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Abstract. We construct the moduli space for equivalence classes of n-pointed

tropical curves of genus g, together with its compactification given by weighted

tropical curves. We compare it to the moduli spaces of smooth and stable,

n-pointed algebraic curves, from the combinatorial, the topological, and the

Teichmüller point of view.
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1. Introduction

1.1. Overview of the paper

This is a mostly expository article whose main goal is to construct the moduli

space of tropical curves with marked points, and to compare it to the moduli space

of algebraic curves, highlighting the symmetries and the analogies which do occur

at various places.

The moduli space of nonsingular algebraic curves is a well known object that

has been thoroughly studied, together with its compactifications, over the last five

decades (to say the least). There are several expository papers and monographs

attesting the depth and richness of the subject. In this paper we shall give the

basic definitions and state some famous results in a way that should be accessible

to the non expert reader. We will provide references where details can be found.

On the other hand tropical geometry is a rather new branch of mathemat-

ics, which has seen a flourish of diverse activities over the recent years. Thus,

quite naturally, the field still lacks exhaustive bibliographical sources, and even

solid foundations. Hence we shall treat tropical curves and their moduli quite

thoroughly, including technical details and proofs, although some of the results we

shall describe are known, if maybe only as folklore.

Let us illustrate the content of the paper, section by section. We begin with

algebraic nodal curves of genus g with n marked points, define the notion of stably

equivalent curves, and introduce the moduli spaces for these equivalence classes,

the well known Deligne-Mumford spaces Mg,n.

Next, in Section 2, after some preliminaries about graphs, we give the original

definition of abstract tropical curves and of tropically equivalent curves. Tropical

equivalence should be viewed as the analogue of stable equivalence. Tropical curves

up to tropical equivalence are parametrized by metric graphs with no vertex of

valence less than 3. We extend the set-up to curves with marked points.

As it turns out, tropical curves do not behave well in families, in the sense

that the genus may drop under specialization. One solution to this problem,

introduced in [4] for unpointed curves, is to add a weight function on the vertices of

their corresponding graph, thus generalizing the original notion (when the weight

function is zero we get back the original definition). We do that in the last part

of Section 2. Of course, this may not be the only, or the best, solution. But it is

one that can be worked out, and whose analogies with moduli of stable algebraic

curves are strong and interesting. To distinguish, we refer to the original definition

as “pure” tropical curve, and to the generalized one as “weighted” tropical curve.

In Section 3 we explicitly construct, as topological spaces, the moduli space

for n-pointed weighted tropical curves of genus g, denoted by M trop
g,n , and the

analog for pure tropical curves, denoted by Mpure
g,n . It is clear from the construction

these two spaces are generally not topological manifolds; but they turn out to be
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connected, Hausdorff, of pure dimension 3g−3+n. Also, Mpure
g,n is open and dense

in M trop
g,n ; see Theorem 3.21.

Furthermore, Mpure
g,n and M trop

g,n are not tropical varieties in general. The case

g = 0, which has been extensively studied (see for example [21], [22], [13], [15]),

is an exception, because of the absence of automorphisms. In particular M trop
0,n

(which coincides with Mpure
0,n ) is known to be a tropical variety for every n ≥ 3.

Although a few constructions giving these moduli spaces some special struc-

ture, resembling that of a tropical variety, can be found in the literature (in [15],

[4] and [8] for example), we prefer to treat them just as topological spaces, as the

categorical picture does not look clear at the moment.

Essentially by construction, M trop
g,n is closed under specialization, nevertheless

it is not compact. A natural compactification for it is studied in subsection 3.3.

In Section 4 we compare the spaceM trop
g,n to the Deligne-Mumford spaceMg,n.

They admit dual partitions indexed by stable graphs, with dual poset structures.

The poset structure is defined by the inclusion of closures, and it is fully described

in combinatorial terms; see Theorem 4.7.

Section 5 considers the Teichmüller approach to the moduli space of smooth

curves Mg, and to the moduli space of metric graphs. While the Teichmüller point

of view constitutes one of the principal chapters of the complex algebraic theory,

its analog for metric graphs, by means of the Culler-Vogtmann space (see [10]), is

less known in tropical geometry, and awaits to be further studied. We conclude the

paper with a table summarizing these analogies, and with a list of open problems

and research directions.

Acknowledgements. I wish to thank M. Melo, G. Mikhalkin and F. Viviani for

several useful comments, and a referee for a very detailed report.

1.2. Algebraic curves

Details about the material of this and the next subsection may be found, for

example, in [17, Chapt 1-4] or in [1, Chapt. 10 and 12].

By an “algebraic curve”, or simply “curve” when no confusion is possible,

in this paper we mean a reduced, connected projective variety (not necessarily

irreducible) of dimension one, defined over an algebraically closed field. The arith-

metic genus of a curve X is gX = h1(X,OX).

We denote by Xsing the set of singular points of X.

We will only be interested in nodal curves, i.e. curves having at most nodes

as singularities. The reason is that the class of nodal curves, up to an important

equivalence relation which we will define in subsection 1.3, has a moduli space with

very nice properties: it is a projective, irreducible (reduced and normal) variety

containing as a dense open subset the moduli space of nonsingular curves. The

need for an equivalence relation is quite fundamental, as the set of all nodal curves

is too big to admit a separated moduli space. It is in fact easy to produce families



4 Algebraic and tropical curves: comparing their moduli spaces

of nodal, or even nonsingular, curves admitting (infinitely many) non isomorphic

nodal curves as limits.

Before being more specific, we want to extend the present discussion to so-

called n-pointed curves.

Let g and n be nonnegative integers. A nodal n-pointed curve of genus g,

denoted by (X; p1, . . . , pn), is a nodal curve X of arithmetic genus g, together

with n distinct nonsingular points pi ∈ X, i = 1, . . . , n.

The nodal n-pointed curve (X; p1, . . . , pn) is stable (in the sense of Deligne

and Mumford) if the set of automorphisms of X fixing {p1, . . . , pn} is finite; or,

equivalently, if the line bundle ωX(p1 + . . . + pn) has positive degree on every

subcurve of X (where ωX is the dualizing line bundle1 of X).

Finally, since for any irreducible component E ⊂ X we have

(1.1) degE ωX(

n∑
1

pi) = 2gE − 2 + |E ∩
{
p1, . . . , pn}|+ |E ∩X r E|

we have that our nodal n-pointed curve is stable if and only if for every irreducible

component E of arithmetic genus at most 1 we have

|E ∩ {p1, . . . , pn}|+ |E ∩X r E| ≥

{
3 if gE = 0

1 if gE = 1.

Note that the requirement for gE = 1 is saying that there exist no stable curves

for g = 1 and n = 0. More generally it is easy to check that stable curves exist if

and only if 2g − 2 + n ≥ 1.

Fact 1.2. Assume 2g − 2 + n ≥ 1. There exists an irreducible projective scheme

of dimension 3g − 3 + n, denoted by Mg,n, which is the (coarse) moduli space

of n-pointed stable curves of genus g. The moduli space of nonsingular n-pointed

curves of genus g is an open (dense) subset Mg,n ⊂Mg,n.

Remark 1.3. What do we mean by “moduli space”? In algebraic geometry there

are various categories (schemes, stacks, algebraic spaces) in which moduli spaces

can be axiomatically defined and their properties rigorously proved. The basic

axiom in the schemes category is, of course, the fact that closed points2 be in

bijection with the isomorphism classes of the objects under investigation (stable

pointed curves, in our case). Other axioms require that to a family of objects

parametrized by a scheme B there is a unique associated morphism from B to the

moduli space, and ensure that a moduli space is unique when it exists.

The word “coarse” in the statement indicates that n-pointed stable curves

may have nontrivial automorphisms, so that to a morphism from B to Mg,n there

1For smooth curves ωX coincides with the canonical bundle.
2I.e. points defined over the base field, versus points defined over some field extension of it.
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may correspond more than one family of n-pointed stable curves, or no family at

all. We refer to [17] for details about this topic.

By contrast, as of this writing, in tropical geometry there is no clear un-

derstanding of what a good categorical framework for moduli theory could be.

Therefore we shall simply view tropical moduli spaces of curves as geometric ob-

jects (specifically: topological spaces) whose points are in bijection with isomor-

phism classes of pointed tropical curves up to tropical equivalence. Essentially by

construction, the topological structure of our tropical moduli spaces will reflect

the most basic notion of a continuosly varying family of tropical curves.

The results stated in Fact 1.2 may be considered a great achievement of

twentieth century algebraic geometry. They are due to P. Deligne - D. Mumford

[11], F. Knudsen [19], and D. Gieseker [16], with fundamental contributions from

other mathematicians (among whom A. Grothendieck and A. Mayer). Some details

about the construction of the moduli space of stable curves will be given at the

beginning of Section 5.

Remark 1.4. It is important to keep in mind that the points p1, . . . , pn of a stable

n-pointed curves are always meant to be labeled (or ordered), as the following

example illustrates.

Example 1.5. Let g = 0. Then there exist stable curves only if n ≥ 3, and if

n = 3 there exists a unique one (up to isomorphisms): P1 with 3 distinct points,

indeed it is well known that the automorphisms of P1 act transitively on the set of

triples of distinct points. Notice also that there exist no nontrivial automorphisms

of P1 fixing 3 points, therefore for every n ≥ 3 a smooth n-pointed curve of genus

0 has no nontrivial automorphisms.

The next case, n = 4, is quite interesting. We may set the three first points

to be p1 = 0, p2 = 1, p3 = ∞ and let the fourth point p4 vary in P1 r {0, 1,∞}.
So we have a simple description of M0,4 as a nonsingular, rational, affine curve.

Its completion, M0,4, the moduli space of stable curves, is isomorphic to P1, and

the three boundary points are the three singular 4-pointed stable rational curves

such that X = C1 ∪ C2 with |C1 ∩ C2| = 1 and, of course, Ci ∼= P1. What

distinguishes the three curves from one another is the distribution of the four

points among the two components. Since each of them must contain two of the

four points, and since the two components can be interchanged, we have three

different non-isomorphic curves corresponding to the three different partitions

(p1, p2|p3, p4), (p1, p3|p2, p4), (p1, p4|p2, p3).

Example 1.6. If g = 1 there exist stable curves only if n ≥ 1, and for n = 1

we have a 1-dimensional family of smooth ones, and a unique singular one: an

irreducible curve of arithmetic genus 1 with one node and one marked point.
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1.3. Stably equivalent nodal curves.

We now describe an explicit procedure to construct the stabilization, or sta-

ble model of a nodal pointed curve. As we mentioned, this is needed to have a

separated moduli space for equivalence classes of nodal curves. We will do this by

a sequence of steps, which will be useful later on.

Let (X; p1, . . . , pn) be an n-pointed nodal curve of genus g, with 2g−2+n ≥ 1.

Suppose X is not stable. Then X has components where the degree of ωX(
∑n

1 pi)

is at most 0.

• Step 1. Suppose there exists a component E of X where this degree is

negative. Then, by (1.1), E is a smooth rational component containing none of the

pi and such that |E ∩Xsing| = 1 (so, degE ωX(
∑n

1 pi) = −1). These components

are called unpointed rational tails. We remove E from X; this operation does not

alter the genus of X (nor its connectedness, since |E ∩ X r E| = 1), the nature

of its singularities, or number of marked points (which remain nonsingular and

distinct). On the other hand it may create one new unpointed rational tail, in

which case we repeat the operation. So, the first step consists in iterating this

operation until there are no unpointed rational tails remaining. It is clear that

this process terminates after finitely many steps. We denote by (X ′; p′1, . . . , p
′
n)

the resulting n-pointed curve, which is unique up to isomorphism.

• Step 2. Now the degree of ωX′(
∑n

1 p
′
i) on every component of X ′ is at least

0, and if (X ′; p′1, . . . , p
′
n) is not stable there exists a component E on which this

degree is 0. By (1.1) we have E ∼= P1 and E contains a total of 2 among marked

and singular points of X ′. There are two cases according to whether E contains a

marked point or not (E necessarily contains at least one singular point of X ′, for

E ( X ′).

• • Step 2.a. Suppose p′i 6∈ E for all i = 1, . . . , n. Then E intersects X ′ r E

in 2 points (for X ′ contains no unpointed rational tail). Such E’s are called

exceptional components. This step consists in contracting each of these exceptional

components to a node. Notice that this step does not touch the marked points, nor

does it add any new rational tail. The resulting curve (X ′′; p′′1 , . . . , p
′′
n) is again an

n-pointed genus g curve free from exceptional components or unpointed rational

tails.

• • Step 2.b. Suppose E contains some of the marked points. Since E must

intersect X ′′ r E, we have |E ∩ X ′′ r E| = 1 and E contains only one marked

point, p′′1 say. These components are called uni-pointed rational tails. Now we

remove E as in the first step, but we need to keep track of p′′1 . To do that we mark

the attaching point E∩X ′′ r E, which, after we remove E, becomes a nonsingular

point replacing the lost point p′′1 . By iterating this process until there are no uni-

pointed rational tails left, we arrive at a genus g stable curve (X ′′′; p′′′1 , . . . , p
′′′
n ).

It is easy to check that this curve is unique up to isomorphism.
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This curve (X ′′′; p′′′1 , . . . , p
′′′
n ) is called the stabilization, or stable model, of

the given one.

Remark 1.7. Following [17], we say that two n-pointed nodal curves are stably

equivalent if they have the same stabilization (always assuming 2g − 2 + n ≥ 1).

It is easy to check that two stable curves are stably equivalent only if they are

isomorphic. So, in every stable equivalence class of n-pointed curves there is a

unique stable representative.

By Fact 1.2, there exists a projective variety, Mg,n, parametrizing stable

equivalence classes of n-pointed nodal curves of genus g.

Remark 1.8. There are many good reasons for extending our field of interest

from curves to pointed curves. Here is a basic and useful one:

Stability of pointed curves is preserved under normalization.

More precisely, let (X; p1, . . . , pn) be an n-pointed stable curve of genus g.

Pick a node q ∈ Xsing, let νq : Xν
q → X be the normalization at q; let q1, q2 ∈ Xν

q be

the two branches of q, and abuse notation by setting pi = ν−1
q (pi) for i = 1, . . . , n.

Then one easily checks that the (n + 2)-pointed curve (Xν
q ; p1, . . . , pn, q1, q2) is

either stable of genus g − 1 (if q is not a separating node of X), or the disjoint

union of two pointed stable curves of genera summing to g (if q is a separating

node).

2. Graphs and pure tropical curves

2.1. Graphs

By a topological graph, or simply a graph, we mean a one dimensional finite

simplicial (or CW) complex Γ; we denote by V (Γ) the set of its vertices (or 0-cells)

and by E(Γ) the set of its edges (or 1-cells). To every e ∈ E(Γ) one associates the

pair {v, v′} of possibly equal vertices which form the boundary of e; we call v and

v′ the endpoints of e. If v = v′ we say that e is a loop based at v.

The valence of a vertex v is the number of edges having v as endpoint, with

the convention that a loop based at v be counted twice.

For a fixed integer p, we say that a vertex of valence p is p-valent, and we

say that a graph is p-regular if all of its vertices are p-valent.

The genus g(Γ) of Γ is its first Betti number

g(Γ) = b1(Γ) := rkZH1(Γ,Z) = |E(Γ)| − |V (Γ)|+ c

where c is the number of connected components of Γ. Morphisms between topo-

logical graphs are, as usual, cellular maps.

We also need to define graphs in purely combinatorial terms, for which there

are various possibilities. Our definition, almost the same as in [1], is most conve-

nient to simultaneously treat tropical and algebraic curves.

Definition 2.1. A combinatorial graph Γ with n legs is the following set of data:
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(1) A finite non-empty set V (Γ), the set of vertices.

(2) A finite set H(Γ), the set of half-edges.

(3) An involution

ι : H(Γ) −→ H(Γ) h 7→ h

with n fixed points, called legs, whose set is denoted by L(Γ).

(4) An endpoint map ε : H(Γ)→ V (Γ).

A pair e = {h, h} of distinct elements in H(Γ) interchanged by the involution

is called an edge of the graph; the set of edges is denoted by E(Γ). If ε(h) = v we

say that h, or e, is adjacent to v.

The valence of a vertex v is the number |ε−1(v)| of half-edges adjacent to v.

An edge adjacent to a vertex of valence 1 is called a leaf.

An edge whose endpoints coincide is called a loop.

Two legs are called disjoint if their endpoints are distinct.

Definition 2.2. A morphism α between combinatorial graphs Γ and Γ′ is a map

α : V (Γ) ∪H(Γ) → V (Γ′) ∪H(Γ′) such that α(L(Γ)) ⊂ L(Γ′), and such that the

two diagrams below are commutative.

(2.3) V (Γ) ∪H(Γ)
α //

(idV ,ε)

��

V (Γ′) ∪H(Γ′)

(idV ′ ,ε
′)

��
V (Γ) ∪H(Γ)

α // V (Γ′) ∪H(Γ′)

(here comes the second commutative diagram)

(2.4) V (Γ) ∪H(Γ)
α //

(idV ,ι)

��

V (Γ′) ∪H(Γ′)

(idV ′ ,ι
′)

��
V (Γ) ∪H(Γ)

α // V (Γ′) ∪H(Γ′)

We say that a morphism α as above is an isomorphism if α induces, by restriction,

three bijections αV : V (Γ)→ V (Γ′), αE : E(Γ)→ E(Γ′) and αL : L(Γ)→ L(Γ′).

An automorphism of Γ is an isomorphism of Γ with itself.

Remark 2.5. By the first diagram α(V (Γ)) ⊂ V (Γ′). On the other hand the

image of an edge e ∈ E(Γ) is either an edge, or a vertex v′ of Γ′; in the latter case

the endpoints of e are also also mapped to v′, and we say that e is contracted by

α. A trivial example of morphism is the map forgetting some legs; see also 2.8.

Example 2.6. Let e = {h, h} be a loop of Γ. Then Γ has a “loop-inversion”

automorphism, exchanging h and h and fixing everything else.

It is clear that to every topological graph we can associate a unique combi-

natorial graph with no legs.
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Conversely, to every combinatorial graph with vertex set V and edge set E,

we can associate a unique topological graph, as follows. We take V as the set of

0-cells; then we add a 1-cell for every e = {h, h} ∈ E, in such a way that the

boundary of this 1-cell is {ε(h), ε(h)}.
Now, if the combinatorial graph has a non empty set of legs L, we add to the

topological graph associated to it a 1-cell for every h ∈ L in such a way that one

extreme of the 1-cell contains ε(h) in its closure. The topological space we obtain in

this way will be called a topological graph with n legs. So, legs are 1-cells only one

end of which is adjacent to a vertex (which will be called the endpoint of the leg).

From now on we shall freely switch between the combinatorial and topological

structure on graphs, intermixing the two points of view without mention. The

notions of valence, genus, endpoints, p-regularity and so on, can be given in each

setting and coincide.

Remark 2.7. From now on, we shall assume our graphs to be connected, unless

we specify otherwise.

2.8. Contractions. We now describe a type of morphism between graphs which will

play an important role. We do that for topological graphs, leaving the translation

for combinatorial graphs to the reader.

Let Γ be a topological graph and e ∈ E(Γ) be an edge. Let Γ/e be the graph

obtained by contracting e to a point and leaving everything else unchanged [12,

sect I.1.7]. Then there is a natural continuous surjective map Γ→ Γ/e, called the

contraction of e. More generally, if S ⊂ E(Γ) is a set of edges, we denote by Γ/S
the contraction of every edge in S and denote by σ : Γ→ Γ/S the associated map.

Let T := E(Γ)r S. Then there is a natural identification between E(Γ/S) and T .

Moreover the map σ induces a bijection between the sets of legs L(Γ) and L(Γ/S),

and a surjection

σV : V (Γ) −→ V (Γ/S); v 7→ σ(v).

Let us disregard the legs, as they play essentially no role in what we are going to

describe. Notice that every connected component of Γ − T (the graph obtained

from Γ by removing every edge in T ) gets contracted to a vertex of Γ/S ; conversely,

for every vertex v of Γ/S its preimage σ−1(v) ⊂ Γ is a connected component of

Γ− T . In particular, we have

(2.9) b1(Γ− T ) =
∑

v∈V (Γ/S)

b1(σ−1(v)).

Let σ : Γ→ Γ/S be the contraction of S as above. Then

(2.10) b1(Γ) = b1(Γ/S) + b1(Γ− T ).

2.2. Tropical curves

2.11. A metric graph is a leg-free graph Γ endowed with the structure of a metric

space, so that every edge is locally isometric to an interval in R, and where the
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distance between two points is the shortest length of an edge-path joining them.

In particular, on a metric graph we have a length function

` : E(Γ)→ R>0

mapping an edge to the distance between its endpoints. It is clear, conversely,

that the datum of such an ` determines on Γ the structure of a metric space with

every edge e having length `(e).

If Γ has legs, it is convenient to extend the function ` to the legs of Γ, by

setting `(x) =∞ for every x ∈ L(Γ).

The genus of a metric graph is the genus of the underlying topological graph.

We shall now define tropical curves following G. Mikhalkin. An abstract

(pure3) tropical curve is almost the same as a metric graph; see [21, Prop. 5.1] or

[24, Prop. 3.6]. The difference is in the length of those edges adjacent to vertices

of valence 1, i.e. the leaves; the length of a leaf is set to be equal to ∞ for a

tropical curve, whereas for a metric graph is finite.

Definition 2.12. A (pure) tropical curve of genus g is a pair (Γ, `) where Γ is a

leg-free graph of genus g and ` a length function on the edges ` : E(Γ)→ R>0∪{∞}
such that `(e) =∞ if and only if e is a leaf.

Two tropical curves are (tropically) equivalent if they can be obtained from

one another by adding or removing vertices of valence 2, or vertices of valence 1

together with their adjacent leaf.

Remark 2.13. A tropical curve is not a metric space, as the distance from a

1-valent vertex to another point is not defined. Of course, if all 1-valent vertices

are removed what remains is a metric space. We shall see in 2.19 that equivalence

classes of tropical curves are bijectively parametrized by certain metric graphs.

Let us illustrate tropical equivalence in details with some pictures.

2.14. (1) Addition/removal of a vertex of valence 1 and of of its adjacent edge

(a leaf). The next picture illustrates the removal of the one-valent vertex u0

and of the leaf e0 adjacent to it. The opposite move is the addition of a leaf,

• uv e1 •
e0

u0

we2 • −→ • uv e1 • we2 •

•

Figure 1. Removal of the 1-valent vertex u0 and of its adjacent

edge e0.

where the length of the added edge e0 is set equal to ∞.

3A explained in the introduction, “pure” is added for reasons that will be clear later.
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(2) Addition/removal of a vertex of valence 2. Pick an edge e ∈ E(Γ) and denote

by v, w ∈ V (Γ) its endpoints. We can add a vertex u in the interior of e. This

move replaces the edge e of length `(e) by two edges ev (with endpoints v, u)

and ew (with endpoints w, u), whose lengths satisfy `(e) = `(ev)+`(ew). If one

of the two endpoints of e, say v, has valence 1 we set the length of ev equal to

∞, whereas the length of ew can be arbitrary. The opposite procedure, which

should be clear, is represented in the figure 2 below:

• uv ev • wew • −→ • wv •e

Figure 2. Removal of a vertex of valence 2.

2.3. Pointed tropical curves

Points on a tropical curve are conveniently represented as legs on the corre-

sponding graph. Indeed, let C be a tropical curve and p ∈ C; if p is a vertex we

add a leg based at p, if p is in the interior of an edge, we add a vertex at p and a

leg based at it; since the added vertex is 2-valent, this operation does not change

the equivalence class of C.

Definition 2.15. An n-pointed (pure) tropical curve of genus g is a pair (Γ, `)

where Γ is a combinatorial graph of genus g with a set L(Γ) = {x1, . . . , xn} of

legs, and ` a length function

` : E(Γ) ∪ L(Γ) −→ R>0 ∪∞

such that `(x) =∞ if and only if x is a leaf or a leg.

The legs {x1, . . . , xn} are called (marked) points of the curve.

We say that two pointed tropical curves are (tropically) equivalent if they

can be obtained one from the other by adding or removing vertices of valence 2 or

vertices of valence 1 with their adjacent leaves.

We say that two tropical curves (Γ, `) and (Γ′, `′) with n marked points

L(Γ) = {x1, . . . , xn} and L(Γ′) = {x′1, . . . , x′n} are isomorphic if there exists an

isomorphism α from Γ to Γ′ as defined in 2.2, such that `(e) = `′(α(e)) for every

e ∈ E(Γ), and α(xi) = x′i for every i = 1, . . . , n .

Remark 2.16. Just as for stable curves, marked points are always labeled.

Two pointed tropical curves are equivalent if they can be obtained from one

another by a finite sequence of the two moves described in 2.14. Notice that now

in move (2) we allow adding 2-valent vertices in the interior of a leg, as well as

removing the endpoint v of a leg if v has valence 2, but we do not allow adding or

removing legs.
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Remark 2.17. Tropical equivalence preserves the number of marked points, but

not their being disjoint, as the next picture shows.

• wv e • • −→ •w •

Figure 3. After removing the 2-valent vertex v the two legs are

no longer disjoint

Example 2.18. Let Γ have one vertex and no edges or legs. Then Γ is an un-

pointed tropical curve of genus 0, equivalent to any tropical curve of genus 0. From

the moduli point of view, its equivalence class is viewed as a trivial one, and will

be excluded in future considerations.

Let now Γ be a graph with one vertex, v, and one loop attached to it; so Γ is

an unpointed tropical curve of genus 1. Now v is 2-valent, hence can be removed,

leaving us with something which is not a tropical curve. For this reason, these

curves are viewed as degenerate, and will also be excluded. Hence if g = 1 we shall

always assume n ≥ 1.

By a similar reasoning, if g = 0 we shall always assume n ≥ 3. This motivates

the future assumption 2g − 2 + n ≥ 1.

Proposition 2.19. Assume 2g − 2 + n ≥ 1.

(1) Every equivalence class of n-pointed pure tropical curve contains a repre-

sentative whose n marked points are disjoint.

(2) The set of equivalence classes of n-pointed pure tropical curves of genus g

is in bijection with the set of metric graphs of genus g with n legs having

no vertex of valence less than 3.

Proof. Let us prove (1). Pick a representative (Γ, `) such that the legs of Γ are

not disjoint. Hence there is a vertex v ∈ V (Γ) which is the endpoint of m ≥ 2

legs, x1, . . . , xm. We add a vertex v′i (of valence 2) in the interior of xi for all

i = 2, . . . ,m; this operation does not change the equivalence class. This creates,

for i = 1, . . . ,m, a new edge e′i and a leg x′i adjacent to v′i. In this way we obtain

a new graph Γ′ whose legs x1, x
′
2, . . . , x

′
m are disjoint. Of course Γ and Γ′ are

tropically equivalent. After repeating this process finitely many times we arrive

at a graph with disjoint legs, tropically equivalent to the original one.

Now part (2). Let (Γ, `) be a graph with n legs, i.e. an n-pointed tropical

curve. We shall describe a construction to produce, in the same equivalence class

of the given curve, a metric graph with n legs having no vertex of valence less

than 3. This construction is entirely similar to the construction described in 1.3

for algebraic curves. We itemize it so as to highlight the analogies.
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∗ Step 1. Suppose Γ has some 1-valent vertex. Then we remove it, together

with its leaf; by definition this operation does not change the equivalence class.

We thus get a new graph Γ∗, with a natural inclusion E(Γ∗) ⊂ E(Γ) and a natural

identification L(Γ∗) = L(Γ). We define the length function `∗ on E(Γ∗) ∪ L(Γ∗)

by restricting `. Hence (Γ∗, `∗) is an n-pointed curve equivalent to the given one.

We can obviously iterate the above procedure until there are no 1-valent vertices

left. We call (Γ′, `′) the n-pointed tropical curve obtained at the end.

∗ Step 2. If Γ′ has no vertex of valence 2 we are done. So, let v be a vertex

of valence 2 of Γ′.

∗∗ Step 2.a. If v has no leg based at it, then we remove v as described in

2.14. (i.e. in such a way that the two edges adjacent to v are merged into an edge

of length equal to the sum of their lengths). It is clear that this operation does not

add any new leaf or leg, and diminishes the number of these 2-valent vertices. So

we can repeat it finitely many times until there are no such 2-valent vertices left.

The resulting tropical curve, (Γ′′, `′′), has n points and it is tropically equivalent

to the given one.

∗∗ Step 2b. If v has a (necessarily unique) leg l based at it, let e be the

(also unique) edge adjacent to v. Now by removing v the edge e changes into a

leg, merging with l (see the figure in Remark 2.17). This operation preserves the

equivalence class, the number of legs, and does not add any new leaf; it clearly

diminishes the number of 2-valent vertices. So after finitely many iterations we

arrive at a tropical curve, (Γ′′′, `′′′) with n points and such that the graph has no

vertex of valence less than 3.

We have thus shown that every tropical equivalence class of n-pointed tropical

curves has a representative all of whose vertices have valence at least 3. The

uniqueness of this representative is trivial to prove. �

Remark 2.20. Recall from Section 1.3 that two nodal algebraic curves are stably

equivalent if they have isomorphic stabilizations.

To say that two n-pointed tropical curves are tropically equivalent is analogous

to say that two n-pointed algebraic curves are stably equivalent.

This should be clear by comparing the construction of 1.3 with the proof

of Proposition 2.19. Indeed: (Step 1) the removal of a 1-valent vertex and its

adjacent edge corresponds to removing an unpointed rational tail. Next (Step 2.a)

the removal of a 2-valent vertex adjacent to no legs corresponds to contracting

an exceptional component to a node. Finally (Step 2.b) the removal of a 2-valent

vertex having an adjacent leg corresponds to removing a uni-pointed rational tail.

Example 2.21. Let g = 0 and n = 4. A graph with 4 legs and no vertex of valence

≤ 2 can have at most 1 edge. The graph with 0 edges is unique. On the other hand

there are three non-isomorphic combinatorial graphs with one edge, according to

how the 4 legs are distributed. They are drawn in the following picture. Each of
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these graphs supports a one dimensional family of metric graphs, as the length of

their unique edge varies in R>0.

•

x1
x2

wv •

x3
x4

•

x1
x3

wv •

x2
x4

•

x1
x4

wv •

x2
x3

Figure 4. The three genus 0, 3-regular graphs with 4 legs.

Example 2.22. Rational tropical curves. A detailed description of the case g = 0

and n ≥ 4, with nice pictures, can be found in [22].

This case is special for two reasons. First: it is easy to see that an n-

pointed rational pointed curve free from vertices of valence ≤ 2 has no nontrivial

automorphisms. This is the key reason why the moduli space for these curves is a

tropical variety. As we saw Example 1.5, this happens also for algebraic curves and,

as a consequence, the moduli spaces M0,n are smooth varieties (see [19]), whereas

Mg,n is singular in general. As we said in the introduction, this discrepancy seems

to have its tropical analogue in the fact that moduli spaces of tropical curves of

higher genus are not tropical varieties in general.

The second reason why the genus zero case is easier to handle is that a family

of genus zero tropical curves specializes to a genus zero curve. This is not the case

if g ≥ 1 as we are going to explain.

2.4. Adding a weight function on tropical curves

The definition of pure tropical curve presents a problem when studying fami-

lies. To explain why, let us first identify tropical curves with metric graphs having

no vertex of valence less than 3 (which, up to tropical equivalence, we can do).

Now, by varying the lengths of the edges of a metric graph we obtain a family.

Let us make this precise; fix a graph Γ as above, write E(Γ) = {e1, . . . , e|E(Γ)|},
and consider the space of all metric graphs, i.e. of all tropical curves, supported

on it. This space is easily identified with RE(Γ)
>0 , indeed, to a vector

(l1, . . . , l|E(Γ)|) ∈ RE(Γ)
>0

there corresponds the tropical curve (Γ, `) such that `(ei) = li, ∀i. It is then

natural to ask what happens when some of the lengths go to zero. So, with the

above notation, let l1 say, tend to 0. How do we give the limit an interpretation

in tropical, or geometric, language? There is a simple candidate: as l1 tends

to zero, (Γ, `) specializes to a metric graph (Γ, `) where Γ = Γ/e1 is obtained

by contracting e1 to a point (see 2.8), and `(ei) = `(ei), ∀i ≥ 2 (as E(Γ) =
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E(Γ) r {e1} = {e2, . . . , e|E(Γ)|}). But there is a drawback with this limit: its

genus may be smaller than g(Γ). Indeed we have

g(Γ) =

{
g(Γ)− 1 if e1 is a loop

g(Γ) otherwise.

From a geometric perspective this is quite unpleasant. We like the genus to re-

main constant under specialization. A solution to this problem is provided by S.

Brannetti, M. Melo and F. Viviani in [4]. The idea is to extend the definition of

a tropical curve by adding a weight function on the vertices.

Definition 2.23. A weighted graph with n legs is a pair (Γ, w) where Γ is a graph

with n legs, and w : V (Γ)→ Z≥0 a weight function on the vertices.

The genus g(Γ, w) is defined as follows:

(2.24) g(Γ, w) = b1(Γ) +
∑

v∈V (Γ)

w(v) = b1(Γ) + |w|.

A weighted metric graph is defined exactly in the same way, assuming that Γ is a

metric graph to start with.

Definition 2.25. Let S ⊂ E(Γ) be a set of edges of a weighted graph (Γ, w).

Using the notations of subsection 2.8 we define the weighted contraction of S as

the weighted graph (Γ/S , w/S) where Γ/S is the contraction of S introduced in 2.8.

The weight function w/S is defined by setting, for every v ∈ V (Γ/S),

(2.26) w/S(v) = b1(σ−1(v)) +
∑

v∈σ−1
V (v)

w(v).

Example 2.27. Let S = {e}. If e is a loop based at a vertex v0, let v0 ∈ V (Γ/S)

be the image of v0, hence the image of the contracted loop e. Then w/S(v0) =

w(v0) + 1. Whereas for v ∈ V (Γ/S) with v 6= v0 we have w/S(v) = w(v). If e is

not a loop, then w/S(v) =
∑
v∈σ−1

V (v) w(v) for every v ∈ V (Γ/S).

Example 2.28. In the next picture we have two weighted contractions; the start-

ing graph (Γ, w) has all vertices of weight zero, represented by a “◦”, so that Γ has

genus 3. We first contract the non-loop edge e1, so that the weighted contraction

has again weight function equal to zero. Then we contract a loop edge, so that

the weighted contraction has one vertex of weight 1, represented by a “•”.

(Γ, w) = ◦

e1

◦ e2 // ◦ e2 // (Γ/e1,e2 , w/e1,e2) = •
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Remark 2.29. By the identities (2.9) and (2.10), we have

g(Γ/S , w/S) = g(Γ, w).

Let (Γ′, w′) be a weighted graph. We denote

(2.30) (Γ, w) ≥ (Γ′, w′) if (Γ′, w′) is a weighted contraction of (Γ, w).

The next definition generalizes [4, Def 3.1.3] (with changes in terminology).

Definition 2.31. An n-pointed (weighted) tropical curve of genus g is a triple

(Γ, w, `) where (Γ, w) is a weighted graph of genus g with legs L(Γ) = {x1, . . . , xn},
` a function ` : E(Γ) ∪ L(Γ)→ R>0 ∪ {∞} such that `(x) =∞ if and only if x is

a leg or an edge adjacent to 1-valent vertex of weight 0.

(As in Definition 2.15, the legs {x1, . . . , xn} are the marked points.)

If w(v) = 0 for every v ∈ V (Γ), we write w = 0 and (Γ, 0, `), and say that

the tropical curve is pure, consistently with Definition 2.15.

A tropical curve is called regular if it is pure and if Γ is a 3-regular graph

(every vertex has valence 3).

Two n-pointed tropical curves are tropically equivalent if they can be ob-

tained from one another by adding or removing 2-valent vertices of weight 0, or

1-valent vertices of weight 0 together with their adjacent edge.

The terminology “pure” tropical curve is useful to keep track of the original

definition, to connect to the pre-existing literature. The notion of regular tropical

curve, together with referring to the 3-regularity of its graph, suggests that, in

our view, pure tropical curves with a 3-regular graph play the role of regular (i.e.

smooth) curves in the moduli theory of algebraic curves; in fact, as we shall see,

regular tropical curves have the following property.

If a tropical curve C specializes to a regular one, then C itself is regular.

The same holds for nonsingular algebraic curves: if an algebraic curve X

specializes to a nonsingular one, then X is nonsingular. See Theorem 4.7 for more

on this point.

Observe, however, that in Section 5 we shall describe a scenario in which the

role of smooth algebraic curves is played by pure tropical curves.

Example 2.32. (This generalizes Example 2.18.) A graph made of one vertex of

weight g and no edges nor legs is a weighted tropical curve of genus g. If g ≤ 1 such

a curve is the specialization of the degenerate cases described in Example 2.18, and

will thus be excluded by our future numerical assumption, namely 2g− 2 +n > 0.

If g ≥ 2 these curves play a role and must be considered.

To study moduli of tropical curves we need to generalize Proposition 2.19,

which is straightforward, once we provide the correct replacement for graphs hav-

ing no vertex of valence less than 3. Here is how to do that:
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Definition 2.33. A weighted graph, or a metric weighted graph, is called stable4

if any vertex of weight 0 has valence at least 3, and any vertex of weight 1 has

valence at least 1.

For instance, (Γ, 0) is stable if and only if Γ has no vertex of valence ≤ 2. All

graphs in Example 2.21 are stable

Remark 2.34. If (Γ, w) is stable and (Γ′, w′) ≤ (Γ, w), then (Γ′, w′) is stable.

Now we can generalize Proposition 2.19. The proof is the same, provided

that “1-valent vertices” are replaced by “1-valent vertices of weight 0”, and hence

“leaves” are replaced by “edges adjacent to a 1-valent vertex of weight 0”.

Proposition 2.35. Assume 2g − 2 + n ≥ 1.

(1) Every tropical equivalence class of n-pointed, weighted tropical curves con-

tains a representative whose n marked points are disjoint.

(2) The set of tropical equivalence classes of n-pointed, weighted tropical curves

of genus g is in bijection with the set of stable metric weighted graphs of

genus g with n legs.

The following well known, elementary fact will be useful.

Lemma 2.36. Let (Γ, w) be a genus g stable graph with n legs. Then |E(Γ)| ≤
3g − 3 + n and equality holds if and only if Γ is a 3-regular graph with b1(Γ) = g.

Moreover, in such a case w = 0.

Proof. We use induction on n. Let us begin with the base case, n = 0. We have

g = b1(Γ) + |w| = |E(Γ)| − |V (Γ)|+ 1 + |w|; hence, as |w| ≥ 0,

|E(Γ)| = g − 1− |w|+ |V (Γ)| ≤ g − 1 + |V (Γ)|

and the maximum is achieved for |w| = 0. In this case g = b1(Γ) and every vertex

of Γ must have valence at least 3 (as (Γ, w) is stable), therefore

g = |E(Γ)| − |V (Γ)|+ 1 ≥ 3|V (Γ)|/2− |V (Γ)|+ 1 = |V (Γ)|/2 + 1

hence |V (Γ)| ≤ 2g − 2 and equality holds if and only if Γ is 3-regular. In such a

case we have |E(Γ)| = 3g − 3 and b1(Γ) = g.

Let us assume n > 0. Let (Γ, w) be a stable graph of genus g for which |E(Γ)|
is maximum. We can reduce to assume that {g, n} 6= {0, 3} and {g, n} 6= {1, 1}
by treating these trivial cases separately. Denote by (l1, . . . , ln) the legs of Γ. Let

Γ′ := Γ− ln, hence Γ′ has n− 1 legs, and same vertices and edges as Γ. We claim

that Γ′ is not stable. Indeed, if Γ′ is stable, we can construct a new stable graph

Γ′′, of genus g as follows. Pick an edge e′ ∈ E(Γ′), insert a weight-0 vertex u in

its interior, and add a leg adjacent to u. This gives a graph, stable of genus g and

4The terminology is motivated by the subsequent Remark 4.2.
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having a number of edges equal to |E(Γ)|+ 1. This contradicts the maximality of

|E(Γ)|.
So, Γ′ is not a stable graph; this means that the vertex v ∈ V (Γ) adjacent

to ln has weight 0 and valence 3. Now look at v as a vertex of Γ′; it has valence

2 and, by our reduction, Γ′ has either two distinct edges, or an edge and a leg,

adjacent to v. We consider the weighted contraction of Γ′ given by contracting an

edge adjacent to v. This is a stable graph, (Γ∗, w∗), of genus g. with n − 1 legs.

By induction we have |E(Γ∗)| = 3g − 3 + n − 1, moreover Γ∗ is 3-regular with

weight function constantly zero. But then

|E(Γ)| = |E(Γ∗)|+ 1 = 3g − 3 + n− 1 + 1 = 3g − 3 + n

and Γ is 3-regular by construction. The proof is complete. �

3. The moduli space of tropical curves

From now on, we shall assume 2g− 2 +n ≥ 1 and we shall consider weighted

tropical curves up to tropical equivalence. Hence, by Proposition 2.35 we can

identify our n-pointed tropical curves with stable metric graphs.

Everything we shall say about weighted tropical curves holds for pure tropical

curves, with obvious modifications.

3.1. Tropical curves with fixed combinatorial type

Definition 3.1. We say that two tropical curves (Γ, w, `) and (Γ′, w′, `′) with

n marked points L(Γ) = {x1, . . . , xn} and L(Γ′) = {x′1, . . . , x′n} are isomorphic,

and write (Γ, w, `) ∼= (Γ′, w′, `′), if there is an isomorphism α of the underlying

unweighted n-pointed curves (Γ, `) and (Γ′, `′) as in Definition 2.15, such that

∀v ∈ V (Γ) we have w(v) = w′(α(v)).

We write Aut(Γ, w, `) for the set of automorphisms of a tropical curve (Γ, w, `).

Let us fix a stable graph (Γ, w) of genus g with labeled legs L(Γ) = {x1, . . . , xn},
and let us introduce the set M trop(Γ, w) of isomorphism classes of n-pointed trop-

ical curves supported on (Γ, w). In order to study M trop(Γ, w), we introduce the

open cone

R(Γ, w) := RE(Γ)
>0 .

Any element in R(Γ, w) defines a unique metric graph supported on (Γ, w). There-

fore there is a natural surjection

(3.2) π : R(Γ, w) −→M trop(Γ, w);

it is clear that π(Γ, w, `) = π(Γ, w, `′) if and only if (Γ, w, `) ∼= (Γ, w, `′).

The closure of R(Γ, w) is, of course, the closed cone

R(Γ, w) = RE(Γ)
≥0 ⊂ RE(Γ).
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Let p ∈ R(Γ, w) rR(Γ, w) and, to simplify the notation, suppose that

p = (t1, . . . , tm, 0, . . . , 0)

with ti > 0 for all i = 1, . . . ,m, for some 0 ≤ m < |E(Γ)|. Let us show that there

is a unique n-pointed tropical curve (Γp, wp, `p) of genus g associated to p. Let

S = {em+1, . . . , e|E(Γ)|} ⊂ E(Γ) = {e1, . . . , e|E(Γ)|};

then (Γp, wp) = (Γ/S , w/S), i.e. (Γp, wp) is the weighted contraction of (Γ, w)

obtained by contracting S (defined in 2.25). We thus have a natural identification

E(Γp) = E(Γ) r S = {e1, . . . , em}.

The length function `p is defined by setting `p(ei) = ti for all ei ∈ E(Γp). As we

noticed in Remark 2.29, we have g = g(Γp, wp).

Summarizing: we showed that the boundary points of R(Γ, w) parametrize n-

pointed tropical curves of genus g whose underlying weighted graph is a contraction

of (Γ, w). More precisely, for any I ⊂ {1, 2, . . . , |E(Γ)|}, denote by R(Γ, w)I ⊂
R(Γ, w) the open face

R(Γ, w)I := {(t1, . . . , t|E(Γ)|) ∈ R(Γ, w) : ti = 0 ∀i ∈ I, ti > 0 ∀i 6∈ I}.

Next, write SI := {ei,∀i ∈ I} ⊂ E(Γ). We have proved the following.

Lemma 3.3. With the above notation, the partition

R(Γ, w) =
⊔

I⊂{1,2,...,|E(Γ)|}

R(Γ, w)I

is such that for every I there is a natural isomorphism R(Γ, w)I
∼= R(Γ′, w′) where

(Γ′, w′) = (Γ/SI , w/SI ).

Example 3.4. If I = E(Γ) then R(Γ, w)I = {0}, corresponding to the graph with

no edges, one vertex of weight g, and n legs. It is clear that this graph can be

obtained as weighted contraction from every genus g weighted graph.

Consider two points p1, p2 ∈ R(Γ, w). By what we said there exist two metric

weighted graphs associated to them, denoted (Γ1, w1, `1) and (Γ2, w2, `2). We have

an equivalence on R(Γ, w):

(3.5) p1 ∼ p2 if (Γ1, w1, `1) ∼= (Γ2, w2, `2).

The quotient with respect to this equivalence relation will be denoted

(3.6) π : R(Γ, w) −→M trop(Γ, w) := R(Γ, w)/ ∼

and M trop(Γ, w) is a topological space, with the quotient topology of the euclidean

topology on R(Γ, w) = RE(Γ)
≥0 . A precise description of the fibers of π is given in

Lemma 3.12 below.

What are the automorphisms of (Γ, w), and how do they act R(Γ, w)?
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Definition 3.7. Let (Γ, w) be a weighted graph with labeled legs L(Γ) = {x1, . . . , xn}.
An automorphism of (Γ, w) is an isomorphism, α, of Γ with itself as defined in

2.2, such that α(xi) = xi for every i = 1, . . . , n, and w(v) = w(α(v)) for every

v ∈ V (Γ). We denote by Aut(Γ, w) the group of automorphisms of (Γ, w).

Remark 3.8. If (Γ, w, `) is a pointed curve, then Aut(Γ, w, `) ⊂ Aut(Γ, w). The

automorphism group of a weighted graph, and of a tropical curve, is finite.

Now, Aut(Γ, w) is made of pairs α = (αV , αE) of permutations on the vertices

and the edges satisfying some compatibility conditions; in fact, by definition, α has

to fix the legs (i.e. with the notation of 2.2, αL = idL(Γ)). Therefore Aut(Γ, w) acts

on R(Γ, w) by permuting the coordinates according to αE , in particular, Aut(Γ, w)

acts as group of isometries.

Aut(Γ, w) may contain non-trivial elements acting trivially on R(Γ, w).

Example 3.9. The loop-inversion automorphism described in Example 2.6 acts

trivially on R(Γ, w).

Example 3.10. Assume L(Γ) = ∅ and V (Γ) = {v1, v2} with w(v1) = w(v2);

suppose E(Γ) = {e1, . . . , en} and let Γ have no loops, as in the picture below. So

(Γ, w) has genus n− 1 + |w|.

•
v1

en

v2

e2

e1

•

Now, Γ has an involution swapping v1 and v2, and every conjugate pair of

half-edges {h, h} (so that the edges are all fixed). This automorphism acts trivially

on R(Γ, w).

Denote by Sn the symmetric group, then

Aut(Γ, w) ∼= Sn × Z/2Z

where the Sn factor accounts for automorphisms permuting the edges, which

clearly act non-trivially on R(Γ, w).

Observe that if L(Γ) 6= ∅, or if w(v1) 6= w(v2), then Aut(Γ, w) ∼= Sn.

In the sequel we simplify the notation and set, for I ⊂ (1, . . . , |E(Γ)|),

(3.11) FI := R(Γ, w)I , and GI := Aut(Γ/SI , w/SI )

so that GI acts on FI (closure of FI in R(Γ, w)) by permuting the coordinates. As

FI varies among the (open) faces of R(Γ, w) it may very well happen that different
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faces correspond to isomorphic weighted graphs. Let us introduce some notation

to keep track of this fact. For a fixed I ⊂ {1, . . . , |E(Γ)|}, we denote

Iso(I) := {J ⊂ (1, . . . , |E(Γ)|) : (Γ/SJ , w/SJ ) ∼= (Γ/SI , w/SI )}.

Next, for every J ∈ Iso(I) we fix an isomorphism ΦJ : (Γ/SI , w/SI )→ (Γ/SJ , w/SJ ),

and the isometry

φJ : FI
∼=−→ FJ

induced by ΦJ . Notice that φJ is induced by a bijection between the natural

coordinates of FI and FJ . If I = J we shall assume that ΦI is the identity. For

every point p ∈ FI we denote Iso(p) := Iso(I).

Lemma 3.12. Let p ∈ R(Γ, w). Then

π−1(π(p)) = {gφJ(p), ∀J ∈ Iso(p), ∀g ∈ GJ}.

Proof. The inclusion π−1(π(p)) ⊃ {gφJ(p), ∀J ∈ Iso(p), ∀g ∈ GJ} is obvious, as

the set on the right parametrizes isomorphic metric weighted graphs.

Let FI be the face containing p. Let r ∈ R(Γ, w) be such that π(p) = π(r).

We have an isomorphism (Γp, wp, `p) ∼= (Γr, wr, `r), hence FI ∼= R(Γp, wp) ∼=
R(Γr, wr). Suppose first that r ∈ FI . Then the underlying weighted graph of p

and r is the same, namely (Γ/SI , w/SI ), and an isomorphism between them is an

element of Aut(Γ/SI , w/SI ) = GI preserving the lengths of the edges. In other

words, there exists g ∈ GI such that r = gp (recall that φI = IdFI ).

Now let FJ ∼= R(Γr, wr) be the face containing r, with J 6= I. Of course,

J ∈ Iso(p), hence we have an isometry φJ : FI → FJ , induced by an isomorphism

between the underlying graphs. It is clear that r′ := φJ(p) parametrizes a metric

weighted graph isomorphic to the one parametrized by p. Therefore π(r′) = π(r),

hence, by the previous part, there exists g ∈ GJ such that r = gr′ = gφJ(p). �

For any G acting on R(Γ, w) and any subset Z ⊂ R(Γ, w), we denote by

ZG ⊂ R(Γ, w) the union of the G-orbits of the elements in Z.

Proposition 3.13. Let (Γ, w) be a stable graph.

(1) There is a canonical decomposition (notation in (2.30))

M trop(Γ, w) =
⊔

(Γ′,w′)≤(Γ,w)

M trop(Γ′, w′),

where M trop(Γ, w) is open and dense in M trop(Γ, w).

(2) The quotient map π : R(Γ, w)→M trop(Γ, w) factors as follows:

π : R(Γ, w)
τ−→ R(Γ, w)/Aut(Γ, w)

γ−→M trop(Γ, w).

Moreover τ is open and π has finite fibers.

(3) M trop(Γ, w) is a Hausdorff topological space.



22 Algebraic and tropical curves: comparing their moduli spaces

Proof. The existence of the decomposition is a straightforward consequence of the

definition of M trop(Γ, w) and of Lemma 3.3.

Recall from (3.2) that M trop(Γ, w) = R(Γ, w)/ ∼. Now R(Γ, w) is open and

dense in R(Γ, w) and we have π−1(M trop(Γ, w)) = R(Γ, w). Therefore M trop(Γ, w)

is open and dense in M trop(Γ, w).

Now let G := Aut(Γ, w). The restriction of π to R(Γ, w) is the quotient

π : R(Γ, w)→M trop(Γ, w) = R(Γ, w)/G, so in this case part (2) is proved.

Let now p ∈ R(Γ, w)I with I 6= ∅ (cf. Lemma 3.3). Then p = (t1, . . . , t|E(Γ)|)

with ti = 0 for every i ∈ I, and ti > 0 otherwise. Let α ∈ G, then α acts as a

permutation on {1, . . . , |E(Γ)|}, hence

α(p) = (tα−1(1), . . . , tα−1(|E(Γ)|)) ∈ R(Γ, w)α(I),

where α(I) = {α(i), ∀i ∈ I} ⊂ {1, 2, . . . , |E(Γ)|}. Let S = SI ⊂ E(Γ) and α(S) ⊂
E(Γ) be the set of edges corresponding, respectively, to I and α(I). Lemma 3.3

and the discussion preceding it yield

R(Γ, w)I = R(Γ/S , w/S), R(Γ, w)α(I) = R(Γ/α(S), w/α(S)).

The automorphism α maps S into α(S), hence it induces an isomorphism

α : Γ/S
∼=−→ Γ/α(S).

Moreover, α (as any automorphism of any graph) maps bijectively cycles to cycles,

therefore α induces an isomorphism (Γ/S , w/S) ∼= (Γ/α(S), w/α(S)). Finally, the

point p corresponds to a metric graph on (Γ/S , w/S) with length function `(ei) = ti
for every i 6∈ I (we have E(Γ/S) = E(Γ)rS); it is clear that α(p) corresponds to a

metric graph on (Γ/S , w/S) with length α(`) given by α(`)(eα(i)) = tα−1(α(i)) = ti
for every i 6∈ I. But then p and α(p) parametrize isomorphic metric weighted

graphs. Therefore π(p) = π(α(p)) and the factorization of part (2) is proved.

The fact that τ is open follows easily from G being a finite group of isometries

of R(Γ, w). Similarly, we easily get that R(Γ, w)/Aut(Γ, w) is Hausdorff.

The fibers of π are finite by lemma 3.12.

It remains to show that M trop(Γ, w) is Hausdorff; to do that we will use the

notation (3.11). Let p and q be two distinct points in M trop(Γ, w). Set π−1(p) =

{p1, . . . , pm} and π−1(q) = {q1, . . . , qn}. There exists an ε > 0 small enough that

the following holds.

(1) For every i, j the open balls Bpi(ε) and Bqj (ε) do not intersect each other.

(2) If FI ∩Bpi(ε) 6= ∅ then pi ∈ FI . Similarly, if FI ∩Bqj (ε) 6= ∅ then qj ∈ FI .
We now set

U := ∪mi=1Bpi(ε) ∩R(Γ, w) and V := ∪nj=1Bqj (ε) ∩R(Γ, w).

It is clear that U and V are open subsets of R(Γ, w); moreover U ∩ V = ∅,
by (1) above. We claim that

(3.14) π−1(π(U)) = U and π−1(π(V )) = V.
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To prove it we set some simplifying conventions. Pick I ⊂ {1, . . . , |E(Γ)|}
and consider the group GI , which acts on FI . Consider also, for every J ∈ Iso(I),

the isometry φJ : FI → FJ (cf. Lemma 3.12). We extend to R(Γ, w) the action

of GI and the map φJ as follows. For every p ∈ R(Γ, w) r FI , every g ∈ GI and

every φJ as above, we set gp = p and φJ(p) = p. Now, by Lemma 3.12 to prove

the claim it suffices to prove the following two facts.

(a) For every I and every g ∈ GI we have Ug ⊂ U .

(b) For every u ∈ U and every J ∈ Iso(u) we have φJ(U) ⊂ U .

Pick I and g ∈ GI ; as g acts as the identity away from FI we can assume

that FI ∩U 6= ∅, i.e. that there exists pi such that FI ∩Bpi(ε) 6= ∅. By (2) above,

this implies that pi ∈ Fi; hence gpi ∈ π−1(p) and

(FI ∩Bpi(ε))g = FI ∩Bgpi(ε) ⊂ U

(as GI preserves the metric of Fi). This proves (a). To prove (b), let u ∈ U ∩ FI ,
let J ∈ Iso(u) and let φJ : FI → FJ . As before, there exists pi such that

u ∈ FI ∩Bpi(ε). Therefore

φJ(FI ∩Bpi(ε)) = FJ ∩BφJ (pi)(ε).

By what we proved before, π(pi) = π(φJ(pi)), hence FJ ∩BφJ (pi)(ε) ⊂ U . Now (b)

is proved, and claim (3.14) with it. This yields that π(U) and π(V ) are open and

disjoint in M trop(Γ, w). Since obviously p ∈ π(U) and q ∈ π(V ) we are done. �

Remark 3.15. The map γ in Proposition 3.13 (2) identifies isomorphic curves

which are not identified by the automorphisms of (Γ, w). The point is: in general,

Aut(Γ, w) does not induce every automorphism of its weighted contractions, nor

does it induces all the isomorphisms between its weighted contractions.

For instance, consider the graph (Γ, w) in Example 2.28. Then the graph

in the middle of the picture, (Γ/e1 , w/e1), has an S3 of automorphisms permuting

its three loops; these automorphisms act non trivially on R(Γ, w), and are not all

induced by automorphisms of (Γ, w).

Next, contracting any one of the three loops of (Γ/e1 , w/e1) gives three iso-

morphic graphs (one of which is drawn at the right of that picture). It is clear

that Aut(Γ, w) does not act transitively on them.

3.2. Construction and properties of M trop
g,n

We shall now construct the moduli space of n-pointed tropical curves of genus

g, M trop
g,n , as a topological space. Recall that we always assume 2g − 2 + n ≥ 1.

We set (denoting by “∼=” isomorphism of tropical curves)

(3.16) M trop
g,n :=

( ⊔
Γ 3−regular

b1(Γ)=g,|L(Γ)|=n

M trop(Γ, 0)
)
/ ∼= .
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Remark 3.17. Consider the quotient map

(3.18) πg :
⊔

Γ 3−regular

b1(Γ)=g,|L(Γ)|=n

M trop(Γ, 0) −→M trop
g,n .

If Γ is 3-regular with b1(Γ) = g, then π−1
g (πg([(Γ, 0, `)])) = [(Γ, 0, `)].

Comparing with (3.6) we have another description of M trop
g,n :

(3.19) M trop
g,n =

( ⊔
Γ 3−regular

b1(Γ)=g,|L(Γ)|=n

R(Γ, 0)
)
/ ∼ .

M trop
g,n is defined as the topological quotient space of a topological space; the two

expressions of M trop
g,n as a quotient clearly yield the same topology.

Remark 3.20. M trop
g,n is connected. Indeed, every M trop(Γ, 0) appearing in (3.16)

is connected and contains the point parametrizing the metric weighted graph with

no edges and one vertex of weight g; see Example 3.4.

Theorem 3.21. Assume 2g − 2 + n ≥ 1.

(1) The points of M trop
g,n bijectively parametrize isomorphism classes of n-

pointed tropical curves of genus g (up to tropical equivalence).

(2) Let M reg
g,n ⊂M trop

g,n be the subset parametrizing regular curves, i.e.

M reg
g,n =

⊔
Γ 3−regular

b1(Γ)=g,|L(Γ)|=n

M trop(Γ, w) ⊂M trop
g,n ,

and M reg
g,n is open and dense.

(3) Let Mpure
g,n be the subset parametrizing pure tropical curves. Then Mpure

g,n

is open and dense.

(4) M trop
g,n is Hausdorff.

Proof. Let (Γ, w, `) be a stable metric graph of genus g with n legs, and let us

prove that its isomorphism class corresponds to a point in M trop
g,n . This amounts

to showing that (Γ, w, `) is in the closure of R(Γ0, 0) for some 3-regular graph Γ0

with b1(Γ0) = g. In other words, by Lemma 3.3, we must prove that (Γ, w) is a

weighted contraction of (Γ0, 0), with Γ0 a 3-regular graph.

Suppose first that w = 0. A proof of this fact is the proof of [7, Prop.

A.2.4](that Proposition is concerned with 3-edge-connected curves, but the proof

is easily seen to work in this case).

We continue by induction on |w|, the basis being the case w = 0, which we

just did. Let us now assume that w(v1) ≥ 1 for some v1 ∈ V (Γ). Let (Γ′, w′) be

the genus g stable graph defined as follows: Γ′ is obtained from Γ by just adding a

loop, e0, based at v1. Therefore we have V (Γ′) = V (Γ) and E(Γ′) = E(Γ) ∪ {e0}.
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Now let

w′(v) =

{
w(v) if v 6= v1

w(v1)− 1 otherwise.

It is clear that (Γ, w) is a weighted contraction of (Γ′, w′), indeed

(Γ, w) = (Γ′/e0, w
′/e0).

We can apply induction, as |w′| = |w| − 1; hence (Γ′, w′) is a weighted contraction

of (Γ0, 0) for some 3-regular graph Γ0, i.e (Γ′, w′) = ((Γ0)/S , 0/S) for some S ⊂
E(Γ0). Now, e0 ∈ E(Γ′) ⊂ E(Γ0), hence, denoting S0 = {e0} ∪ S, we have

(Γ, w) = (Γ0 /S0
, 0/S0

). The first part is proved.

Let us prove (2); the description of M reg
g,n follows from Lemma 2.36. Now fix

a 3-regular graph Γ; by Proposition 3.13 we know that M trop(Γ, 0) is open and

dense in M trop(Γ, 0). Consider the definition of M trop
g,n given in (3.16). Pick a point

[(Γ, 0, `)] ∈ M trop(Γ, 0); by Remark 3.17, the the map πg induces a homeomor-

phism of M trop(Γ, 0) with its image such that

π−1
g (πg(M

trop(Γ, 0)) = M trop(Γ, 0).

ThereforeM trop(Γ, 0) is open inM trop
g,n . Moreover, the union of theM trop(Γ, 0)

as Γ runs through all 3-regular graphs with b1(Γ) = g is obviously dense in M trop
g,n .

Therefore the above union is open and dense.

Now (3). We have, of course

M reg
g,n ⊂Mpure

g,n ⊂M trop
g,n .

Hence Mpure
g,n is dense by part (2). Now recall that

Mpure
g,n = {[(Γ, w, `)] : b1(Γ) = g} = {[(Γ, w, `)] : |w| = 0}.

Let us denote by R(Γ, w)+ ⊂ R(Γ, w) the union of all loci corresponding to

weighted graphs (Γ′, w′) such that b1(Γ′) < g (cf. Lemma 3.3). The set R(Γ, w)+

is closed, as the first Betti number does not grow under edge contraction. Hence

its complement, the locus parametrizing pure tropical curve, is open. Hence the

locus in M trop(Γ, 0) corresponding to pure tropical curves is also open.

Let now p ∈ Mpure
g,n ⊂ M trop

g,n and let (Γp, 0) be its supporting graph. For

every 3-regular graph Γ with b1(Γ) = g let pΓ ∈ M trop(Γ, 0) be the preimage of

p. By what we just said pΓ admits an open neighborhood UΓ ⊂ M trop(Γ, 0) such

that UΓ parametrizes only pure tropical curves. Up to shrinking each UΓ around

pΓ we can assume that πg(UΓ) = πg(UΓ′) for all such Γ and Γ′. But then

πg(∪UΓ) ⊂Mpure
g,n , and π−1

g (πg(∪UΓ)) = ∪UΓ

where the union is over all 3-regular graphs Γ with b1(Γ) = g. This implies that

πg(∪UΓ) is an open neighborhood of p all contained in Mpure
g,n . Part (3) is proved.

Finally, let us show that M trop
g,n is Hausdorff. The quotient map πg (3.18)

induces a bijection of M trop(Γ, 0) with its image. Therefore, by Proposition 3.13,
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M trop
g,n is obtained by gluing together finitely many Hausdorff spaces. Let p, q ∈

M trop
g,n ; for every 3-regular Γ with b1(Γ) = g let pΓ = M trop(Γ, 0) ∩ π−1

g (p) and

qΓ = M trop(Γ, 0) ∩ π−1
g (q) and pick, in the Hausdorff space M trop(Γ, 0), disjoint

open neighborhoods of the two points: pΓ ∈ UΓ, qΓ ∈ VΓ. If π−1
g (p) doesn’t

intersect M trop(Γ, 0) we don’t do anything, similarly for q. Arguing as before, we

can assume that πg(UΓ) = πg(UΓ′) for all Γ and Γ′ as above, hence πg(UΓ) is open;

similarly for VΓ. Then, πg(UΓ) and πg(VΓ) are open disjoint neighborhoods of p

and q in M trop
g,n . �

3.22. For every stable graph (Γ, w) as above, the space M trop(Γ, w) is the quotient

of the topological manifold R(Γ, w) by the finite group Aut(Γ, w). Its dimension

is defined as follows:

dimM trop(Γ, w) := dimR(Γ, w) = |E(Γ)|.

More generally, let X be a topological space containing a dense open subset

which is an orbifold of dimension n (locally the quotient of an n-dimensional

topological manifold by a finite group); then we say that X has pure dimension n.

Remark 3.23. M trop
g,n has pure dimension equal to 3g − 3 + n.

Indeed, by Theorem 3.21 the moduli space of regular curves, M reg
g,n , is open

and dense in M trop
g,n . Now, M reg

g,n is the disjoint union of finitely many spaces of

type M trop(Γ, w). By what we just observed, each of these spaces has dimension

|E(Γ)|; by Lemma 2.36 we have |E(Γ)| = 3g − 3 + n.

Example 3.24. Suppose g = 1, hence n ≥ 1. The case n = 1 is very simple:

M trop
1,1 is homeomorphic to R≥0 with the point 0 identified with the curve with no

edges and a vertex of weight 1 (see Figure 5). In the next pictures we list all the

combinatorial types in cases n = 1 and n = 3; the 0-weight vertices are pictured as

“◦”, whereas the 1-weight vertices are pictured as “•”, together with a “+1” next

to them. The dashed arrows represent specializations, i.e. weighted contractions.

◦ // •+1

dim 1 dim 0

Figure 5. The case g = 1, n = 1
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Next is the case n = 3. It is clear that M trop
1,3 is not a manifold. In the

picture the notation “×2”, or “×3”, next to a specialization arrow means that the

specialization is obtained in two, or three, different ways, i.e. by contracting two,

or three, different edges.

◦
◦ ◦ ◦ ◦ dim 3

◦

�� $$ ��
×2 ×3

◦ ◦ ◦ ◦ dim 2

�� !! ��
×2

•+1 ◦ ◦ dim 1

�� ��

• +1 dim 0

Figure 6. The case g = 1, n = 3

3.3. Compactification of the moduli space of tropical curves

In this subsection we describe a natural compactification of the moduli space

of tropical curves, following an indication of G.Mikhalkin (see [22] for example).

Definition 3.25. A generalized, n-pointed tropical curve (up to tropical equiva-

lence) of genus g will be a triple (Γ, w, `) where (Γ, w) is a stable graph of genus

g with n labeled legs, and

` : E(Γ) ∪ L(Γ)→ R>0 ∪ {∞}

is a length function on the edges such that `(x) =∞ for every x ∈ L(Γ).
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Thus the “generalization” consists in allowing the length of any edge to be

infinite.

Remark 3.26. In the sequel, we view R ∪ {∞} as a topological space with the

Alexandroff one-point topology (i.e. the open sets are all the usual open subsets

of R, and all the complements of compact subsets of R). Therefore, for every

n the spaces (R ∪ {∞})n are compact, Hausdorff spaces. Hence also the spaces

(R≥0 ∪ {∞})n are are compact and Hausdorff.

The definitions of isomorphism, or automorphism, of generalized tropical

curves are given exactly in the same way as for tropical curves. In particular, the

automorphism group of a generalized tropical curve is finite. For a stable graph

(Γ, w) we denote

R∞(Γ, w) := (R>0 ∪ {∞})E(Γ);

every element in R∞(Γ, w) corresponds to a generalized tropical curve whose un-

derlying graph is (Γ, w). We extend the notation for tropical curves as follows. We

write M trop
∞ (Γ, w) for the set of isomorphism classes of generalized tropical curves

having (Γ, w) as underlying graph; hence we have a surjection

R∞(Γ, w) −→M trop
∞ (Γ, w).

The closure of R∞(Γ, w) inside (R ∪ {∞})E(Γ) is denoted by

R∞(Γ, w) := (R≥0 ∪ {∞})E(Γ).

Lemma 3.3 trivially extends, so that we have a decomposition

R∞(Γ, w) =
⊔

I⊂{1,2,...,E(Γ)}

R∞(Γ, w)I

where for every I we have R∞(Γ, w)I
∼= R∞(Γ/SI , w/SI ).

We continue by introducing the quotient space

π∞ : R∞(Γ, w) −→M trop
∞ (Γ, w) := R∞(Γ, w)/ ∼

where p1 ∼ p2 if and only if the generalized tropical curves parametrized by p1 and

p2 are isomorphic. Naturally, M trop
∞ (Γ, w) is endowed with the quotient topology

induced by R∞(Γ, w). The finite group Aut(Γ, w) acts on R∞(Γ, w) by permuting

the coordinates, and hence it acts as group of homeomorphisms. Proposition 3.13

extends:

Proposition 3.27. Let (Γ, w) be a stable graph.

(1) There is a decomposition

M trop
∞ (Γ, w) =

⊔
(Γ′,w′)≤(Γ,w)

M trop
∞ (Γ′, w′),

where M trop
∞ (Γ, w) is open and dense in M trop

∞ (Γ, w).

(2) The map π∞ has finite fibers.
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(3) M trop
∞ (Γ, w) is a compact Hausdorff topological space.

Proof. The only new statement with respect to Proposition 3.13 is the compactness

of M∞(Γ, w), which follows from its being a quotient of the compact topological

space R∞(Γ, w).

For the rest, it suffices to explain what needs to be modified in the proof

of Proposition 3.13, whose notation we continue to use here. One easily checks

that the only part where some changes are needed is the proof of Hausdorffness.

Indeed, we need to replace the open neighborhoods Bp(ε) with neighborhoods of a

different type. To do that, pick a point p = (t1, . . . , t|E(Γ)|) ∈ R∞(Γ, w), and any

pair of positive real numbers ε, η; we define the following open neighborhood of p

Ap(ε, η) =

|E(Γ)|∏
j=1

Ap(ε, η)j ⊂ (R≥0 ∪ {∞})E(Γ)

where Ap(ε, η)j ⊂ R≥0 ∪ {∞} is the following open subset

Ap(ε, η)j =

{
(tj − ε, tj + ε) ∩ R≥0 if tj ∈ R
R≥0 ∪ {∞}r [−η,+η] if tj =∞.

It is clear that Ap(ε, η) is open for all p, ε and η as above.

Now we show that M trop
∞ (Γ, w) is Hausdorff, by small modifications of the

proof of Proposition 3.13. Let p and q be two distinct points in M∞(Γ, w). Let

π−1
∞ (p) = {p1, . . . , pn} and π−1

∞ (q) = {q1, . . . , qm}. It is easy to check that there

exist ε ∈ R>0 small enough and η ∈ R big enough so that

(1) Api(ε, η) ∩Aqj (ε, η) = ∅ for every i = 1, . . . , n and j = 1, . . . ,m.

(2) If F∞,I ∩Api(ε, η) 6= ∅ then pi ∈ F∞,I . If F∞,I ∩Aqj (ε, η) 6= ∅ then qj ∈ F∞,I ,
where F∞,I := R∞(Γ, w)I .

Set U := ∪ni=1Api(ε, η) and V = ∪mj=1Aqj (ε, η). It is clear that U and V are

open and disjoint. We claim that

(3.28) π−1
∞ (π∞(U)) = U and π−1

∞ (π∞(V )) = V.

The proof is identical to the proof of the analogous claim used for Proposition 3.13.

And (3.28) implies the statement, as in Proposition 3.13. �

Similarly to what we did in (3.21) we set

(3.29) M trop
g,n :=

( ⊔
Γ 3−regular

b1(Γ)=g

M trop
∞ (Γ, 0)

)
/ ∼=

where ∼= is isomorphism of generalized tropical curves. We obviously have a quo-

tient map extending the map (3.18)

πg :
⊔

Γ 3−regular

b1(Γ)=g

M trop
∞ (Γ, 0) −→M trop

g,n ⊃M trop
g,n
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so that M trop
g,n has the quotient topology induced by πg. If Γ is a 3-regular graph

with b1(Γ) = g, then π−1
g (πg([(Γ, 0, l)])) = [(Γ, 0, l]). Extending Theorem 3.21 we

have

Theorem 3.30. Let g ≥ 2. The points of M trop
g,n bijectively parametrize isomor-

phism classes of generalized n-pointed tropical curves of genus g. The topologi-

cal space M trop
g,n is compact and Hausdorff. Furthermore, it has pure dimension

3g − 3 + n and it is connected through codimension one5.

Proof. By Proposition 3.27 the spaces M trop
∞ (Γ, 0) are all compact. Therefore

M trop
g,n is the quotient of a compact space (the union in (3.29) is finite) and hence it

is compact. The proof of its being connected through codimension one is the same

as for M trop
g,n , given in 4.11; indeed that proof is concerned with the underlying

weighted graphs, and completely ignores the length function. The proof of its

being Hausdorff is a simple modification of the proof of Theorem 3.21, along the

same lines as the modifications used to prove Proposition 3.27 �

4. Comparing moduli spaces.

4.1. Dual graph of a curve and combinatorial partition of Mg,n.

We now recall the definition of a useful graph associated to a pointed nodal

curve (X, p) = (X; p1, . . . , pn).

Definition 4.1. The (weighted) dual graph of (X, p) is the weighted graph (Γ(X,p), w(X,p))

with n legs such that Γ(X,p) has a vertex for every irreducible component of X and

an edge for every node of X joining the two (possibly equal) vertices corresponding

to the components on which the node lies; for every point pi there is a leg of Γ(X,p)

adjacent to the vertex corresponding to the component containing pi. The weight

function w(X,p) assigns to every vertex the geometric genus of the corresponding

component.

So the (arithmetic) genus g of X is the same as that of its dual graph

g = b1(Γ(X,p)) +
∑

v∈V (Γ(X,p))

w(X,p)(v) = g(Γ(X,p), w(X,p)).

Remark 4.2. The n-pointed curve (X; p) is stable if and only if its weighted dual

graph (Γ(X,p), w(X,p)) is stable.

Example 4.3. Assume g = 0 and n = 4. We described all stable 4-pointed

rational curves in Example 1.5. Their dual graphs are pictured in Example 2.21.

5See Definition 4.10



Lucia Caporaso 31

Now, for any stable graph (Γ, w) of genus g with n labeled legs, we denote

by Cg(Γ, w) ⊂Mg,n the “combinatorial” locus of n-pointed curves with (Γ, w) as

dual graph:

Cg(Γ, w) := {(X; p) ∈Mg,n : (Γ(X,p), w(X,p)) = (Γ, w)}6.

The following is the combinatorial partition of Mg,n:

(4.4) Mg,n =
⊔

(Γ,w) stable, n legs, genus g

Cg(Γ, w).

The next well known fact is an easy consequence of Fact 1.2.

Lemma 4.5. Assume 2g − 2 + n > 0. Then for any stable graph of genus g with

n legs, (Γ, w), we have that Cg(Γ, w) is an irreducible quasiprojective variety and

its codimension in Mg,n is equal to |E(Γ)|.

Proof. Set δ := |E(Γ)| > 0 (otherwise we have a special case of 1.2). Pick a curve

(X; p) ∈ Cg(Γ, w), denote by C1, . . . , Cγ its irreducible components, and let ni be

the number of marked points contained in Ci, so that
∑γ

1 ni = n.

Our (X; p) determines, for every i = 1, . . . , γ, a nonsingular curve of genus

gi with ni + δi marked points in it, (Cνi ; p(i)), where ν : tγ1Cνi → X denotes the

normalization of X and

δi := |ν−1(Xsing) ∩ Cνi |.

Moreover, as we observed in Remark 1.8, we have that (Cνi ; p(i)) is a stable curve,

i.e. (Cνi ; p(i)) ∈ Mgi,ni+δi . Once we have such γ pointed curves, the gluing data

of ν−1(Xsing) are uniquely determined by the graph Γ. We conclude that there is

a surjective morphism

Mg1,n1+δ1 × . . .×Mgγ ,nγ+δγ −→ Cg(Γ, w).

The above morphism extends to Mg1,n1+δ1 × . . . ×Mgγ ,nγ+δγ → Mg,n and

Cg(Γ, w) is open in its image; hence Cg(Γ, w) is quasiprojective. Now for every i,

Fact 1.2 applies, hence Mgi,ni+δi is irreducible of dimension 3gi−3+ni+ δi for all

i = 1, . . . , γ. Hence Cg(Γ, w) is irreducible. Since the above surjection has clearly

finite fibers we get

dimCg(Γ, w) =

γ∑
i=1

(3gi − 3 + ni + δi) = 3

γ∑
i=1

gi − 3γ + n+ 2δ

(since
∑γ
i=1 δi = 2δ). Now g =

∑γ
i=1 gi + δ − γ + 1 hence

dimCg(Γ, w) = 3g − 3δ + 3γ − 3− 3γ + n+ 2δ = 3g − 3 + n− δ.

�

6The subscript “g” in Cg(Γ, w) is redundant; we use it merely as a mark of the algebraic

setting versus the tropical setting.
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4.2. Partition analogies

By Theorem 3.21 and Proposition 3.13 we have on M trop
g,n a partition similar

to (4.4)

(4.6) M trop
g,n =

⊔
(Γ,w) stable, n legs, genus g

M trop(Γ, w).

In the next statement we highlight some topological and combinatorial analogies

which, undoubtedly, are known to the experts. We include a (partial) proof, as

we believe it is quite instructive. By dimCg(Γ, w) we mean the dimension as an

algebraic variety, while by codimM trop(Γ, w) we mean the orbifold codimension

in M trop
g,n .

Theorem 4.7. Assume 2g − 2 + n ≥ 1. Consider the partitions (4.4) and (4.6),

and the bijection

Cg(Γ, w) 7→M trop(Γ, w)

where (Γ, w) varies among stable graphs of genus g with n legs. Them the following

properties hold.

(1) dimCg(Γ, w) = codimM trop(Γ, w) = 3g − 3 + n− |E(Γ)|.
(2) With the notation (2.30),

Cg(Γ, w) ⊂ Cg(Γ′, w′)⇔M trop(Γ′, w′) ⊂M trop(Γ, w)⇔ (Γ, w) ≥ (Γ′, w′).

(3) Let (Γ, w) be such that E(Γ) 6= ∅. Then there exists a stable graph

(Γ′, w′) with |E(Γ′)| = |E(Γ)| − 1 such that Cg(Γ, w) ⊂ Cg(Γ′, w′) and

M trop(Γ′, w′) ⊂M trop(Γ, w).

Proof. For (1), the statement about Cg(Γ, w) follows from Lemma 4.5. On the

other hand, we observed above that dimM trop(Γ, w) = |E(Γ)|; hence we get

codimM trop(Γ, w) = dimM trop
g,n − |E(Γ)| = 3g − 3 + n− |E(Γ)|.

Now (2), whose second double implication follows from Proposition 3.13(1).

We give the proof of the remaining part only in case n = 0, leaving the (straight-

forward) generalization to the reader.

Let X ∈ Cg(Γ, w) be a stable curve; if X lies in the closure of Cg(Γ
′, w′)

there exist families of curves with dual graph (Γ′, w′) specializing to X. We pick

one of these families, f : X → B with a one dimensional base B with a marked

point b0, so that the fiber of f over every b 6= b0 is a stable curve Xb ∈ Cg(Γ, w),

while the fiber over b0 is isomorphic to X.

Under such a specialization every node of Xb specializes to a node of X, and

distinct nodes specialize to distinct nodes. This singles out a set T ⊂ E(Γ) of

nodes of X, namely T is the set of nodes that are specializations of nodes of Xb.

Let S = E(Γ)rT , so S parametrizes the nodes of X that do not come from nodes

of Xb. Consider the graph (Γ/S , w/S); we claim that (Γ/S , w/S) = (Γ′, w′). To

prove it we shall use the notation of Definition 2.25.



Lucia Caporaso 33

By construction we have a bijection between E(Γ′) and E(Γ/S) = T , mapping

an edge of Γ′, i.e. a node of X ′, to the node in X to which it specializes.

The total space X of our family of curves is singular along the nodes of the

fibers Xb, for b 6= b0. Let us desingularize X at such loci (exactly |T | of them); we

thus obtain a new family Y → B whose fiber over b 6= b0 is the normalization of

Xb. The fiber over b0 is the partial normalization of X at T , which we denote by

Y ; so its dual graph satisfies

ΓY = Γ− T.

Notice that Y → B is a union of families parametrized by the irreducible compo-

nents of Xb, i.e. by the vertices of Γ′. Let us denote these families by Y(v′)→ B.

So if b 6= b0 the fiber of Y(v′) over b is the smooth irreducible component corre-

sponding to v′ ∈ V (Γ′). The fiber over b0 of Y(v′)→ B is a connected component

of Y , which we denote Y (v′). Of course Y (v′) determines a set of vertices of Γ

(those corresponding to its components). Now notice that two different vertices

of Γ′ determine in this way disjoint sets of vertices of Γ. Therefore we have a

surjection φ : V (Γ)→ V (Γ′) mapping each vertex v to the vertex v′ such that the

component corresponding to v lies in Y (v′). It is clear that φ(v1) = φ(v2) if and

only if v1 and v2 belong to the same connected component of Γ r T . Therefore

φ is the same map as the map σV : V (Γ) → V (Γ/S). This shows that V (Γ′)

and V (Γ/S) are in natural bijection, and hence that Γ′ ∼= Γ/S . Finally, since

the arithmetic genus of a family of algebraic curves is constant, we have, for any

v′ ∈ V (Γ′), that the genus of the component corresponding to v′, i.e. the weight

w′(v′), is equal to the arithmetic genus of the limit curve Y (v′). Therefore

w′(v′) = b1(ΓY (v′)) +
∑

v∈σ−1
V (v′)

w(v) = b1(σ−1(v′)) +
∑

v∈σ−1
V (v′)

w(v).

By (2.26) the weight function w′ coincides with w/S ; so we are done.

Conversely, suppose that (Γ, w) ≥ (Γ′, w′) with (Γ′, w′) = (Γ/S , w/S) for

some S ⊂ E(Γ); let T := E(Γ) r S. We shall show how to reverse the procedure

we just described. Let X ∈ Cg(Γ, w) and let Y → X be the normalization of X

at T , so that ΓY = Γ − T . Notice that Y is endowed with |T | pairs of smooth

distinguished points, namely the branches over the nodes in T , and it is thus a

disjoint union of stable pointed curves. Therefore, by Remark 1.8, there exists

a family of curves Y → B with |T | pairs of disjoint sections (with dimB = 1,

b0 ∈ B, and Y a possibly disconnected surface) whose fiber over b0 is Y (as a

pointed curve) and whose fiber over b 6= b0 is a disjoint union of smooth curves

with 2|T | distinct points. We let X be the surface obtained by gluing together the

|T | pairs of sections. It is clear that X is a family of nodal curves over B, whose

fiber over b0 is X and whose fiber over b 6= b0 lies in Cg(Γ
′, w′).

Now (3). Let e ∈ E(Γ) and set (Γ′, w′) = (Γ/e, w/e). Then (Γ′, w′) is stable

and |E(Γ′)| = |E(Γ)| − 1. By (2) we are done. �
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Corollary - Definition 4.8. The k-dimensional stratum of the combinatorial

partition of Mg,n given in (4.4) is defined as the following closed subscheme of

Mg,n:

(4.9) C(k)
g :=

⊔
dimCg(Γ,w)=k

Cg(Γ, w) =
⊔

dimCg(Γ,w)≤k

Cg(Γ, w).

4.3. Connectedness properties.

The next definition is adapted from [20, Definition 3.3.2].

Definition 4.10. Let X be a topological space of pure dimension d; see 3.22.

Assume that X is endowed with a decomposition X = ti∈IXi, where every Xi is

a connected orbifold. We say that X is connected through codimension one if the

subset ⊔
i∈I:dimXi≥d−1

Xi ⊂ X

is connected.

Connectedness through codimension one is a strong form of connectedness (if

X is connected through codimension one, it is also connected). Tropical varieties

(associated to prime ideals) have this property, which in fact is a fundamental one;

see the Structure Theorem in [20, Ch. 3].

Although M trop
g,n is not a tropical variety in general, we may still wonder

whether M trop
g,n is connected through codimension one. The answer is yes (see [4]

for the unpointed case). The second part of the next proposition may be known,

although we don’t have a reference; our proof shows that it is a simple consequence

of the first part, so that it is a good illustration of the interplay between the

combinatorial and the algebro-geometric point of view.

Proposition 4.11. (1) M trop
g,n is connected through codimension one.

(2) If k ≥ 1 the k-dimensional stratum C
(k)
g of the combinatorial partition of

Mg,n is connected.

Proof. By Theorem 4.7, the second part in case k = 1 is an immediate consequence

of the first, and the case k ≥ 2 follows from it.

So, let us concentrate on the tropical moduli space. We saw in 3.23 that

M trop
g,n is of pure dimension 3g − 3 + n. We know that (4.6) is a decomposition of

M trop
g,n as disjoint union of orbifolds of known dimensions. We must therefore show

that its subset ⊔
codimMtrop(Γ,w)≤1

M trop(Γ, w) =
⊔

|E(Γ)|≥3g−4+n

M trop(Γ, w)

is connected. Recall that in the above decomposition the top dimensional orbifolds,

of dimension 3g − 3 + n, are precisely the ones for which Γ is a 3-regular graph.

To prove the statement we apply the following result of Hatcher-Thurston [18,
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Prop. page 236] (a purely combinatorial proof, with other applications to moduli

of tropical curves, may be found in [5]):

Fact 4.12. Let Γ and Γ′ be two 3-regular connected graphs of the same genus, free

from legs. Then there exists a finite sequence

(4.13) Γ = Γ1

##

Γ3

~~   

. . . . . . Γ2h+1 = Γ′

yy
Γ2 . . . Γ2h

where every arrow is the map contracting precisely one edge which is not a loop.

Moreover, every odd-indexed graph in the diagram above is 3-regular.

More precisely, every even-indexed graph above satisfies

Γ2i = (Γ2i−1)/e = (Γ2i+1)/e′

with e ∈ E(Γ2i−1) and e′ ∈ E(Γ2i+1).

To use this for our statement, let us first suppose that n = 0. Then we may

apply the above diagram to two weighted graphs (Γ, 0) and (Γ′, 0). Since no loop

gets contracted, we may view the arrows of the above diagram as weighted con-

tractions, where the weight function is always the zero function. By hypothesis the

odd-indexed sets M trop(Γ2i−1, 0) are codimension zero sets of the decomposition

(4.6), hence every M trop(Γ2i, 0) has codimension one.

The above fact says that the closures of two consecutive odd-indexed sets

M trop(Γ2i−1, 0) and M trop(Γ2i+1, 0) intersect in M trop(Γ2i, 0). Therefore, if n = 0,

we are done.

If n > 0 we may assume 3g − 3 + n ≥ 2, for otherwise the result follows

from what we know already (namely, that M trop
g,n is connected). Now, we need

to show that Fact 4.12 holds for graphs with n legs, in such a way that no leg

gets contracted by the maps in the diagram. This is easily proved by induction

on n, noticing that if we remove from our 3-regular graph Γ a leg together with

its base vertex, we obtain a 3-regular graph of the same genus as Γ, and n − 1

legs (as 3g − 3 + n ≥ 2). Conversely, if we add a leg in the interior of any edge

of a 3-regular graph with n − 1 legs, we get a 3-regular graph with n legs, and

all 3-regular graphs with n legs can be obtained in this way (more details can be

found in [5, Prop. 3.3.1]). �

5. Moduli spaces via Teichmüller theory

From now on, we restrict to the unpointed case n = 0. Up to now we

considered the moduli space of stable algebraic curves Mg, or, which is the same,

the moduli space of stable equivalence classes of nodal curves. The construction

of Mg as a projective variety, as given in [16], can be summarized as follows (we

refer also to [17, Chapt. 4] for details and references).
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By definition, stable curves have an ample dualizing bundle, so they can all be

embedded in some projective space using a suitable power of it. Furthermore, this

projective space can be chosen to be the same Pr for all stable curves of fixed genus

g. Since the dualizing bundle is preserved by isomorphisms, two such projective

curves are abstractly isomorphic if and only if they are projectively equivalent, i.e.

conjugate by an element of the group G = Aut(Pr) = PGL(r + 1).

Let us denote by H the set of all these projective models of our curves. By

what we said there is an obvious bijection between the quotient set H/G and the

set of isomorphism classes of genus g stable curves.

To give the set H/G an algebraic structure, one proceeds by giving H (via

Grothendieck’s theory of Hilbert schemes), and then H/G (via Mumford’s Geo-

metric Invariant Theory) the structure of an algebraic variety.

The approach we just sketched has many advantages; we wish to mention

just a few of them. One is the fact that stable curves are treated at the same

time as smooth curves, so that the same construction yields a projective algebraic

variety Mg = H/G, the moduli space of stable curves, and an open dense subset

Mg ⊂Mg, the moduli space of smooth curves.

Another consequence of this construction is that, being purely algebraic, it

works in any characteristic. Since the space H turns out to be irreducible and

smooth, one obtains that Mg, and hence Mg, is irreducible (an important fact

that was not known in positive characteristic) and normal, i.e. mildly singular.

Finally, the quotient H → H/G can be rather explicitly described, locally

at every point. By what we said, the stabilizers of the action of G are the auto-

morphism groups of our abstract stable curves, which are finite by definition. In

particular, locally at curves having no nontrivial automorphisms (and there is a

dense open subset of them as soon as g ≥ 3) the space Mg is nonsingular.

A somewhat more sophisticated construction of Mg can be given, by first

constructing the related algebraic stack, Mg, and then showing that this stack

admits a projective moduli scheme Mg. The stackMg is preferable from the point

of view of moduli theory, as it retains more information about the moduli problem

than the moduli variety Mg. Stacks form a larger category than algebraic varieties

or schemes, and may be viewed, loosely speaking, as the algebraic counterparts

of topological orbifolds. We have mentioned this more general point of view as it

relates to some of the open problems that we shall list at the end of the paper.

More details can be found in [11] or [1, Chapt 12 and 14].

We will end the section by speaking about another approach to the moduli

theory of curves that can be used both in the algebraic and tropical situation.

5.1. The Teichmüller approach to moduli of complex curves

In complex geometry, a different, quite natural, point of view is the so-called

Teichmüller approach, which puts emphasis on the topological aspects. We shall
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now give a very short overview of profound and fundamental results; for details

and references we refer to [1, Chapt. XV].

The starting observation is that every smooth complex curve C of genus g

has the same underlying topological manifold, up to homeomorphism; namely a

compact, connected, orientable surface of genus g, which we shall fix and denote

by Sg from now on.

These topological 2-manifolds have been deeply studied in the past, and their

classification dates back to the nineteenth century. Moreover, the group of isotopy

classes of orientation-preserving homeomorphisms7 of Sg with itself, known as the

mapping class group and denoted by Γg, has also been heavily studied. Among its

properties, we need to recall that, denoting by Πg := π1(Sg), we have

Γg ∼= Out+(Πg) ⊂ Out(Πg) := Aut(Πg)/ Inn(Πg)

where the superscript “+” indicates restriction to orientation preserving automor-

phisms (see loc. cit. for the precise definition). Let us go back to our moduli

problem. To parametrize complex curves one proceeds by “marking them”, i.e.

one fixes a homemorphism, called marking, µ : Sg → C, up to isotopy, and consid-

ers the set of isomorphism classes of marked complex curves (C, µ). So, (C, µ) and

(C ′, µ′) are in the same class if there exists an algebraic isomorphism ι : C → C ′

such that the diagram below commutes

(5.1) C ∼=
ι // C ′

Sg

µ′

>>

µ

__

The Teichmüller space Tg is defined as the set of all such classes

Tg := {[(C, µ)], C of genus g}.

Using the basic deformation theory of curves, in particular the properties of their

so-called Kuranishi family, the Teichmüller space Tg is endowed with a natural

structure of complex manifold of dimension 3g−3. Tg is known to be a contractible

space.

Now, it is clear that there is a surjection

Tg −→Mg; [(C, µ)] 7→ [C].

In fact, this surjection is the quotient of Tg by the natural action of the mapping

class group Γg given by, for γ ∈ Γg

[(C, µ)] 7→ [(C, γ ◦ µ)].

7Two homeomorphisms are isotopic if they can be deformed to one another by a continuous

family of homeomorphisms.
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Let us conclude this brief description by mentioning that the Teichmüller approach

has had remarkable applications in establishing some geometric properties of Mg

and of Mg,n; see [17] or [1].

5.2. The Teichmüller approach to moduli of metric graphs

We shall now briefly overview some work of M. Culler and K. Vogtmann

([10]) on moduli of metric graphs. Their approach, inspired by the previously

described Teichmüller theory, presents strong analogies with the algebraic situa-

tion. By contrast, their main goal was not the study of the moduli space of metric

graphs, which appears more as a tool, however important, than a goal. Rather,

the principal scope of [10] was to study an important group: the automorphism

group of the free group of rank g, Fg.

Following an extremely successful line of research, groups may be studied

through their actions on some geometric spaces. To study the automorphism

group of Fg, or rather, its quotient by inner automorphisms, Out(Fg), in [10] the

authors introduce a space, called the outer space and denoted here by Og (as in

[26]) on which Out(Fg) acts.

The starting point is that Fg is the fundamental group, π1(Rg), of the con-

nected graph of genus g with one vertex and g loops, often called the “rose with

g petals”, and written Rg.

Elements in Out(Fg) are thus geometrically represented by homotopy equiv-

alences of Rg with itself.

Now, a connected graph Γ of genus g is homotopy equivalent to Rg. By

adding a metric structure ` to Γ, and letting ` vary, one obtains a new interesting

space on which Out(Fg) acts, provided Γ is “marked”, i.e. provided a homotopy

equivalence µ : Rg → Γ is fixed. Now, to ensure that the space of all marked genus

g metric graphs has finite dimension one needs to assume that graphs have no

vertices of valence 1 or 2 (sounds familiar!). An extra, normalization, assumption

made in [10] is that the sum of the lengths of the edges, i.e. the volume of the

graph, vol(Γ, `) =
∑
e∈E(Γ) `(e), be equal to 1. The outer space Og is defined as

follows

Og := {[(Γ, `, µ)] of genus g, volume 1, having no vertex of valence ≤ 2}

where (Γ, `, µ) and (Γ′, `′, µ′) are in the same class if there exists an isometry

between (Γ, `) and (Γ′, `′) commuting with the markings up to homotopy..

So, Og plays the same role for metric graphs as the Teichmüller space Tg for

complex curves. The group Out(Fg) plays the role of the mapping class group Γg.

In [10] the outer space Og is given the structure of a cell complex, it is shown

not to be a manifold (not hard), and to be a contractible space (a theorem, also

attributed to Gersten).
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The quotient space Og/Out(Fg) is thus a moduli space for metric graphs of

fixed volume and genus, having no vertex of valence ≤ 2. This quotient is thus

closely related to the moduli space of tropical curves.

This connection has not yet been thoroughly investigated, perhaps because

of the relative youth of tropical geometry, or the complexity of the group Out(Fg).

Also because, due to the recent, fast development of tropical geometry, interest in

moduli of metric graphs is probably stronger nowadays than it was twenty years

ago. We believe it deserves to be studied as it offers an entirely new perspective.

For example, using what is known for the outer space Og (see the survey [25]) one

may construct bordifications of the moduli space of pure tropical curves other than

the one we described in the present paper (via weighted, or generalized tropical

curves). This may lead to new, profound insights, just like it has been the case for

the moduli space of smooth algebraic curves, for which different compatifications

exist and have been used in different ways.

5.3. Analogies

The analogies between the Teichmüller construction of Mg and the Culler-

Vogtmann space, are summarized in the following table, where the word “homeo-

morphism” stands for “orientation preserving homeomorphism”.
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ALGEBRAIC CURVES METRIC GRAPHS

Sg topological surface of genus g Rg connected graph

compact connected orientable with one vertex and g loops.

Πg := π1(Sg) Fg := π1(Rg)

C algebraic curve, genus g (Γ, `) metric graph, genus g, volume 1

smooth projective over C connected, no vertex of valence ≤ 2

a marking of C: a marking of Γ:

a homeomorphism up to isotopy a homotopy equivalence

µ : Sg −→ C µ : Rg −→ Γ

The Teichmüller Space: The Outer Space:

Tg := {(C, µ)}/ ∼ Og := {(Γ, `, µ)}/ ∼
(C, µ) ∼ (C ′, µ′) if ∃ C ι→ C ′ (Γ, `, µ) ∼ (Γ′, `′, µ′) if ∃ Γ

ι→ Γ′′

ι an algebraic isomorphism ι an isometry

such that ιµ = µ′ such that ιµ = µ′ up to homotopy

Tg is a contractible C-manifold Og is a contractible cell complex

not a manifold

dimTg = 3g − 3 dimOg = 3g − 4

The mapping class group:

Γg = {φ : Sg → Sg homeomorphism} {φ : Rg → Rg homotopy equivalence}

Γg = Out+(Πg) Out(Fg)

Γg acts on Tg with finite stabilizers Out(Fg) acts on Og with finite stabilizers

Mg = Tg/Γg moduli space Og/Out(Fg) moduli space

of smooth genus g algebraic curves for genus g metric graphs of volume 1
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6. Open problems.

We with some interesting lines of research closely related to the topics treated

in this paper.

(1) Compactifications of Mpure
g,n . We constructed the bordification of the moduli

space of pure pointed tropical curves using weighted tropical curves (as done

in [4] for the unpointed case, using a different set up) and the compactification

by generalized weighted tropical curves, as suggested in [21].

Question 1.

(A) What geometric interpretations can these compactifications be given?

(B) Do there exist other compactifications, or bordifications? If so, how do

they relate among each other?

As we already mentioned, it should be especially interesting to study these

issues in connection with the set up described in Section 5.

(2) Divisor theory. In analogy with the classical theory, for pure tropical curves

there is a good notion of divisors, linear equivalence and linear systems. In

particular, the theorem of Riemann-Roch is known to hold for tropical curves,

by work of A. Gathmann and M. Kerber [14], building upon work of M.

Baker and S. Norine (in [3]) for combinatorial graphs; see also the work on G.

Mikhalkin and I. Zharkov in [24].

One appealing research direction is to explore the connection with the di-

visor theory for algebraic curves, smooth or singular. There is a clear relation

between the combinatorial and the algebraic divisor theory. In fact, let X

be a nodal curve and Γ its dual graph; then for any divisor D on X its

multidegree degD is naturally a divisor on Γ, and on any tropical curve sup-

ported on Γ. The interaction between the two theories is not trivial, and its

investigation may bring new fertile perspectives also on the classical theory.

This in fact has already happened, as shown by the new proof of the famous

Brill-Noether theorem for algebraic curves given in [9], using the groundwork

developed in [2] (which has been refined so as to be applicable in the classical

algebro-geometric set-up, see [6]).

A related problem is the extension of the Riemann-Roch theorem, and of

other classical theorems from Riemann surfaces, to weighted tropical curves,

More specifically:

Question 2. Does a Riemann-Roch theorem hold for line bundles on weighted

tropical curves? What about Clifford’s theorem?

A natural approach to these last problems would require, first of all, an

answer to Question 1.A, raised in part (1).
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(3) Tropical orbifolds or stacks. Establish a categorical framework for tropical

moduli theory. This was also the leading theme of a school in tropical ge-

ometry, organized by E. Brugallé, I. Itenberg and G. Mikhalkin, which took

place in March 2010. As we emphasized a few times in the paper, the spaces

Mpure
g,n and M trop

g,n are not manifolds, and seem too complicated to be tropical

varieties (with a few known exceptions).

Question 3. What is a good category to use in tropical geometry? Can this

category be defined so as to include tropical varieties?

Comparing with the algebraic setting, as we mentioned in Remark 1.3,

moduli spaces for algebraic curves can be studied within the category of (sin-

gular) algebraic schemes, or, more generally, within that of Deligne-Mumford

stacks (but also, that of algebraic spaces, or that of orbifolds).

A promising, seemingly unexplored, line of research could be, again, to

study the connection with the work in [10] and the later developments.
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