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Abstract. We use orientations on stable graphs to express the com-
binatorial structure of the compactified universal Jacobians in degrees
g−1 and g over Mg, and construct for them graded stratifications com-
patible with the one of Mg. In particular, for a stable curve we exhibit
graded stratifications of the compactified Jacobians in terms of totally
cyclic, respectively rooted, orientations on subgraphs of its dual graph.

1. Introduction and Preliminaries

1.1. Introduction. The boundary of the compactifications of various mod-
uli spaces often exhibits a stratification in terms of increasingly degenerate
objects. A basic example of this phenomenon is Mg, the compactification
of the moduli space of smooth curves of genus g ≥ 2 by stable curves, where
the boundary strata parametrize curves with an increasing number of nodes.

This widespread behaviour has received new attention lately thanks to
recent progress in tropical and non-Archimedean geometry. In fact, a thor-
ough study of the boundary of Mg and of its combinatorial incarnation has

led to a remarkable discovery. In loose words, the Berkovich skeleton of Mg

(or, the tropicalization of Mg) is the moduli space for the skeleta of stable
curves over complete valued fields (or, the moduli space of tropical curves,

M trop
g ); an analogous result holds for other moduli spaces, like Mg,n or the

space of admissible covers. These facts are proved, building upon results of
[9], [11] and [26], in [1] for Mg,n and in [17] for admissible covers; see also
[6], [27], [28], [7] for related progress. Apart from being of interest in its own
right, this discovery explicitly connects different areas of geometry, enabling
one to transfer ideas and techniques from one area to the other.

As we said, the starting point was the study of the boundary from the
combinatorial point of view. First, one shows it admits a stratification of a
specific combinatorial type, which we call a graded stratification by a poset
P; see Definition 1.3.2. Second, one identifies the stratifying poset, P, with
a combinatorial object interesting on its own. For example, for Mg the
stratifying poset is SGg, the set of all stable graphs of genus g partially
ordered with respect to edge-contraction. The graded stratification map
(again Definition 1.3.2), Mg → SGg, sends a curve X to its dual graph, G.
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2 COMBINATORICS OF COMPACTIFIED UNIVERSAL JACOBIANS

The purpose of this paper is to study, from this perspective, the com-
pactification of the universal degree-d Jacobian (or degree-d Picard variety)
over Mg, constructed in [12]. Recall that for any d ∈ Z the compactification

of the universal degree-d Jacobian is a projective morphism ψ : P
d
g → Mg

whose fiber over an automorphism-free curve X is Picd(X) if X is smooth,

and a compactified degree-d Jacobian, P
d
X , if X is singular. In general, the

fiber of ψ over X is the quotient of P
d
X by Aut(X); see Subsection 4.5. As

d varies, so does the structure of P
d
g →Mg, but it is well known that there

are only finitely many non-isomorphic types, each of which can be realized
by a value of d such that 0 ≤ d ≤ g.

In this paper we concentrate on the cases d = g− 1 and d = g, which are
of special interest. Indeed, the case d = g − 1 has been studied extensively
in the past because of its natural connection with Prym varieties, the Theta
divisor and the Torelli problem; see [8], [2], [16]. The case d = g is notable

because P
g
g is the coarse moduli scheme of a Deligne-Mumford stack, and

its fiber over the curve X is a compactified Jacobian of Néron type, i.e. it
compactifies the Néron model of the Jacobian of a regular one-parameter
smoothing of X.

The space P
d
X parametrizes line bundles on partial normalizations of X

having a special multidegree; as multidegrees on X coincide with divisors
on the dual graph, G, of X, we call such special multidegrees stable divisors.

This leads to a stratification of P
d
X given by the sets of nodes that are

normalized, and by the sets of stable divisors on the partial normalization.
For a fixed curve X the existence of such a stratification was essentially
known, but a combinatorially interesting incarnation for it was not, with
the exception of the case d = g − 1. Indeed, it was known that a divisor of
degree g−1 is stable if and only if it is the divisor associated to a totally cyclic
orientation on G. Preceeding the notion of stable divisor, this observation
was made in [8, Lemma 2.1] while studying Prym varieties. Independently,
using the basic inequality of [12], this is a consequence of a theorem in graph
theory, known as Hakimi’s Theorem (originally in [21], for a formulation in

our framework see [3, Theorem 4.8]). The graded stratification of P
g−1
X by

totally cyclic orientations was established in [16] to study the Torelli map
of stable curves.

We will prove results of a similar type in case d = g, and show that P
g
X

has a graded stratification by the poset of rooted (generalized) orientations
on G; see Definition 1.4.1. In particular, we show that a divisor is stable
if and only if it is the divisor associated to a rooted orientation. We note
that from this and [3, Lemma 3.3] it easily follows that the notions of break
divisor, as introduced in [22], and of stable divisor coincide.

To be more precise, we will introduce for a stable graph G two graded

posets: the poset OP0
G of totally cyclic orientation classes on spanning sub-

graphs of G, and the poset OP1
G of rooted orientation classes on spanning



COMBINATORICS OF COMPACTIFIED UNIVERSAL JACOBIANS 3

subgraphs of G. The partial order will be given by edge removal. We treat
the cases d = g − 1 and d = g simultaneously, so we write b = 0, 1 and
d = g − 1 + b. By mapping a point to its stratum we get a graded stratifi-

cation map P g−1+b
X → OPbG; see Theorem 4.3.4.

Next, we extend our analysis over Mg, which we know is stratified by

SGg ordered by edge contraction. Our goal is to endow P
g−1
g and P

g
g with a

graded stratification compatible with the one of Mg and with the fiberwise
stratifications established earlier. In order to do that we first study the

behaviour of OPbG under edge-contractions and prove, in Theorem 3.3.1,
that to every edge-contraction from G to G′ there corresponds a quotient of

posets OPbG → OP
b
G′ . Second, we study the natural action of Aut(G) on

OPbG and introduce a poset, [OPbg], with a quotient of posets, [OPbg]→ SGg,
whose fiber over G is OPbG/Aut(G); see Proposition 3.5.3.

The theorem below summarizes the main results of the paper.

Theorem 1.1.1. Let b = 0, 1. The following diagram is commutative. The
four horizontal maps, denoted by σ, are graded stratification maps, and the
vertical map µ is a quotient of posets.

P g−1+b
g

σ // //

ψ

��

[OPbg]

µ

��

P
g−1+b
X /Aut(X)

��

3 S

ee

σ // // [OPbG]

��

- 

;;

P
g−1+b
X

ii

uu

σ // // OPbG

77

''
[X] � //*

uu

[G] �
((

Mg
σ // // SGg

The theorem gives the sought-for combinatorial presentation of the com-
pactified Jacobian of a curve, and of the compactified universal Jacobian
over Mg, for d = g − 1, g. The next question now is to provide the tropical
version of the theorem, starting from the fact that the left-bottom corner
of the diagram should be occupied by the moduli space of tropical curves,

M trop
g , while the right side should be the same, up to isomorphism. This

will involve constructing skeleta of P
d
X and P

d
g as moduli spaces of suitable

polyhedral objects. This research direction relates to results of [7], where
the skeleton of the Jacobian of a curve over a valuation ring is shown to
be the Jacobian of the skeleton of the curve. Results of [24] show that the
compactification considered there agrees with the one constructed in [12],
the one we are concerned with in this paper in case d = g. Results of [18]
indicate that one can extend this description to the universal setting on the
combinatorial side.
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Another natural question remaining is about the extention of our results

to P
d
g with d 6= g, g − 1. Apart from the case d = g − 2, which is essentially

immediate by taking the residual of the degree g case, we so far have no
candidate for a stratifying poset.

After a section containing preliminaries, Sections 2 to 3 establish the
framework for graphs and generalized orientations, together with the be-
haviour under edge-contractions of totally cyclic and rooted orientations on
subgraphs of the full graph. Although everything will be presented in a
self-contained manner, our way of thinking about these objects has been
influenced significantly by [20] and [5], which study the interplay between
orientations and the divisors they define (or as they are sometimes called,
the “indegree sequences of orientations”). In Section 4 we apply the combi-
natorial results to compactified Jacobians of degree g − 1 and g and prove
the claims contained in Theorem 1.1.1.

1.2. Graphs. Throughout the paper G denotes a vertex-weighted finite
graph of genus g; we allow loops and multiple edges. We denote by V =
V (G) the set of vertices of G, by E = E(G) the set of edges of G and by

w : V → N; v 7→ w(v)

the weight function of G. We write c(G) for the number of connected com-
ponents of G. The genus, g = g(G), of G, is defined as follows

g(G) :=
∑
v∈V

w(v)− |V |+ |E|+ c(G).

We think of an edge of G as the union of two half-edges, each of which
has a vertex of G as end, so that the ends of an edge e are the ends of its
half-edges and e is a loop if the two ends coincide. We write H = H(G) for
the set of half-edges of G. We have a natural two-to-one surjection H → E,
and we write {h+

e , h
−
e } for the preimage of e ∈ E.

The degree, or valency, of a vertex v, written deg v, is the number of
half-edges whose end is v.

A subgraph of G will be endowed with the weight function obtained by
restricting the weight function of G.

For a non empty Z ⊂ V , we write Zc := V r Z. The induced subgraph,
G[Z] ⊂ G, is the subgraph whose vertex-set is Z, whose edge-set is the set
of all edges of G having both ends in Z, and whose weight function is the
restriction to Z of the one of G. We set

g(Z) := g(G[Z]) = |E(G[Z])| − |Z|+ c(G[Z]) +
∑
v∈Z

w(v).

If S ⊂ E is a set of edges of G, we write G − S for the graph obtained
from G by removing S; notice that G and G− S have the same vertices, in
other words G−S is a so-called spanning subgraph of G. We denote by 〈S〉
the subgraph of G spanned by S, so that E(〈S〉) = S and the vertices of 〈S〉
are the vertices adjacent to the edges in S.
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A cut of G is a set of edges, S ⊂ E, such that for a partition V = Z tZc,
with ∅ ( Z ( V , our S is the set of all edges adjacent to both Z and Zc.
We also write S = E(Z,Zc) for such a cut. For a non empty cut S we have
c(G) < c(G− S). We shall use the following elementary

Remark 1.2.1. Let S ⊂ E be a cut of G and let H ⊂ G be a subgraph.
Then either S ∩ E(H) = ∅ or S ∩ E(H) is a cut for H.

If e ∈ E is such that {e} is a cut, then e is called a bridge. We denote by
Gbr ⊂ E the set of bridges of G.

Remark 1.2.2. For any S ⊂ E we have g(G) ≥ g(G− S), with equality if
and only if S ⊂ Gbr.

A morphism between two graphs, η : G → G′, is given by two maps,
ηV : V (G) → V (G′) and ηE : E(G) → E(G′) ∪ V (G′) such that ηE(e)
has ends ηV (v) and ηV (w) for any e ∈ E(G) whose ends are v and w. We
sometime write just η = ηE and η = ηV .

An isomorphism between two graphs, α : G → G′, is a morphism such
that αV is a bijection, αE : E(G)→ E(G′) is a bijection, and such that for
every v ∈ V (G) the weight of αV (v) equals the weight of v. An isomorphism
induces also a bijection between the half-edges of G and G′.

An automorphism is an isomorphism of G with itself. We denote by
Aut(G) the group of automorphisms of G.
G is semistable if it is connected, g(G) ≥ 2, and has no vertex of weight

0 and degree less than 2.
G is stable if it is semistable and has no vertex of weight 0 and degree less

than 3. The set of all stable graphs of genus g is denoted by SGg.
Notice that SGg is finite.

1.3. Posets. A poset, (P,≤), or just P, is a set partially ordered with
respect to “ ≤ ”. Let p1, p2 ∈ P. We say that p2 covers p1 if p1 < p2 and if
there is no p′ ∈ P such that p1 < p′ < p2.

Let (P,≤P ) and (Q,≤Q) be two posets. We say that a map µ : P → Q.
is a morphism of posets if p1 ≤P p2 implies µ(p1) ≤Q µ(p2). We say that µ
is a quotient (of posets) if for any q1, q2 ∈ Q such that q1 ≤Q q2 there exist

p1 ∈ µ−1(q1) and p2 ∈ µ−1(q2) such that p1 ≤P p2. In particular, a quotient
is a surjective morphism of posets.

We will apply the following trivial lemma a few times.

Lemma 1.3.1. Let P be a finite poset and ∼ an equivalence relation on P.
Let π : P → P = P/∼ be the quotient. Assume the following holds

For every x, y ∈ P with y ≥ x and for every y ∼ y′ there exists x′ ∼ x
such that y′ ≥ x′.

Then P is a poset as follows: for x, y ∈ P set y ≥ x if there exist x′ ∼ x
and y′ ∼ y such that y′ ≥ x′. Moreover π is a quotient of posets.

The lemma holds if we switch roles between x and y, i.e. if we assume
that for every x ∼ x′ there exists y′ ∼ y such that y′ ≥ x′.
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A rank on a poset P is a map ρ : P → N such that if p2 covers p1 then
ρ(p2) = ρ(p1) + 1. Of course, N is a poset and a rank is a morphism of
posets. A poset endowed with a rank is called a graded poset.

Definition 1.3.2. Let M be an algebraic variety and let P be a poset. A
stratification of M by P is a partition of M

M = tp∈PMp

such that the following hold for every p, p′ ∈ P.

(1) the stratum Mp is irreducible and quasi-projective;

(2) if Mp ∩Mp′ is not empty, then Mp ⊂Mp′ ;

(3) Mp ⊂Mp′ if and only if p ≤ p′.
A stratification of M by P is called graded if the following is a rank on P

P −→ N; p 7→ dimMp.

Let σ : M � P be a surjective map. We call σ a (graded) stratification map
if the fibers of σ form a (graded) stratification of M by P.

1.4. Generalized orientations. Let G be a graph and e an edge of G. An
orientation on e is the assignment of a direction so that one half-edge of e
is the starting half-edge and the other is the ending half-edge. Accordingly,
the vertex adjacent to the starting half-edge will be called the source of e,
and the vertex adjacent to the ending half-edge will be called the target of
e. If e is a loop then its base vertex is both source and target.

An orientation, O, on G is the assignment of an orientation on every edge
of G. If x ∈ V is the source (respectively, the target) of e ∈ E we say that e
is O-outcoming from x (resp. O-incoming at x); we say simply “outcoming”
or “incoming” when no confusion seems possible.

A generalized orientation on G is the assignment, for every e ∈ E, of
either an orientation on e, or of both orientations on e; in the latter case we
say that e is bioriented. So, a bioriented edge has both its ends as targets
and sources.

For b ∈ N a b-orientation is a generalized orientation having exactly b
bioriented edges. We thus recover usual orientations as 0-orientations (which
we shall continue to call “orientations” to ease the terminology)

In this paper, we shall mostly be interested in the cases b = 0, 1.

Definition 1.4.1. Let G be a graph.
An orientation (i.e. a 0-orientation) on G is totally cyclic if it has no

directed cut i.e. if every non empty cut E(Z,Zc) has an edge with target in
Z and one edge with target in Zc.

A 1-orientation on G with bioriented edge e is rooted, or e-rooted, if for
every Z ( V such that e ∈ G[Z], the cut E(Z,Zc) contains an edge with
target in Zc.

We denote

O0(G) := {O : O is a totally cyclic orientation on G}
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and
O1(G) := {O : O is a rooted 1-orientation on G}.

The terminology “totally cyclic” and “rooted” is motivated by 1.4.2 (b),
and 1.6.4, respectively.

Let G be a cycle. We say that G is cyclically oriented if it is given a
totally cyclic orientation (of course, a cycle admits exactly two totally cyclic
orientations). From [15, Lemma 2.4.3] we have:

Fact 1.4.2. (a) O0(G) is not empty if and only if G is free from bridges.
(b) Let G be connected. An orientation on G is totally cyclic if and only if

every pair of vertices is contained in a cyclically oriented cycle.

Convention 1.4.3. Assume G has no edges. Then the empty orientation
will be considered as totally cyclic, so that O0(G) consists of exactly that
orientation.

If G consists of a single vertex, then the empty orientation will be con-
sidered rooted, so that O0(G) = O1(G).

Notice that, by definition, an orientation on a graph is totally cyclic if and
only if its restriction to every connected component of G is totally cyclic.

Remark 1.4.4. Let O be a totally cyclic orientation on a connected graph
G. For any e of G, let Oe be the 1-orientation having e as bioriented edge and
such that every remaining edge is oriented according to O. The definition
implies that Oe is rooted. This gives an injection (not a surjection)

O0(G)× E −→ O1(G); (O, e) 7→ Oe.

Lemma 1.4.5. O1(G) is not empty if and only if G is connected.

Proof. If G admits a rooted 1-orientation then, by definition, every cut
E(Z,Zc) is non empty, hence G must be connected.

Conversely, let G be connected and set

G−Gbr = G1 tG2 t . . . tGn
with Gi connected for i = 1, . . . n. Of course, Gi is bridgeless for every i,
hence we can fix on Gi a totally cyclic orientation, Oi.

We pick an edge e of G1 and consider the 1-orientation on G1 having e
as bioriented edge and such that every other edge is oriented according to
O1. This is a rooted 1-orientation, as noted in Remark 1.4.4. We fix this
orientation on G1 from now on, and we fix the orientations O2, . . . , On on
the remaining Gi.

Let us show how to orient Gbr to obtain a rooted 1-orientation. Let B1 ⊂
Gbr be the set of bridges adjacent to G1 and, up to reordering G2, . . . , Gn,
let G2, . . . , Gn1 be adjacent to B1, so that the following subgraph of G

H2 = G1 ∪B1 ∪G2 ∪ . . . ∪Gn1

is connected. Since G is connected, n1 ≥ 2. Orient every edge in B1 pointing
away from G1. It is easy to check that the so obtained 1-orientation on H2 is
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rooted. If H2 = G we are done. If not we iterate as follows. Let B2 ⊂ Gbr be
the set of bridges adjacent to H2 and let Gn1+1, . . . Gn2 be the components
not contained in H2 and adjacent to B2, so that the following

H3 = H2 ∪B2 ∪Gn1+1 ∪ . . . ∪Gn2

is connected. Orient every edge in B2 away from H2 so that the so-obtained
1-orientation is rooted. If H2 = G we stop, otherwise we iterate. Since G is
connected, after a finite number, say m, of iterations we get Hm = G. ♣

1.5. Divisors of generalized orientations. The group of divisors on G,
written Div(G), is the free abelian group generated by V . We shall identify
Div(G) = ZV and denote a divisor on G by d = {dv}v∈V .

The degree of a divisor d is defined as |d| =
∑

v∈V dv and we write Divk(G)
for the set of divisors of degree k.

If d, d′ ∈ Div(G) are such that dv ≤ d′v for every v ∈ V , we write d ≤ d′.
If S ⊂ E, then G and G−S have the same vertices, hence we shall identify

Div(G) = Div(G− S).
If Z ⊂ V we write dZ for the restriction of d to Z and |dZ | =

∑
v∈Z dv.

To a generalized orientation O ∈ Ob(G) (recall that if E(G) is not empty
b is the number of bioriented edges) we associate a divisor, dO ∈ Div(G),
whose v coordinate, for every v ∈ V , is defined as follows

dOv :=

{
w(v)− 1 + tOv if E(G) 6= ∅
w(v)− 1 + b if E(G) = ∅

where tOv denotes the number of half-edges having v as target, so that tO :=
{tOv } is also in Div(G).

Next, if G is connected and O ∈ Ob(G) one easily checks

(1) |dO| = g(G)− 1 + b.

For any Z ⊂ V we denote by tO(Z) the number of edges not contained
in G[Z] having target in Z, and by b(Z) the number of bioriented edges
contained in G[Z]. Notice the following

(2) tO(Z) =
∑
z∈Z

tOz − |E(G[Z])| − b(Z).

The following trivial lemma generalizes (1).

Lemma 1.5.1. Let O be a b-orientation on G and let Z ⊂ V be such that
G[Z] is connected. Then

(3) |dOZ | = g(Z)− 1 + b(Z) + tO(Z).

Proof. We have

|dOZ | =
∑
z∈Z

dOv =
∑
z∈Z

(w(z)− 1 + tOz ) =
∑
z∈Z

w(z)− |Z|+
∑
z∈Z

tOz .

Now, g(Z) =
∑

z∈Z w(z)− |Z|+ |E(G[Z])|+ 1 hence, by (2),
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|dOZ | = g(Z)− 1− |E(G[Z])|+
∑

z∈Z t
O
z = g(Z)− 1 + b(Z) + tO(Z). ♣

The following lemmas characterize totally cyclic and rooted orientations.
They are slight generalizations of [10, Lemma 1] and the remark thereafter.

Lemma 1.5.2. Let O be a 0-orientation on a connected graph G. The
following are equivalent.

(a) O is totally cyclic.
(b) tO(Z) > 0 for every non empty Z ( V .
(c) tO(Z) > 0 for every non empty Z ( V with G[Z] connected.
(d) |dOZ | > g(Z)− 1 for every non empty Z ( V with G[Z] connected.

Proof. (a) ⇒ (b). By hypothesis the cut E(Z,Zc) must have some edge
with target in Z, hence tO(Z) > 0.

(b) ⇒(c) is obvious.
(c) ⇒(d). By (3) (with b(Z) = 0) and by hypothesis we have

|dOZ | = g(Z)− 1 + tO(Z) > g(Z)− 1.

(d) ⇒ (a). Let E(U,U c) be a cut in G, we must prove that E(U,U c) is
not a directed cut. Let Z ⊂ U such that G[Z] is a connected component of
G[U ]. Of course, E(Z,Zc) ⊂ E(U,U c). By (3) we have

tO(Z) = |dOZ | − (g(Z)− 1) > 0

where the inequality follows by hypothesis. Hence E(U,U c) has an edge
with target in Z, hence in U . The same argument applied to U c shows that
E(U,U c) has an edge with target in U c. ♣

•

��

EE //•

��

EE

• //•

Figure 1. A non totally-cyclic orientation O with tO > 0.

Lemma 1.5.3. Let O be a non empty 1-orientation on G and let e be its
bioriented edge. The following are equivalent.

(a) O is e-rooted.
(b) tO(Z) > 0 for every non empty Z ⊂ V with e 6∈ G[Z].
(c) tO(Z) > 0 for every non empty Z ⊂ V such that G[Z] is connected and

e 6∈ G[Z].
(d) |dOZ | > g(Z)− 1 for every Z ( V such that G[Z] is connected.

Proof. (a)⇒ (b). By hypothesis e ∈ G[Zc]. As O is rooted the cut E(Z,Zc)
must have some edge with target in Z, hence tO(Z) > 0.

(b) ⇒(c) is obvious.
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(c) ⇒(d). If e 6∈ G[Z] the proof is the same as for Lemma 1.5.2. If
e ∈ G[Z] we apply (3); as b(Z) = 1 we get

|dOZ | = g(Z) + tO(Z) ≥ g(Z) > g(Z)− 1.

(d) ⇒ (a). Let E(U,U c) be a cut in G with e ∈ G[U ]. Let W be a
connected component of G[U c], it suffices to show that E(U,U c) contains
an edge with target in W . Now (3) applied to W yields

g(W )− 1 + tO(W ) = |dOW | > g(W )− 1,

by hypothesis. Hence tO(W ) > 0, as wanted. ♣

1.6. Equivalence of generalized orientations.

Definition 1.6.1. We define two generalized orientations, O and O′, on a

graph G to be equivalent, and write O ∼ O′, if dO = dO
′
.

We denote by O the equivalence class of O.

Remark 1.6.2. Let O and O′ be two b-orientations, with b = 0, 1. By
Lemmas 1.5.2 and 1.5.3, if O ∼ O′ then O is totally cyclic (resp. rooted) if
and only if so is O′.

We now introduce the sets of equivalence classes of totally cyclic orienta-
tions, and of rooted 1-orientations, on G written

(4) O0
(G) := O0(G)/ ∼ and O1

(G) := O1(G)/ ∼ .

Remark 1.6.3. Equivalence of 1-orientations through reversal of directed
paths. Let O be a 1-orientation whose bioriented edge e has ends v0, v1. We
say that a path P ⊂ G is O-directed from e to v, with v 6= v0, v1, if the first
edge of P is e and if the component of P − e containing v is a directed path
with v as target.

Let P ⊂ G be an O-directed path from e to vn+1 as in the Figure 2. Let
e′ ⊂ P be the last edge of the path, so that the ends of e′ are vn and vn+1.
Define a new 1-orientation, O′ on G as follows. Let e′ be the bioriented
edge, reverse the orientation on every remaining edge of P , and fix on e the
orientation from v1 to v0. Notice that P is an O′-directed path from e′ to
v0. Let O′ coincide with O on the remaining edges of G. It is clear that O
and O′ are equivalent.

• oo v1v0
e

//• v2//• //•vn
vn+1

e′
//• • oo v1v0

e
•oo v2• oo •oovn

vn+1

e′
//•

O O′

Figure 2. Equivalence of 1-orientations through the rever-
sal of a directed path.
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Lemma 1.6.4. Let O be a non empty 1-orientation on a connected graph
G and let e be its bioriented edge. The following are equivalent.

(a) O is e-rooted.
(b) For every v ∈ V there exists an O-directed path from e to v.
(c) For every e′ ∈ E there exists a 1-orientation O′ whose bioriented edge

is e′ and such that O ∼ O′.

Proof. (a) ⇒ (b). Let x, y be the ends of e and let Z1 = {x, y}. Since O
is e-rooted and e ∈ G[Z1] the set, W1, of vertices in Zc1 that are targets of
edges with source in Z1 is not empty. Set Z2 = Z1 ∪W1. If W1 contains v
we are done. If not, we iterate as follows. As O is rooted the set, W2, of
vertices in Zc2 that are targets of edges with source in Z2 is not empty. By
construction, every vertex w in W2 is the target of an edge with source in
W1, and hence w is the last vertex of a directed path starting with e. If W2

contains v we are done, otherwise we iterate. Since G is connected, after
finitely many steps this process includes all vertices of G, so we are done.

(b) ⇒ (c). Let e′ be oriented from v to w and let P be an O-directed
path from e to v. We define O′ as the 1-orientation obtained by reversing
the orientation of P , as defined in 1.6.3.

(c) ⇒ (a). By contradiction, suppose O is not rooted. Hence there exists
a cut E(Z,Zc) directed away from Z and such that e ∈ G[Zc]. Up to
replacing Z with a subset, we can assume that G[Z] is connected. We thus
have tO(Z) = 0 and, as e 6∈ G[Z],

(5) |dOZ | = g(Z)− 1 + tO(Z) = g(Z)− 1.

Pick e′ ∈ G[Z] and let O′ be a 1-orientation with e′ as bioriented edge such
that O ∼ O′, which exists by hypothesis. As e′ ∈ G[Z] we have

|dOZ | = |dO
′

Z | = g(Z) + tO
′
(Z) ≥ g(Z)

a contradiction with (5). ♣

2. Posets associated to graphs.

2.1. Edge contractions. Let G be a graph and S ⊂ E a set of edges of G.
The (weighted) contraction of S is a map of weighted graphs, γ : G→ G/S
(introduced in [11]). Informally γ is given by contracting to a vertex every
edge in S, and such that the weight of a vertex v of G/S equals the genus
of the subgraph of G which gets contracted into v. Rigorously, consider the
subgraph, 〈S〉 ⊂ G, spanned by the edges in S and let 〈S〉 = H1 t . . . tHm

be its decomposition in connected components. Now set

V (G/S) := V (G) r V (〈S〉) t {v1, . . . , vm}, E(G/S) := E(G) r S.

We have two maps,

(6) γV : V (G) −→ V (G/S) and γE : E(G) −→ E(G/S) ∪ V (G/S),

where γV is the identity on V (G) r V (〈S〉) and maps every vertex of Hi to
vi, and γE is the identity on E(G) r S and maps every e ∈ S to vi such



12 COMBINATORICS OF COMPACTIFIED UNIVERSAL JACOBIANS

that e lies in Hi. It is clear that γV and γE determine a morphism of graphs
γ : G → G/S, as wanted. Finally, the weight function w/S : V (G/S) → N
is defined as follows:

w/S(v) = g(γ−1(v)).

Indeed, γ−1(v) is the subgraph of G induced by the subset γ−1
V (v) ⊂ V (G),

hence its genus is well defined.
For convenience we view the identity G→ G as the trivial contraction.

Remark 2.1.1. We list some useful consequences of the definition.

(a) G is connected if and only if G/S is connected.
(b) g(G) = g(G/S).
(c) If G is stable, or semistable, so is G/S.

Let S ⊂ E(G) be a subset of edges of a graph G, we set

(7) G(S) = G/(E r S).

Lemma 2.1.2. Let S ⊂ E(G) and H := G/S. Let T ⊂ E(H). Then

(a) H − T = (G− T )/S.
(b) H(T ) = G(T )/S = G(T ).
(c) T is a cut of H if and only T is a cut of G.
(d) Hbr = ∅ if and only if Gbr ⊂ S.

Proof. It suffices to assume S = {e}; let x, y ∈ V be the ends of e. Denote by
ve ∈ H the vertex to which e is contracted; we have natural identifications

E(H) = E(G) r {e} and V (H) = V (G) ∪ {ve}r {x, y}.

Let us prove (a). Using the above identities and the fact that e 6∈ T , we
have natural identifications (viewed as equalities):

E(H−T ) = E(H)rT = E(G)r (T ∪{e}) = E(G−T )r{e} = E
(G− T

e

)
and, since V (H − T ) = V (H)

V (H−T ) = V (G)∪{ve}r{x, y} = V (G−T )∪{ve}r{x, y} = V
(G− T

e

)
.

It is clear that the above identifications induce a natural isomorphism be-
tween H − T and (G− T )/e. (a) is proved.

(b). We have

H(T ) =
H

E(H) r T
=

G/e

E(G) r (e ∪ T )
=

G

(E(G) r T ) ∪ e
=
G(T )

e
= G(T ).

(c). By (a) we have H − T = (G− T )/S, which is connected if and only
if G− T is connected.

(d) follows trivially from the preceeding parts. ♣
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For any two graphs, G and G′, we define the following edge-contraction
relation

(8) G′ ≥ G if G′ = G/S for some S ⊂ E(G).

Edge-contraction is easily seen to be a partial order on the set of all graphs.

Proposition 2.1.3. The set SGg, endowed with the edge-contraction rela-
tion defined in (8), is a graded poset with respect to the following rank

SGg −→ N : G 7→ 3g − 3− |E(G)|.
Proof. It is well known that for every G ∈ SGg we have |E(G)| ≤ 3g − 3.

Let us prove that SGg is graded. Let G,H ∈ SGg such that H covers G.
Hence H = G/S for some non empty S ⊂ E(G). We claim |S| = 1. Indeed,
if |S| ≥ 2 there exists a non empty S′ ( S. But then by Remark 2.1.1
G/S′ ∈ SGg and

H > G/S′ > G,

a contradiction. Therefore |S| = 1 and |E(H)| = |E(G)| − 1 as wanted. ♣

2.2. The posets of bridgeless and connected subgraphs. Let G be a
graph and E its edge-set. The set of all subsets of E, written P(E), will be
considered as a poset with respect to reverse inclusion, i.e. we set

(9) S ≤ S′ if S′ ⊂ S
for any S, S′ ⊂ E.

We are interested in two special sub-posets of P(E), written A0
G and A1

G,
related to totally cyclic orientations, respectively rooted, orientations. We
saw that O0(G) 6= ∅ (i.e. G admits a totally cyclic orientation) only if G
is free from bridges. We need to study all totally cyclic orientations on all
spanning subgraphs of G, so we consider the following set

A0
G := {S ⊂ E : (G− S)br = ∅}.

Next, we know O1(G) 6= ∅ (i.e. G admits a rooted 1-orientation) only if G
is connected, hence we set

A1
G := {S ⊂ E : G− S is connected}.

Of course, A1
G is empty if G is not connected.

We have the following simple fact.

Lemma 2.2.1. Let b = 0, 1 and assume G connected if b = 1. Then AbG is a
graded poset with respect to (9), with rank function mapping S to g(G−S).

In particular, A0
G has E as unique minimal element and Gbr as unique

maximal element, with g(G − E) =
∑

v∈V w(v) and g(G −Gbr) = g(G). If

G is connected, then A1
G has ∅ as unique maximal element, and its minimal

elements are the S ⊂ E such that G− S is a spanning tree.

Remark 2.2.2. For any S ⊂ E we have A0
G−S ↪→ A0

G. If S = Gbr the

injection induces an identification A0
G = A0

G−Gbr . Indeed, for every S ∈ A0
G

we have Gbr ⊂ S, hence S is also an element of A0
G−Gbr .
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2.3. Posets of orientations. We shall be considering generalized orienta-
tions defined on various spanning subgraphs of a fixed graph G. To keep
track of these subgraphs we shall use subscripts, as follows. Given S ⊂ E,
we shall denote by OS a generalized orientation on G − S. A generalized
orientation with no subscript will be defined on the whole graph.

Definition 2.3.1. Let G be a graph and let S, T ⊂ E(G). Given two
generalized orientations OS on G− S and OT on G− T we set

OS ≤ OT if S ≤ T and (OT )|G−S = OS .

It is easy to check that the above is a partial order.
We introduce, for a fixed graph G, the set of all totally cyclic orientations

on all spanning subgraphs of G.

(10) OP0
G :=

⊔
S∈A0

G

O0(G− S).

Similarly, for rooted 1-orientations

(11) OP1
G :=

⊔
S∈A1

G

O1(G− S).

The notation “OP” indicates that OP0
G and OP1

G are endowed with the
poset structure introduced by Definition 2.3.1.

Finally, we consider orientations up to equivalence:

(12) OP0
G :=

⊔
S∈A0

G

O0
(G− S) and OP1

G :=
⊔

S∈A1
G

O1
(G− S).

We will define a poset structure on OP0
G and OP1

G. We fix the following

Convention 2.3.2. Let S ⊂ E(G) and consider G(S) = G/(E − S). Fix a

b-orientation, Õ, on G(S). We have identifications E(G(S)) = E(〈S〉) = S,

hence we can define a b-orientation, Õ∗, on 〈S〉 as follows. Let e ∈ S. If e is

Õ-bioriented then e gets Õ∗-bioriented. If e is not a loop of G(S) then e gets

Õ∗-oriented according to Õ. If e is a loop of G(S) we choose an arbitrary

orientation on e. We refer to Õ∗ as a b-orientation induced by Õ.

Lemma 2.3.3. Let b = 0, 1 and S, T ∈ AbG with T ⊂ S. Then for every

OS ∈ Ob(G− S) there exists OT ∈ Ob(G− T ) such that OT ≥ OS.
Moreover, if OS ∼ O′S for some O′S ∈ Ob(G − S), there exists O′T ∈

Ob(G− T ) such that O′T ≥ O′S and O′T ∼ OT .

Proof. We first assume b = 0. Up to replacing G with G−T , we can assume
T = ∅ and G bridgeless. Hence G(S) is bridgless and we can fix a totally

cyclic orientation, Õ, on it. Using 2.3.2, Õ induces an orientation, Õ∗, on
〈S〉. Then OT := OS ∪ Õ∗ is an orientation on G. We claim OT is totally
cyclic. By contradiction, let F ⊂ E(G) be an OT -directed cut of G. Then
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F ∩E(G− S) = ∅, as G− S admits no OS-directed cuts. Therefore F ⊂ S,
hence, using Lemma 2.1.2 (c), F is a directed cut of G(S), which is not
possible. Finally, if OS ∼ O′S , we construct O′T using the same orientations

Õ and Õ∗ used to construct OT . Obviously, dOT = dO
′
T , hence we are done.

The proof for b = 1 follows the same steps. Up to replacing G with
G − T we can assume T = ∅. Now G(S) is bridgeless. Indeed, if e ∈ S
is a bridge of G(S) it has to be a bridge of G, and hence G − S is not
connected, which is impossible by hypothesis. We can thus fix a totally cyclic
0-orientation, Õ, on G(S), and let Õ∗ be a 0-orientation on 〈S〉 induced by

Õ. Set OT := OS ∪ Õ∗; arguing as for b = 0 one checks that OT is a rooted
1-orientation on G. The rest of the proof is the same as for b = 0. ♣

Proposition 2.3.4. Let b = 0, 1. Then OPbG is partially ordered as follows.
For OS and OT we set OS ≤ OT if S ≤ T and if one of the two equivalent
conditions below holds.

(i) There exist O′S ∈ OS and O′T ∈ OT such that (O′T )|G−S = O′S .

(ii) For every O′S ∈ OS there exists O′T ∈ OT such that (O′T )|G−S = O′S .

Moreover, the forgetful map, OPbG → AbG, sending OS to S, is a quotient of

poset, and the map sending OS to g(G− S) is a rank on OPbG.

Proof. Lemma 2.3.3 yields that (i) implies (ii), and the converse is obvious.

Lemma 1.3.1 yields that we have a partial order on OPbG. The two forgetful
maps are onto by Fact 1.4.2 and Lemma 1.4.5, and they are quotients by
Lemma 2.3.3. The rest of the statement is clear. ♣

Remark 2.3.5. If OS ≤ OT then dOS ≤ dOT , but the converse is not true.
See Figure 3, where all vertices have weight 1, T = ∅ and S consists of the
bottom edge on the right of the first graph.

•��2 //\\ • {{
3

1//dd • •
1 ��oo BB• {{

3
1//•

dOT dOS

Figure 3. dOS ≤ dOT but OS 6≤ OT

Using Remark 2.2.2 and similarly to it, we have

Remark 2.3.6. For any S ⊂ E we have OP0
G−S ⊂ OP0

G. If S = Gbr we
have two identifications

OP0
G = OP0

G−Gbr OP0
G = OP0

G−Gbr .
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Remark 2.3.7. Consider the map

(13) OP0
G −→ Div(G); OS 7→ dOS .

Its restriction to O0
(G−S) is injective for every S ∈ A0

G, yet, the map is not
injective. See for example the following picture, where S and T are drawn
as the dotted edge.

•��1 //

S

•��
3

1//`` • •
1 ��oo BB•��

3
1//

T

•

Figure 4. dOS = dOT but OS 6∼ OT

3. Functoriality under edge contractions

3.1. Bridgeless and connected subgraphs. We begin by studying the
behaviour of A0

G and A1
G under edge-contractions. Let graphs be the cat-

egory whose objects are graphs and whose morphisms are contractions. Let
posets be the category whose objects are posets and whose morphisms are
morphisms of posets. For b = 0, 1 we have a map between the objects of
these categories,

(14) Ab : {graphs} −→ {posets}; G 7→ AbG.
Using this map, we shall define two functors from graphs to posets, a
covariant functor, written (Ab,Ab∗), and a contravariant functor, written
(Ab,Ab∗), so that Ab∗ and Ab∗ are the functor maps defined on morphisms.

Lemma 3.1.1. Let b = 0, 1. For any γ : G→ H = G/S0 and any S ∈ AbG
set

γ∗S := S r S0.

Then the following hold.

(a) γ∗S ∈ AbH .

(b) If T ∈ AbG is such that S ≤ T , then γ∗S ≤ γ∗T .
(c) Let δ : H → J be a contraction of H. Then (δ ◦ γ)∗ = δ∗ ◦ γ∗.
In other words, the following is a covariant functor

(Ab,Ab∗) : graphs −→ posets

where Ab∗(γ)(S) = γ∗S for every γ : G→ H and S ∈ AbG.

Proof. We have, by Lemma 2.1.2(a)

H − γ∗S = H − (S r S0) =
G− (S r S0)

S0
.

If b = 0 we must check H−γ∗S has no bridges. As G−S has no bridges any
bridge of G− (S rS0) must lie in S0, hence its quotient by S0 is bridgeless,
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and we are done. If b = 1 we must prove H − γ∗S is connected. As G − S
is connected so is G− (S r S0), hence so is its quotient. (a) is proved.

(b) and (c) are obvious. ♣

Recall that A0
G and A1

G are graded posets. Now, the map γ∗ does not
preserve the gradings. Indeed, let e ∈ E(G)rGbr. Set S = S0 = {e} so that
γ∗S = ∅. We have g(G−S) = g(G)−1 and g(H−γ∗S) = g(H) = g(G). By
contrast, the “pull-back” map, with the associated contravariant functor,
defined below does preserve the grading.

Lemma 3.1.2. Let b = 0, 1. For any γ : G → H = G/S0 and T ∈ AbH
define γ∗T ⊂ E(G) as follows

(15) γ∗T :=

{
T ∪ (G− T )br if b = 0

T if b = 1.

Then the following hold.

(a) γ∗T ∈ AbG and g(H − T ) = g(G− γ∗T ).

(b) If R ∈ AbH is such that R ≤ T , then γ∗R ≤ γ∗T .
(c) Let δ : H → J be a contraction of H. Then (δ ◦ γ)∗ = γ∗ ◦ δ∗.
In short, the following is a grading-preserving, contravariant functor

(Ab,Ab∗) : graphs −→ posets

where Ab∗(γ)(T ) = γ∗T for every γ : G→ H and T ∈ AbH .

Proof. The only nontrivial claim of (a) is the last, i.e. that γ∗ preserves the
rank. The proof in case b = 0 trivially gives the proof for b = 1, so let us
concentrate on the former.

g(H −T ) = g
(G− T

S0

)
= g(G−T ) = g

(
(G−T )− (G−T )br

)
= g(G− γ∗T ),

where we used Lemma 2.1.2(a) in the first equality, and that contractions
and bridge-removals preserve the genus in the second and third equality.

(b) is obvious if b = 1. Let R ∈ A0
H such that T ⊂ R. We must prove

γ∗T ⊂ γ∗R. It is clearly enough to prove (G− T )br ⊂ (G−R)br.
Since (H − T )br = ∅ and, by Lemma 2.1.2(a), H − T = (G − T )/S0, we

have (G−T )br ⊂ S0. Hence (G−T )br∩R = ∅. Therefore, as G−R ⊂ G−T ,
we have (G− T )br ⊂ (G−R)br as wanted.

We omit the direct proof of (c), which follows easily from 3.1.3(c). ♣

We have the following

Proposition 3.1.3. Let b = 0, 1. Fix a contraction γ : G → H = G/S0.
Let S ∈ AbG and T ∈ AbH . Then

(a) γ∗γ
∗T = T (equivalently, Ab∗(γ)Ab∗(γ) = idAbH

).

(b) T ⊂ γ∗S ⇔ γ∗T ⊂ S.
(c) γ∗T is the smallest element of AbG whose image under γ∗ equals T .

(d) Ab∗(γ) : AbG → AbH is a quotient of posets.
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(e) If S0 ⊂ Gbr then Ab∗(γ) : AbG → AbH is an isomorphism.

Proof. (a), (b) and (c) are obvious if b = 1, so assume b = 0. We have
γ∗γ
∗T = γ∗(T ∪ (G− T )br) =

(
T ∪ (G− T )br

)
rS0. By hypothesis (H − T )br

is empty, hence, by Lemma 2.1.2, (G− T )br ⊂ S0. Therefore

γ∗γ
∗T =

(
T ∪ (G− T )br

)
rS0 = T r S0 = T.

(a) is proved. The implication ⇐ in (b) follows trivially from (a). For
the other implication, the hypothesis is T ⊂ S r S0, hence T ⊂ S. Since
γ∗T = T ∪ (G − T )br it is enough to prove (G − T )br ⊂ S. We have
G− S ⊂ G− T , hence every bridge of G− T is either contained in S, or a
bridge of G− S. As G− S is bridgeless, we conclude (G− T )br ⊂ S.

(c) follows immediately from (b).
(d). Part (a) implies Ab∗(γ) is surjective and, for any T, T ′ ∈ A0

H , we have
T = γ∗γ

∗T and T ′ = γ∗γ
∗T ′. By Lemma 3.1.2, if T ≤ T ′ then γ∗T ≤ γ∗T ′.

Hence we are done.
(e). Notice that Ab∗(γ) is obviously injective. If S0 is made of bridges of

G then S0 ⊂ S for any S ∈ A0
G, and S ∩ S0 = ∅ for any S ∈ A1

G. Hence

Ab∗(γ) is injective, and we are done. ♣

3.2. Direct image of divisors and orientations. In this subsection we
will denote by γ : G → G/S0 = H a contraction, with S0 ⊂ E(G). To any
contraction γ we associate a map, easily checked to be a surjective group
homomorphism, from Div(G) to Div(H) mapping d to γ∗d defined as follows

(γ∗d)v :=
∑

z∈γ−1
V (v)

dz

for any v ∈ V (H). Let δ : H → J be a contraction. Then

(16) (δ ◦ γ)∗(d) = δ∗(γ∗(d)).

In the sequel we shall employ the following notation. Let O be a gen-
eralized orientation on G and let γ : G → H be a contraction. As E(H)
identifies with a subset of E(G) we can restrict O to E(H), thus defining a
generalized orientation on H, denoted by O|H .

Let S ⊂ E and let OS be a generalized orientation on G − S. We have
E(H−γ∗S) = E(G−S∪S0) ⊂ E(G−S), so we can define (abusing notation
again) the following generalized orientation on H − γ∗S

(17) γ∗OS := (OS)|H−γ∗S .

As a final piece of notation, to γ and S ⊂ E we associate the divisor cγ,S

on H such that for any v ∈ V (H)

(18) cγ,Sv := |{e ∈ S0 ∩ S : γ(e) = v}|.

If S = E(G) we write cγ = cγ,E(G). Of course, cγ,S ≥ 0 and equality holds
if and only if S ∩ S0 = ∅.
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Proposition 3.2.1. Let G be a graph, S ⊂ E, and OS a b-orientation on
G− S, with b = 0, 1. Let γ : G→ H = G/S0 be a contraction such that no
edge of S0 is bioriented. Then γ∗OS is a b-orientation on H − γ∗S and the
following hold.

(a) If OS ∈ Ob(G− S) then γ∗OS ∈ Ob(H − γ∗S).
(b) Let δ : H → J be a contraction of H. Then (δ ◦ γ)∗OS = δ∗γ∗OS.
(c) γ∗d

OS = dγ∗OS − cγ,S.
(d) Let O′S be a b-orientation on G− S. If O′S ∼ OS then γ∗O

′
S ∼ γ∗OS.

(e) Let OT be a b-orientation on G− T . If OS ≤ OT then γ∗OS ≤ γ∗OT .

Proof. It is clear that γ∗OS is a b-orientation on H − γ∗S whose bioriented
edge, in case b = 1, is the same as that of OS .

(a). We need to show γ∗OS is totally cyclic if b = 0, and rooted if b = 1.
It suffices to prove that if F is a directed cut of H−γ∗S then F is a directed
cut of G − S. We can assume S0 = {e0}. If e0 6∈ S then γ∗S = S. By
Lemma 2.1.2 (c), every directed cut of H −S is also a directed cut of G−S
and we are done. If e0 ∈ S set T = S r {e0}. We have

H − γ∗S = H − T = (G− T )/e0.

A directed cut, F , of H − γ∗S is thus a directed cut of G − T . Now,
G− S ⊂ G− T , hence F is a directed cut in G− S. (a) is proved.

(b) is trivial.
(c). For any v ∈ V (H) set Zv = γ−1(v), which is a connected subgraph

of G. We have g(Zv) =
∑

z∈V (Zv)

(
w(z)− 1

)
+|E(Zv)|+ 1, hence

(γ∗d
OS )v =

∑
z∈V (Zv)

(
w(z)− 1 + tOSz

)
= g(Zv)− 1− |E(Zv)|+

∑
z∈V (Zv)

tOSz .

Let tOS (Zv) be the number of edges with target in Zv and not contained in
it. As every edge of Zv lies in S0,

|E(Zv)| =
∑

z∈V (Zv)

tOSz − tOS (Zv) + cγ,Sv .

Therefore

(19) (γ∗d
OS )v = g(Zv)− 1 + tOS (Zv)− cγ,Sv .

On the other hand we have

(20) (dγ∗OS )v = w/S0
(v)− 1 + tγ∗OSv = g(Zv)− 1 + tOS (Zv).

Indeed, by definition of contraction, w/S0
(v) = g(Zv) and, clearly, the num-

ber of OS-incoming edges at Zv equals the number of γ∗OS-incoming edges
at v. Comparing (19) and (20) yields (c).

(d). By hypothesis, dOS = dO
′
S , hence tOS = tO

′
S . Hence, by (2), for any

v ∈ V (H) we have tOS (Zv) = tO
′
S (Zv) as Zv does not contain bioriented

edges. Combining with (20) we get dγ∗OS = dγ∗O
′
S , and we are done.
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(e). By assumption we have S ≤ T and (OT )|G−S = OS . We obviously
have γ∗S ≤ γ∗T . Next, as H − γ∗S ⊂ H − γ∗T

(γ∗OT )|H−γ∗S = (OT )|H−γ∗S = (OT |G−S)|H−γ∗S = OS |H−γ∗S = γ∗OS .

The proof is complete ♣

Example 3.2.1. In the picture we have S = S0 = {e}.

G = •~~ //

e

• ��oo CC• // H = •��<< $$nn

ve

==•

OS γ∗OS

Figure 5. Case S = S0

Assume all vertices of G have weight 1, so that ve has weight 2 in H.
We have, ordering the vertices from left to right, tOS = dOS = (1, 2, 2),
tγ∗OS = (3, 2), dγ∗OS = (4, 2), and γ∗d

OS = (3, 2). Hence dγ∗OS > γ∗d
OS .

From the previous result we derive a few facts.

Proposition 3.2.2. Fix γ : G→ H = G/S0 and let b = 0, 1.

(a) Let b = 0. Then we have a morphism of posets

γ∗ : OP0
G −→ OP

0
H ; OS 7→ γ∗OS .

(b) Let b = 1 and S0 6= E(G). Then we have a morphism of posets

γ∗ : OP1
G −→ OP

1
H ; OS 7→ γ∗O′S

for any O′S ∼ OS whose bioriented edge is not in S0.
(c) Let b = 0, 1 and let δ : H → H/T0 be a contraction; if b = 1 assume

T0 6= E(H). Then (δ ◦ γ)∗ = δ∗ ◦ γ∗.

Proof. If b = 0 the statement is a trivial consequence of 3.2.1.

For b = 1, pick any OS ∈ OP
0
G. By Lemma 1.6.4, there exists O′S ∼ OS

whose bioriented edge does not lie in S0. Then 3.2.1 yields that γ∗O
′
S is a

well-defined element in OP0
H , and different choices of O′S yield equivalent

elements in OP0
H . Hence γ∗OS is a well defined element of OP0

H . The rest
of the proof follows from 3.2.1. ♣

Corollary 3.2.3. Let γ : G → H = G/S0 be a contraction. Then we have
a commutative diagram of posets

OP0
G

γ∗
//

��

OP0
H

��

OP0
G

γ∗ // OP0
H ,
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where the vertical arrows are the quotient maps. If S0 ⊂ Gbr then the
horizontal arrows are bijections.

Remark 3.2.4. If S0 ⊂ Gbr the lower arrow, γ∗, is a bijection also for b = 1.
The proof uses a different language so we omit it as we will not need it.

Proof. The commutativity of the diagram follows from Propositions 3.2.1
and 3.2.2. For the remaining part it is enough to prove that γ∗ is a bijection.

We have S0 ⊂ S for all S ∈ A0
G and we already know we have a bijection

A0
G → A0

H mapping S to γ∗S. Now G−S and H−γ∗S have exactly the same
edges, hence we have an injection γ∗ : O0(G−S) ↪→ O0(H−γ∗S). We proved
that γ∗ is injective. Now pick OT ∈ O(H−T ). Let S = γ∗T = T ∪(G−T )br
so that γ∗S = T . We have (G− T )br ⊂ S0 hence

E(G− γ∗T ) = E(G)r
(
T ∪ (G− T )br

)
⊂ E(G) r (T ∪ S0) = E(H − T ).

Therefore we can restrict OT to G − γ∗T , obtaining an orientation easily
seen to be totally cyclic and to map to OT via γ∗. Hence γ∗ is surjective. ♣

Corollary 3.2.5. The inclusion ι : G − Gbr ↪→ G and the contraction
γ : G→ G/Gbr induce natural isomorphisms (viewed as identifications)

OP0
G−Gbr

ι∗= OP0
G
γ∗
= OP0

G/Gbr

and

OP0
G−Gbr

ι∗= OP0
G
γ∗= OP0

G/Gbr
.

Proof. Combine Remark 2.3.6 with 3.2.3. ♣

3.3. Quotients of orientation spaces. Our next goal is to give a more

precise description of the map γ∗ : OPbG → OP
b
H introduced in Proposi-

tion 3.2.2.

Theorem 3.3.1. Let γ : G→ H = G/S0 be a contraction with S0 ( E(G);

let b = 0, 1. Then γ∗ : OPbG → OPbH is a quotient of posets mapping

Ob(G− γ∗T ) onto Ob(H − T ) for every T ⊂ E(H).

We begin with the case b = 0, for which we have the following.

Proposition 3.3.2. Let γ : G → H be a contraction. Then the map γ∗ :
OP0

G → OP0
H is a quotient of posets mapping O0(G−γ∗T ) onto O0(H−T )

for every T ∈ A0
H .

Proof. We proceed in three steps. Steps 1 and 2 prove that γ∗ is a quotient,
Steps 1 and 3 prove that it is onto, as stated.

Step 1. Suppose Gbr = ∅, then the restriction of γ∗ to O0(G) gives a
surjection O0(G) � O0(H).

We can assume S0 = {e}. As Gbr = ∅ we have Hbr = ∅. Fix Õ ∈ O0(H).
If e is a loop or if H has only one vertex the statement is trivial, so we exclude
this and let x, y ∈ V (G) be the ends of e. Now, using convention 2.3.2, we
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have an orientation Õ∗ on G − e induced by Õ. We shall denote Oe = Õ∗

and prove that we can extend Oe to e by a totally cyclic orientation on G,
written O. Obviously, we will have γ∗O = Õ.

We denote ve = γ(e). Since Õ is totally cyclic we can fix a cyclically
oriented cycle C ⊂ H containing ve. Then it is easy to check that the edges
of C generate in G a subgraph, P := 〈E(C)〉, which is an Oe-directed path
having x and y as ends. Of course, P does not contain e, hence Ce := P + e
is a cycle in G. We now orient e in such a way that Ce becomes a cyclically
oriented cycle. This gives an orientation, O ≥ Oe, on G, which we claim is
totally cyclic. Indeed, let F ⊂ E(G) be an O-directed cut. Then e ∈ F (for

otherwise F would be a Õ-directed cut of H). Hence F ∩ E(Ce) 6= ∅, and
hence F ∩ E(Ce) is a directed cut of the cyclically oriented cycle Ce. This
is not possible. Step 1 is proved.

Step 2. Let OT , OR ∈ OP0
H with OT ≥ OR. Then there exist Oγ∗T , Oγ∗R ∈

OP0
G such that γ∗Oγ∗T = OT , γ∗Oγ∗R = OR and Oγ∗T ≥ Oγ∗R.

By hypothesis T ≥ R, hence G − γ∗T ⊃ G − γ∗R. We assume S0 = {e}
and we use the same set-up of Step 1.

We begin by fixing a totally cyclic orientation Oγ∗R induced by OR as
described in Step 1. To define Oγ∗R on G − γ∗R the only choices we make
are for non-loop edges corresponding to loops of H − R (the orientation is
chosen arbitrarily, see 2.3.2), and for the contracted edge e, if e ∈ G− γ∗R
(the orientation is chosen to ensure total cyclicity).

Now, among all orientations induced by OT on G − γ∗T according to
2.3.2, we choose one, written Oγ∗T , with the requirement that it agrees with
Oγ∗R on G − γ∗R. Hence every non loop-edge corresponding to a loop of
H−R, is oriented in the same way as in Oγ∗R and, more importantly, if the
contracted edge e is contained in G − γ∗R then it has to be Oγ∗T -oriented
as in Oγ∗R.

Obviously, Oγ∗T ≥ Oγ∗R. We need to check Oγ∗T is totally cyclic. By
construction, we need to prove it only in case e ∈ G−γ∗R (in the other case
the Oγ∗T -orientation on e is given as in Step 1, to ensure Oγ∗T is totally
cyclic). By contradiction, let F be a directed cut of G− γ∗T . Then e ∈ F ,
for otherwise F would be a cut of H − T . Hence F ∩ E(G − γ∗R) is not
empty. Hence F induces a directed cut of G− γ∗R, which is not possible.

Step 3. The restriction of γ∗ to O0(G−γ∗T ) is a surjection onto O0(H−T ).
We shall reduce this to Step 1, to do which we need to handle the problem

that (G− γ∗T )/S0 may fail to be equal to H − T .
Consider the contraction induced by restricting γ to G− T

γ|G−T : G− T −→ (G− T )/S0 = H − T

(using 2.1.2 (a)). We have (G− T )br ⊂ S0, hence we can factor γ|G−T

γ|G−T : G− T −→ (G− T )/(G− T )br
γ′−→ (G− T )/S0 = H − T.
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Set

J :=
G− T

(G− T )br
, J̃ :=

J

S0 − (G− T )br
= H − T.

As J is bridgeless we can apply the conclusion of Step 1 to the contraction
γ′ : J → J̃ . Hence γ′∗ yields a surjection

(21) O0(J) −→ O0(J̃) = O0(H − T ).

On the other hand we have natural identifications

OP0
J = OP0

G−T = OP0
(G−T )−(G−T )br

= OP0
G−γ∗T

using 3.2.5 for the first two equalities. Combining this with (21) we obtain
the surjection

OP0
G−γ∗T −→ OP0

H−T ,

(given by restricting γ∗ because of the functoriality of all the constructions
involved). Step 3 is proved, and so is the proposition. ♣

Proof of Theorem 3.3.1.
The case b = 0 follows from Proposition 3.3.2. Suppose b = 1. We argue

similarly to the proof of Proposition 3.3.2. We begin by proving that γ∗
induces a surjection O1

(G) � O1
(H). We can assume G and H connected,

and S0 = {e}; we write ve = γ(e) and x, y ∈ V (G) for the ends of e (x 6= y
otherwise we are done).

Fix Õ ∈ O1(H), then, by 2.3.2, we have a 1-orientation Oe = Õ∗ on G−e
induced by Õ. We shall prove we can extend Oe by a rooted orientation, O,
on G, whose bioriented edge is the same as that of Õ, denoted by ẽ.

We shall use 1.6.4. As Õ is rooted, there exists a directed path P̃ ⊂ H
from ẽ to ve. It is clear that the edges of P̃ span in G a directed path, P ,
from ẽ to x (say) and not containing e. We set Pe = P + e and orient e so
that Pe is a directed path from ẽ to y. Let O be the so-obtained orientation
on G; we shall prove it is rooted using 1.6.4 (b).

Let w ∈ V (G), we must exhibit an O-directed path from ẽ to w. If
w = x, y it suffices to take P or Pe. So we can assume w is also a vertex
of H different from ve. Let P̃w ⊂ H be a directed path from ẽ to w. If P̃w
does not contain ve then P̃w is naturally identified with a directed path in
G from ẽ to w and we are done. If ve is in P̃w, we can write P̃w = Q̃1 + Q̃2

where Q̃1 is a directed path from ẽ to ve and Q̃2 is a directed path from ve
to w not containing ve. Hence Q̃2 corresponds to a directed path, Q2, from
either x or y to w. In G, we attach Q2 to either P (if Q2 starts at x) or Pe
(if Q2 starts at y) getting a path in G directed from ẽ to w.

We conclude that the restriction of γ∗ to O1
(G) surjects onto O1

(H).
The rest of the proof is the same as for Proposition 3.3.2, Steps 2 and 3,

mutatis mutandis. Theorem 3.3.1 is proved. ♣
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3.4. Orientations in genus g. We use notation (14).

Definition 3.4.1. Let g ≥ 2 and let b = 0, 1. Set

Abg := {(G,S) : G ∈ SGg, S ∈ AbG}
and endow it with the following partial order relation:

(G,S) ≤ (H,T ) if G ≤ H and S ≤ γ∗T
for some (possibly trivial) contraction γ : G→ H.

It is easy to check that Abg is indeed a poset inducing, for every G ∈ SGg,
the poset structure on AbG defined earlier.

Proposition 3.4.2. Let g ≥ 2 and let b = 0, 1.

(a) The map Abg −→ SGg mapping (G,S) to G is a quotient of posets.

(b) The following is a rank on Abg
ρAbg : Abg −→ N; (G,S) 7→ 3g − 3− |E(G)|+ g(G− S).

Proof. The map in (a) is clearly a surjective morphism of posets. To check
that it is a quotient, pick G,H ∈ SGg with G ≤ H. Fix T ∈ AbH , then

γ∗T ∈ AbG and, of course, (G, γ∗T ) ≤ (H,T ). (a) is proved.

Write ρ = ρAbg . Fix (G,S), (H,T ) ∈ Abg such that (H,T ) covers (G,S).

First, suppose G 6= H. We claim S = γ∗T . By contradiction, suppose
S < γ∗T . Then

(G,S) < (G, γ∗T ) < (H,T )

a contradiction. Hence S = γ∗T . But then G covers H in SGg, indeed if
G < G′ < H for some G′ ∈ SGg then (G,S) < (G′, T ′) < (H,T ), where T ′ is
the pull-back of T to G′ under the contraction G′ → H; this is impossible.
As H covers G, Proposition 2.1.3 gives |E(G)| = |E(H)|+ 1, hence

ρ(G,S)− (3g − 3) = g(G− S)− |E(G)| = g(G− γ∗T )− |E(H)| − 1.

Now, Lemma 3.1.2 (a) yields g(G− γ∗T ) = g(H − T ), hence

ρ(H,T )− ρ(G,S) = g(H − T )− |E(H)| − (g(H − T )− |E(H)| − 1) = 1.

As wanted. Now, suppose G = H. Then γ∗T = T and T covers S (for
otherwise we would have (G,S) < (G,S′) < (G,T ) for S′ between S and
T ). By Lemma 2.2.1 we have

g(G− S) = g(G− T )− 1 = g(H − T )− 1.

Since |E(G)| = |E(H)| we are done. ♣

Definition 3.4.3. Assume b = 0, 1. Set

OPbg := {(G,OS) : G ∈ SGg, OS ∈ O
b
(G− S)}.

Let (H,OT ), (G,OS) ∈ OPbg. We set (G,OS) ≤ (H,OT ) if G ≤ H and if
there exists a contraction γ : G→ H such that

(1) S ≤ γ∗T , or equivalently (by 3.1.3(b)), γ∗S ≤ T ;
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(2) γ∗OS ≤ OT .

(Of course, (2) implies (1), but we listed both for clarity.)
The definition is illustrated in the picture below. By (1) we have H−T ⊃

H − γ∗S. Hence OT can be restricted to H − γ∗S. By Definition 2.3.1, we
require that this restriction be equal to γ∗OS .

•
eG =

γ
// H = • •

• •

S =
γ∗

// γ∗S = ≤ T =

•

��

DD

OS =
γ∗

// γ∗OS = • //`` • ≤ OT = • //`` •bb
•oo •

Figure 6. An example of the partial order on OP0
g:

(G,OS) ≤ (H,OT ) with γ : G → H contracting e. The
orientations OS , γ∗OS and OT are living on G− S, H − γ∗S
and H − T , respectively.

Proposition 3.4.4. Assume b = 0, 1. Then OPbg is a poset such that

the inclusion OPbG ↪→ OPbg is a morphism of posets for every G ∈ SGg.
Moreover, the following hold.

(a) The forgetful maps

χ : OPbg −→ SGg; (G,OS) 7→ G

and

τ : OPbg −→ Abg; (G,OS) 7→ (G,S)

are quotients of posets.

(b) The following is a rank on OPbg

ρOPbg
: OPbg −→ N; (G,OS) 7→ 3g − 3− |E(G)|+ g(G− S).

Proof. The only property of partial orders which is not an obvious conse-
quence of the definition is transitivity. Suppose (G,OS) ≤ (H,OT ) and
(H,OT ) ≤ (J,OU ), let δ : H → J be a contraction. Then we have the
following contraction.

δ ◦ γ : G −→ J.
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Next, by 3.1.1(c) we have (δ ◦γ)∗ = δ∗ ◦γ∗. Hence, as γ∗S ≤ T and δ∗T ≤ U
we have

(δ ◦ γ)∗S = δ∗(γ∗S) ≤ δ∗(T ) ≤ U
proving the first requirement of Definition 3.4.3. Finally, to show that OU ≥
(δ ◦ γ)∗OS we must restrict OU to J − (δ ◦ γ)∗S and check it is equal to
(δ ◦ γ)∗OS . This is trivial.

(a). The map χ : OPbg → SGg factors as follows

χ : OPbg
τ−→ Abg −→ SGg

and Proposition 3.4.2 states that Abg → SGg is a quotient. Hence it suffices
to prove that τ is a quotient. Now, τ is clearly a surjective morphism of
posets. Let (G,S) ≤ (H,T ) and let γ : G → H be a contraction such that

S ≤ γ∗T . Now pick OS ∈ OP
b
G, then γ∗OS ∈ OP

b
H . By Lemma 2.3.3,

there exists OT ∈ OP
b
H such that γ∗OS ≤ OT . As τ(G,OS) = (G,S) and

τ(H,OT ) = (H,T ) the proof of (a) is complete.
(b). Notice that ρOPbg

(G,OS) = ρAbg(G,S), the latter being the rank

defined in Proposition 3.4.2.
Now, τ is such that if τ(G,OS) = τ(G′, OS′) then G = G′ and S = S′,

hence (G,OS) and (G′, OS′) are not comparable. Hence if (H,OT ) covers
(G,OS) then (H,T ) covers (G,S). Therefore τ ◦ ρAbg = ρOPbg

is a rank on

OPbg. The proof is complete. ♣

3.5. Automorphisms of graphs. We need to extend the functoriality re-
sults proved for edge-contractions in Section 3 to isomorphisms of graphs.

We need the following statement, whose proof is trivial.

Definition/Proposition 3.5.1. Let α : G→ G′ be an isomorphism.

(1) Let b = 0, 1. Then we have an isomorphism of posets

α∗ : AbG −→ AbG′ ; S 7→ α∗S = α(S).

(2) For OS ∈ Ob(G − S) define α∗OS ∈ Ob(G′ − α∗S) so that, for any
e ∈ E(G), the starting half-edge of α(e) is the image under α of the
starting half-edge of e. Then we have an isomorphism of posets

α∗ : OPbG−→OPbG′ ; OS 7→ α∗OS .

(3) The isomorphism in (2) descends to an isomorphism of posets

α∗ : OPbG−→OP
b
G′ .

Definition 3.5.2. We say that (H,OT ), (G,OS) ∈ OPbg are conjugate, and

write (H,OT ) ≡ (G,OS), if G = H and there exists α ∈ Aut(G) such that
α∗OT = OS .
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Conjugacy is clearly an equivalence relation on OPbg. We denote

[OPbG] = OPbG/≡ and [OPbg] = OPbg/≡

and write [OS ] and (G, [OS ]) for an element of [OPbG] and [OPbg] respectively.

Proposition 3.5.3. Notation as above. We endow [OPbg] with the following

partial order: (G, [OS ]) ≤ (H, [OT ]) if there exist OT ′ ∈ [OT ] and OS′ ∈ [OS ]

such that (G,OS′) ≤ (H,OT ′) in OPbg.
Then the quotient OPbg → [OPbg] is a quotient of posets, the inclusion

[OPbG] ↪→ [OPbg] a morphism of posets, and the forgetful map [OPbg]→ SGg
is a quotient of posets. Furthermore

ρ[OPbg ](G, [OS ]) = 3g − 3− |E(G)|+ g(G− S)

is a rank function.

Proof. Let γ : G→ H be a contraction such that (G,OS) ≤ (H,OT ).
By Lemma 1.3.1, it suffices to prove that for any OS′ ≡ OS there exists

OT ′ ≡ OT such that OS′ ≤ OT ′ . We have OS = α∗OS′ for some α ∈ Aut(G).
If γ is trivial then OS ≤ OT and OS′ = α−1

∗ OS ≤ α−1
∗ OT , as α−1

∗ OT ≡ OT
we are done.

Suppose γ nontrivial. By hypothesis (OT )|H−γ∗S = γ∗OS . Let γ′ be the
contraction obtained by composing α with γ:

γ′ : G
α−→ G

γ−→ H

We have OS′ ∈ O(G− α−1
∗ S); set S′ = α−1

∗ S. We claim

(OT )|H−γ′∗S′ = γ′∗OS′

which of course implies OS′ ≤ OT . We have

γ′∗OS′ = γ∗α∗OS′ = γ∗OS = (OT )|H−γ∗S = (OT )|H−γ∗α∗α−1
∗ S = (OT )|H−γ′∗S′

as claimed. Hence [OPbg] is a poset and OPbg → [OPbg] a quotient of posets.

The inclusion [OPbG] ↪→ [OPbg] is obviously a morphism of poset.

By Proposition 3.4.4 the forgetful map χ : OPbg → SGg is a quotient of
posets. It is clear that χ factors as follows

χ : OPbg −→ [OPbg] −→ SGg.

Since OPbg → [OPbg] is a quotient, [OPbg]→ SGg is also a quotient.
The claim about the rank follows from the fact that conjugate elements

of OPbg have the same rank. ♣
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4. Stratifying the compactified universal Picard variety.

4.1. Dictionary between graphs and nodal curves. From now on, X
will be an algebraic, projective, reduced curve of arithmetic genus g having at
most nodes as singularities, and whose (weighted) dual graph is G = (V,E).
Recall that V is the set of irreducible components of X and E is the set
of nodes of X, with an edge/node joining the two vertices/components on
which it lies. The weight of a vertex/component is its geometric genus.
We shall use the same symbols for edges and nodes, but we shall write
X = ∪v∈V Cv for the irreducible components of X. The genus of X is equal
to the genus of G. Sometimes we shall say, somewhat abusively, that “X is
dual to G”.

Let S ⊂ E and let νS : Xν
S → X the normalization of X at S. The dual

graph of Xν
S is G− S, and g(Xν

S) = g(G− S).

We denote by X̂S the nodal curve obtained by attaching to Xν
S , for every

node e ∈ S, a smooth rational component, named exceptional component,
to the two branch points in ν−1

S (e). Of course, X and X̂S have the same
genus.

If X is a stable curve, the curves of the form X̂S are called quasistable.
Two exceptional components of a quasistable curve never intersect.

The dual graph of X̂S will be denoted by ĜS . So, ĜS is obtained from G
by inserting a vertex of weight zero, ve, in every edge e ∈ S. We refer to ve
as the exceptional vertex corresponding to the exceptional component Cve
of X̂S , and we write he, je for the two edges of ĜS adjacent to ve. We have
X̂S = Xν

S ∪ (∪e∈SCve).
The set of non-exceptional vertices of ĜS is naturally identified with V (G).

We denote Ŝ = {he, je, ∀e ∈ S} ⊂ E(ĜS) so that we have a natural inclusion

G− S ⊂ ĜS − Ŝ.
Let L be a line bundle on X, the multidegree of L is defined as follows:

deg(L) = {degCv L, ∀v ∈ V }. We shall identify deg(L) with a divisor on
G, whose v-coordinate is degCv L, so that we have a map

deg : Pic(X) −→ Div(G); L 7→ deg(L),

where Pic(X) is the Picard scheme of X. We have

Pic(X) =
⊔

d∈Div(G)

Picd(X)

where Picd(X) := deg−1(d) is the moduli space of line bundles of multi-

degree d. Of course, Picd(X) is isomorphic to the generalized Jacobian,

Pic(0,...,0)(X), of X.

4.2. Compactified Jacobians of a curve. Let X be a stable curve of

genus g. We introduce P
d
X , its compactified degree-d Picard variety, or

compactified degree-d Jacobian. P
d
X is a connected, reduced, possibly re-

ducible, projective variety of pure dimension g whose smooth locus is a
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disjoint union of (finitely many) g-dimensional varieties parametrizing line
bundles of degree d on X.

Several constructions of P
d
X exist in the literature, [23], [12], [25], [19],

and they have been proved to be isomorphic to one another even though
their modular interpretations are different. We here adopt the modular

interpretation given in [12], according to which P
d
X parametrizes “stably

balanced” line bundles of degree d on certain quasistable curves having stable
model X. To give the precise description we need some definitions.

Definition 4.2.1. Let G = tci=1Gi have c connected components.

(a) A divisor d ∈ Divg(G) is stable if c = 1 and if for every Z ⊂ V (G) we
have |dZ | > g(Z)− 1.

(b) Suppose c = 1. A divisor d ∈ Divg−1(G) is stable if for every Z ( V (G)
we have |dZ | > g(Z)− 1.
For arbitrary c, a divisor d ∈ Divg−c(G) is stable if its restriction to
every Gi is stable of degree g(Gi)− 1.

The somewhat artificial requirement, in (a), that stable divisors of degree
g exist only on connected graphs, serves our goals and simplifies terminology.

As we are interested in the cases d = g and d = g− c, we shall often unify
our statements by writing

d = g − c+ b with b = 0, 1.

If G is a graph of genus g with c connected components, for b = 0, 1 we set

Σb(G) := {d ∈ Divg−c+b(G) : d is stable}.

Definition 4.2.2. Let X be a stable curve of genus g and G its dual graph.
Let S ⊂ E(G) and b = 0, 1. A line bundle L̂S ∈ Picg−1+bX̂S , and its

multidegree degL̂S , are said to be stably balanced if

(a) L̂S has degree 1 on each exceptional component;

(b) deg
Xν
S

L̂S is a stable divisor on G−S of degree g(G−S)− c(G−S) + b.

Line bundles L̂S ∈ Picg−1+bX̂S as above are referred to as “stably bal-
anced line bundles of X”. Two stably balanced line bundles, L̂S and M̂T ,
of X are equivalent if S = T and if their restrictions to Xν

S are isomorphic.

By definition, L̂S has total degree g− 1 + b and degree 1 on every excep-
tional component, hence the restriction of L̂S to Xν

S satisfies

degXν
S
L̂S = g − 1 + b− |S|.

Remark 4.2.3. For S ⊂ G we have

Σb(G− S) = {d ∈ Divg(G−S)−c(G−S)+b(G) : d is stable.},
and a divisor in Σb(G − S) has total degree g − 1 + b − |S|. Indeed, let us
check that

g(G− S)− c(G− S) + b = g − 1 + b− |S|.
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If b = 0 we have g(G − S) =
∑c

i=1 g(Gi) and g =
∑c

i=1 g(Gi) + |S| − c + 1
so that

degXν
S
L̂S = g − 1− |S| =

c∑
i=1

g(Gi)− c = g(G− S)− c,

as claimed. If b = 1, to admit stable divisors the graph G − S must be
connected, hence g(G−S) = g−|S|. Hence degXν

S
L̂S = g−|S| = g(G−S).

From [12] we have

Fact 4.2.4. Let X be a stable curve of genus g and let b = 0, 1. Then

P
g−1+b
X is a coarse moduli space for equivalence classes of stably balanced

line bundles of degree g − 1 + b of X.

The above statement uses a different terminology from the original one
([12, Prop. 8.2]) so we need a few words to explain that it is indeed the same.
If b = 0 this is already known (see [16] for example), so let us concentrate on
the case b = 1, i.e. degree g. For degree g the results of [13], such as Thm.
5.9, apply in their strongest form. Moreover, from Sect. 7 (in particular
Lemma 7.6), we get that our definition 4.2.2 coincides with the definition of
stably balanced line bundles given there.

We need to establish an explicit connection between Definitions 4.2.1 and
4.2.2. For any quasistable curve X̂S we have a (not unique) contraction

δ : ĜS −→ G = ĜS/S0,

with S0 = {je, ∀e ∈ S} where je is an edge of ĜS adjacent to the exceptional
vertex ve. Clearly, δ depends on the choice of je for each e ∈ S.

Now, let d ∈ Div(G). We denote by d̂ ∈ Div(ĜS) the following divisor

d̂v :=

{
dv if v ∈ V (G)

1 if v = ve, e ∈ S.

In short, d̂ extends d with degree 1 on all exceptional vertices.
We have the following simple fact, for which we use notation (18).

Lemma 4.2.5. Let X be stable and G its dual graph. Let dS be a stable

divisor on G− S. Then d̂S is stably balanced and we have a surjective map

Picd̂S (X̂S) −→ PicdS (Xν
S); L̂ 7→ L̂|Xν

S
.

For any δ : ĜS → G as above we have δ∗d̂S = dS + cδ.

Proof. A divisor on G − S is also a divisor on G, so the first part follows
trivially by definition. Next, recall that cδv is the number of edges mapped
to v ∈ V (G) by δ. Hence cδv = 0 if δ−1(v) = v, and cδv = 1 otherwise. Since

the value of d̂S on exceptional vertices is 1 we have

(δ∗d̂S)v =

{
(d̂S)v if δ−1(v) = v

(d̂S)v + 1 otherwise.
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Hence (δ∗d̂S − cδ)v = (d̂S)v = (dS)v. ♣

4.3. Combinatorics of compactified Jacobians. We shall now connect
to the material of the earlier sections.

Lemma 4.3.1. Let G be connected of genus g.

(a) Let d ∈ Divg−1(G). There exists a 0-orientation, O, s.t. d = dO if and
only if |dZ | ≥ g(Z)− 1 for all Z ⊂ V .

(b) For any d ∈ Σ1(G) there exists a 1-orientation, O, on G such that
d = dO.

Proof. Part (a) is well known, for example in graph theory as a version of
Hakimi’s Theorem (for a modern formulation see [3, Thm 4.8]).

For part (b), fix a vertex v ofG. Let d′ := d−v so that d′ ∈ Divg−1(G). We
have |d′Z | ≥ g(Z)−1 for all Z ⊂ V . Indeed, if v ∈ Z, we get |d′Z | = |dZ |−1 >
g(Z) − 2; thus |d′Z | ≥ g(Z) − 1. If v 6∈ Z we get |d′Z | = |dZ | > g(Z) − 1.

Thus, by part (a), we can choose a 0-orientation O′ on G such that d′ = dO
′
.

Since d ∈ Σ1(G), we have |dG−v| > g(G− v)− 1, hence

dv = g − |dG−v| < g − g(G− v) + 1 ≤ g(v) + deg v − 1 + 1 = g(v) + deg v

(the “≤” above is a “=” iff G− v is connected). On the other hand

dv = d′v + 1 = g(v) + tO
′

v .

Therefore tO
′

v < deg v, henceO′ has an edge, e, whose source is v. Biorienting
e gives a 1-orientation, O, with d = dO. ♣

Recall that we denote by O0(G) (resp. O1(G)) the set of totally cyclic
(resp. rooted) orientations on G, and by OP0

G (resp. OP1
G) the poset of

totally cyclic (resp. rooted) orientations on spanning subgraphs of G. On
such sets we defined an equivalence relation whose class-sets are marked by
an overline. Finally, recall the notation introduced in 4.2.3.

Lemma 4.3.2. Let b = 0, 1. Let G be a graph of genus g and S, T ⊂ E.
Consider the following map

OPbG −→ Div(G); OS 7→ dOS .

(a) The map induces a bijection between Ob(G− S) and Σb(G− S).
(b) If OS is a b-orientation with dOS ∈ Σb(G− S), then OS ∈ Ob(G− S).

Proof. The map is well defined and injective by Definition 1.6.1. Its image
lies in Σb(G−S) by Lemma 1.5.2 in case b = 0 and by Lemma 1.5.3 in case
b = 1. Moreover, its image is the whole of Σb(G−S) by Lemma 4.3.1. This
proves (a), and (b) follows from it. ♣

Remark 4.3.3. By 4.2.4 the points of P
g−1+b
X correspond to equivalence

classes of stably balanced line bundles, and two such line bundles are equiv-
alent if they are defined on the same X̂S and if their restrictions to Xν

S are

isomorphic. Denote by dS a stable divisor of G − S and by P
dS
X ⊂ P

g−1+b
X
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the set of equivalence classes of stably balanced line bundles on X̂S whose
restriction to Xν

S has multidegree dS . By Lemma 4.3.2, there exists a unique

OS ∈ O
b
(G − S) such that dS = dOS , and every stable divisor on G − S is

obtained in this way. Therefore we define, for any OS ∈ Ob(G− S)

(22) POSX := P
dS
X .

Theorem 4.3.4. Let X be a stable curve of genus g and G its dual graph,

let b = 0, 1. Then the following is a graded stratification of P
g−1+b
X by OPbG

(23) P
g−1+b
X =

⊔
OS∈OP

b
(G)

POSX ,

and we have natural isomorphisms for every OS ∈ OP
b
G

(24) POSX
∼= Picd

OS
(Xν

S).

Proof. The case b = 0 follows directly from results of [16]. Our proof in case
b = 1 also works for b = 0, so we include it for completeness.

As in Remark 4.3.3, we denote by P
dS
X ⊂ P

g−1+b
X the set of equivalence

classes of stably balanced line bundles on X̂S whose restriction to Xν
S has

degree dS , for dS a stable divisor of G− S. By Fact 4.2.4 we have

(25) P
g−1+b
X =

⊔
S⊂E

dS∈Σb(G−S)

P
dS
X .

Now, as noted above, we have POSX = P
dS
X for a unique class OS ∈ Ob(G−S)

such that dS = dOS . Moreover, by Lemma 4.3.2 every dS ∈ Σb(G − S) is
obtained in this way, for every S ⊂ E. Hence (25) yields (23).

Also, we obviously have P
dS
X
∼= PicdS (Xν

S), from which (24) follows.
Next, recalling Definition 1.3.2, we prove the following

POSX ⊂ POTX ⇔ OS ≤ OT .

By [12, Prop. 5.1] (revised using graphs) we have P
dS
X ∩P

dT
X 6= ∅ if and only

if P
dS
X ⊂ P

dT
X . Moreover, P

dS
X ⊂ P

dT
X if and only if T ⊂ S and the edges in

S r T can be oriented so that, denoting by tv the number of edges in S r T
with target a vertex v, we have

(dT )v = (dS)v + tv.

Assume P
dS
X ⊂ P

dT
X and denote byO′T the orientation onG−T which extends

OS to S r T by the orientation we just defined (where OS ∈ O(G − S) is
such that dOS = dS , by the previous part). Of course OS ≤ O′T and, as

dOT = dT for some OT ∈ O(G− T ), we have

dOT = dT = dO
′
T ,
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hence O′T ∼ OT . We conclude that OS ≤ OT . The converse is obvious.
Finally, we need to show that the stratification (25) is graded. Recall

that the generalized Jacobian of Xν
S is an irreducible variety of dimension

g(G−S), hence so is PicdS (Xν
S), hence so is POSX . By Proposition 2.3.4, the

map OS 7→ g(G− S) is a rank OPbG, hence we are done. ♣

4.4. Specialization of polarized curves. We shall be interested in (flat,
projective) families of curves over a one-dimensional nonsingular base, spe-
cializing to a given curve X. Up to restricting the base we can assume that
away from X the family is topologically trivial, i.e. that every fiber different
from X has the same dual graph of some fixed curve Y . We shall refer to
such a family as a specialization from Y to X. Since X has only nodes as
singularities, the same holds for Y .

Suppose our curves X and Y are “polarized”, i.e. endowed with a line
bundle, L ∈ Pic(X) and M ∈ Pic(Y ). We say that (Y,M) specializes to
(X,L) if there is a specialization of Y to X under which M specializes to L.

Remark 4.4.1. Let us define all of the above more rigorously. The family
under which Y specializes to X is a projective morphism f : X → B where
B is a smooth, connected, one-dimensional variety with a point b0 such that
f−1(b0) ∼= X, and the restriction of f away from b0 is locally trivial, moreover
f−1(b) ∼= Y for some b 6= b0. As an étale base change of f determines again
a specialization of Y to X we are free to replace f by an étale base change.
For the polarized version, to say that M specializes to L means that X is
endowed with a line bundle whose restriction to Y isM and whose restriction
to X is L.

Proposition 4.4.2. Let X and Y be two nodal curves and G and H their
respective dual graphs. Let L ∈ Pic(X) and M ∈ Pic(Y ) such that (Y,M)
specializes to (X,L). Then there exists a contraction γ : G→ H such that

γ∗deg(L) = deg(M).

In the opposite direction, we have the following.

Proposition 4.4.3. Let γ : G → H be a contraction between two graphs.
Then for any curve X dual to G and for any L ∈ Pic(X) there exist a curve
Y dual to H and a line bundle M ∈ Pic(Y ) such that γ∗deg(L) = deg(M)
and such that (Y,M) specializes to (X,L).

Proof. We prove Propositions 4.4.2 and 4.4.3 together as their proofs are
closely related. They extend [14, Thm 4.7 (2)] to polarized nodal curves.

To prove Proposition 4.4.2, assume (Y,M) specializes to (X,L). Under
such a specialization every node of Y specializes to a node of X and different
nodes specialize to different nodes. Hence we partition E(G) = S0 t T so
that S0 is the set of nodes of X which are not specializations of nodes of Y .
We let γ : G→ G/S0, and, arguing as for [14, Thm 4.7], we have G/S0 = H.

For any vertex w ∈ V (H) we write Dw ⊂ Y for the irreducible component
corresponding to w. As shown in loc. cit., the specialization from Y to X
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induces a specialization of Dw to ∪γ(v)=wCv (as a subcurve of X). Now,
M specializes to L and hence M|Dw specializes to the restriction of L to
∪γ(v)=wCv. Therefore

deg(M)w = degDwM = degL|∪γ(v)=wCv =
∑

γ(v)=w

deg(L)v = γ∗deg(L)w.

This proves Proposition 4.4.2.
For Proposition 4.4.3, let γ : G → G/S0 = H be a contraction, for some

S0 ∈ E(G); write E(G) = S0 t T so that T is identified with E(H). Let X
be a curve dual to G and let Xν

T be its normalization at T , so that G− T is
the dual graph of Xν

T . The curve Xν
T is endowed with |T | pairs of marked

smooth points, namely the branches over the nodes in T . Observe that the
connected components of Xν

T are in bijection with the connected components
of H − T , and hence with the vertices of H. We can therefore decompose
Xν
T as follows

Xν
T = tw∈V (H)Zw

with Zw a connected nodal curve whose genus, g(Zw), is equal to the weight
of w as a vertex in H. Therefore we can find a family of smooth curves of
genus g(Zw) specializing to Zw, i.e. we have a smooth curve, Ww, special-
izing to Zw. Considering the union for w ∈ V (H) we get a specialization of
tw∈V (H)Ww to tw∈V (H)Zw = Xν

T

Now, up to étale cover, such a specialization can be endowed with |T |
pairs of sections specializing to the |T | pairs of branch points of Xν

T . By
gluing together each such pair of sections we get a specialization to our X
from a curve, Y , whose dual graph is H.

Clearly, the contraction γ : G → H corresponds to this specialization
from Y to X.

Now, using the notation of Remark 4.4.1, let f : X → B be a family
under which Y specializes to X, and consider its relative Picard scheme,
PicX/B → B. Its fiber over b0 is Pic(X) and its fiber over b is Pic(Y ).

Write d = degL; we claim that, in the relative Picard scheme, Picd(X)
is the specialization of Picγ∗d(Y ). Indeed, Picd(X) must be the specializa-
tion of some connected component of Pic(Y ) (even if this Picard scheme
were not separated, every connected component of its fiber over b0 is the
specialization of some connected component of the general fiber), and this
component is necessarily Picγ∗d(Y ) by the same computation we used to
prove Proposition 4.4.2.

Now, as Picd(X) is the specialization of Picγ∗d(Y ), any L ∈ Picd(X) is
the specialization of some M ∈ Picγ∗d(Y ), and we are done. ♣

4.5. Compactified universal Jacobians. We fix d ∈ Z. In this paper we
are interested in d = g and d = g− 1, so we shall restrict to these two cases
even though some of the preliminary results quoted in this subsection hold
more generally for every d. We also assume b = 0, 1 so that d = g − 1 + b.
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We let Mg be the moduli space of stable curves of genus g ≥ 2, an
irreducible projective variety.

Fact 4.5.1. The following is a graded stratification of Mg by SGg:

Mg =
⊔

G∈SGg

MG

where MG parametrises curves having G as dual graph.

Indeed, the function G 7→ dimMG equals the rank on SGg defined in
Proposition 2.1.3.

Now, from [12] we introduce, for every d ∈ Z, the compactified universal
degree-d Jacobian

ψg,d : P
d
g −→Mg.

We sometimes write ψ = ψg,d for simplicity. Recall that P
d
g is the GIT

quotient of a Hilbert scheme, and that ψ is a projective morphism whose

fiber over X ∈Mg is isomorphic to P
d
X/Aut(X). Set

P dG := ψ−1
g,d(MG).

Pick a stable curve X ∈MG. Then we have a canonical map

(26) µX : P
d
X → P dG.

Corollary 4.5.2. Let G,H ∈ SGg. Then

P dG ⊂ P dH if and only if H ≥ G.

Proof. It suffices to use Fact 4.5.1 and that ψ : P
d
g →Mg is projective. ♣

In the next remark we recall the basic moduli properties of P
d
g.

Remark 4.5.3. Let f : X → B be a family of quasistable curves of genus
g and let L be a line bundle on X whose restriction, Lb, to every fiber over
b ∈ B is stably balanced of degree d (in the sense of Definition 4.2.2). Then

there is a moduli morphism, µL : B → P
d
g such that the image of b ∈ B is

the equivalence class of Lb.
Consider the case of a fixed curve rather than a family. So B = {b} and

X = X̂S is a fixed quasistable curve. Let L,L′ ∈ Pic(X̂S) be stably balanced.
If the restriction of L and L′ away from the exceptional components are
isomorphic (i.e. if LXν

S
∼= L′Xν

S
) then µL(b) = µL′(b).

Fix G and S ⊂ E(G). Let f : X → B be a family of stable curves
all having dual graph identified with G, hence S can be identified with
|S| (set-theoretic) sections of f corresponding to the nodes in S. Denote by
fS : XS → B the desingularization at these sections, so that every fiber of fS
has dual graph G−S. For every e ∈ S we have a pair of sections (σh+e , σh−e )

of fS (where h+
e , h

−
e are the half-edges of e). We glue to XS a copy of P1×B

by identifying its 0 and ∞ section to σh+e and σh−e . By repeating this for
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every e ∈ S we obtain a family of quasistable curves f̂S : X̂S → B with dual
graph ĜS .

Let now dS be a divisor on G − S, denote by Pic
dS
fS

the corresponding

connected component of the Picard scheme PicfS . Similarly, denote by

Pic
d̂S
f̂S

the connected component of Pic
f̂S

corresponding to d̂S ∈ Div(ĜS).

Now, using the notation in Lemma 4.2.5, we have

Lemma 4.5.4. Let f : X → B be as above. Let b = 0, 1 and dS ∈ Σb(G−S).

Then there exist a moduli morphism µ
d̂S

: Pic
d̂S
f̂S
→ P

d
g and a morphism

µdS : Pic
dS
fS
→ P dG such that

µ
d̂S

: Pic
d̂S
f̂S

ϕ−→ Pic
dS
fS

µdS−→ P dG,

where ϕ is given by restriction away from the exceptional components.

Proof. We have a polarized family of quasistable curves

L −→ Pic
d̂S
f̂S
×B X̂S −→ Pic

d̂S
f̂S

where L is the tautological (Poincaré) line bundle, which, by hypothesis, is
relatively stably balanced. By Remark 4.5.3 we have a moduli morphism

µL : Pic
d̂S
f̂S
→ P

d
g. Set µ

d̂S
= µL, it is clear that its image lies in P dG.

We let ϕ : Pic
d̂S
f̂S
→ Pic

dS
fS

be the map given by restricting a line bundle

away from the exceptional components, so ϕ is the analog of the map used
in Lemma 4.2.5. Now, as we said in Remark 4.5.3, if two line bundles have
the same image under ϕ (i.e. their restriction away from the exceptional
components are isomorphic) they also have the same image under µL. By

applying a standard argument using that P
d
g is a GIT quotient, we conclude

that there exists a map µdS : Pic
dS
fS
→ P dG such that µ

d̂S
factors a stated. ♣

4.6. The strata of P
d
g. Our goal is to find a stratification of P

d
g compatible

with the one of Mg. By [1, Prop. 3.4.1], the stratum MG has the following
expression

(27) M̃G := Πv∈VMw(v),deg(v)
π−→MG = M̃G/Aut(G)

where Mw(v),deg(v) is the moduli space of smooth curves of genus w(v)
with deg(v) marked points representing the branches/half-edges over the
nodes/edges.

More generally, with the notation of [1, Subsection 2.1], for every S ⊂ E,
consider the 2|S|-marked graph G-S, whose underlying (unmarked) graph
is G−S, and whose 2|S|-marking is given by the half-edges corresponding to
S. Then G-S is stable as marked graph and we have a moduli space, MG-S,
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of stable curves with 2|S| marked points and dual graph G-S. In particular,

if S = E then M̃G = MG-E and the map π above factors:

π : M̃G
πS−→MG-S = M̃G/Aut(G-S) −→MG.

For our goal we need a universal curve over M̃G, but it is well known that
this may fail to exist over some Mw(v),deg(v). However (see [4] for example),
a universal curve exists over some finite cover of it. We choose a finite cover
M ′w(v),deg(v) → Mw(v),deg(v) of large enough order (the same for all pairs

w(v),deg(v)) so that we have a universal curve over each M ′w(v),deg(v). We

let M̃ ′G be the product of the M ′w(v),deg(v) for v ∈ V so that, composing with

(27), we have a finite map π′ : M̃ ′G → MG. The action of Aut(G) on MG

lifts naturally to an action on M̃ ′G
We denote by Cw(v),deg(v) →M ′w(v),deg(v) the universal curve, and we have

the following family

X̃G := tv∈V Cw(v),deg(v) −→ M̃ ′G,

together with 2|E| sections, σh : M̃ ′G → X̃G, indexed by the half-edges of G.

Fix S ⊂ E. Let X̃G → X SG be the gluing along pairs (σh+e , σh−e ) for every

e 6∈ S. Then X SG is a family over the space ZSG := M̃ ′G/Aut(G-S). Let

fS : X SG → ZSG

be this family of curves, all of whose fibers have dual graph G − S. Since
ZSG is a finite cover of MG-S, the map π′ factors through finite maps:

π′ : M̃ ′G −→ ZSG −→MG.

Fixing a stable multidegree dOS onG−S, by Lemma 4.5.4 we get a morphism

µOS : Pic
dOS

fS
−→ P dG.

We define POSG to be the image of this map.

Lemma 4.6.1. Let G ∈ SGg and OS ∈ OPbG with b = 0, 1. Then POSG is
quasiprojective, irreducible of dimension 3g − 3− |E(G)|+ g(G− S).

If OT ≡ OS for some OT ∈ OPbG, then POSG = POTG .

Proof. The morphism µOS is finite because so is the morphism ZSG → MG.

Moreover µOS exhibits POSG as the image of an irreducible quasiprojective
variety of dimension

dim Pic
dOS

fS
= dimZSG + g(G− S) = 3g − 3− |E(G)|+ g(G− S)

(as dimZSG = dimMG). So the first part of the statement is proved.
Now suppose OT ≡ OS , then OT = α∗OS for some α ∈ Aut(G). Hence

α∗d
OS = dOT , and α induces an isomorphism between ZSG and ZTG, a corre-

sponding isomorphism between X SG and X TG , and an isomorphism Pic
dOS

fS
∼=
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Pic
dOT

fT
. The latter induces an isomorphism between the respective Poincaré

line bundles. Therefore the images of µOS and µOT in P dG get identified; see
the second part of Remark 4.5.3. ♣

We define for any [OS ] ∈ [OPbG]

P
[OS ]
G := POSG ,

by Lemma 4.6.1, this definition does not depend on the choice of the repre-
sentative in [OS ].

4.7. Stratifications of universal Jacobians in degree g − 1 and g.

Theorem 4.7.1. The following is a graded stratification of P
g−1+b
g by [OPbg]

P
g−1+b
g =

⊔
(G,[OS ])∈[OPbg ]

P
[OS ]
G .

Proof. We have

P
g−1+b
g =

⊔
G∈SGg

( ⊔
[OS ]∈[OPbG]

P
[OS ]
G

)
=

⊔
(G,[OS ])∈[OPbg ]

P
[OS ]
G .

Indeed, the only thing that might not be clear is that the union is disjoint.

Suppose two different strata P
[OS ]
G and P

[OT ]
G intersect and let us show they

coincide. Let X ∈ Mg be such that P
[OS ]
G ∩ P [OT ]

G ∩ ψ−1(X) is not empty.

Recall that the strata POSX and POTX are disjoint in P
g−1+b
X . Since automor-

phisms of X obviously map strata to strata in P
g−1+b
X , the images via µX

(see (26)) of POSX and POTX are no longer disjoint if and only if there is an
automorphism αX of X identifying them. Then one easily checks that the

induced automorphism α on G maps OS to OT in OPbG. Hence [OS ] = [OT ].

Lemma 4.6.1 gives that P
[OS ]
G is quasiprojective, irreducible, of dimension

dimP
[OS ]
G = dimPOSG = 3g − 3− |E(G)|+ g(G− S),

and by Proposition 3.5.3 the right hand side is a rank on [OPbg].
To complete the proof we must show that we have a stratification in the

sense of Definition 1.3.2. We will do that in the next two propositions.

Proposition 4.7.2. Let (G,OS), (H,OT ) ∈ OPbg. If (G,OS) ≤ (H,OT )

then P
[OS ]
G ⊂ P [OT ]

H .

Proof. Consider ψ : P
g−1+b
g →Mg. For a fixed X ∈MG we have

P
[OS ]
G ∩ ψ−1([X]) =

⋃
OS′≡OS

µX(P
OS′
X ),
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with µX defined in (26). It suffices to show that for every such X and

every OS′ ≡ OS , every point in P
OS′
X is a specialization of line bundles

parametrized by POTH , so that that µX(P
OS′
X ) ⊂ POTH .

By the proof of Proposition 3.5.3 we have that for any OS′ ≡ OS there is

OT ′ ≡ OT with OS′ ≤ OT ′ . Since P
[OS ]
G = P

[OS′ ]
G and P

[OT ]
G = P

[OT ′ ]
G we can

replace OS′ by OS without loss of generality.
By hypothesis, there exists a curve Y dual to H which specializes to

X; let γ : G → H be the associated contraction. Under the corresponding

specialization of compactified Picard varieties, P
g−1+b
Y specializes to P

g−1+b
X .

Now, γ∗OS ∈ OP
b
H , hence dγ∗OS is stable, and hence, by 4.2.5, P γ∗OSY

parametrizes stably balanced line bundles on ŶR of degree d̂γ∗OS , where

R = γ∗S. We begin by showing that P γ∗OSY specializes to POSX . To the
contraction γ we associate the contraction

γ̂ : ĜS −→ ĤR = ĜS/Ŝ0

(where Ŝ0 = δ−1
E (S0) for δ : ĜS → G). Now, with the notation introduced

before 4.2.5, consider d̂OS and d̂γ∗OS . We claim

(28) d̂γ∗OS = γ̂∗d̂
OS .

Let v ∈ V (ĤR). If v = ve for e ∈ R then ve is also an exceptional vertex

of ĜS mapped to ve by γ̂. Hence both divisors appearing in (28) have value
1 on ve. Now suppose v ∈ V (H), then, by Proposition 3.2.1,

(d̂γ∗OS )v = (dγ∗OS )v = (γ∗d
OS )v + cγ,Sv =

∑
z∈γ−1

V (v)

dOSz + cγ,Sv = (γ̂∗d̂
OS )v

where the last equality follows as cγ,Sv is equal to the number of exceptional
vertices of ĜS that are mapped to v by γ̂. (28) is proved.

We can now apply Proposition 4.4.3, to obtain that any line bundle L̂ ∈
Pic(X̂S) such that degL̂ = d̂OS is obtained as specialization of a line bundle

M̂ ∈ Pic(ŶR) such that

degM̂ = γ̂∗degL̂ = γ̂∗d̂
OS = d̂γ∗OS .

This proves that P γ∗OSY specializes to POSX . Therefore µX(POSX ) ⊂ P γ∗OSH .

Now, by Theorem 4.3.4 and the hypothesis γ∗OS ≤ OT , in P
g−1+b
Y we

have P γ∗OSY ⊂ POTY . Hence µX(POSX ) ⊂ P γ∗OSH ⊂ POTH . The Proposition is
proved. ♣

Proposition 4.7.3. Let (G, [OS ]) and (H, [OT ]) be in [OPbg]. The following
are equivalent

(a) P
[OS ]
G ∩ P [OT ]

H 6= ∅.
(b) (G, [OS ]) ≤ (H, [OT ]).
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(c) P
[OS ]
G ⊂ P [OT ]

H .

Proof. (a)⇒(b). By hypothesis, we have a specialization of polarized curves,

(ŶT , M̂) to (X̂S , L̂), where X and Y are curves dual to G and H respectively,

and L̂ and M̂ are stably balanced line bundles on X̂S and ŶT such that
deg

Xν
S

L̂ = dOS′ and deg
Y νT
M̂ = dOT ′ for some OS′ ∈ [OS ] and OT ′ ∈ [OT ].

It suffices to prove that OS′ ≤ OT ′ .
To simplify the notation, from now on we drop the indices and write

OS′ = OS and OT ′ = OT . We denote by ĜS and ĤT the dual graphs of
X̂S and ŶT . By Proposition 4.4.2, the above specialization is associated to
a contraction

γ̂ : ĜS −→ ĤT ,

such that γ̂∗degL̂ = degM̂ . Now, every exceptional component of ŶT spe-

cializes to an exceptional component of X̂S , hence we have a specialization
of Y to X and the associated contraction γ : G → H = G/S0. We have an
inclusion T ⊂ S induced by E(H) ⊂ E(G).

Denote by Ô the orientation on ĜS obtained from OS by orienting all
edges adjacent to exceptional vertices towards the exceptional vertex. Then

the degree of dÔ on each exceptional component is 1 and dÔ = (̂dOS ).

We first assume T = ∅, then ĤT = H and we have a commutative diagram

ĜS

δ ((

γ̂
// H

G
γ

77

Here δ is given as follows: every exceptional vertex ve in ĜS has two
adjacent edges he and je, both Ô-oriented towards ve. Defining δ amounts
to choosing one of the two for every exceptional vertex. If e ∈ S0, we can
contract any of the two, as γ̂ contracts both. If e 6∈ S0 we choose the one
contracted by γ̂. This choice clearly makes the diagram commutative. Set

O′ := δ∗Ô on G. Since γ̂∗degL̂ = degM̂ , i.e. γ̂∗(d
Ô) = dO∅ we get

γ∗O
′ = γ∗(δ∗Ô) = γ̂∗(Ô) ∼ O∅

where the equivalence at the end follows from Proposition 3.2.1 (c), (with

cγ̂,∅ = 0 because O′ is defined on the whole graph). By construction we have
O′|G−S = OS , i.e. OS ≤ O′, and thus by Proposition 3.2.1 (e):

γ∗OS ≤ γ∗O′ ∼ O∅,

which proves the claim in case T = ∅.
In general, we have T ⊂ S and, of course, T ∩ S0 = ∅. Therefore the

restriction of γ to G− T is

γ|G−T : G− T −→ G− T
S0

= H − T.
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Write G′ = G− T , H ′ = H − T and γ′ = γ|G−T . Then write O′ = (OT )|H′

and O′S′ = (OS)|G′ with S′ = S r T . By the previous case γ′∗O
′
S′ ≤ O′, i.e.

(29) γ′∗O
′
S′ ∼ O′|H′−γ′∗S′ .

Now, OS is defined on G− S ⊂ G− T , hence

γ′∗O
′
S′ = (γ|G−T )∗(OS)|G−T = γ∗OS .

Also, as OT is defined on H ′ = H − T , we have

O′|H′−γ′∗S′ = ((OT )|H−T )|H−T−γ′∗S′ = (OT )H−γ∗S

(γ′∗S
′∪T = S′rS′0∪T = SrS0 = γ∗S as T ∩S0 = ∅). Combining with (29)

gives γ∗OS ∼ (OT )H−γ∗S and we are done with the implication (a) ⇒(b).

(b)⇒(c). By hypothesis, OS′ ≤ OT ′ for some OS′ ∈ [OS ] and OT ′ ∈ [OT ].

By Proposition 4.7.2, we have P
[OS′ ]
G ⊂ P [OT ′ ]

H , hence we conclude as follows

P
[OS ]
G = P

[OS′ ]
G ⊂ P [OT ′ ]

H = P
[OT ]
H .

(c) ⇒(a) is obvious. ♣

Theorem 4.7.1 is proved, and so is Theorem 1.1.1. ♣
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[13] L. Caporaso. Néron models and compactified Picard schemes over the moduli stack
of stable curves. Amer. J. Math., 130(1):1–47, 2008.

[14] L. Caporaso. Algebraic and tropical curves: Comparing their moduli spaces. In
G. Farkas and I. Morrison, editors, Hanbook of Moduli, Vol. I, volume XXIV of
Advanced Lectures in Mathematics, pages 119 – 160. International Press of Boston,
2013.

[15] L. Caporaso and F. Viviani. Torelli theorem for graphs and tropical curves. Duke
Mat. J., 153(1):129 – 171, 2010.

[16] L. Caporaso and F. Viviani. Torelli theorem for stable curves. J. Eur. Math. Soc.,
13(5):1289 – 1329, 2011.

[17] R. Cavalieri, H. Markwig, and D. Ranganathan. Tropicalizing the space of admissible
covers. Math. Ann., 364(3-4):1275–1313, 2016.

[18] K. Chirst. Orientations, break divisors and compactified Jacobians. PhD thesis, Roma
Tre University, 2018.

[19] E. Esteves. Compactifying the relative Jacobian over families of reduced curves.
Trans. Amer. Math. Soc., 353(8):3045–3095 (electronic), 2001.

[20] E. Gioan. Enumerating degree sequences in digraphs and a cycle-cocycle reversal
system. European J. Combin., 28:1351 – 1366, 2007.

[21] S. Hakimi. On the degrees of the vertices of a directed graprientations, break divisors
and compactified Jacobiansh. J. Franklin Inst., 279:260 – 308, 1965.

[22] G. Mikhalkin and I. Zharkov. Tropical curves, their Jacobians and theta functions.
Curves and abelian varieties, pages 203 – 230, 2008.

[23] T. Oda and C. S. Seshadri. Compactifications of the generalized Jacobian variety.
Trans. Amer. Math. Soc., 253:1–90, 1979.

[24] J. Shen. Break Divisors and compactified Jacobians. PhD thesis, Yale University, 2016.
[25] C. T. Simpson. Moduli of representations of the fundamental group of a smooth

projective variety. I. Inst. Hautes Études Sci. Publ. Math., (79):47–129, 1994.
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