CP210 Introduzione alla Probabilità: Esame 2

Cognome	
Nome	
Matricola	
Firma	

Nota:

- 1. L'unica cosa che si può usare durante l'esame è una penna o una matita. Tutto il resto (calcolatrice, libri, appunti, altri fogli di carta, ...) deve essere messo da parte.
- 2. Risposte implicite sotto forma di coefficienti binomiali, potenze, esponenziali ecc. sono benvenute. Mostrate in dettaglio il vostro lavoro.
- 3. Non parlate durante l'esame. Copiare o far copiare non è tollerabile.
- 4. Scrivete il vostro nome su ogni pagina. In caso di utilizzo di piu' pagine per un singolo esercizio indicare chiaramente l'ordine.
- 5. Il punteggio massimo per ogni esercizio è indicato nel testo. Notare che già con quattro esercizi risolti correttamente si arriva vicino al trenta.

Buon lavoro!

esercizio	1	2	3	4	5	6	totale
punti							
su	6	6	6	6	6	6	36

Nome:			

- 1. (6 Punti) Un'urna contiene n palline nere e b palline bianche. In funzione di $n \in \mathbb{N}$ e $b \in \mathbb{N}$, calcolare la probabilità di estrarre due palline dello stesso colore nei due seguenti casi:
 - (a) l'estrazione avviene senza reinserimento;
 - (b) l'estrazione avviene con reinserimento.
 - (c) In quale dei due casi la probabilità è maggiore?

Soluzione:

a). Supponiamo che le palline siano tutte distinte, quindi abbiamo n palline nere numerate da 1 a n e b palline bianche numerate da n+1 a n+b. Se non c'e' reinserimento le prime due estrazioni possono risultare in (n+b)(n+b-1) possibili esiti distinti. Di questi, n(n-1)+b(b-1) hanno lo stesso colore. Allora la probabilità vale

$$\frac{n(n-1)+b(b-1)}{(n+b)(n+b-1)}.$$

b). Se c'e' reinserimento allora le prime due estrazioni possono risultare in $(n+b)^2$ possibili esiti distinti. Di questi n^2+b^2 hanno lo stesso colore. Allora la probabilità vale

$$\frac{n^2 + b^2}{(n+b)^2}$$

c). Scrivendo $x = n^2 + b^2$ e $y = (n+b)^2$, a = n+b, si ha che la prima probabilità vale $(x^2-a)/(y^2-a)$, mentre la seconda vale x^2/y^2 . Poiché a>0 e x< y si vede facilmente che nel secondo caso la probabilità è sempre maggiore, per qualsiasi valore di $n,b\in\mathbb{N}$.

Nome:		

2. (6 Punti) Siano X_1, \ldots, X_{25} variabili di Poisson indipendenti con media $\mathbb{E}[X_i] = 1$. Consideriamo la probabilità

$$p = \mathbb{P}\left(\sum_{k=1}^{25} X_i > 30\right).$$

- (a) Dare una stima dall'alto per p usando la disuguaglianza di Markov;
- (b) Fornire un valore approssimato per p usando il teorema del limite centrale;
- (c) Cosa cambia nei punti a) e b) se le X_i sono variabili esponenziali indipendenti con media $\mathbb{E}[X_i] = 1$?

Soluzione:

a). Dalla disuguaglianza di Markov abbiamo

$$p = \mathbb{P}\left(\sum_{k=1}^{25} X_i > 30\right) \leqslant \frac{1}{30} \sum_{k=1}^{25} \mathbb{E}[X_i] = \frac{5}{6}.$$

b). Sia $S = \sum_{k=1}^{25} X_i$. La varianza, per l'indipendenza, vale:

$$Var(S) = 25Var(X_1) = 25,$$

dove usiamo il fatto che $Var(X_1) = 1$ essendo X_1 una Poisson di parametro 1. Dunque per il teorema del limite centrale $(S-25)/\sqrt{25}$ è approssimativamente normale. Segue che

$$p = \mathbb{P}((S-25)/\sqrt{25} > (30-25)/\sqrt{25}) \approx \mathbb{P}(Z>1) = 1 - \Phi(1) \approx 0.16$$

Nota: se usiamo l'approssimazione di continuità otteniamo

$$p = \mathbb{P}((S - 25)/\sqrt{25} \geqslant (30.5 - 25)/\sqrt{25}) \approx \mathbb{P}(Z \geqslant 1.1) = 1 - \Phi(1.1) \approx 0.14.$$

c). Notiamo che se le variabili fossero esponenziali indipendenti con media $\mathbb{E}[X_i] = 1$ si avrebbe lo stesso $\mathbb{E}[S] = 25$ e Var(S) = 25, e dunque non cambia nulla nei due punti precedenti.

Nome:	:	

3. (6 Punti) Siano Z_1, Z_2 due variabili normali standard indipendenti. Calcolare la densità di probabilità delle variabili

- (a) $Z_1 + Z_2$;
- (b) $Z_1 Z_2$;
- (c) $Z_1^2 + Z_2^2$.

Soluzione:

a). La somma di normali $N(\mu_i, \sigma_i^2)$ indipendenti è normale con parametri $\mu = \sum_i \mu_i$ e $\sigma^2 = \sum_i \sigma_i^2$. Allora $Z_1 + Z_2$ è normale di media $\mu = 0$ e varianza $\sigma^2 = 2$. Dunque ha densità di probabilità

$$f_{Z_1+Z_2}(x) = \frac{1}{\sqrt{4\pi}} \exp\left(-\frac{x^2}{4}\right), \quad x \in \mathbb{R}.$$

b). La variabile $-Z_2$ è normale standard indipendente da Z_1 . Dunque $Z_1 - Z_2$ ha la stessa distribuzione di $Z_1 + Z_2$, e quindi ha densità di probabilità

$$f_{Z_1-Z_2}(x) = \frac{1}{\sqrt{4\pi}} \exp\left(-\frac{x^2}{4}\right), \quad x \in \mathbb{R}.$$

c). La variabile \mathbb{Z}_1^2 ha funzione di distribuzione

$$F(y) = \mathbb{P}(Z_1^2 \leqslant y) = \mathbb{P}(|Z_1| \leqslant \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f(x) \, dx$$

dove $f(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$ e y > 0. Derivando rispetto a y si ha

$$F'(y) = f(\sqrt{y})\frac{1}{2\sqrt{y}} + f(-\sqrt{y})\frac{1}{2\sqrt{y}} = f(\sqrt{y})\frac{1}{\sqrt{y}} = \frac{1}{\sqrt{2\pi}}y^{-\frac{1}{2}}e^{-\frac{y}{2}}.$$

Allora Z_1^2 è una gamma di parametri $\alpha = \frac{1}{2}$ e $\lambda = \frac{1}{2}$. Poiché la somma di gamma con parametri (α, λ) e (β, λ) indipendenti è una gamma con parametri $(\alpha + \beta, \lambda)$ si ha che $Z_1^2 + Z_2^2$ ha la densità

$$f_{Z_1^2 + Z_2^2}(x) = \frac{1}{2} e^{-\frac{x}{2}} \mathbf{1}_{x \geqslant 0}.$$

Dunque $Z_1^2 + Z_2^2$ è una variabile esponenziale di parametro $\frac{1}{2}$.

Nome:			

- 4. (6 Punti) Un account di posta elettronica riceve messaggi secondo un processo di Poisson con una media di 4 messaggi ogni ora. Stimiamo che il 25 per cento di questi finisce nella cartella spam. Supponendo che i messaggi spam e i messaggi non spam seguano due processi di Poisson indipendenti, calcolare:
 - (a) Il numero medio di messaggi spam ricevuti in 24 ore;
 - (b) La probabilità di ricevere due messaggi spam in una data ora;
 - (c) Sapendo che in una data ora sono stati ricevuti 4 messaggi in totale, dire qual è la probabilità che 2 di questi siano spam.

Soluzione: (a). In 24 ore si ha una media di 4 * 24 = 96 messaggi totali, dunque il numero medio di messaggi spam è 96/4 = 24.

(b). I messaggi spam costituiscono un processo di Poisson con media 1 all'ora. Ne segue che il numero di tali messaggi in un'ora è una variabile di Poisson di parametro $\lambda=1$. Dunque la probabilità richiesta vale

$$\frac{\lambda^2}{2}e^{-\lambda} = 0.5e^{-1} \approx 0.18$$

(c). In una data ora, sia N_1 il numero di messaggi non spam e sia N_2 il numero di messaggi spam. Allora N_1,N_2 sono due v.a. di Poisson indipendenti, con parametri $\lambda_1=3$ e $\lambda_2=1$ rispettivamente. Scriviamo

$$\mathbb{P}(N_2 = 2|N_1 + N_2 = 4) = \frac{\mathbb{P}(N_2 = 2, N_1 = 2)}{\mathbb{P}(N_1 + N_2 = 4)}$$

$$= \frac{\mathbb{P}(N_2 = 2)\mathbb{P}(N_1 = 2)}{(4^4/4!)e^{-4}} = \frac{(1^2/2!)e^{-1}(3^2/2!)e^{-3}}{(4^4/4!)e^{-4}} = \frac{54}{256}.$$

Nome:	:

- 5. (6 Punti) Due giocatori lanciano 3 dadi A,B,C. Il giocatore 1 ha il punteggio X dato dalla somma dei dadi A,B, mentre il giocatore 2 ha il punteggio Y dato dalla somma dei dadi B,C. Calcolare:
 - (a) la probabilità condizionata $\mathbb{P}(X=8|Y=6)$.
 - (b) il valore atteso $\mathbb{E}[|X Y|]$

Soluzione: (a). Notiamo che $\mathbb{P}(Y=6)$ è la probabilità che la somma di due dadi valga 6 e dunque

$$\mathbb{P}(Y=6) = \frac{5}{36}.$$

Calcoliamo ora $\mathbb{P}(X=8,Y=6)$. L'evento $\{X=8,Y=6\}$ si realizza in 4 modi differenti: $(A=6,B=2,C=4),\ (A=5,B=3,C=3),\ (A=4,B=4,C=2),\ (A=3,B=5,C=1).$ Ognuno di questi eventi ha probabilità 6^{-3} . Allora

$$\mathbb{P}(X=8, Y=6) = \frac{4}{6^3}.$$

Concludiamo che

$$\mathbb{P}(X=8|Y=6) = \frac{\mathbb{P}(X=8,Y=6)}{\mathbb{P}(Y=6)} = \frac{2}{15}.$$

(b). La differenza X-Y equivale a A-C dove A,C indicano la faccia del dado A e del dado C rispettivamente, e dunque assume i valori $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5$. Notiamo che

$$\mathbb{P}(|X - Y| = 1) = \mathbb{P}(A - C = 1) + \mathbb{P}(A - C = -1) = 2\mathbb{P}(A - C = 1)$$
$$= 2(P(A = 2, C = 1) + \dots + \mathbb{P}(A = 6, C = 5)) = \frac{10}{36}.$$

Allo stesso modo si ha

$$\mathbb{P}(|X-Y|=2) = 2\mathbb{P}(A-C=2) = 2(P(A=3,C=1) + \dots + \mathbb{P}(A=6,C=4)) = \frac{8}{36}$$

$$\mathbb{P}(|X-Y|=3) = 2\mathbb{P}(A-C=3) = 2(P(A=4,C=1) + \dots + \mathbb{P}(A=6,C=3)) = \frac{6}{36}$$

$$\mathbb{P}(|X-Y|=4) = 2\mathbb{P}(A-C=4) = 2(P(A=5,C=1) + \mathbb{P}(A=6,C=2)) = \frac{4}{36}$$

$$\mathbb{P}(|X-Y|=5) = 2\mathbb{P}(A-C=5) = 2(P(A=6,C=1) = \frac{2}{36}$$

Allora

$$\mathbb{E}[|X - Y|] = \sum_{k=1}^{5} k \mathbb{P}(|X - Y| = k) = \frac{1}{36} (10 + 16 + 18 + 16 + 10) = \frac{35}{18}.$$

Nome:	:

- 6. (6 Punti) Lanciamo un dado equo n volte. Sia T_n la variabile aleatoria definita come segue: se c'e' almeno un 6 negli n lanci poniamo T_n uguale al numero del lancio in cui appare il 6 per la prima volta; se non ci sono 6 negli n lanci poniamo $T_n = n$. Calcolare:
 - (a) la densità di probabilità di T_n , in funzione di n;
 - (b) il limite per $n \to \infty$ del valore atteso di T_n ;
 - (c) la probabilità condizionata dell'evento $\{T_n < n\}$ sapendo che c'e' esattamente un 6 negli n lanci, in funzione di n.

Soluzione: (a). Se k = 1, ..., n - 1, l'evento $T_n = k$ si ottiene se e solo se non ci sono 6 nei primi k - 1 lanci e si ha 6 nel k-esimo lancio. Inoltre $T_n = n$ se e solo se tutti i primi n - 1 lanci sono diversi da 6. Dunque

$$p(k) = \mathbb{P}(T_n = k) = \frac{1}{6} (\frac{5}{6})^{k-1}, \quad k = 1, \dots, n-1; \qquad p(n) = \mathbb{P}(T_n = n) = (\frac{5}{6})^{n-1}.$$

In altre parole, T è una geometrica di parametro 1/6 troncata al livello n.

(b). Per quanto visto sopra ci aspettiamo che il limite per $n \to \infty$ del valore atteso sia il valore atteso della geometrica di parametro 1/6, ossia $\lim_{n\to\infty} \mathbb{E}[T_n] = 6$. Possiamo verificare questa affermazione come segue:

$$\mathbb{E}[T_n] = \sum_{k=1}^n kp(k) = \frac{1}{6} \sum_{k=1}^{n-1} k(\frac{5}{6})^{k-1} + n(\frac{5}{6})^{n-1}.$$

Per $n \to \infty$ si ha $n(\frac{5}{6})^{n-1} \to 0$ e $\frac{1}{6} \sum_{k=1}^{n-1} k(\frac{5}{6})^{k-1} \to \frac{1}{6} \sum_{k=1}^{\infty} k(\frac{5}{6})^{k-1}$. Allora

$$\lim_{n \to \infty} \mathbb{E}[T_n] = \frac{1}{6} \sum_{k=1}^{\infty} k(\frac{5}{6})^{k-1} = 6.$$

(c). Sia N il numero di 6 negli n lanci. Vogliamo calcolare

$$\mathbb{P}(T_n < n | N = 1) = \frac{\mathbb{P}(T_n < n, N = 1)}{\mathbb{P}(N = 1)}.$$

Notiamo che

$$\mathbb{P}(T_n < n, N = 1) = \sum_{k=1}^{n-1} \mathbb{P}(T_n = k, N = 1) = (n-1)\frac{1}{6}(\frac{5}{6})^{n-1},$$

dove usiamo il fatto che per ogni $k \in \{1, \dots, n-1\}$ l'evento $\{T_n = k, N = 1\}$ equivale a avere un 6 al k-esimo lancio e tutti diversi da 6 negli n-1 lanci rimanenti, e dunque $\mathbb{P}(T_n = k, N = 1) = \frac{1}{6}(\frac{5}{6})^{n-1}$. D'altra parte, N è una binomiale di parametri n e $\frac{1}{6}$. Allora $\mathbb{P}(N = 1) = n\frac{1}{6}(\frac{5}{6})^{n-1}$. In conclusione,

$$\mathbb{P}(T_n < n | N = 1) = \frac{n-1}{n}.$$

Questo risultato si può indovinare facilmente senza calcoli osservando che condizionatamente all'evento N=1, l'unico 6 negli n lanci deve essere uniformemente distribuito su $\{1,\ldots,n\}$.

Nome:			
_			