

obtained by destabilizing p nodes of X, and we can decompose X as in the
statement of the proposition,
'
= (U[C}) U(ULE,)

and
d=,....d,,1,...,1).

y b
If we consider any curve B C Vf such that 4’ € B and B~ {h'} C M;i, then

the restriction of the universal curve over Hilb‘r’(x) gives us a polarized family
(&', Z') over B whose general fiber is isomorphic to X and whose fiber over
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h' is X'. We can assume that B is smooth; the total space 2 will be singular
along those curves which correspond to the nodes of X .

Let % be the new family of curves obtained by normalizing %' along all
curves corresponding to those nodes of X which belong to two different irre-
ducible components.

% will have y connected components, %, ..., % The general fiber of
%, will be C,. We will define C;' to be the fiber of % over h'. By pulling
back &’ to %, we see that C;, the required condition, is satisfied. O

In particular, every irreducible component of y/d_l([X ]) contains a dense,
open subset consisting of Hilbert points of projective embeddings of X .

Example. Let us consider a DM-stable curve X having only two irreducible
smooth components: X = C, UC,, with |C, N C,| = k. Suppose d=d,,d,)
is such that Mf is not empty. If A’ =hilb(X', L') € V;Q , then the proposition
says that
X'=ClUCU(U}_E))

with |C;NCy| =k —p and C;=C;, i=1,2. Moreover, the condition on
d' is simply

d-p<d; <d;, i=1,2.
If p = 1 we have the situation depicted in Figure 2 and there are only two
possibilities for d': either

d = -1,d,,1) or d=(d,d,—1,1).

In Figure 2 we have the latter possibility; in such a case the deformation of
X' is locally trivial at C; N E, and the “horizontal” curve represents a singular
curve of the total space of the family.

FIGURE 2
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Viceversa, if 4’ is a semistable point such that its corresponding curve is
isomorphic to X', and d' = (d;, d,, 1), then we have that A’ lies in the
intersection of in_ and Vl,(i+ , where X is the stable model of X', d* =
(d+1,d),and d” = (d;, dy+1).

5.1.1. Important remark (Degenerations in a fixed orbit). The family (Z', .Z")
constructed in the proof of 5.1 induces a family of line bundles on X, which
will not, in general, be constant; in fact the isomorphism a will have the effect
of changing the gluing data, as the fiber varies.

There are special cases in which we can make such a family of line bundles
constant (up to automorphisms of X). In other words, we will now describe a
situation in which A’ € O (h).

Let X' bealadder, X' =Y'UZ'UD’',with YYNZ' =2 and D’ a union of
k destabilizing components, each of which meets both Y’ and Z'. Let X =
Y UZ U D be obtained by contracting some of the destabilizing components of
D' sothat Y=Y, Z~Z',and YNZ =k —|D|. Let L € Pic% be a line

bundle with d = (m,, M, —|D|, 1, ..., 1). Then we claim that there exists a
line bundle L' on X' having multidegree

d = (my,mz,1,..,1)
such that

hilb(X', L') € O, (hilb(X, L)).
Viceversa, given L' on X' as above, we can show that there exists an L €
Pic%, such that the same conclusion holds.
To simplify the notation, let us first suppose that X is DM-stable, so that D
is empty. We will show that the family (£, .#’) can be constructed so that
the polarized fiber over every b # b, is isomorphic to (X, L).

Suppose we are given L € Picﬁir as above. We can perform the same de-
generation construction of the proof of the first part of 5.1, simultaneously at
all nodes {¢',...,4"} c X lyingon Y NZ. Namely, let v : X* — X be
the normalization at the qj and let p{ (respectively p{ ) be the point in Z
(respectively Y) which is mapped to qj by v. # will now be the pull-back
of L to B x X" and we will fix an isomorphism for each j

of ] A (b))
such that the o’ act in the same way, on each fiber over b # b, . These gluing
data will simply have the effect of applying an automorphism to the polarization
of the general fiber, that is: Ly = L forall b #b,.

The proof of the converse follows by applying analogous modifications to the
deformation construction in the proposition.

Finally, if X is not DM-stable, then the degree of freedom given by X"
being disconnected will not be available; what we can use in this case is the
nonlinear action of the automorphisms of X, on the varying gluing data. The
conclusion will still be that 4’ lies in the orbit closure of 4 .
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5.2. GIT-semistable ladders.

Definition. (1) Let X and X' be two DM-semistable curves; we say that X’
dominates X if they have the same stable model and if there exists a surjec-
tive morphism of X’ onto X under which every component of X' is either
contracted to a point or mapped birationally onto its image.

(2) Let d € B, and d' € B,.; we say that d' is a refinement of d, in
symbols

d <d,
if and only if the condition in Proposition 5.1 is satisfied. This can be equiva-
lently stated as follows:

d' < d if and only if X' dominates X via ¢ and for every subcurve Y
of X there exists a subcurve Y’ of X' such that ¢ maps Y’ onto Y and
dY = dY' .

We will also say that X’ is a refinement of X , when there will be no ambi-
guity on the multidegrees.

(3) Let X' dominate X via a surjective morphism o, let L be a line bundle
of multidegree d on X, and let d* be defined as

d* =g§§a*L.

In such a case we say that d* is the pull-back of d to X'.

(4) Let X be quasistable and let d be a positive multidegree on it, such
that d satisfies (BI). We say that (X, d) is extremal if and only if for every
subcurve Y of X such that d, = m,, we have

Yn(X\Y)cD,,

in other words, no node of Y N X \ Y is stable (cf. 1.1).

In the GIT set-up, extremal curves will play a special role; cf. Lemma 6.1.

It is also worth noticing the following consequence of the Fundamental The-
orem of GIT (cf. 1.2): let A =hilb(X, L) be in H,; then there exists a unique
curve X' with a unique (up to automorphisms of X') very ample line bundle L’
such that 4’ = hilb(X’, L') is contained in the semistable closure of the orbit
of h. In fact, every such orbit contains a unique closed orbit in its semistable
closure. One expects 4’ to correspond to a suitable extremal ladder; this will
follow from the next lemma.

We first observe that the statement is clear for curves whose stable model has
two irreducible components.

5.2.1. Important remark. Suppose that X = Y UZ c P’ is a DM-stable curve
which is the union of two smooth irreducible components; let d = (m,,, M) be
its multidegree; assume that 4 = hilb(X) is semistable. Then on the (unique!)
ladder X' such that st(X') = X there exists a line bundle L' of multidegree
d = (my,m,,1,...,1) such that &' = hilb(X’, L') is contained in the
closure of the orbit of 4, and 4’ is itself semistable. Moreover, the orbit of 4’
is uniquely determined by the pull-back of L to the normalization of X .
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In fact, by Lemma 3.1, 4 is strictly semistable; since its stabilizer is finite,
Og;(h) N H; must contain some orbit of smaller dimension. From Lemma 3.2
and Proposition 3.1 the observation follows. Observe also that if X" is qua-
sistable with s¢(X") = X ,andif d = (m,, M, —u, 1,..., 1) sothat X" has
u destabilizing components, then exactly the same conclusion holds.

Now in general we have

Lemma 5.1. Let X C P be quasistable of multidegree d; assume that there

exists a subcurve Y of X for which d, = m, . If h = hilb(X) is semistable,
there exists h',

h €O (hynH,,

with the following property -

h' = hilb(X') where X' c P’ is a ladder of multidegree d', which dominates
X via the morphism

c: X —X
and such that
d =d;

moreover ¢ destabilizes all the stable nodes of Y N Z , and no other node of X.

Cf. Section 1.1 for the terminology we use in the statement. As usual, Z
denotes the complementary curve of Y in X .

Proof. Of course, if Y NZ C D,, we have nothing to prove, for X itself
is a ladder of the type we want. Furthermore if ¥ and Z are smooth and
irreducible, our lemma has been proved in 5.2.1.

We start by considering a deformation = : (2, ) — (B, b,) of (X, L)
(where L := &y(1)), which is locally trivial at Y N Z and smoothing all the
remaining nodes of X . The general fiber X, will therefore be

X,=Y,uZ,

with Y, and Z, smooth and irreducible (see the end of the proof of 3.1 for
the reduction to Y and Z connected).

By hypothesis, hilb(X, L) is semistable, hence hilb(X,, L,) will also be
semistable for b in an open neighborhood of b,. We can assume that B C H,
and that (27, .%) is the restriction of the universal family. We can also assume
that over B we have a section of the canonical map

W~ {0} — P(W) > Hilb”™

(cf. Section 1.2); that is, we have a continuous choice of vectors v, representing
b.

In Lemma 3.1 we proved that b is strictly semistable by exhibiting a one-
parameter subgroup 4,(f) such that
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Such a 4,(¢) was constructed starting from the filtration
0cU,cV=H"P, )

with
U, := Ker{H"(P', 8, (1)) — H"(Y,, &, (D)}

together with a relative basis (cf. the proof of Proposition 3.1). Now we can
easily define these 4, in such a way that they vary in a nice family parametrized
by B. To do that, let V' x, B be the trivial bundle over B and let

U:=Ker{V x; B — (ny),Z5}

where .‘Zy (resp. n?) is the pull-back of & (resp. =) to the irreducible
component of 2 having Y, as fiber. (ng,)*.i@ is clearly a vector bundle over
B, hence U is a vector subbundle of V' x, B. We can now chose a frame for
U (modulo shrinking B) in such a way that we can define the 4, continuously
over B.

We know that, for all b € B, v,(c0) corresponds to a semistable point
having positive dimensional stabilizer; moreover, by 5.2.1, we know that, for
all b # b, , v,(c0) corresponds to a ladder of the type we want. By construction,
these ladders form a polarized family (2, .#’) parametrized by B. We have
to show that the central fiber satisfies the condition in the lemma.

It is clear that (X', L') contains the required destabilizing components, be-
cause so does the general fiber; moreover (X " L') is a refinement of X, by
Proposition 5.1.

Finally, we have to show that X' contains no unnecessary destabilizing com-
ponents. Now, to say that there is an E which does not appear in X and which
is not a specialization of a destabilizing component in the general fiber, is to
say that the line bundle L, (—D) has some base points, where we defined D to
be the divisor of Z correspondingto ZNY.

To conclude, we will show that, if L,(—D) has a base point p, then & will
not be semistable. By arguing as in the proof of Proposition 3.1 we find that,
if p is a base point of L,(—D), the following inequality holds

b, < h°(Z, Ly((i -~ m)D - p))

which gives, together with the relation () in the proof of Lemma 3.1,

r

Shw,
WPED) O(m)Z———ho(; ’L)mp(m);

hence, by the numerical criterion, A is not semistable. 0O

T >m’(dy +k/2+1)+O0(m)>m

5.3. A suitable separation property for polarized families of semistable curves.
“Suitable” here means that polarizations are considered modulo “twists”.

The next lemma will be used as a bridge between the semistable replacement
property of GIT and our combinatorial results.
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Lemma 5.2. Let (#,.%) and (¥ ,#) be two generic, locally trivial one-
parameter families of DM-semistable curves over a smooth, pointed base (B, b) .
Assume that over B ~ {b,} there exists an isomorphism between the two polar-
ized families.

Then there exists a family of DM-semistable curves

¥ — (B, b,)

having a birational morphism onto both & and ¥ , which is biregular away
from b, and such that the pull-backs of ¥ and .# to %  differ by a Cartier
divisor supported on the central fiber.

Proof. First of all notice that, by the properness of DM-stable curves, 2° and
% have the same stable reduction; hence there exists a family Z° of DM-
semistable curves which maps to both 2 and % isomorphically away from
the central fiber. The pull-backs of . and .# to Z will be isomorphic away
from b,; more precisely, such an isomorphism comes together with a family
of automorphisms of the fibers, which need not have a limit over b0 . In other
words, all that we know is that there exists a birational map

1:Z -+Z
which is biregular away from the central fiber, where we have
TP =M.

For example, if the general fiber were DM-stable, such a family of automor-
phisms would be trivial and it would be enough to take 7" = 2 ; in fact there
will be an indeterminacy problem only if the general fiber has a continuous au-
tomorphism group. A more enlightening example is described after the lemma.

To solve this difficulty we introduce a new piece of information, which takes
automorphisms into account. By what we said, the only automorphisms that
will play a role are the ones coming from the destabilizing components, hence
we can do what follows. Let & — B be an irreducible component of 2 such
that & =~ P! x « B and has precisely two attaching sections. Let &' be the
corresponding component of Z . We can take a section S of & which does
not meet the two attaching sections over the central fiber. Let now S’ be the
closure of the preimage of S in .Z under the family of automorphisms defined
by . and .4, that is,

=
S=190 (SIB\{b(,})’

o being the map from Z to 2. To say that such a family of automorphisms
does not have a limit is to say that S’ meets the attaching sections over the
central fiber.

To resolve such an indeterminacy it will be enough to blow up &' until the
proper transform of S’ meets the central fiber away from the attaching points.
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We let 7 be the family obtained after applying this process to every such
& C Z . Itis clear that all we have done is to introduce new destabilizing chains
in the central fiber, hence #  satisfies the requirements in the lemma. 0O

Example. In Figure 3, we consider families whose general fiber is a quasistable
curve X = C,UC,UC; with |C;n Cjl =1 if i # j and such that C,
is isomorphic to P'. We also assume for simplicity that the two remaining
components have the same genus, so that me = me =m.

The three families 27, 2, and #Z  in the lemma are pictured by the honzon—
tal arrows. We take (2, ) to be trivial, thatis, 2 = X x, B and . = pyL
with degL = (m, m+1,1). (Z, #) is a degeneration of (X, L) to (Z, M)
such as the ones described in 5.1.1.

Just by looking at the degree class group of Z, one sees that, although they
are isomorphic away from the central fiber, ¥ and .# do not differ by a
Cartier divisor of .Z" supported on the central fiber. (There are no such Cartier
divisors at all in .2".) What happens is that 7 contracts F to a point.

V=0

1

|

\

|

|

1
hd

1 1
4
m m+1 —_—) m m+1

FIGURE 3
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We obtain % by blowing up the point corresponding to F N C; finally we
have

M =L ®0O,E+C).

5.4. A completeness result. The central part of the argument used to prove the
next proposition will also give as a result Lemma 6.1.

Proposition 5.2. Let X be a quasistable curve. If there exists F € Picy e F very

ample, such that hilb(X , F) is semistable, then for every L € Plc— h11b(X L)
is semistable.

Proof. First of all, notice that the subset of Pic; of line bundles having semi-
stable Hilbert pomt is a dense open subset. In fact, let P be any Poincaré line
bundle on Plc— x, X ; then its push-forward to Plc— is a vector bundle E of
rank r+1. We can therefore consider the 1rredu01ble variety PGL(E) over
Plc-

Clearly PGL(E) maps to Hilb?™ ; therefore the claim follows from the fact
that the semistable points of Hllb”(x form an open subset.

If L € Pick, then 4 = hilb(X, L) lies in the closure of M“— in Hilb”™ .
This allows us to consider a deformation (2,.%) of (X, L) over a smooth
one-dimensional base (B', by) such that the associated map to Hilb‘,’(x) maps
B\ {by} to M— and b to h.

Assume that h is not semistable; then the semlstable replacement property
(cf. 1.2.1) implies that on a ramified cover B of B', we can construct a new
family (¥, #) — B, which maps to H, by sending b € B to hilb(Y,, M,).
Moreover, if we denote again by (27, %) the fiber product over B of the initial
family, for all b # b,, hilb(Y,, M;) is G-equlvalent to hilb(X,, Lb) Let M
be the restriction of .# to the central fiber Y = X' of %, let d' = degM,
and let A’ = hilb(X’, M) be just b0 : it is clear that 4’ € V;—, that is, d’ is a
refinement of d .

(¥, #) and (& ,.Z) are isomorphic away from their fibers over b, and
the properness property of stable curves implies that the stable reduction of 2
is isomorphic to the stable reduction of % . Therefore the two families will
be generic locally trivial, away from some rational double points lying at the
nodes of the central fibers; these isolated singularities can be resolved by adding
some destabilizing chains. After performing the above operation, we will be
under the hypothesis of Lemma 5.2, hence there exists a family #° — (B, b,)
dominating both 2 and % and such that we have

L =M ®0C,(T)

where .#* and .#”* denote the pull-backs to %" and T is a Cartier divisor
supported on W .
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Let d° = deg 7, and d" = deg s by Lemma 4.1 we can write in normal

form
1

" 3
d-d'=
I

I
o
|-

where the B; play here the role of the B, in 4.1.

Let 6 : % — Z be the canonical map, and let us denote B, := a(B,') and
A,:=a(4).

We will now prove the proposition under the assumption that the pair (X, L)
is extremal (cf. Definition in 5.2).

We know that d' < d. Suppose d’ # d; then there exists a destabilizing
component E C W such that d;. =0, dg =1, and o(E) is a stable node of
X . In other words, E appears in X' but notin X .

By Corollary 4.1, there exists an / such that E C B, and |[EN 4| =1. But
now,

dB, = d;ll =mg =mg
and, since X is extremal, ¢(E) cannot possibly be a stable node.

We conclude that d = d’, hence, for every irreducible component C of W

such that C is not destabilizing, we have

e = Hc-
We therefore obtain that the Hilbert points of the two projective models of W,
determined by _9”'2 and /42 , have the same orbit (cf. 5.2.1). That is to say
that hilb(X, L) € O, (hilb(X ", M)), from which we immediately conclude that
hilb(X, L) is semistable, as hilb(X’, M) is. This is a contradiction.

Now that we proved the proposition for extremal curves, we can easily deal
with the general case.

By Lemma 5.1, for any semistable hilb(X, F), with F € Pic‘f; , there exists
an extremal ladder X’ with a line bundle F* of multidegree Qe , whose Hilbert
point is semistable and such that, more precisely,

hilb(X*, F*) c O, (hilb(X , F)) N H,.

By the previous argument, we conclude that every line bundle of degree d
on X' is GIT-semistable. Now, by 5.1.1 given any L € Pic‘liY , there exists a
line bundle L' of degree d* on X’ such that (X°, L’) can be deformed to
(X, L). That is, hilb(X ‘ L') is in the orbit closure of hilb(X, L).

Since the unstable points form a closed subset, the fact that hilb(X t , L’) is
semistable implies that hilb(X, L) is semistable. O

5.5. More terminology.

Definition. We say that a given multidegree d

d is semistable on X if Mz—’ is
not empty.
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Now Proposition 5.1 can be briefly restated as follows:
Mt cvied <d
X b ¢
and, in particular, we want to stress that

5.5.1. If d <d and d’ is semistable, then d is semistable.
Let X be DM-stable. It is now clear that M;i is either empty, or it has

a map onto some quotient of Picfi; by a finite group. The fibers of this map
will be isomorphic to PGL(r + 1). In particular Mf is irreducible and, when
nonempty, it has dimension r(r +2)+ g.

Corollary 5.1. For all [X] in M,

(1) g (XD =Vy.
(2) P, x has at most u(X) irreducible components, all of dimension g .

Proof. The first part is clear, by Proposition 5.1. Now

Pd,X= X/G

and ﬁ,; is a projective (hence separated) scheme. Every irreducible compo-
nent of it contains an open subset which parametrizes line bundles of given
multidegree, hence there is an injection from the set of its components into B,
(cf. Definition in 4.1). 0O

6. CONCLUSIONS
6.1. End of the proof of Theorem 3.1.

Proposition 6.1 (Basic Inequality: sufficient condition). Let X C P’ be a con-
nected, nodal, nondegenerate curve of degree d and genus g; assume that its
multidegree d satisfies the Basic Inequality. Then the Hilbert point of X is
semistable.

Proof. We will prove the proposition by contradiction; let L’ = O (1) @ Oy
and let us assume that hilb(X, LO) is unstable. We will use the semistable
replacement property 1.2.1. Consider a general deformation of (X, LO) in a
polarized family of generically smooth curves over a one-dimensional regular
scheme B';if X is the fiber over b,, B’ {b,} hasamap [’ to H, (modulo
shrinking B’ around b(')). Applying the semistable replacement property yields
a ramified cover B of B’ with a map f to H, which is congruent to f
modulo G.

That implies that, if (#,.% 0) is the pull-back to B of the initial family
and (¥, # 0) is the pull-back of the universal polarized family over H,, the
two polarized families are isomorphic away from the central fibers. We can
apply Lemma 5.2 and derive that there exists a family of DM-semistable curves
# — (B, b,) which dominates both 2 and % . Notice in fact that 2
and % may be singular at the nodes of their central fiber, but, since 2 is the
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base change of a smooth family, such singularities will be rational double points
which can be desingularized by adding destabilizing chains.

Let us denote by .# and .# the pull-back to #Z of .#° and .#° respec-
tively; by Lemma 5.2 we have

q
Z2MRCO, (Z B,)
1=0

where the B, are (reduced) subcurves of the central fiber W . Moreover, by
Lemma 4.1, we can pick the B, in such a way that Bn4,=2 forall i< j,
where recall that 4, was defined to be the complementary curve of B,.

As usual we denote by L and M the restrictions to W of the given po-
larizations. The line bundle L (respectively M) determines a map of W in
P whose image is a quasistable curve that we will denote by W wk (respectively
wM ); clearly wt=x. (As usual, we disregard projective automorphisms.)
Let h = h11b(W ) and A’ = h11b(W ); by constructlon k' is G-semistable.

The first step is to show that there exists a ladder X’ c P’ having degree d*
su(}:‘Ill that d° is a refinement of both d and d’', d' being the multidegree of
14

Let d* =degL and d":=(d')" = deg M ; we write in normal form

q
=ZQI.

1=0

We will construct X* step by step, by working on one twist at a time. Let us
suppose that

i*—d”=bo

and let us denote, for simplicity, B = B, and 4 = Ay =W <\ B; then d;’ =m,
and dy = my. We can decompose W = A' UD U B’ where D is the union
of those destabilizing components which had precisely one node in 4N B,
A'=A\D,and B =B\D.

Let W' be the DM-semistable curve obtained from W by blowing up the
nodes of 4'NB’;on W' we now construct any line bundle N which is isomor-
phic to L, on A, My on B,andto &(1) on the remaining destabilizing
components. N maps W’ to a ladder X' in P’, and, by construction, the
multidegree of such a ladder is a refinement of both d and d’.

Since, by Proposition 4.1, A4 ;,NB =2 if i < j, we can iterate this construc-

tion to obtain the X* of degree d’ that we wanted.

The second step is to prove that from the fact that 4’ is G-semistable follows
that 4’ is semistable (cf. Definition in 5.5). For that, we claim that 4"’ is equal
to the degree of a ladder which satisfies the conditions of Lemma 5.1. To see
this, let

a:Xe—eWM
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be the canonical map (viewed as a morphism of abstract curves); then all we
have to check is that if E is a destabilizing component of X ! then either

(a) ¢ maps E isomorphically to its image, or

(b) there exist subcurves Y and Z in wM having no common components
and such that ¢(E) e YNZ, d, = my, d, = M, . But this follows from
Corollary 4.1. In fact, if o(E) is a point, then, by construction, E is either
obtained by destabilizing a point in 4’ N B’, in which case (b) holds, or E is
such that d}; =1 and dg = 0. But then, by Corollary 4.1, we conclude that
E c D, hence (b) is satisfied.

By Lemma 5.1, there exists a ladder of degree dl which is in the semistable
closure of the orbit of 4’ ; hence, by Proposition 5.2, 4’2 is semistable.

Finally, by 5.5.1 applied to gi_e < d, we conclude that d itself is semistable.
In particular hilb(X, LO) is semistable, and this is a contradiction. 0O

6.2. Description of the GIT-stable points. We will now prove that a curve X
in P’ is G-stable if and only if the only subcurves Z of X having maximum
allowed degree are the union of destabilizing components. In particular, if X
is a DM-stable curve, then X is G-stable if and only if its multidegree satifies
the strict Basic Inequality.

Lemma 6.1. Let X C P’ be a quasistable curve of multidegree d such that
h = hilb(X) € H,. Then the orbit of h is closed in the semistable locus if
and only if (X, d) is extremal. In particular, h is G-stable if and only if the
only subcurves Z of X such that d, = M, are the union of destabilizing
components.

Proof. If (X, d) is not extremal, then by Lemma 5.1 the orbit of 4 is not
closed in the semistable locus.

Viceversa, suppose that (X, d) is extremal. Let L be the line bundle em-
bedding X in P and let (¥, .#) — (B, b,) be a polarized one-parameter
family of GIT-semistable curves whose general fiber is isomorphic to (X, L).
We want to prove that the central family is also isomorphic to (X, L). We can
argue exactly like we did in the proof of Proposition 5.2 for extremal curves,
by comparing (%, #) with the trivial family (&, %) = (X x, B, pyL).

For the second part of the statement, we just need to recall that a point
h € Hilb‘,’(x) is stable if and only if its orbit is closed in the semistable locus
and its stabilizer is finite. 0O

6.3. General properties of P and Pd x - The following lemma is really a
corollary of Proposition 5.1 and Proposmon 3.1:

Lemma 6.2. H, is irreducible.

Proof. We know that H, is nonsingular; therefore, we can equivalently prove
that it is connected. H,; maps surjectively to M ¢ and its fibers over the smooth
curves are irreducible varieties of dimension g + r(r +2). Hence, if H, were
not connected, it would have a component Z which would be mapped by f;
to the boundary, A_lg \M e Since M ¢ \ M 2 has codimension 1 and Z , if not
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empty, has dimension 4g — 3+ r(r +2) (by Lemma 2.2) the generic fiber of Z
over M ¢ \ M, would have dimension g +r(r +2) + 1, which we already know
to be impossible. We conclude that Z is empty, that is, H ', is irreducible. O

The next theorem summarizes the essential points of the previous discussion.

Theorem 6.1. (1) The projective scheme P, g IS reduced, irreducible, and Cohen-
Macaulay. It contains the open, dense subset ¢ y (M0
(2) The restriction of ¢d to ¢, (M ) is flat.

(3) V[X] € M 4.x isa reduced, connected, projective scheme having at
most_p(X) zrreduczble components all having dimension g. The smooth locus
of P, 4. x LS isomorphic to the (disjoint) union of a finite number of copies of J -

(4) V[X] € Hg,, there is a natural action of J, on P, .
Proof. The theorem has almost completely been proved already. For (1), see
Theorem 2.1 and Corollary 2.1. For (2) notice that the fibers of ¢ ; are all g-
dimensional and the open subset of M g Hg , is regular, hence the restriction

of ¢, toitis flat.’ For (3), see Corollary 5.1.
Finally, the proof of (4) is standard: let

dg

& 2)Lvy P

be the restriction of the universal family and of the quotient map to Vy . Then
we can draw a commutative diagram to represent the various morphisms we
have:

where f = 1d xf, &, is a Poincaré bundle, and q = p . ost(f).
X)(
Now let )
I =P ep"%;
f T is locally free, hence we can find an open covering Jx X Vy = UU; such
that there is a trivialization of f g over each U;. For each z this gives a

®We are here applying the following criterion of flatness: let ¢ : X — Y be a morphism with
equi-dimensional fibers; if X is Cohen-Macaulay and Y is regular, then ¢ is flat.
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morphism
t;: U, — Vy
and itis, forall FeJ, and h eV,
t,(F , h) = hilb(X,, F* ® L,)
where F* is the pull-back of F to X, under the natural map X, — X . Let
ti=mot;: U — Py 3

then 7, =1 ; over U;n U;, hence we get a morphism

o:Jy %, Py x — P, x.
It is easy to see that ¢ defines an action of J, over P X and that this action
is “natural” in the sense explained in the followmg remark.

Remark. We know that for every [X] € M < there exist

d',....d" eBy, wpX)24,
such that

u ;
—_ . d'
(Pd ,X)smooth = ]_I PIC} .

Now the restriction to every Pic‘/i‘, of the action of J, defined by o coincides

with the standard action (by tensor product) of J, on Pic‘j{,' . 0
6.4. The geometric compactification of the universal Picard variety.

Proposition 6.2. E; is a geometric quotient of H, modulo G if and only if
d-g+1,2g-2)=1. '

Proof. The above statement can be equivalently formulated by saying that
(d—g+1,2g—2) =1 if and only if all points of H, are stable under the
action of G . The existence of strictly semistable points in H), is equivalent to
the existence in H, of points having a positive-dimensional stabilizer. In fact,
if a nonstable pomt h € H, has finite stabilizer, then its orbit cannot be closed
in H,; since the closure of an orbit is a union of orbits of smaller dimension,
the claim follows.

Therefore, by Lemma 3.2, we can prove the proposition by showing that,
with our choice of d, and only for that choice, it is 1mposs1ble for any ladder
X that hilb(X, L) is semistable, for any very ample L € Pic’ Y-

Notice that, if X is a ladder, we can decompose X as the union of three
subcurves

X=Y,uDUuY,,
so that Y, and Y, are disjoint, D isa union of k destabilizing rational com-
ponents, and
|Y,nD|=|Y,NnD|=
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Let Y, UD = X,; clearly X, and Y, have the same arithmetic genus, g,
and |X; N X\ X,|=|Y,nX\Y,|=k. Therefore, the basic inequality imposes
exactly the same conditions on deg X, L and dngl L,i.e.,

m, < degXl L<M,,
where recall that

m, = (gd 1)(g' 1+k/2)—k/2 and M, =m, +k.

Since deg X, = deg},l L +deg, L = deg},l L + k, we can conclude that
deg)(l = M, and dng. =m,

hence m, (and M) must be integer. Therefore, by Theorem 3.1, the proof of
the proposition will follow from the next elementary

Lemma 6.3. (d —g+1,2g—2)=1 ifand only if for every complete subcurve
Y of X, having arithmetic genus g,, 0 < g, < g — 1, and intersecting |X \ Y|
in k points, the basic inequality has noninteger extremes, i.e.,

d
— —-1+k/2)-k/2¢Z.
Proof of the lemma. We will first show that if (d — g+ 1, 2g —2) =1, then the
Basic Inequality cannot assume integer extremes, as longas 0 < g, < g—1.
Suppose that there exist k, g, , n € Z such that

o8y 1 k2 —k/2=n;
then
k(d—g+1)—n(2g—2)=d(2—2gy).
Now, since (d — g+ 1,2¢g —2) = 1 we have that d divides k, which is
impossible.

Viceversa, we want to show that, if the Basic Inequality never assumes integer
extremes for all allowed choices of g, and k,then d — g+ 1 and 2g —2 are
coprime.

First, notice that the assumption implies that (d, g — 1) = 1. In fact for
k =2 we get

—-——————d Z
- *
for all g, suchthat 1< g, <g-2. Hence (d,g—-1)=1.
Now, if (d —g+1,2g —2) =c > 2, then there exist a and b coprime
integers such that
ad-g+1)+b2g-2)=c,
hence
ad+(2b-a)(g-1)=c

which forces ¢ = 2.
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Now, there exist two integers n and r such that d = n(g — 1) + r with
1<r<g-2and (r,g-1)=1.
Therefore, from

(n=1)(g-1)+r,2(g-1) =2

we get that r is even, hence g is even and n is odd.
We can now just look at the extremes of the Basic Inequality for k = 3 and
gy =a—1 where g =2a:

my = &&:_Dl_t’(a—zm/z)— 3/2,
hence, n being odd,
m =n,+____r(2a—1) €EZ
Y 2(2a-1) ’

which is a contradiction.
This concludes the proof of the lemma, as well as the proof of the proposi-
tion. 0O

7. EXAMPLES

Throughout this section, X will be a DM-stable curve without nontrivial
automorphisms.

7.1. Example 1: Irreducible curves. Let X be an irreducible curve with 4 nodes
{py,...,pg}. If IC{l,...,d}, we will denote by X, the quasistable curve
obtained from X by destabilizing the nodes p,, Vi € I. There are, of course,

2° such curves and, for every I, M, is nonempty and parametrizes projective
1

embeddings of X, having multidegree (d —|I],1,1,...,1). We have
V, V - CV, V,;
X{l,z,...,d} c X{il,iz,...,id_l} c c X{il} = x>

moreover, dim Vx, =r(r+2)+g—|I| and
VX’ /G =Ty,

since a projective realization of X, having semistable multidegree (d — ||, 1,
1,..., 1) is uniquely determined by a line bundle of degree d — |I| on X',
the partial normalization of X at the nodes corresponding to I.

Note also that no point of V) has positive-dimensional stabilizer (cf. 3.3),
hence P, , is a geometric quotient of ¥, modulo G.

We can conclude that for irreducible curves the compactified Jacobian P, ,

will not depend on d, it will be irreducible and it will have ({) codimension

k irreducible singular loci.
We can globally describe P, x asa moduli space for equivalence classes

of line bundles on the curve X! = X 1,2,...6}> whose degree class group has
exactly 2° elements.’ Moreover, multidegree classes on X ¢ parametrize the

"See 8.2 for more details about such an equivalence relation.
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irreducible components VX, of the strata
U= ¥x,

of V.

The singularities of P 4, x can be described by studying the geometry of V,
locally at M, , which can be done by using the results of 2.2. We conclude
that M X, is the transverse intersection of 2|I| smooth branches of codimension

[l -1 each of which parametrizes deformations of X, in P’ that smooth one
of the 2|I | unstable nodes of X, .

7.2. Example 2: Curves of compact type. A connected, nodal curve X is said to
be of compact type if all of its irreducible components are smooth and all of its
nodes are disconnecting; this is equivalent to saying that its generalized Jacobian
is compact—and hence equal to the product of the Jacobians of the irreducible
components of X . Let us consider the case in which X has only two irreducible
components C, and C,, so that |C, N Cl=1and J, = JCl Xy JCz' Then
the Basic Inequality implies that B; contains either one or two elements.

If |Bf‘i,| = 1 we are in the geometric case; the fiber of H, over [X] con-
tains no strictly quasistable curves and no strictly G-semistable points. In fact
t//d_1 ([X]) maps onto J, with fibers isomorphic to PGL(r +1).

Let us now consider the case in which the Basic Inequality allows two
semistable multidegrees on X: d = (m,, M,) and d' = (M, m,) = (m, +
1, M, —1). Then the multidegree (m,, m,, 1) is semistable on the ladder of
X and there are no other semistable multidegrees (see Figure 4).

What happens is that for every 4 = hilb(X) in y, ! ([X]) there exists a point
' = hilb(X’) € w;'(IX]) such that h° € Ogi(h). Notice moreover that such
an orbit OG(hl) is unique. Finally, wd_l([X 1) has two irreducible components

/\nzﬂ m

FIGURE 4
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intersecting transversally along the locus of the ladders V. ; Vye in turn maps
onto J, with fibers isomorphic to quotients of PGL(r + 1) modulo G,,.

In the case of a curve with more than two components, the situation is ba-
sically the same; if B; has more than one element, there exists a unique G-
semistable ladder T of maximal order, such that all irreducible components of
v, 1([X 1) contain V. and such that V. maps surjectively to J, with fibers
isomorphic to quotients of PGL(r + 1) modulo (Gm)' .

7.3. Example 3: Curves with two components. Let X = C,uG,, C, and C,
smooth and irreducible, |C,nC,| = k > 2. The generalized Jacobian of X,

Jy,isa (k")k_l-bundle8 over the Jacobian of the normalization of X . We will
now show that our construction yields two different ways of compactifying J, .

Recall that A, = Z/kZ. If the extremes of the Basic Inequality for C, (or,
equivalently, for C,) are not integer we will say that we are in the general case
for X ; in such a situation, every degree class will have a unique semistable
representative and therefore both ¥V, and E}_ will have k irreducible com-
ponents.

On the other side, the special case will occur when the extremes of the Basic
Inequality for C, (and hence C,) are integer; notice that if

d=02h+1)(g-1)

then the special case will occur for every X. Now Vy has k + 1 irreducible
components, two of which correspond to equivalent multidegrees; in the quo-
tient, these two components will therefore be identified in a positive codimen-
sion locus. Finally, T’X will have k — 1 components.

To examine the situation with more details, we need to simplify the nota-
tion. We will reduce the k (respectively k + 1) semistable multidegrees by
representing (d, , d,) by

(dl s dz) ~ [d1 - [-ml.l ’ dz - I.MzJ]

which corresponds to considering the following set of semistable reduced mul-
tidegrees:
{[o,01, [1,-1],...,[k=1,1-k]}

(respectively, for the special case
{fo, 01, 1, -11,...,[k—=1,1-k], [k, =k]}).

We will use the reduced degree of C, for labeling; for example, we will denote
by V,{ the irreducible component of ¥, whose generic point corresponds to
an embedding of X having reduced multidegree [j, —j], where 0 < j < k.
Furthermore, if I C {1, 2, ..., k}, we will denote ¥/ = V,",’ , where, as in the
previous example, X, denotes the curve obtained from X by destabilizing the
nodes p; Vi € I. To a projective curve isomorphic to X, we will still associate

8Too many k’s, I apologize for the notation!
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acouple [j, —j—|I|], 0 < j <k —|I|, which, by abuse of language, will still
be called the “reduced multidegree”. As before, such a reduced multidegree is
obtained by

dy,dy, 1,...,1))~[d, - [m], d, — | M,]].

In Figures 5 and 6 we give a description of all points of V, if k =2 and k =3
in both the general and the special case. Under each type of curve, we have all
the corresponding semistable reduced multidegrees.

Observe that, in the general case, the boundary points form a closed subset of
Vy having two disjoint irreducible components. V)‘(] and V; (the irreducible
components of V,) intersect transversely along these two codimension 1 sub-
varieties.

generic points A boundary points

|

|

i

General :
Case :
|

|

|

|

|

:

[0, 0] :

[Oa -1 ]

[1,-1] |
|
|
|
[
|
{
|
1
|
:
I

Special :
Case :
i
. |
i
|

: ladder

[0,0] [0, -1] !

[1:—1] [1’_2] : [0, _2]

2.-2] !

FIGURE 5. G-semistable curves for k = 2
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generic points boundary points
| |
\ |
\ |
|
General x3 : x3 |
Case : !
! :
| |
\ |
\ 1
|
[0,0] | |
[1,-1] [0,-1] ' - !
[2,-2] (1,-2] | 02 :
| |
| T
| |
| |
\ |
| |
\ |
| |
| |
Special %3 : x3 :
Case ! l
f |
I |
| |
| |
| |
\ |
[0, 0] : : ladder
[1, -1 ] [0, _1] | !
0. 2] (1,-2] ! [0,-2] | [0,-3]
(3, -3] [2,-3] | (1,-3] [
) | [
} |
) |

FIGURE 6. G-semistable curves for k = 3

For every k, the general case is much simpler to describe, because of the
lack of strictly semistable points in V), . Proposition 5.1 implies that

VicV e Icl'adj-p +p<j<i

where p = |I| and p’ = |I'|. This is really all we need to know to describe how
the components of V), intersect.

In the special case, V, contains some points having one-dimensional stabi-
lizer, namely, the Hilbert points of the semistable embeddings of the ladders.
We now need the following fact.

Lemma 7.1. Let X = C,UC,, |C,NC,| =k, where C, and C, are smooth
and irreducible. Let h = hilb(Z, L) € V; be such that Z has p destabilizing
components and the multidegree of L is d = (d,, d,, 1, ..., 1). Then the orbit
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closure of h in H, contains the Hilbert point of a ladder if and only if either
d=m ord =M -p.

Remark. Of course this lemma has already been proved (cf. 5.2.1 and Lemma
6.1). The ad hoc proof that follows should be viewed as an example illustrating
various ideas described in the paper.

Proof. Assume that d, = m, ; then we will show that 4 is strictly semistable.
(Obviously d, = M, — p implies d, = m,, hence the proof of the second case
is the same.)

It will be enough to exhibit a DM-semistable curve W such that W domi-
nates Z and such that, on W, the pull-back of d is equivalent to a multidegree
dl € B, such that the projective realization of W via any line bundle of mul-

tidegree d’ € B, is a ladder. Let
Z=C UG U(U_E))

and let

ko
W =CUC,U(U)_E)U(_F)

so that W is obtained by adding a rational component F; in place of all the
nodes lying on C, (see Figure 7).
On W we have that

E,NnC, =2 and lEjﬂF,-|=5,-,j Vi, j.
Moreover, it is

d'z(ml,Mz—p,d;J_:l,d;‘_:O);

FIGURE 7
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now let

p
£ *
d =d +2ﬁ+£2_.
Jj=1

Clearly
d' = (m,, my,dy =0,dp=1),

hence d° is the degree of a ladder.

Viceversa, we now want to prove that, if 2 = hilb(Z, L) is strictly semistable,
then either d, =m, or d, =m,.

Given the Hilbert point h® of any G-semistable ladder, there exists K =
hilb(X) such that h' is contained in the closure of the orbit of 4’ and such
that

d= degX, = (m,, M,)

(see 5.1.1). Therefore, if

' € O (k)N O4(H)

then, by the semistable replacement property, d* = (d')° on some curve dom-
inating W . Hence there exists a subcurve Y of Z, which is not equal to
C,uC,, and such that d, = m, . This finishes the proof. 0O

By applying all of this to the case k =2, we draw the schematic pictures of
P, x in Figure 8.

The case k = 2 is special in our class of examples, as the singularities of
P, , have normal crossing.

Let us now study the case k = 3; this type of curve is commonly called the
“Dollar sign”, for reasons that will not be clear from my pictures!

Now there are strata in codimension 2 as well, hence our picture will only
represent the compactified fibers of the pull-back morphism v Jy — Jy
and the way they are glued together.

General Case Special Case

FIGURE 8
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We now denote by P; the irreducible component of T,X which contains
an open subset parametrizing line bundles of reduced multidegree [i, —i]. We
already saw that, in the general (resp. special) case, m has three (resp. two)
components, each of which compactifies a k*-bundle over J,. .

Figure 9 represents the three projective surfaces which compactify the fibers
of the pull-back morphism, in the canonical model of the compactified Jacobian.
In P, and P, the fibers are compactified by P’ , in P, by P* blown up at
three points, where equal symbols denote identified loci. These loci parametrize
projective curves as described in Figure 10 on the next page (we are omitting
the degree of the destabilizing component, which is always 1).

Figure 11 on the next page corresponds to the degenerate case, in which m
only has two irreducible components.

The symbols A, B, C correspond to the same objects as in the general case.
The new symbol (the grey circle) stands for the locus of the ladders, in which
the two components ¥}, and V; get contracted. Notice that the codimension 2
locus gives a worse singularity than before.

We remark that a picture- analogous to the one that we just described appears
in [OS].

General
Case

FIGURE 9
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[0, 1] [0, 1] ’ [0, 1]

[1,-2] [1,-2] : [1,-2]

—

FIGURE 10
Special
Case
A B
P . P 2
C
FIGURE 11

8. THE MODULI PROBLEM

In this section, we describe the schemes P g and Pd x 1n the language of
functors and we study their dependence on the degree d .

8.1. The functor of line bundles with balanced multidegree on a family. We start
by defining a functor .@d, g following what the Geometric Invariant Theory

suggests, and then we say when and how Pd represents it. The purpose of
this work was to compactify the degree d Plcard functor, &, d, g for families
of regular curves; it is clear that the functor defined below contains .@d

Definition. We define the contravariant functor .9" ¢ from schemes to sets, to
be such that for every scheme S, 9”‘1 (S) is the set of equivalence classes of
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polarized families of quasistable curves of genus g,

[&,2)—Ss,

such that .# is a relatively very ample line bundle of degree d, whose mul-
tidegree satisfies the Basic Inequality on each fiber; here we say that two fam-
ilies over S, (¥,%) and (¢, % '), are equivalent if there exists an S-

isomorphism
0¥ —¥Y
and a line bundle M on S, such that
L 2 Z e M.

If h:S — S isa morphism of schemes, then
Fy () : Py (8) — Fy (S)
is given by using 4 to pull back to S’ polarized families on S .
Then the result is
Proposition 8.1. (1) There exists a morphism of functors
E:Fy ,—Fom( ,P; )
inducing an injection of the subﬁmctor %, g into Zom( , Py g) such that

P, coarsely represents .97’d

(2) P coarsely represents .9‘” lf andonly if d-g+1,2g-2)=1.
3) If (d g+1,2¢g-2)=1, then Py s a fine moduli scheme for &, ,
Proof. The proof is standard Geometric Invariant Theory and it is very s1m11ar

to that of Theorem 2.1.
(1) The morphism ZE is constructed by using the functorial property of
Hilb‘r’(" ): let & be an element of %(S) and let the polarized family

¥,2)Ls

be a representative for & . Then there is a covering S = UU, such that the
restriction of the polarized family to each U, gives a morphism ¢; to Hilb’r’(x ).
Since the relative multidegree of . satisfies the Basic Inequality, the image of
t;isin Hy. t(U,NU; ) and ¢, (U NnU,; ) are clearly congruent (in an algebraic

way) modulo G, that is, the compositions t, =7 dtt can be glued together to
a morphism
ES)&F):S— P,
which clearly does not depend on the choice of the ¢;.
The restriction of = to families of smooth curves gives an injection of
Py (S) into Fom(S, P, ,) simply because V[X] € M, and VL € Pic‘;,
hilb(X, L) is G-stable.

9Recall that ny Hy — Pd, ¢ is the quotient morphism.
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Notice that while Pd’ is equal to ¢, ( ) the argument above applies to
smooth curves with automorphlsms as well, because of the way we defined the
equivalence relation on polarized families. The remaining part of (1) has been
proved in Theorem 2.1 already.

(2) Assume (d —g+1,2g —2) = 1. Saying that P, , coarsely represents
W is precisely saying that the following two properties are satisfied:

&
(i) For every algebraically closed field K, the map

Z(SpecK) :.@d,g(Spec K) — #Zom(SpecK, Pd,g)

is an isomorphism.
(ii) Given any scheme P such that there is a morphism of functors

T:%‘_'yom( ’P)

there exists a unique morphism

y:P

dg — P

such that
T=%¥oZ=E

(¥ being the morphism of functors Zom( |, T,g) — #Zom( , P) given by
composition by ).

The proof of (i) follows directly from Proposition 6.2. Let us prove (ii). To
construct ¥, we look at the image under

Y(H,) :.@d,g(Hd) — Zom(H,, P)
of the class of the universal polarized family %,
(&, %) — H,

This will give a morphism y' : H ;, — P, which will be G-invariant, because of
the way we defined the equivalence relation among families. But now, by the
universal property of the GIT-quotient, ' can be canonically factored through
aunique y: P, , — P suchthat y' = yom,.

Remark. The “maximality” property (ii) holds for every d, in fact there is no
need for the assumption (d —g+1,2g-2)=1.

Viceversa, assume that P is a coarse moduli scheme for .9” 4. g ; then
its points have to be in one—to—one correspondence with equivalence classes of
very ample line bundles of degree d on quasistable curves, satisfying the Basic
Inequality. This can of course only happen if T,g is a geometric quotient of
H, modulo G. By Proposition 6.2, we conclude that (d —g+1,2g-2)=1.

Finally, the proof of (3) is a simple application of a general construction due
to Maruyama (see [Ma]).

Let Hg = V/TI(M;,)) as in the proof of Theorem 2.1, and let (&, 2;) be the
restriction of the universal polarized family to it. Then we have the following
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diagram:

|
—
—
—

a.mo
!
~

where w is the relative duallzmg sheaf (represented here as a line bundle) of
the universal family over M We want to find a line bundle F on H, such
that £ ® u *F can be descended to a line bundle & on % X M P, . Itis

clear that, if such an F exists, % will be a Poincaré line bundle and the proof
of (3) will be finished.
By our assumption, there exist integers @ and b such that

ad-g+1)+b2g-2)=-1,
hence the number n = b — (a — 1)/2 is an integer. Let us now define
F = det(u,,(e.‘z?;fM ®q'p 0®");

then, if an element of G acts on <, via multiplication by the constant a, the
same element will act on F via multiplication by o' ; hence Z® u*F admits

a linearization which is compatible with the action of G on H In other words,
ZLou *F can be descended to a Poincaré line bundle on % X b0 P, O

Remark. The converse of (3) is proved in the paper [MR], where there is also
a proof of (3) over the field of complex numbers.

We now want to study the relation between compactifications obtained for
different degrees.

Lemma 8.1. There exists an isomorphism

TPy — Py,

if and only if there exists n such that d +d' = n(2g - 2).
Proof. If d +d' = n(2g — 2), then notice that the functors Py o and Z

are isomorphic. In fact, assume that d + d = 2g — 2 (the other case is s1m11ar)
then one can define a morphism

Py (S) — F (S
by sending the polarized family
(&, %) —S)eZ, (5



656 LUCIA CAPORASO

to
(Z ' 0, %) — S) €Fy (S

It is easy to see that this is in fact an isomorphism; now, by the remark in the
proof of the previous proposition, we know that Pd R and P, 2 satisfy the
maximality property for the respective functors, hence they are 1somorph1c

The converse is immediate, as it is true for the universal Picard variety. We
recall here that the proof follows from the two following well-known facts:

(a) For a general smooth curve X, the automorphism group of Jy is gener-
ated by the involution and the translations.

(b) If e is an integer such that there exists a rational section of P, , — Mg ,
then e is a multiple of 2g—2. O

8.2. The restriction to a fixed curve. Let us now fix a DM-stable curve X . Ina
completely analogous way as we did before, we can construct a functor .@ X of
line bundles with degree restrictions on qua51stable curves havmg X as stable
model. The next result is proved like the analogous result for Pd, R that we
have already described.

Proposition 8.2. Let X be a DM-stable curve.

(1) There exists a morphism of functors
Ey: Py x —&om( , P; x)-
(2) P, 4 coarsely represents 97’(1, x ifandonlyif d is X -general.

Another, perhaps more suggestive, description of P, , can be given in terms

of line bundles over the ladder X° , in a way that does not involve the Basic
Inequality at all. Nevertheless such a description is intrinsically rigid, that is, it
cannot possibly be extended to a family, because it depends on the datum of a
deformation of the curve.

For simplicity, let us assume that the automorphism group of the curve is
trivial. Let us fix the following datum ¢&:

¢ is the datum of a one-parameter deformation of Xt

x'd 2 — (B, by

where Z', B, Z, forall b # b, are regular, and i is the isomorphism between

X° and the central fiber Z .
Now let C, ..., C, be the irreducible components of X for every n =

n,,...,n)eE Z" we have a unique line bundle on X°
1 b4

?
=0, (}: niC,.) ®0I,.
1

We define the following functor.
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Definition. Let 92‘1 be the contravariant functor from schemes to sets such
that, if S is a scheme, .Zf’d(S) is the set of & — equivalence classes of line
bundles . of relative degree d on the family X’ x, S — S.If f:§ — §
is a morphism, then & d( f) is given by pull-back. Here we say that .& is

& — equivalent to &' if and only if there exist an S-automorphism « of
X* x xS, aline bundle M on S, and a Tf n such that

L' 2" L opMpyT, ,
Now the relation with P 4. X is precisely expressed by the next lemma.
Lemma 8.2. (1) There exists a morphism of functors
I: 9?1 — Zom( , P, P, ).
(2) If d is X-general, for every algebraically closed field K the map
I'(SpecK) : & (SpecK) — Zom(SpecK, d,X)
is bijective.

The proof is another variation of the_prgof of Theorem 2.1.

Notice that, even if d is X-general, P, X is not even a coarse moduli scheme
for .9?1 , for it does not satisfy the maximality property. This is not surprising,
as the definition of our &-equivalence relation on line bundles on X* depends
on the deformation data é Moreover, observe that for any d and d’, .7 4 is
clearly isomorphic to .7 , whereas we are now going to show that, in general,
there does not exist a morphism between Pd’ x and P " x-

Suppose for simplicity that d and d’ are both X- general. Then by Propo-

sition 5.1 and Theorem 3.1, if Pd’ =P, . ,x then there exists [ =(/,,..., 1)
with Y/, =d' —d such that vd € BS, [+d € Bx . Viceversa, if there ex-
ists [=(l},...,1,) such that d + Bi = Bd , then we obtain the isomorphism

between Pd X and P, , by tensoring by a line bundle of multidegree /. An
example when this fa11s to happen is a curve of genus 4 having three smooth
components of genus 1, meeting pairwise in one point. If d = 3n + 1 and
d =3n+2 we have

Py x#Py x
To conclude, we can summarize the situation as follows:
Proposition 8.3. Let d be X-general andlet d' > d ; there exists a Jy-morphism
[Py — Py x
if and only if there exists a decomposition in disjoint sets

ITuJ=A{1,...,7}
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such that
d —d =Y (Im]-[m])+3 (M) - |M,]).

i€l jeJ
Proof. If there exists such a J,-morphism f, then there has to exist an l =
(5 ..., 1,) such that

and such that

In fact, since d is X-general,

P . d_
(Pd,X)smooth = ]_[ PICX .
deBy

Now, Vd € B; , f maps Pic% isomorphically to
Pic c P, -,
Icy C Ly x5

therefore, there exists [ such that E’; [, = d —d. As we said, [ does not
depend on the choice of d .
Now, the fact that

d -d =Y (Im]-[m])+ > (LM;] - |M;])
i€l i€t
follows from the observation that, for every i, 1 < i < y, there exists a
multidegree (d,, ..., d,) € By such that d, = [m;]. Now, if
I # [m) — [m,)
(which can only happen if m] € Z) then, a fortiori,
!
li = |.M,J - I.M,J

Conversely, given an [ as in our statement, let L € Picf‘, and then consider
the polarization

IS =T

over the restriction of the universal family %, to Vy:
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where ., is the tautological polarization. The relative multidegree of 9~
clearly satisfies the Basic Inequality, hence we obtain a G-invariant morphism

Vy — Pic% which, by the universal property of the GIT-quotient, gives the
morphism f from P, , to P, ,, which is what we wanted. O
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